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APPROXIMATION THEORY FOR LINEAR-QUADRATIC-GAUSSIAN
OPTIMAL CONTROL OF FLEXIBLE STRUCTURES*

J. S. GIBSON AND A. ADAMIAN?

Abstract. This paper presents approximation theory for the linear-quadratic-Gaussian optimal control
problem for flexible structures whose distributed models have bounded input and output operators. The
main purpose of the theory is to guide the design of finite-dimensional compensators that approximate
closely the optimal compensator, which is infinite-dimensional. Design of the optimal compensator separates
into an optimal linear-quadratic control problem and a dual optimal state estimation problem; the solution
to each problem lies in the solution to an infinite-dimensional Riccati operator equation. The approximation
scheme in the paper approximates the infinite-dimensional LQG problem with a sequence of finite-
dimensional LQG problems defined for a sequence of finite-dimensional, usually finite-element or modal,
approximations of the distributed model of the structure. Two Riccati matrix equations determine the
solution to each approximating problem.

The finite-dimensional equations for numerical approximation are developed, including formulas for
converting matrix control and estimator gains to their functional representation to allow comparison of
gains based on different orders of approximation. Convergence of the approximating control and estimator
gains and of the corresponding finite-dimensional compensators is studied. Also, convergence and stability
of the closed-loop systems produced with the finite-dimensional compensators are discussed. The convergence
theory is based on the convergence of the solutions of the finite-dimensional Riccati equations to the solutions
of the infinite-dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid
body, and a lumped mass is given.

Key words, linear-quadratic-Gaussian optimal control, approximation theory, flexible structures,
distributed systems

1. Introduction. The first question that must be answered when designing a control-
ler for a flexible structure is whether a finite-dimensional model is sufficient as a basis
for a controller that will produce the required performance, or is a distributed model
necessary .9 While some structures can be modeled well by a fixed number of dominant
modes, there are structures whose flexible character can be captured sufficiently for
precise control only by a distributed model. Still othersmperhaps most of the aerospace
structures of the future--can be modeled sufficiently for control purposes by some
finite-dimensional approximation, but an adequate approximation may be impossible
to determine before design of the controller, or compensator. This paper deals with
structures that are flexible enough to require a distributed model in the design of an
optimal LQG compensator.

The linear-quadratic-Gaussian optimal control problem for distributed, or infinite-
dimensional, systems is a generalization to Hilbert space of the LQG problem for
finite-dimensional systems. The solution to the infinite-dimensional problem yields an
infinite-dimensional state-estimator-based compensator, which is optimal in the context
of this paper. By a separation principle [B1 ], [C4], the problem reduces to a determinis-
tic linear-quadratic optimal control problem an an optimal estimation, or filtering,
problem with Gaussian white noise. The solutions to both the control and filtering
problems involve Riccati operator equations, which are generalizations of the Riccati
matrix equations in the finite-dimensional case. Current results on the infinite-
dimensional LQG problem are most complete for problems where the input and
measurement operators are bounded, as this paper requires throughout. This bounded-
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ness also permits the strongest approximation results here. For related control problems
with unbounded input and measurement, see [C3], [C5], [C6], [D2], [I2], [I3],
[L1]-[L4].

Our primary objective in this paper is to approximate the optimal infinite-
dimensional LQG compensator for a distributed model of a flexible structure with
finite-dimensional compensators based on approximations to the structure, and to have
these finite-dimensional compensators produce near optimal performance ofthe closed-
loop system. We discuss how the gains that determine the finite-dimensional com-
pensators converge to the gains that determine the infinite-dimensional compensator,
and we examine the sense in which the finite-dimensional compensators converge to
the infinite-dimensional compensator. With this analysis, we can predict the perform-
ance of the closed-loop system consisting of the distributed plant and a finite-
dimensional compensator that approximates the infinite-dimensional compensator.

Our design philosophy is to let the convergence of the finite-dimensional com-
pensators indicate the order of the compensator that is required to produce the desired
performance of the structure. The two main factors that govern rate of convergence
are the desired performance (e.g., fast response) and the structural damping. We should
note that any one of our compensators whose order is not sufficient to approximate
the infinite-dimensional compensator closely will not, in general, be the optimal
compensator of that fixed order, i.e., the optimal fixed-order compensator that would
be constructed with the design philosophy in [BT], [B8]. But as we increase the order
of approximation to obtain convergence, our finite-dimensional compensators become
essentially identical to the compensator that is optimal over compensators of all
orders.

An important question, of course, is how large a finite-dimensional compensator
we must use to approximate the infinite-dimensional compensator. In [G6]-[G8], and
[M1], we have found that our complete design strategy yields compensators of reason-
able size for distributed models of complex space structures. This strategy in general
requires two steps to obtain an implementable compensator that is essentially identical
to the optimal infinite-dimensional compensator: the first step determines the optimal
compensator by letting the finite-dimensional compensators converge to it, the second
step reduces the order of a large (converged) approximation to the optimal com-
pensator. The first step, which involves control theory and approximation theory for
distributed systems, is the subject of this paper. For the second step, a simple modal
truncation of the large compensator sometimes is sufficient, but there are more sophisti-
cated methods in finite-dimensional control theory for order reduction. For example
[G9], [M1], we have found that balanced realizations [M2] work well for reducing
large compensators.

The approximation theory in this paper follows from the application of approxima-
tion results in [B6], [G3], [G4] to a sequence of finite-dimensional optimal LQG
problems based on a Ritz-Galerkin approximation of the flexible structure. For the
optimal linear-quadratic control problem, the approximation theory here is a substantial
improvement over that in [G1] because here we allow rigid-body modes, more general
structural damping (including damping in the boundary), and much more general
finite-element approximations. These generalizations are necessary to accommodate
common features of complex space structures and the most useful finite-element
schemes. For example, we write the equations for constructing the approximating
control and estimator gains and finite-dimensional compensators in terms of matrices
that are built directly from typical mass, stiffness and damping matrices for flexible
structures, along with actuator influence matrices and measurement matrices.
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For the estimator problem, this paper presents some ofthe first rigorous approxima-
tion theory. (We have used less complete versions of the results in previous research
[G7]-[G9], [M1].) We note also [I1] that as in the finite-dimensional case, the
infinite-dimensional optimal estimation problem is the dual of the infinite-dimensional
optimal control problem, and the solutions to both problems have the same structure.
Because we exploit this duality to obtain the approximation theory for the estimation
problem from the approximation theory for the optimal control problem, the analysis
in this paper is almost entirely deterministic. We discuss the stochastic interpretation
of the estimation problem and the approximating state estimators briefly, but we are
concerned mainly with deterministic questions about the structure and convergence
of approximations to an infinite-dimensional compensator and the performancem
especially stabilitymof the closed-loop systems produced by the approximating com-
pensators.

The paper has two main parts, which correspond roughly to the separation of the
optimal LQG problem into an optimal linear-quadratic regulator problem and an
optimal state estimation problem. The first half, 2-6, deal with the control system
and the optimal regulator problem. Sections 7-10 treat the state estimator and the
compensator that is formed by applying the control law of the first half of the paper
to the output of the estimator.

While this paper is primarily theoretical, we present a detailed numerical example
in 6 and 10. The structure in this example consists of an Euler-Bernoulli beam
attached to a rotating rigid hub on one end and to a lumped mass on the other end.
We emphasize the fact that we do not solve, or even write down, the coupled partial
and ordinary differential equations of motion. For both the definition and numerical
solution of the problem, only the kinetic and strain energy functionals and a dissipation
functional for the damping are required. In 6, we show the approximating functional
control gains obtained by using a standard finite-element approximation of the beam,
and we discuss the effect on convergence of structural damping and of the ratio of
state weighting to control weighting in the performance index. As suggested by a
theorem in 5, the functional gains do not converge when no structural damping is
modeled.

In 10, we complete the compensator design for the example. Assuming that
white noise corrupts the single measurement and that distributed white noise disturbs
the structure, we compute the gains for the finite-dimensional estimators and show the
functional estimator gains. As in the control problem, the functional gains do not
converge when no damping is modeled. We apply the control laws computed in 6
to the output of the estimators in 10 to construct the finite-dimensional compensators,
and we show the frequency response of these compensators. As predicted by 9.3, the
frequency response of the nth compensator converges to the frequency response of
the optimal infinite-dimensional compensator as n increases. In 10.3, we discuss the
structure and dimension of the finite-dimensional compensator that should be imple-
mented.

2. The control system. We consider the system

(2.1) 5i( t) + Do( t) + Aox( t) Bou( t), t>0

where x(t) is in a real Hilbert space H and u(t) is in R" for some finite m. The linear
stiffness operator Ao is densely defined and self-adjoint with compact resolvent and
has at most a finite number of negative eigenvalues. We will postpone discussion of the
damping operator Do momentarily, except to say that it is symmetric and nonnegative.
The input operator Bo is a linear operator from R" to H, and hence is bounded.
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By natural modes, we will mean the eigenvectors +j of the eigenvalue problem

(2.2) hbj Aob.
From our hypotheses on Ao, we know that these eigenvalues form an infinitely
increasing sequence of real numbers of which all but a finite number are positive. Also,
the corresponding eigenvectors are complete in H and satisfy

(2.3) ()i, )j)H -(aoi, dPj)H--0, #j.

For hj > 0, w is a natural frequency.
Remark 2.1. Our analysis includes the system

(2.1’) MoS( t) + Do2( t) + Aox( t) BoU( t), > 0

where the mass operator Mo is a self-adjoint, bounded, and coercive linear operator
on a real Hilbert space Ho. The operators Ao, Bo, and Do in (2.1’) have the same
properties with respect to Ho that the corresponding operators in (2.1) have with respect
to H. To include (2.1’) in our analysis, we need only take H to be Ho with the
norm-equivalent inner product (.,.)H =(Mo ", ")Ho, and multiply (2.1’) on the left by
M-t. In H, the operator M-tAo is self-adjoint with compact resolvent, and M-tDo is
symmetric and nonnegative. With no loss of generality then, we will refer henceforth
only to (2.1) and assume that the H-inner product accounts for the mass distribution.

2.1. The energy spaces and the first-order form of the system.
2.1.1. The elastic-strain-energy space V and total-ene.rgy space E. We choose a

bounded, self-adjoint linear operator At on H such that Ao--Ao+ At is coercive; i.e.,
there exists p > 0 for which

(2.4) (/oX, x>. -> pllxll ,, x D(/o)= D(Ao).

In applications such as our example in 6, it is natural to select for A an operator
whose null space is the orthogonal complement (in H) of the eigenspace of Ao
corresponding to nonpositive eigenvalues. Obviously, any At that makes Ao coercive
must be positive definite on the nonpositive eigenspace of Ao.

With At chosen, we define the Hilbert space V to be the completion of D(Ao)
with respect to the inner product (vt, V2)V--(/0Vl, V2)H, Vl and /’)2 D(Ao). Note that
V= D(/2) and (vt, Vz)v (,/2vt, ,/2v2)H. (Since At is a bounded operator on H,
different choices of A yield V’s with equivalent norms, thus containing the same
elements.)

In the usual way, we will use the imbedding

VcH=H’c V’

where the injections from V into H and from H into V’ are continuous with dense
ranges. We denote by A v the Riesz map from V onto its dual V’. Then ,o is the
restriction of Av to D(Ao) in the sense that

(2.5) (AvVl)V=(v, AoVl)H, vtD(ao), v V.

Now we define the total energy space E V x H, noting that when Ao is coercive
and x(t) is the solution to (2.1), then [[(x(t), 2(t))[[ is twice the total energy (kinetic
plus potential) in the system. We want to write (2.1) as a first-order evolution equation
on E. To do this, we must determine the semigroup generator for the open-loop system.
We will derive this generator by constructing its inverse explicitly. This approach seems
mathematically efficient, and we will need the inverse of the generator for the approxi-
mation scheme. First, we must state our precise hypotheses on damping and discuss
its representation.
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2.1.2. The damping functional and operator. Actually, we do not require an operator
Do defined from some subset of H into H. Rather, we assume only that there exists
a damping functional

(2.6) do(v,, v2) V x V- Rsuch that do is bilinear, symmetric, continuous (on Vx V), and nonnegative. Under
these hypotheses, there is a unique bounded linear operator AD from V into V’ such
that

(2.7) do(v, Vl) (ADVl)V, Vl, V V.

The operator Dv (A.IAD) is then a bounded linear operator from V to V, and Dv
is self-adjoint (on V) because do is symmetric. Also

(2.8) do(v, vl)=(v, Dvvl)v=(Dvv, Vl)v, vl, v V.

Remark 2.2. We chose to begin our description of the control system model with
(2.1) because its form is familiar in the context of flexible structures. In applications
such as the example in 6, however, it is easier to begin with a strain-energy functional
from which the correct strain-energy inner product for V is obvious. The stiffness
operator is then defined in terms of the Riesz map for V (see [$3] for this approach).
Either way, the only thing that needs to be computed in applications is the V-inner
product; an explicit Ao need not be written down.

2.1.3. The semigroup generator. We define .-1 L(E, E) by

(2.9) _,= [-Dvi -1"0
This operator is clearly one-to-one, and its range is dense, since V is dense in H and
D(Ao) is dense in V. Now, we take

(2.10) / (/-’)-’.
Direct calculation of the inner product shows

(2.11)

so that / is dissipative with dense domain. Also, since D(/-) E,/ is maximal
dissipative by G1, Thm. 2.1 ]. Therefore,

Finally, the open-loop semigroup generator is

A=A+ D(A)=D(A)

where A is the bounded linear operator chosen to make Ao coercive. With

(2.13) B=
Bo

L(Rm’ E),

the first-order form of (2.1) is

(2.14) :/(t) az( t) + Bu( t), t>0

where z (x, 2) E.
We should note that Showalter [$3, Chap. VI] elegantly derives a semigroup

generator for a class of second-order systems that includes the flexible-structure model
here. The presentation here is most useful for our approximation theory because of
the explicit construction of the inverse of the semigroup generator.
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In many structural applications, the open-loop semigroup is analytic. Showalter
obtains an analytic semigroup when the damping functional is V-coercive, for example,
when there exists a damping operator Do that is both Ao-bounded and as strong as
Ao. Such a damping operator results from the Kelvin-Voigt viscoelastic material model.
Chen and Russell [C 1 have shown that the semigroup is analytic for a class of damping
operators involving A/2, and recently Chang and Lasiecka [C6] have shown that the
semigroup is analytic if eoA <= Do <- clA for some /z such that 1/2=</x -< 1 and Co and
el positive and finite. If the damping operator is bounded relative to A for/x < 1,
then A has compact resolvent.

Finally, we can guarantee that the open-loop semigroup generator is a spectral
operator (i.e., its eigenvectors are complete in E) only for a damping operator that is
a linear combination of an H-bounded operator and a fractional power of A0. However,
nowhere do we use or assume anything about the eigenvectors of either the open-loop
or the closed-loop semigroup generator. The natural modes--of undamped free vibra-
tion-in (2.2) are always complete in both H and V.

2.2. The ad]oint of A. Since Dv is self-adjoint on V, direct calculation shows that
.-* (i.e., the adjoint of - with respect to the E-inner product) is

(2.15) ._. I-Dr-I "-’]"0

Then *= (/-*)-. Having -* explicitly facilitates proving strong convergence for
approximating adjoint semigroups.

2.3. Exponential stability. The following theorem states that, if there are no rigid-
body modes and if the damping is coercive (basically, all structural components have
positive damping), then the open-loop system is uniformly exponentially stable. That
the decay rate given depends only on the lower bound for the stiffness operator and
the upper and lower bounds for the damping functional is essential for convergence
results for the approximating optimal control problems of subsequent sections. The
theorem is a generalization of Theorem 6.1 of [G1] to allow more general damping,
but the proof is entirely different and much nicer. The current proof uses an explicit
Lyapunov functional for the homogeneous part of the system in (2.14). Recall that
T(.) is the open-loop semigroup, with generator A, and E is the total energy space
VxH.

THEOREM 2.3. Suppose that Ao and do are H-coercive. Let p be the positive constant
in (2.4), and let 3o and 81 be positive constants such that

(2.16) ollvll do(, v) ,11v112, v v.
Then

( )](2.17) liT(t)[[ -< l+x/- exp -t +pp+61 t->0.

Proof For 3,>max {1/x/-fi, 2/6o}, define Q L(E) as

(2.18) O= [(yI+A/A)I yI

Since Dv is self-adjoint and nonnegative on V, Q is self-adjoint and coercive on E. It
is shown in [G6] that (Qaz, z) <= Ilzll and that (2.17) holds.
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3. The optimal control problem. Section 3.1 presents some preliminary definitions
and results for the optimal linear-quadratic regulator problem on an arbitrary real
Hilbert space. These results are generic in the sense that the Hilbert space E is not
necessarily the energy space of 2, and the operators A, B, etc., do not necessarily
represent an abstract flexible structure as in 2. In the second half of the paper, having
such generic results will allow us to obtain the approximation theory for the infinite-
dimensional state estimator from the analogous results for the control problem. Section
3.2 gives some important implications of the general results for the case where the
control system is that defined in 2. The proofs of the new results in this section (those
after Theorem 3.3) are technical and sometimes tedious. They are given in [G6].

3.1. The generic optimal regulator problem. Let a linear operator A generate a
Co-semigroup T(t) on a real Hilbert space E, and suppose B L(R’, E), Q L(E, E),
and R L(Rm), with Q nonnegative and self-adjoint and R positive definite and
symmetric. The optimal control problem on E is to choose the control u L(O, c; R")
to minimize the cost functional

io(3.1) J(z(O), u)= ((Qz(t), z(t)>z +(Ru(t), u(t)>R") dt

where the state z(t) is given by

(3.2) z(t)- T(t)z(O)+ T(t-rl)Bu(rl) drl, t>-_O.

DEFINITION 3.1. A function u L2(0, c; U) is an admissible controlfor the initial
state z, or simply an admissible control for z, if J(z, u) is finite; i.e., if the state z(t)
corresponding to the control u(t) and the initial condition z(0)= z is in L2(0, ; E).

DEfINiTION 3.2. Let the operators A, B, Q, and R be as defined above. An operator
H in L(E) is a solution of the Riccati algebraic equation if H maps the domain of A
into the domain of A* and satisfies the Riccati algebraic equation

(3.3) A*H +HA-HBR-1B*H + Q 0.

THEOREM 3.3 (Theorems 4.6 and 4.11 of [G4]). There exists a nonnegative self-
adjoint solution of the Riccati algebraic equation if and only if, for each z E, there is
an admissible control for the initial state z. If II is the minimal nonnegative self-adjoint
solution of (3.3), then the unique control u (.) that minimizes J(z, u and the corresponding
optimal trajectory z(. are given by

(3.4) u(t) -R-B*Hz(t)

and

(3.5) z(t)=S(t)z

where S(t) is the semigroup generated by A-BR-1B*H. Also,

(3.6) J(z, u) min J(z, v) (Hz, z).

If, for each initial state and admissible control,

(3.7) lim [Iz(t)ll 0,

then there exists at most one nonnegative self-adjoint solution of (3.3). If Q is coercive,
then (3.7) holds for each initial state and admissible control and S(t) is uniformly
exponentially stable.
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We will refer to T(t) as the open-loop semigroup and to S(t) as the optimal
closed-loop semigroup.

To prepare for the convergence analysis in 5 and 9, we now present some
estimates for the decay rate of the closed-loop system in the optimal control problem.

THEOREM 3.4. Suppose that the open-loop semigroup T(. satisfies

(3.8) T(t)] M1 e’’, _-> 0,

for positive constants M and , that II is the minimal nonnegative self-adjoint solution
to (3.3), and that S( t) is the optimal closed-loop semigroup in Theorem 3.3. If there exists
a constant Mo such that, for each z E,

(3.9) IIS(/)zll 2 dt <= Mo((]-Iz, z)E + Ilzll )

and a constant M’o such that

(3.10)

then there exist positive constants M. and o, which are functions of Mo, M’o, M, and
c only, such that

<3.1) IIS<t)II<-M e-’, t>-_O.

LEMMA 3.5. Suppose there exist positive constants M and c such that

(3,12) T( t)ll-<- M e-’, >_- 0.

Ifz(O) E, h Le(0, oo; E), and z(t)= T(t)z(O)+o T(t-s)h(s)ds, then

(3o3) IIz()ll de_-< I1(0)11 +--

LEMMA 3.6. Suppose that E is finite-dimensional and that the pair Q, A) is observ-
able (in the usual finite-dimensional sense). Then there exists a constant M, which is a

function of A, B, and Q only, such that

(Io(3.14) IIz(t)ll e dt<-M ((Qz(t),z(t)>/llu(t)ll ) dt

where z (t) is given by (3.2).
The next theorem says, among other things, that if the open-loop control system

decouples into a finite-dimensional part that is stabilizable (in the usual finite-
dimensional sense) and an infinite-dimensional part that is uniformly exponentially
stable, then the entire system is uniformly exponentially stabilizable, so that (3.3) has
a nonnegative self-adjoint solution.

THEOREM 3.7. Suppose that there exists a finite-dimensional subspace Eo D(A)- reduce A (and T(t)), and writesuch that Eo and Eo

(315) A=[AI 0 ], B=[BI] [QI QI7
_c respectively. Similarly,where A andA are the restrictions ofA to Eo and D(A)

(316) T(t)=[T,,(t)o r(l
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Also, suppose that the pair (A1, BI) is stabilizable and that there exist positive constants

M’,a; and fl such that

(3.17) IIT(t)IIM’, e-’, t>O=

and

(3.18) max {11B II, Q [} -<-/3.

(i) Then there exists F L( E, Rm) such that A- BFgenerates a uniformly exponen-
tially stable semigroup on E. Also, (3.3) has a nonnegative self-adjoint solution, and the
minimal such solution satisfies (3.10) with M’o a function ofAl, BI, R, M, a, and
only.

(ii) If Q2--0 and the pair (Q,A) is observable, then there exists a unique
nonnegative self-adjoint solution II to (3.3), and there exist positive constants M2 and

ae--which depend on AI, B, Q, R, M’I, al; and ] only--such that the optimal
closed-loop semigroup satisfies
(3.19) IIS(/)II <- M e-:t, >= O.

Remark 3.8. When we say in Theorem 3.4 that M2 and ae are functions of
Mo, M;, M, a only, we mean, for example, that for two optimal control problems
on different spaces E, with different operators A, B, etc., if the same constants
Mo, M;, Mr, and a work in (3.8)-(3.10) for both problems, then the same constants

M2 and a2 will work in (3.11) for both problems. Similarly, in Theorem 3.7(ii), as long
as Eo, AI BI Qll R, M’l atl, and fl remain the same, the same M2 and cz will work

+/- A22 Be and Qe2 changein (3.19) even if Eo,

3.2. Application to optimal control of flexible structures. For the rest of this section,
Ao, A1, A, T(t), B0, and B are the operators defined in 2.1, and E V H is the
energy space defined there.

Remark 3.9. Theorem 3.7 is useful mainly when all but a finite number of modes
have coercive damping in the open-loop system and the damped and undamped parts
of the open-loop system remain orthogonal. This is the case, for example, with modal
damping. The next theorem does not require orthogonality of the damped and un-
damped parts of the system, but it does require an independent actuator for each
undamped mode. The situation of Theorem 3.10 is typical in aerospace structures" any
elastic component should have some structural damping, but rigid-body modes are
common; for a structure to be controllable, an actuator is required for each rigid-body
mode.

THEOREM 3.10. (i) Suppose that A1 BoB*o and that Ao Ao+ A1 and do do+A
are H-coercive, so that there exist positive constants p, y, and fl such that, for all v V,

(3.20)

(3.21)

and

(3.22) max {llBoll, QII, IIRII} .
(The V-continuity of do implies the second inequality in (3.21).) Then (3.3) has a minimal
nonnegative self-adjoint solution H, which satisfies (3.10) with M’o a function of p, y,
and only.

(ii) Suppose also that

(3.23) (Qz, z> p[lzll, z E.



10 J. S. GIBSON AND A. ADAMIAN

Then the optimal closed-loop semigroup satisfies
--oz2t(3.24) IIS(t)II<=M2 e t>=O

where M2 and Ol2 are positive constants depending on p, y, and only.
Now we will consider the structure of the optimal control law in more detail.

Since H L(E, E) and E V H, we can write

1-1o H1](3.25) H=
1-I* H2

where IIo L(V, V), IIl L(H, V), II2 L(H, H), and IIo and II2 are nonnegative and
self-adjoint. With z= (x, 2), as in 2, (3.4) becomes

(3.26) u(t) -R-B*o[H* x(t) + [I22 (t)].

Since Bo6 L(R m, H), we must have vectors bi H, 1 _-< i_-< m, such that

(3.27) Bou b,u,
i=i

for u [UlU2 llm] T R m.

Also, for h H,

(3.28) B*oh [(bl, h)H(b, h)i4" (bm, h)H] r.
Since IIl*X(t) and H(t) are elements of H, we see from (3.26) and (3.28) that the
components of the optimal control have the feedback form

(3.29) ui( t) -, x( t))v -(g, x( t))H, 1," ", m

where f V and gi H are given by

(3.30) f--- Z (R-1)ijI-[,bj, gi-- E (R-1)ijl’I2bj, i= 1,..., m.
j-1 j=l

We call f and gJfunctional gains.

4. The approximation scheme.
4.1. Approximation of the open-loop system.
Hypothesis 4.1. There exists a sequence of finite-dimensional subspaces Vn of V

such that the sequence of orthogonal projections Pw converges V-strongly to the
identity where Pw is the V-projection onto V,. Also, each V, is the span of n linearly
independent vectors ej.

Since it should cause no confusion, we will omit the subscript n and write just
ej, keeping in mind that the basis vectors may change from one V, to another, as in
most finite-element schemes. Also, we will refer to the Hilbert space En V Vn,
which has the same inner product as E V H.

For n >-1, we approximate x(t) by

(4.1) x.(t)= ,
(t)ej

j=l

where so(t) (l(t), sc2(t), :,(t)) r satisfies

(4.2) M"’(t)+ D"(t)+ K"(t)= B)u(t),
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and the mass matrix Mn, damping matrix Dn, stiffness matrix K n, and actuator
influence matrix B are given by

M [(e, e)], D [do(e, ej)],

(4.3) Kn=[(A/e,A/2e.i)]=[(ei, e)v]-[(A,e, e)],
B=[(e, b)H].

Of course, (4.2) can be written as

(4.2’) A"rl + Bn u

where

(4.4)

and

_M-Kn _M-nDn
Bn=

M_nBo

(Note. Throughout this paper, we use the superscript n in the designation of matrices
in the nth approximating system and control problem such as A, Bn, Mn, etc. Hence
the superscript n indicates the order of approximationit never indicates a power of
the matrix. By M

In the designation of a linear operator in the nth approximation, we use the
subscript n. For example, An and B are the operators whose matrix representations
are A and Bn, respectively.)

For convergence analysis, it is useful to note that (4.1) and (4.2) or (4.2’) are
equivalent to

(4.6) ’n (t)-- Anzn(t)+ Bnu(t)

where zn (xn, :n) En, and An L(En) and Bn L(R’, En) are the operators whose
matrix representations are given in (4.5). Also, for any real A,

(4.7)

is equivalent to

(4.8)

and

(4.9)

if

(A2M q- hD + Kn)a (hM + Dn)fi + Mn2

(4.10) v= a ei and hn fl ei, j 1, 2.
i--1 i=1

Next, we will prepare to invoke the Trotter-Kato semigroup approximation
theorem to show how (4.2), (4.2’), and (4.6) approximate (2.1) and (2.14). First, we
will treat the case in which Ao is coercive (no rigid-body modes), so that A1 =0 and
Ao Ao; the general case is a straightforward extension. For Ao coercive, the open-loop
semigroup generator A is maximal dissipative. Also, for each n, An is dissipative on
En. The main idea here is to project (A- A) -1 onto Vn in a certain inner product and
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observe that the result is exactly (A-An) -1, where An is the operator on En in (4.6)
and (4.7). Of course, we need only do this for real A > 0.

For real A > 0 then, define an inner product on V by

(4.11)

Under the hypotheses in 2 on do, (’,’) is norm-equivalent to (.,.)v. For n-> 1, let
Pn(A) be the projection of V onto Vn in the inner product (.,.). Now let hi, hzc H
and note that

h

is equivalent to

[ v(4.13)

With A-1 from (2.10), (4.13) is equivalent to

(4.14) (I+ADv+A2Al)vl=(AAl+Dv)hl+A-lha
and

(4.15)

If
2 /)2(4.16) v=P(&)v and vn=Pn(&)

it follows from (4.11) and (4.14) that

(ei, 2( 1)V n), A ei AoA- v , + a ei Dvv v + ei V v
(4.17)

(ei, (ha-d1+ Dr)hi+ A-d h2)v,
and from (4.15) that

2(4.18) (el,

Now, for h’= hln c V,, h2= h Vn, and vln v 2n, h in and h a. written as in (4.10), (4.17)
and (4.18) yield (4.8) and (4.9) again.

This shows that

(4.19)
0 Pn(A)

which yields

(4.20) [Pn(A) 0 I(A-A)-Ipe,,=(A-An)-Ipen0 Pn(A)

where Pzn is the E-projection of E onto En. The projection Pn can be written

(4.21) p,,=[Pvn 0 ]0 P,,

where Pvn is the V-projection onto Vn, as before, and PHn is the H-projection onto

Vn. Since the V-norm is stronger than the H-norm and the norm induced by the A-inner
product is equivalent to the V-norm, it follows from Hypothesis 4.1 that (A -An)-Pen
converges E-strongly to (A-A)- as n-*. Now, with An extended to E as, say
n(PFn--I), the Trotter-Kato Theorem [K1, Thm. 2.16, p. 504] yields the following.
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THEOREM 4.2. For Ao coercive, let T, (.) be the (contraction) semigroup generated
on E, by A,. Then, for each >- O, Tn(t)Pen converges strongly to T(t), uniformly in

for in bounded intervals.
In the general case, when Ao is not coercive, the open-loop generator A is obtained

from the dissipative A by the bounded perturbation in (2.12) so that [G3, Thm. 6.6]
yields the following generalization of Theorem 4.2.

COROLLARY 4.3. Let T, (.) be the semigroup generated on En by A,. Then, for each
>-O, T, (t)PE, converges strongly to T(t), uniformly in for in bounded intervals.

THEOREM 4.4. When A has compact resolvent, (A -An)-IPe, converges in L(E) to

(A -A) -1.
Proof This follows from (4.20) and a standard result that the projections of a

compact linear operator onto a sequence of subspaces converge in norm if the projec-
tions converge strongly to the identity, as do P, and P,(A).

That the adjoint semigroups also converge strongly follows from an argument
entirely analogous to the proof of Theorem 4.2. In particular, equations such as
(4.11)-(4.17) are used to show that

(4.22) [P.(A) 0 I(A_A.)_Ip.=(A_A..)_p."0 P()

In showing this, A-* is used as A-- was used previously. Also, care must be taken to
calculate A* with respect to the E-inner product. The results is Theorem 4.5.

THEOREM 4.5. Let T, (.) be the sequence of semigroups in Corollary 4.3. Then, for
each t->0, T*.(t)P. converges strongly to T*(t), uniformly in for in bounded
intervals.

Finally, for the approximation to the actuator influence operator B L(Rm, E),
recall Bn L(R m, E.), the operator whose matrix representation is the matrix B" in
(4.5). From (4.3), it follows that

(4.23)

Since B has finite rank m, B, and B* converge in norm to B and B*, respectively.

4.2. The approximating optimal control problems. The nth optimal control problem
is as follows. Given zn(0)= (x,(0), 2,(0)) E,, choose u L2(0, c; R ") to minimize

Io(4.24) J(zn(0), u)= ((Q,z,(t), z,(t))e +(Ru(t), u(t))Rm) dt,

where Q, Pe, QIe,. We assume the following hypothesis.
Hypothesis 4.6. For each n _-> and z,(0) E,, there exists an admissible control

(Definition 3.1) for (4.6) and (4.24).
A sufficient condition for Hypothesis 4.6 is that, for each n, the system

be stabilizable.
By Theorem 3.3, the optimal control u,(t) has the feedback form

(4.25) un( t) -R-’ B*.II.z.( t)

where 1-I. is a linear operator on E., I-I. is nonnegative and self-adjoint, and 1-I. satisfies
the Riccati equation

(4.26) A*nIIn + FIna. ]-InB.R -1B*n]-In + Q. O.

As a result of Hypothesis 4.6, (4.26) has at least one nonnegative, self-adjoint solution.
The minimal such solution is the correct 1-I here. If the system (An, Qn) is observable,
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then 17, is the unique nonnegative, self-adjoint solution to (4.26) and is positive definite.
If we write 17, as

(4.27) I-l.=
]_i ln 1_i2.

then (4.25) becomes

(4.28)

(4.29)

where

(4.30)

and

u, t) -R-’ B*o [II*.x,( t) + II2,, (t)].

The feedback law (4.28) can be written in functional-feedback form, just as in
3. We have

Un(l) [Uln (/)u2n (t)" um.(t)] r

ui,(t)=-{f,,x,(t))v-(gi,,,(t))H, l <--i<=m,

(4.31a) f, (R-’)ijII,,PH, bj, 1 <= <= m,
j=l

(4.31b) gi, Y (R-)oH2,P,bj, 1 <= <= m.
j=l

Of course, f, and g, are the nth approximations to the functional gains f/ and gi in
(3.30).

For numerical solution of the nth problem, we need the matrix representations
of these equations. We begin with the following Grammian matrices:

gn=[(ei, ej)v]--Kn+[(Aei, ej),](4.32)

and

(Note. The matrix W-" will be the inverse of
Now recall Q, P,,Q[u.,. Since Q Q* L(E) and E V x H, we can write

(4.34) Q=
Q* Q2

where Qo Qo* e L(V), Q e L(H, V), and Q2 Q* e L(H). Straightforward calculation
shows that

(4.35) Q" W-"

where Q" is the matrix representation of Q, and (" is the nonnegative, symmetric matrix

(4.36) ("= -Q
Qr

with

(4.37) Qo [(ei, Qoej)v], Q [(ei, Q, ej)v], Q [(ei,

Also, recall that A, and B, are the operators whose matrix representations are given
by (4.5), and note that the matrix representations of A* and B* are
and (B") r W", respectively.
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With the matrix representation of Fin denoted by FI n, the Riccati operator equation
(4.26) is equivalent to the Riccati matrix equation

(4.38) w-n(An) TwnIIn-l-l-[nan-FinBnR-’(Bn) TwnI-In-k Qn--o.

While IIn is self-adjoint, 1-I in general is not symmetric, but the matrix

(4.39) fin= wni-i

is symmetric and nonnegative, and positive definite if Fin is. Premultiplying (4.38) by
Wn, we obtain

(4.40) (an)Tf-ln+f-lnan-fInBnR-’(Bn) T(In+On=o
which is the Riccati matrix equation to be solved numerically.

Now we need one more set of matrix equations for the numerical solution of the
nth optimal control problem. Since the functional gains fn and gin are elements of Vn,
they can be written as

(4.41) fn )ej and gin-- [3;iej, i-- 1, m
j=l j=l

where flJl, fig, R n. Partitioning H as in (4.27) and working out the matrix representa-
tion of (4.31), we obtain

(4.42) [/3f’ /3f2., . ig,, w-nfi Bnu -1

See [G6] for a derivation of (4.42) that is more natural in terms of finite-dimensional
control theory.

5. Convergence. As in 3, 5.1 will state some results for the optimal linear
regulator problem involving generic linear operators A, B, Q, etc., on an arbitrary real
Hilbert space E, and 5.2 will expand on these results for the particular class of control
problems treated in this paper. The proofs of the results in this section are given in [G6].

5.1. Generic approximation results. Let the Hilbert space E and the linear
operators A, T(. ), B, Q, and R be as in 3. Suppose that there is a sequence of
finite-dimensional subspaces En, with the projection of E onto En denoted by Pen,
such that Pen converges strongly to the identity as n - o, and suppose that there exist
sequences of operators A L(E ), Bn L(Rm, En), Qn Q*n L(E ), Qn O, such that
we have the following strong convergence. For all z E and t_-> 0,

(5.1) exp (ant)PEnz- T(t)z and exp (a*t)PEnz- T*(t)z

as n oe, uniformly in for in bounded intervals; for each u R m,
(5.2) Bnu --> Bu

for each z E,

(5.3) QnPEn Z "-> QZ.

THEOREM 5.1. Suppose that for each n there is a nonnegative, self-adjoint linear
operator IIn on En that satisfies the Riccati algebraic equation

(5.4) A*,IIn + IInAn IInBnR- B*,IIn + Qn O.

If there exist positive constants M and fi, independent of n, such that

(5.5) lexp([an-BnR-’B*IIn]t)l <-Me-’, t>=O,
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and if IlIInll is bounded uniformly in n, then the Riccati algebraic equation (3.3) has a

nonnegative self-adjoint solution 1I, and, for each z E,

(5.6) 1-InPenz l-Iz

and

(5.7) exp ([An BnR-B*IIn]t)Penz - S(t)z

uniformly in >= O, where S(. is the semigroup generated by A-BR-B*II. If there
exists a positive constant 6, independent of n, such that

(5.s) Q._->,

then Ill-In being bounded uniformly in n guarantees the existence of positive constants
M and fl for which (5.5) holds for all n.

THEOREM 5.2. The strong convergence in (5.6) implies uniform norm convergence
of the optimal feedback laws:

(5.9) IIB*l-InnEn B’1111--> 0 as n - o.

THEOREM 5.3. Assume the hypotheses of Theorem 5.1 but do not assume (5.5) or

(5.8). If ]]I-In]] is bounded uniformly in n, then the Riccati algebraic equation (3.3) has
a nonnegative self-adjoint solution I-[ and, for each z E, 1-InPEnz converges weakly to

rIz.

5.2. Convergence of the approximating optimal control problems of 4.2. For the
rest of this section, Ao, A, A, T(t), Bo, and B are the operators defined in 2. The
operators An, Bn, Qn, and 1-In are the operators in the approximation scheme of 4.
Also, H L(En, En) is the minimal nonnegative, self-adjoint solution of the Riccati
operator equation (4.26). According to Corollary 4.3 and Theorem 4.5, the Ritz-
Galerkin approximation scheme presented in 4.1 converges as required in (5.1); (5.2)
and (5.3) follow from (4.23) and the definition Qn PnQIEn in 4.2. Also, Hypothesis
4.6 guarantees for each n the existence of the required solution of the Riccati equation
(5.4) in Theorem 5.1.

Since 1-In is nonnegative and self-adjoint, its eigenvalues, which are also the
eigenvalues of its matrix representation, are real and nonnegative, and its norm is
equal to its maximum eigenvalue.

THEOREM 5.4. If O is E-coercive and do-0 (i.e., there is no open-loop damping),
then there is no nonnegative self-adjoint solution ofthe Riccati operator equation (3.3), and

(5.10) IIl-Inllc asn-cc.

THEOREM 5.5. Suppose that Ao and do(’," are both H-coercive. Then there exist

positive constants M and a, independent of n, such that

(5.11) Ilexp[Ant]ll<=M1 e-’’, t>=O.

THEOREM 5.6. Suppose that Ao has an invariant subspace Vo that is also invariant
under the damping map Dr, that Eo Vo x Vo is a stabilizable subspace for the control
system, and that the restrictions of Ao and do(’,’) to V are both H-coercive. Also,
suppose that Vo has finite dimension no and that, for each n >-no in the approximation
scheme, the first no ei’s span Vo and the rest are orthogonal to Vo in both V and H.

(i) Then (3.3) has a nonnegative self-adjoint solution H, andfor each n >- no, (5.4)
has a nonnegative self-adjoint solution IIn. Also, IIn is bounded uniformly in n, so that
IIn converges to H weakly, as in Theorem 5.3.
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(ii) If Eo and E (the E-orthogonal complement olEo) are invariant under Q, and

if the part of the open-loop system on Eo is observable with the measurement Qz, then
(5.5)-(5.7) hold as in Theorem 5.1.

Remark 5.7. In applications, the subspace Vo in Theorem 5.6 usually contains
rigid-body modes. The theorem includes the case where both Ao and do are H-coercive
on all of V (no rigid-body modes and all modes damped). In this case, Vo is the trivial
subspace.

Remark 5.8. Otherwise, for applications to flexible structures, Theorem 5.6 usually
requires two things: first, modal damping must be modeled for the structure, so that
the natural modes remain uncoupled in the open-loop system; second, the natural
mode shapes must be used for the basis functions in the approximating optimal control
problems. Although these requirements may seem restrictive from a mathematical
standpoint, such modeling and approximation predominate in engineering practice.
Also, we get our strongest convergence results under these conditions. For applications
where the basis vectors are not the natural mode shapes, the following theorem is
useful.

THEOREM 5.9. Suppose that Ao+BoB*o and do+BoB*o are H-coercive. Then (3.3)
has a nonnegative solution H, for each n (5.4) has a nonnegative self-adjoint solution

is bounded uniformly in n. Hence, Theorem 5.3 applies. Furthermore, if
Q is E-coercive, then (5.5)-(5.8) hold in Theorem 5.1.

THEOREM 5.10. If (5.6) holds for each z E, then

(5.12) Ilf/,-f, ll,,,o, Ilg,,,,-g, ll,-,-o as

where f and gi are the functional gains in (3.32), and f, and gi, are the approximating
functional gains in (4.31) and (4.41).

Note that (5.9) and (5.12) are equivalent.

6. Example.
6.1. The control system. One end of the uniform Euler-Bernoulli beam in Fig. 6.1

and Table 6.1 is attached rigidly (cantilevered) to a rigid hub (disc), which is free to
rotate about its center, point 0, which is fixed. Also, a point mass ml is attached to
the other end of the beam. The control is a torque u applied to the disc, and all motion
is in the plane.

The angle 0 represents the rotation of the disc (the rigid-body mode), w(t, s) is
the elastic deflection of the beam from the rigid-body position, and Wl(t) is the
displacement of ml from the rigid-body position. For technical reasons, we do not yet
impose the condition w(t)= w(t,/); more will be said on this later.

s

m
1

w(t ,s)

FIG. 6.1. Control system.
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TABLE 6.1
Structural data.

hub radius
beam length

I -hub moment of inertia about axis
perpendicular to page through 0

m beam mass per unit length
m tip mass
E1 product of elastic modulus and

second moment of cross section for beam
fundamental frequency of undamped structure

10 in
100 in

100 slug in
.01 slug/in
slug

13,333 slug in3/sec
.9672 rad/sec

The control problem is to stabilize rigid-body motions and linear (small) transverse
elastic vibrations about the state 0 0 and w 0. Our linear model assumes not only
that the elastic deflection of the beam is linear but also that the axial inertial force
produced by the rigid-body angular velocity has negligible effect on the bending stiffness
of the beam. The rigid-body angle need not be small.

For this example, it is a straightforward exercise to derive the three coupled
differential equations of motion in 0, w, and Wl, and they do have the form (2.1’).
However, to emphasize the fact that we do not use the explicit partial differential
equations, we will not w-ite these equations here. Rather, we will write only what is
normally needed in applications: the kinetic and strain-energy functionals, the damping
functional, and the actuator influence operator.

Remark 2.1 applies to this example, and to most examples with complex structures.
The generalized displacement vector is

(6.1) x (0, w, wl) Ho R x L(0, l) x R.

The kinetic energy in the system is

(x, ),(6.2) Kinetic Energy

where H is Ho with the inner product

(X,)H=mb [w+(r+s)O][v+(r+s)]ds+IoO+ml[Wl+(r+l)O]
(6.3)

[,+(r+ t)].
As in most applications, we need not write the mass operator explicitly, but there exists
a unique self-adjoint linear operator Mo on Ho such that

(6.4) (x,))H (Mox, -)o.
It is easy to see that Mo is bounded and coercive. Hence Ho and H have equivalent
norms. The input operator for (2.1’) (which maps R to Ho) is

(6.5) Bo (1, 0, 0).

Remark 2.2 also applies here. The only strain energy is in the beam and is given
by

(6.6)

with

(6.7)

Strain Energy -a(x, x)

a(x, ) E1 w"" ds
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where (.)"= 02( )/Os2( ). To make a(.,. into an inner product, we must account for
rigid-body rotation. Thus we set

(6.8) (x,)}v a(x, ) + O
and define

(6.9) V={x=(O, oh, &(1))" chH2(O, 1), 4(0) &’(0) 0}.

Also, we have

(6.10) (x,

so that A BoB*o. But we need neither A nor Ao explicitly. We need only (6.7) and
(6.8), along with (6.3), to compute the required inner products.

We assume that the beam has Voigt-Kelvin viscoelastic damping [C2], so that
the damping operator in (2.1) is

(6.11 Do coAo
where Co is a constant. This means that the damping functional is

(6.12) do(x, ) coa(x, ), x, V.

6.2. The optimal control problem. We take Q= I in the performance index in
(3.1). This means that the state weighting term (Qz, z)e is twice the total energy in the
structure plus the square of the rigid-body rotation. Since there is one input, the control
weighting R is a scalar.

According to (3.31), the optimal control has the feedback form

(6.13) u( t) -(f, x( t))v -(g, 2( t))u

where x(t) has the form (6.1), and

(6.14) f= (af, &f, fit). R-H,Bo V, g=(ag, chg, fig)= R-’II2Bo H.

Note that/3f O.i.(1) is not used in the control lawmrecall (6.7) and (6.8).

6.3. Approximation. Our approximation of the distributed model of the structure
is based on a finite-element approximation of the beam that uses Hermite cubic splines
as basis functions IS1], [$4]. Because the basis vectors ej in the approximation scheme
in 4 must be in the space V defined in (6.9), we write them as

(6.15) e,=(1, O,O), e=(O,&,b(1)), j=2,3,...

where the bj’s are the cubic splines. When we use n elements to approximate the
beam, there are 2ne linearly independent splines. Thus, with the rigid-body mode, the
order of approximation is n 2he + 1.

For the numerical solution to the optimal control problem, we have only to plug
into the formulas of 4. The matrices in (4.3) are calculated according to (6.3), (6.7),
and (6.8), with Bo given by (6.5). The matrices A and B are given by (4.5) and, since
Q= I, the matrix Qn is the W in (4.33). With these matrices, we solve the Riccati
equation (4.40) and use (4.41) and (4.45) to compute the approximations to the
functional gains, which are

(6.16) f
For convergence, we satisfy all the hypotheses of Theorem 5.9. In particular, since

Q is the identity on E, it is coercive. Theorem 5.9 implies that the solutions to the
finite-dimensional Riccati equations converge as in Theorem 5.1 and that the functional
control gains converge as in Theorem 5.10.



20 J. S. GIBSON AND A. ADAMIAN

6.4. Numerical results. Figures 6.2(a) and 6.2(b) show the computed functional
gain kernels &n and 4gn for the damping coefficient Co 10 -4, the control weighting
R -.05, and ne -4, 6, 8, and 10 beam elements. Table 6.2 lists the corresponding scalar
components of the gains. We have plotted bTn because the second derivative appears
in the strain-energy inner product in (6.7) and (6.8) and 4sn converges in H2(0, 1).
Note that, since the Hermite cubic splines have discontinuous second derivatives at
the nodes, the approximations to 47 are discontinuous at the nodes. Although
H2-convergence guarantees only L2-convergence for b,, it can be shown that bTn
converges uniformly on [0, 1] for this problem.

Tables 6.2 and 6.3 omit/3s, to emphasize the fact that it does not appear in the
feedback law and the fact that the convergence of/3y, is not an independent piece of
information about the convergence of the control gains; since by,(0)= b),(0)-0, the
convergence of 4.n implies the convergence of/3f bf (1). On the other hand, although
/3g, bg(l) for each n, the H-norm convergence of g does not enforce this condition
in the limit, as the V-norm convergence off, enforces flz= df(1). Hence, as far as we
can tell from our results in 3 and 5, flfn is an independent indicator ofthe convergence
of the control gains, as well as being used in the control law in (6.13). However, the
behavior of bg, in Fig. 6.2(b) suggests that gn converges in V. Stronger results on the
continuity of bg and the convergence of 4g(l) should follow from a theorem stating
that, because the open-loop semigroup generator A is analytic, the solution to the

FIG. 6.2(a). Functional control gain component chTn. Damping coefficient co= 10-4; control weighting
R .05; number of elements n 4, 6, 8, 10.

FIG. 6.2(b). Functional control gain component chgn. Damping coefficient co= 10-4; control weighting
R .05" number of elements ne 4, 6, 8, 10.

TABLE 6.2
Scalar components offunctional control gains. Damping coefficient c 10-4; control weight R .05.

H Ogfn Oggn [3gn

4 4.4721 1.2440 -133.87
6 4.4721 1.2973 -139.69
8 4.4721 1.3106 -141.15
10 4.4721 1.3141 -141.54
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infinite-dimensional Riccati equation maps all of E into D(A*). The fact that b.)n(1)
converges to zero in Fig. 6.2(a) also suggests such a theorem, but we have not
proved it.

With the state weighting Q fixed, the two factors that determine the rate of
convergence are Co and R. Although we have used splines to approximate the beam,
the relation between the convergence rate and Co and R probably can be interpreted
best in terms of the number of natural modes of the structure that the optimal
infinite-dimensional controller really controls. Strictly speaking, the controller controls
all modes, but the functional gains lie essentially in the span of some finite number
of modes. This would be the number of modes required for convergence of the gains
if we used the natural modes as the basis vectors in the approximation. The rest of
the modes are practically (but not exactly) orthogonal to the functional gains, so that
the optimal feedback law essentially ignores them. In general, the lighter the damping,
the more modes that will be controlled for given Q and R; the cheaper the control,
the more modes that will be controlled for given Q and Co. The question of the
convergence of the finite-element approximation to the functional gains then becomes
a question of how many modes the optimal control really wants and how many elements
it takes to approximate those modes.

Numerical experience with optimal control of flexible structures has shown this
modal interpretation of the convergence of the approximating control laws to be very
useful, and that it is difficult to improve on the natural modes as basis vectors for the
approximation scheme (see [G5]). However, whether the natural modes are always or
almost always the best basis vectors is an open question. We use the cubic splines here
to demonstrate that a standard finite-element approximation works quite well. Also,
to use the natural modes as basis vectors here, we first would have to compute them
using a finite-element approximation--as in most real problems--and we do not know
in advance which or how many modes are needed. On the other hand, if the most
important natural modes are determined from experiment, then modal approximation
should be best.

Figures 6.3(a) and 6.3(b) and Table 6.3 represent attempts to compute an optimal
control law for the structure when R .05 but Co--0. Since Q is the identity operator
in E and hence coercive, Theorem 5.4 says that no optimal control law exists and that
the norm of the solution to the finite-dimensional Riccati equation grows without
bound as the number of elements increases. This is reflected in the nonconvergence
of Cgn, bgn, and gn, although ce converges and the convergence of &.}’ is unclear.

TABLE 6.3
Scalar components offunctional control gains. Zero damping" control weighting R .05.

n Q O flg

2 4.4721 1.0516 -112.23
3 4.4721 1.3061 -140.18
4 4.4721 1.4758 -159.11
5 4.4721 1.5996 -172.64
8 4.4721 1.8407 -199.39

In applications where the structural damping is not known, except that it is very
light, it is tempting and not uncommon engineering practice to assume zero damping
in the design of a control law for the first few modes, while trusting whatever damping
is in the higher modes to take care of them. However, if high performance requirements
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FI. 6.3(a). Functional control gain component cht".,,. Zero damping; control weighting R .05; number

of elements n 2, 3, 4, 5, 8.
FG. 6.3(b). Functional control gain component chg,,. Zero damping; control weighting R .05; number

of elements n, 2, 3, 4, 5, 8.

(large Q) or coupling between modes in the closed-loop system necessitate a control
law based on a more accurate approximation of the structure, Theorem 5.4 and the
current example warn that the higher-order control laws are likely to be meaningless
and rather strange if no damping is modeled.

We should note that we have seen similar problems [G10] where 1-I remains
bounded and the gains converge for zero damping but finite-rank Q. In such cases,
Theorem 5.3 says that an optimal control law exists for the distributed model of the
structure and that the finite-dimensional control laws converge to an optimal infinite-
dimensional control law. Also, Balakrishnan [B2] has shown that an infinite-
dimensional optimal control law exists for no damping when Q BB*.

7. The optimal infinite-dimensional estimator, compensator, and closed-loop system.
7.1. The generic problem. Let A, T(t), and B be as in 3.1, with E an arbitrary

real Hilbert space. The differential equation corresponding to (3.2) is, of course,

,( t) Az( t) + Bu( t), > O.

We assume that we have a p-dimensional measurement vector y(t) given by

(7.2) y( t) Cou( t) + Cz( t)

where Co L(R m, R P) and C L(E, R) for some positive integer p.
DEFINITION 7.1. For any F L(R , E), the system

(7.3) (t) A,(t) + Bu(t) + t[y(t) Cou(t) C(t)], > 0,

will be called an observer, or estimator (we use the terms interchangeably) for the
system (7.1)-(7.2). Let (t) be the semigroup generated by A-FC. The observer in
(7.3) is strongly (uniformly exponentially) stable if S(t) is strongly (uniformly exponen-
tially) stable.

To justify this definition, we write

(7.4) e(t)=z(t)-(t)
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and, with (7.1)-(7.3), obtain

(7.5) e( t) S(t)e(O), >= O.

Of course, an observer, or estimator, is necessary because the full state z(t) will
not be available for direct feedback, and the feedback control must be based on an
estimate of z(t). When, as in this paper, the desired control law has the form

(7.6) u(t) -Fz(t)

for some F L(E, R’), the observer in (7.3) can be used to construct (t) from the
measurement in (7.2) and then the control law in (7.6) can be applied to (t). The
control applied to the system is then

(7.7) u(t) -F(t),

and the resulting closed-loop system is

(7.8)
(t) (0)

where S(t) is the semigroup generated on E E by the operator

[ A -BF ] D(A)=D(A)xD(A).(7.9) A= C [A- BF- f:C]
With the estimator error e(t) defined by (7.4), it is easy to show that (7.8) is

equivalent to (7.5) and

(7.10) ( t) (a- BF)z( t) + BFe( t), > 0

where (A- BF) generates a semigroup S(t) on E. Also, it is easy to prove the following.
THORZM 7.2. Suppose that there exist positive constants M, m2, oz, and Ol2 such

that

(7.11)

Then, for each real ce3 < min {eel, ce2}, there exists a constant M3 such that

(7.12) S(t)ll--< M3 e-"3’, --> 0.

Also,

(7.13) r(A) r(A- BF) r(A- F)
where cr(A) is the spectrum ofA.

The observer in (7.3) and the control law in (7.7) constitute a compensator for
the control system in (7.1) and (7.2). The transfer function of this compensator is

(7.14) (s)=-F(sI-[A-BF+ (CoF-C)])-I,
which is an m p matrix function of the complex variable s. When E has infinite
dimension, the compensator transfer function is irrational, except in degenerate, usually
unimportant cases.

The foregoing definitions of this section and Theorem 7.2 are straightforward
generalizations to infinite dimensions of observer-controller results in finite dimensions.
Balas [B3] and Schumacher [$2] have used similar extensions.

Now suppose that F is chosen as

(7.15) /3 IIC*/-
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where IIE L(E, E) is the minimal nonnegative self-adjoint solution to the Riccati
equation

(7.16) AII + IIA* lIC*/-1CII + ) 0,

with QE L(E, E) nonnegative and self-adjoint and R L(R p, R p) symmetric an
positive definite. Theorem 3.3 (with A, B, Q, R, H, and S(t) replaced by A*, C*, Q, R, H,
and *(t)) gives sufficient conditions for 1I to exist and for the semigroup *(t)mand
equivalently its adjoint, the (t) generated by A-lCIC*/-IC--to be uniformly
exponentially stable.

DEFINITION 7.3. When the control gain operator is

(7.17) F= R-B*II,
with 1-I the solution to the Riccati equation (3.3) and the observer gain operator is
given by (7.15) and (7.16), we will call the compensator consisting of the observer in
(7.3) and the control law in (7.7) the optimal infinite-dimensional compensator, and
(7.8) the optimal closed-loop system. (See Fig. 7.1.)

Control System

u -Fi

Optimal Infinite Dimensional Compensator

FIG. 7.1. Optimal closed-loop system.

Remark 7.4. The infinite-dimensional observer defined by (7.3), (7.15), and (7.16)
is the optimal estimator for the stochastic version of (7.1) and (7.2) when (7.1) is
disturbed by a stationary Gaussian white noise process with zero mean and covariance
operator Q and the measurement in (7.2) is contaminated by similar noise with
covariance /. For infinite-dimensional stochastic estimation and control, see [B1],
[C4]. When the state weighting operator Q in (3.1) is trace class, the optimal infinite-
dimensional compensator minimizes the time-average of the expected steady-state
value of the integrand in (3.1). Existing theory for stochastic control of infinite-
dimensional systems requires trace-class Q, but we have a well-defined compensator
for any bounded nonnegative self-adjoint Q and 0, as long as the solutions to the
Riccati equations exist. As the next two sections show (without assuming trace-class
(), the infinite-dimensional compensator is the limit of a sequence of finite-dimensional
compensators, each of which can be interpreted as an optimal LQG compensator for
a finite-dimensional model of the structure. Therefore, we do not require trace-class
Q in our definition of the optimal compensator, even though this compensator solves
a precise optimization problem only when Q is trace class.
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This paper is concerned primarily with how the finite-dimensional compensators
converge to the infinite-dimensional compensator, and the analysis of this convergence
requires only the theory of infinite-dimensional Riccati equations for deterministic
optimal control problems and the corresponding approximation theory. While the
stochastic interpretation of the infinite-dimensional compensator and, in 8.2, of the
finite-dimensional estimators should be motivational, nothing in the rest of the pape
depends on a stochastic formulation. We assume that the operators Q, R, ), and R
are determined by some design criteria. In many engineering applications, deterministic
criteria such as the stability margin and robustness of the closed-loop system, rather
than a stochasticperformance index and an assumed noise model, govern the choice
of Q, R, Q, and R.

7.2. Application to structures. For the rest of the paper, E V H as in 2, and
A and B are the operators defined there.

The measurement operator C in (7.2) now must have the form

(7.18) C=[C, C2]

where CL(V,R) and C2EL(H, RP). Hence, if we denote by (C(x,.))) the ith
component to the p-vector C(x,), for (x,)E, then there must exist ci V and
c2i H such that

(7.19) (C(x, 2))i=(Cli,X)v+(C2i,2)H, i= 1,. ,p.

Also, the estimator gain operator F is given by

(7.20) Fy-- (fi, ,i)Yi
i=1

for y YY2 Yp] r R P, where the functional estimator gains f and i are elements
of V and H, respectively.

For the optimal estimator gains, we can partition II as

(7.21) fI--[ ’z]
and use (7.15) and (7.19) to get

p

(7.22a) f/= E (R)ij(I-[oclj %’IIlc2j),
j=l

p

i-- (-l)ij(fil Clj’3vfi2C2j),(7.22b) i= 1, 2,. .,p.
j=l

Now let us partition ( as in (4.34)"

(7.23) Q= 01 02"
In the optimal control problem, we almost always have a nonzero Qo because this
operator penalizes the generalized displacement. For the results in this paper, Qo can
be nonzero in the observer problem, and, as in the control problem, some of the
strongest convergence results for finite-dimensional approximations can be proved
only for coercive Q. However, if the observer is to be thought of as an optimal filter,
then ( should be the covariance operator of the noise that disturbs (2.1). In this case,
)o=0 and O,=0.
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8. Approximation of the infinite-dimensional estimator.
8.1. The approximating finite-dimensional estimators. Here, the scheme for the

approximation of the flexible structure is that in 4.
Hypothesis 8.1. There exists a sequence C, e L(E,, RP) such that

(8.1) c P  -cll- o as

and a sequence d. e L(.), d d. 0, such that

(8.2)

Hypothesis 8.2. For each n, the system (A, C) is stabilizable. In particular, any
unstable modes of the system (C,, A.) are observable.

The nth observer, or nth estimator, is

(8.3)

where the estimator gain F, is

(8.4)

and H. is the nonnegative self-adjoint solution to the Riccati operator equation

Hypothesis 8.2 implies that such a solution exists and is unique.
On-line computations will be based on the equivalent differential equation

(8.6)

where (t)e R", A" and B" are the matrix representations of the operators A, and
B,, as in } 4, and C" is the matrix representation of C,. The 2n x p gain matrix " is

(8.7)

where W" is the 2n x2n Grammian matrix in (4.33) and " satisfies

(8.8)

with Q" the matrix representation of O,. The relationship between , (,, ,) and
is, of course,

(8.9) .(t) e(t)ei
i=1

and

(8.10) =[.r.r]r.
It is straightforward to show that (8.7) is the matrix representation of (8.4) and that
the 2n x 2n Riccati matrix equation (8.8) is the matrix representation of (8.5), with
the matrix representation of II,.

In (4.39), we defined the symmetric matrix 1-I n= Wnl-I and then obtained the
Riccati equation (4.40) to solve for II". We proceed in a similar fashion here, but with
an interesting difference. Since 1I, and O, are nonnegative self-adjoin operators on

E. and H and Q" are their matrix representations, the matrices WH" and W"
are nonnegative and symmetric. Hence, the matrices

(8.11)

and

(8.12)
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are nonnegative and symmetric. Substitution of (8.11) and (8.12) into (8.7) and (8.8)
yields

(8.13) fTn= hn(cn) T-I
and

(8.14) A(-I" +I(A) T-- fin( cn) T-lcnfin-- n O,
the Riccati matrix equation to be solved numerically in the nth approximation to the
infinite-dimensional estimator. In view of the relationship between (8.5) and (8.8) and
the relationship between (8.8) and (8.14), we see that Hypothesis 8.1 guarantees the
existence of a unique nonnegative symmetric solution to (8.14).

To see the relationship between the matrices in (8.14) and the operators in (8.5)
more clearlyand the difference between the current approximation scheme and. that
used in 4.2 for the control problem--suppose that we take t, P, OlE-. Let (" be
defined as in (4.36) and (4.37) with Qo, Q1, and Q2 replaced by Qo, Q1, and Q2. Then

(8.15) Q"= W-"Q"W-".
For example, if Q in the control problem and Q in the estimatoxr problem are both
equal to the identity, then the (" in (4.35)-(4.42) is W" and Q= W-. This may
seem suspicious, but 8.2 should demonstrate that we are solving the appropriate
estimator problem here.

The only thing missing now for numerical implementation of the nth estimator
is to give C, the matrix representation of C, explicitly. We write

(8.16) C" [C’ C]
where the p n matrices C’ and C are, respectively, the matrix representations of
the approximations to the operators C1 and C2 in (7.18). We can cover virtually all
applications by assuming C, C[,, in which case the ith column of C’ is the p-vector
equal to Ce, and the ith column of C. is the p-vector equal to Czei.

8.2. Stochastic interpretation of the approximating estimators. Using only the deter-
ministic setting above, we will proceed subsequently to analyze the finite-dimensional
estimators and the compensators based on them. Nonetheless, we should consider
momentarily the sequence of finite-dimensional stochastic estimation problems whose
solutions are given by the equations of the preceding section.

First, recall how the covariance operator of a Hilbert space-valued random variable
is defined. The covariance operator of an E-valued random variable to is the operator
Q for which

(8.17) expected value {(z, to)E(Z", to)} (Qz, -)E, Z, E.

(See [B1], [C4].)
With F, given by (8.4) and (8.5), (8.3) is the Kalman-Bucy filter for the system

(8.18) , A,z, + B,u + to,,

(8.19) y Cou + C,z, + too

where to,(t) is an E,-valued white noise process with covariance operator Q, and
tOo(t) is an RP-valued white noise process with covariance operator (matrix) R. Next,
careful inspection will show that the filter defined by (8.6), (8.13), and (8.14) is the
matrix representation of the filter defined by (8.3), (8.4), and (8.5).

With z, and rt related as in (4.1) and (4.4), (8.18) and (8.19) are equivalent to
the system

(8.20) A"r + B"u + ,,
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(8.21) y Cou + C" + too

where u(t) is the R2"-valued noise process related to to,(t) by

(8.22) to,(t) (u,(t)e,, ui+,(t)ei).

Certainly, a Kalman-Bucy filter for (8.20) and (8.21) has the form (8.6) with the filter
gain given by (8.13) and (8.14). This particular filter is the matrix representation of
the filter defined by (8.3), (8.4), and (8.5) if and only if the matrix Q" defined by (8.12)
is the covariance of the process ,(t). Since (" is the matrix representation of
straightforward calculation using (8.12) and (8.17) shows that the Q" in (8.12) is
indeed the correct covariance matrix.

The finite-dimensional observers can be interpreted now as a sequence of filters
designed for the sequence of finite-dimensional approximations to the flexible structure,
with the nth approximate system disturbed by the noise process to, (t), whose covariance
operator is Q,. By Hypothesis 8.1, these covariance operators converge to the operator
Q of 7. If we have a reliable model of a stationary, zero-mean Gaussian disturbance
for the structure, then we can take the covariance operator for this disturbance to be
Q and think of the infinite-dimensional observer as the optimal estimator. But this
interpretation is not necessary for the rest of our analysis.

8.3. The approximating functional estimator gains. The nth estimator gain operator
in (8.4) has the same form as the infinite-dimensional estimator gain in (7.15) and
(7.20). We have

P

i----1

for y YlY2 Yp
r
E R P, where the functional estimator gains f, and :in are elements

of V, H,. The matrix F" in (8.7) and (8.13) is the matrix representation of
Therefore, if we write

where the columns/3,/3 gi E R", then

(8.25) f, ej, i= l, p, gi, fl,ej, i= l, p.
j=l j=-I

For convergence analysis, it is useful to note from f, and gi, are also given by
equations corresponding to (7.22). With the measurement operator C written as in
(7.19) and C, C], we have

P

(8.26a) ,= 2
j=l

P
(8.26b) ,= 2 (-)i(fi*a,Pv, co+f-I2,Pl4,C2j)

j=l

where the IIi,’s are the blocks of lI,, as in (7.21).

8.4. Convergence. Now we will indicate the sense in which the finite-dimensional
estimators/observers approximate the infinite-dimensional estimator in 7. The proofs
of the convergence results in this section are given in [G6].
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THEOREM 8.3. (i) If I1 .11 is bounded uniformly in n, then the Ricati algebraic
equation (7.16) has a nonnegative self-adjoint solution and I,PE, converges weakly
to II.

(ii) If there exist positive constants M and fl, independent of n, such that

(8.27) Ilexp ([A,-,C*,-C,]t)ll<=Me-tt, t>=O,

then lift, is bounded uniformly in n, I,PF, converges strongly to -I, and exp ([a,-
I,C* R-1C,] P., converges strongly to ), the semigroup generated bya- fiC*R-1C,
the convergenceuniform in >= O.

(iii) If Q, is bounded away from zero uniformly in n, then lift, being bounded
uniformly in n guarantees the existence ofpositive constants M and for which (8.27)
holds for all n.

THEOREM 8.4. IfQ is E-coercive and do O, then there is no nonnegative self-adjoint
solution of the Riccati operator equation (7.16), and

(8.28) fI. -, oo as n -> oo.

Our purpose for bothering to state this dual result to Theorem 5.4 is to point out
the following question,: Can Theorem^ 8.4 be^ modified to include the case where Q has
the form (7.23) with Qo 0, Q 0, and Q2 coercive on H?

Next, we have the dual result to Theorem 5.6.
THEOREM 8.5. Suppose that Ao has an invariant subspace Vo that is also invariant

under the damping map Dv, that Eo Vo Vo is an observable subspace, and that the
restrictions ofAo and do(’, to V are both H-coercive. Also, suppose that Vo has finite
dimension no and that, for each n > no in the approximation scheme, the first no ei’ s span
Vo and the rest are orthogonal to Vo in both V and H.

(i) ,,Then (7.16) has non,negative solution f-I, and i’i. i bounded uniformly in n,
so that II,PF, converges to II weakly.

(ii) If Eo and E (the E-orthogonal complement olEo) are invariant under t, and
if the Eo-part of the system (A, Q) is controllable, then the hypothesis of Theorem 8.3(ii)
holds.

THEOREM 8.6. If InPEn converges strongly to , then

(8.29) f/, f v -> 0 and , 1[/-/- 0, as n ---> c

where f and g are the functional estimator gains in (7.20) and f, and g, are the
approximating functional gains in (8.25).

9. The finite-dimensional compensators and realizable dosed-loop systems.
9.1. Closing the loop. The nth compensator consists of the nth approximation to

the optimal control law in 4, applied to the output of the nth estimator/observer in
8, i.e., the feedback control

(9.1) u, -F,,
where

(9.2) F,= R-1B*II,
(recall (4.25)) and z",(t) is the solution to (8.3). Equivalently, this compensator can be
written as

(9.3) u, -F"
where

(9.4) F" R-1BnT-In
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and the 2n-vector (t) is the solution to (8.6). On-line computations will be based on
the latter representation, and the block diagram in Fig. 9.1 shows the realizable
closed-loop system that results from the nth compensator. We will refer to this system
as the nth closed-loop system.

This closed-loop system is equivalent to

(9.5)
(t) L.(O)A

where S,,(t) is the semigroup on E x E, generated by

[ A -BF ] D(A)=D(A)xE.(9.6) Aoo,, C [A,, B.F. ,C,]
Note that A, has compact resolvent if and only if A does.

9.2. Convergence of the closed-loop systems. Now we will consider the sense in
which the nth closed-loop system approximates the optimal closed-loop system in 7
(Definition 7.3). Recall from 4.1 and 8.1 how the approximating open-loop semi-
groups T,(.) and their adjoints converge strongly and how the input operators B,,
the measurement operators C,, and their respective adjoints converge in norm. See
[G6] for the proofs of the results in this section.

Hypothesis 9.1. As n -> ,
(9.7) IIF, FII -> O,

(9.8) #ll--> o.
Remark 9.2. Of course, we are interested primarily in the case where the gains F

and / are the optimal LQG gains in (7.15) and (7.17) and F, and ft, are the
corresponding approximations in 4 and 8 (i.e., (9.2) and (8.4)). However, for the
analysis of this section, we need only Hypothesis 9.1 for some F E L(E, R"),
L(R P, E) and approximating sequences F and F,. Any such gain operators will yield
closed-loop semigroup generators A in (7.9) and A, in (9.6).

We denote the projection of E x E onto E x E, by PE,. From the strong conver-
gence of the open-loop semigroups and the uniform norm convergence of the control
and estimator gains, we have Theorem 9.3.

y Cou + Cz

Control System

_.] [AR-BRFn + n(coFn-cn)]l + ny

nth Compensator

FIG. 9.1. nth closed-loop system.
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THEOREM 9.3. For >-0, Sn(t)PEe, converges strongly to S(t), and the conver-
gence is uniform in for in bounded intervals.

We should expect at least Theorem 9.3, but we need more. We should require,
for example, that if S(t) is uniformly exponentially stable, then Sn(t) must be also
for n sufficiently large. Although numerical results for numerous examples with various
kinds of damping and approximations suggest that this is usually true, we have been
unable to prove it in general. We do have the following important case.

THEOREM 9.4. (i) Suppose that the basis vectors of the approximation scheme are
the natural modes of undamped free vibration and that the structural damping does not
couple the modes. Then IIS  (t)-S  (t l   ,,llcon erge to zero uniformly in bounded
t-intervals.

(ii) If, additionally, S( t) is uniformly exponentially stable, then Son(t) is uniformly
exponentially stable for n sufficiently large.

9.3. Convergence of the compensator transfer functions. The transfer function of
the nth compensator (shown in the bottom block of Fig. 9.1) is

(9.9)

which is an m p matrix function of the complex variable s for each n, as is the similar
transfer function (s) in (7.14) for the infinite-dimensional compensator. We continue
to assume Hypothesis 9.1. The proofs of the following results are given in [G6]. We
will denote the resolvent set of [A BF + (CoF- C)] by p([A BF + (CoF C)]).

THEOREM 9.5. There exists a real number al such that, if Re (s)> al, then s

p([An-BnFn+Fn(CoFn-Cn)]) for all n, and an(s) converges to (s), uniformly in

compact subsets of such s.
This result leaves much to be desired. For example, it does not guarantee that

any subset of the imaginary axis will lie in p([An-BnFn+Fn(CoFn-Cn)]) for
sufficiently large n, even if all of the imaginary axis lies in p([A- BF+ F(CoF- C)]).
As with the convergence of the closed-loop systems, we can get more for certain
important cases.

Remark 9.6. If the open-loop semigroup T(. (whose generator is A) is an analytic
semigroup, then there exist real numbers a, 0 and M, with 0 and M positive, such
that p([A BF + (CoF- C)]) contains the sector {s" larg (s a)l < r/2 + 0}, and for
each s in this sector,

(9.10) [I(sI-[A-BF+(CoF-C)])-I[I<-M/Is-a].
THEOREM 9.7. (i) If the basis vectors of the approximation scheme are the natural

modes of undampedfree vibration and the structural damping does not couple the modes,
then each s in p([A-BF+(CoF-C)]) is in p([An-BnFn+n(CoFn-Cn)]) for
n sufficiently large and n(s) converges to (s) as n->oo, uniformly in compact
subsets p([A BF + F(CoF- C)]).

(ii) If, additionally, T(.) is an analytic semigroup, then ,(s) converges to (s)
uniformly in the sector described in Remark 9.6.

THEOREM 9.8. IfA has compact resolvent, then n(s) converges to (s) for each
s p([A- BF + F(CoF- C)]), uniformly in compact subsets.

10. Closing the loop in the example. As in Definition 7.3, the optimal closed-loop
system is formed with the optimal infinite-dimensional compensator, which consists
of the optimal control law for the distributed model of the structure applied to the
output of an optimal infinite-dimensional state estimator. This optimal control law is
the limit of the approximating finite-dimensional control laws in 6. In this section,
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we first approximate the infinite-dimensional estimator, as in 8, and then apply the
approximating control laws in 6 to the approximating finite-dimensional estimators
to produce a sequence of finite-dimensional compensators that approximate the optimal
compensator.

10.1. The estimator problem. We assume that the only measurement is the rigid-
body ang 0 and that this measurement has zero-mean Gaussian white noise with
variance R 10 -4. We model the process noise as a zero-mean Gaussian white disturb-
ance that has a component distributed uniformly over the beam, as well as two
concentrated components that exert a force on the tip mass and a moment on the hub.
For this disturbance, the covariance operator t has the form (7.23) with (o 0, 1 0,
and (2--- L

We construct the approximating estimators as in 8.1. The gain for the nth
estimator is given by (8.13) with the solution to the Riccati matrix equation (8.14).
For the rigid-body measurement, the matrix C is

(10.1) C"-- [1 0

According to (8.15), the matrix Q" is

[0o

0 0 ...].

since W is the matrix in (4.33). (As always, M is the inverse of the mass matrix.)
Recall from 6.3 that n 2he + 1 where ne is the number of elements.

Our only use for the functional estimator gains is to measure the convergence of
the finite-dimensional estimators to the optimal infinite-dimensional estimator. To see
the convergence of the approximating estimator gains, we compute the approximating
functional estimator gains as in 8.3. As do the functional control gains, the functional
estimator gains have the form

(10.3) f= (%,-, bf, fir), (ag, dg, flg),

and the corresponding approximations have the form

(10.4) f. n, 4)g.,/3g.), . (cg., (hgn,/3g.).

Remark 10.1. We cannot guarantee as much about convergence for the
approximating estimators as we could for the approximating control problems in 6.
Since the damping in this example does not couple the natural modes, and the rigid-body
mode is observable, we would have part (i) of Theorem 8.5 if we were using the natural
mode shapes as basis vectors. Therefore, we know at least that a solution to the
infinite-dimensional Riccati equation (7.16) exists and that the infinite-dimensional
estimator that we want to approximate exists. The numerical results indicate that the
solutions to the finite-dimensional Riccati equations are bounded in n and that the
functional estimator gains converge in norm. The rigid-body mode prevents our
guaranteeing a priori all the convergence that we want. If a torsional spring and damper
were attached to the hub in the current example, we would have coercive stiffness and
damping, and Theorem 8.5(ii) would guarantee that the solutions to the finite-
dimensional Riccati equations converge strongly and that the functional estimator
gains converge in norm for the basis vectors used here.

For damping coefficient Co 10 -4, Figs. 10.1(a) and 10.1(b) show &., and 4)g,
and Table 10.1 lists the scalars at ag, and/3gn. Since f(0) b..(0) 0, the conver-
gence of O.’ implies the convergence of/31 bf,(/); as in the control problem,/31 is
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FIG. 10.1(a). Functional estimator gain component ch.l’,. Damping c 10-4; estimator R 10-4; number

of elements n 4, 6, 8, 10.
FiG. 10.1(b). Functional estimator gain component chg,,. Damping Co- 10-4; estimator R 10 -4. number

of elements n 4, 6, 8, 10.

TABLE 10.1
Scalar components offunctional estimator gains. Damping coefficient c 10-4; estimator R 10 -4.

4 5.3195 14.149 -1495.7
6 5.3567 14.347 -1517.5
8 5.3611 14.371 -1520.1

10 5.3623 14.377 -1520.8

not an independent piece of information about the estimator gains while, as far as our
results go, fign is. We maintain analogy with the control problem and list only flgn in
Table 10.1.

10.2. Approximation of the optimal compensator. Finally, for the damping Co=
10 -4, R .05 in the control problem and/ 10 -4 in the estimator problem, we construct
the finite-dimensional compensator in Fig. 9.1; i.e., for each n 2he + 1, we apply the
neth control law represented by the functional gains in Fig. 6.2 and Table 6.2 to the
output of the neth estimator represented by the functional gains in Fig. 10.1 and Table
10.1. As the number of elements increases, the transfer function in (9.9) of the
finite-dimensional compensator converges to the transfer function in (7.14) of the
optimal infinite-dimensional compensator, as described in 9.3. Theorem 9.5 and
Remark 9.6 apply. Figure 10.2 shows the frequency response (bode plots) of the
finite-dimensional compensators for 4, 6, 8, and 10 elements. The phase plot is for 10
elements only. These plots indicate that the finite-dimensional compensator for eight
or more elements is virtually identical to the optimal infinite-dimensional compensator,
as predicted by the functional gain convergence in Figs. 6.2 and 10.1

10.3. Comments on the structure and dimension of the implementable com-
pensators. Although this paper does not address the problem of obtaining the lowest-
order compensator that closely approximates the infinite-dimensional compensator,
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[RRD/SEC]

FIG. 10.2. Frequency response (bode plot) ofcompensators. Damping c 10-4; control R .05, estimator

R 10-4; number of elements n 4, 6, 8, 10.

we should note that the compensators based on eight and ten elements here are
unnecessarily large because the finite-element scheme that we chose is not nearly the
most efficient in terms of the dimension required for convergence. (The dimension of
the first-order differential equation in the compensator is 2(2he + 1).) We used cubic
Hermite splines here to demonstrate that the finite-element scheme most often used
to approximate beams in other engineering applications can be used in approximating
the optimal compensator. In [G5], we compare the present scheme with one using
cubic B-splines and one using the natural mode shapes as basis vectors. The natural
mode shapes yield the fastest converging compensators, but the B-splines are almost
as good. The only advantages of the Hermite splines result from the fact that the coding
to build the basic matrices (mass, stiffness, etc.) is simpler than for B-splines and the
fact that, before the Riccati equations based on, say, 10 natural modes are solved, a
much larger finite-element approximation of the structure must be used to get the 10
modes accurately.

To understand the redundancy in the large finite-dimensional compensators here,
it helps to consider the structure of the optimal compensator. It is based on an
infinite-dimensional state estimator that has a representation of each of the structure’s
modes. In the present example, the optimal compensator estimates and controls the
first six modes significantly, the next three modes slightly, and virtually ignores the
rest. This observation is based on the projections of the functional gains onto the
natural modes and on comparison of the open-loop and closed-loop eigenvalues. (See
[G5] for more detail, including the spectrum of the closed-loop systemmwhich is
stable--obtained with the ten-element compensator here.) The infinite-dimensional
compensator then has an infinite number of modes that contribute nothing to the
input-output map of the compensator. These inactive modes are just copies of all the
open-loop modes past the first nine. They can be truncated from the compensator
without affecting the closed-loop system response significantly. The number of active
modes in the compensator--i.e., the modes that contribute to the input-output mapm
depends on the structural damping and the Q’s and R’s in the LQG problem statement.
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(See the discussion in 6.4 about the effect of damping and control weighting on
performance.)

The compensator computed here based on 10 elements has 21 modes (although
we did not do the computations in modal coordinates). Nine of these compensator
modes are virtually identical to the nine active modes in the infinite-dimensional
compensator, and the 12 inactive modes are approximations to the tenth through
twenty-first open-loop modes of the structure. The inactive modes result from the large
number of elements needed to approximate the active compensator modes accurately.
Now that we essentially have the optimal compensator in the ten-element compensator,
we could truncate the 12 inactive modes and implement a compensator with nine
modes. And we probably could reduce the compensator even further using an order
reduction method such as balanced realizations.

11. Conclusions. For the deterministic linear-quadratic optimal regulator problem
for a flexible structure with bounded input operator (the Bo in (2.1)), the approximation
theory in 4 and 5 is reasonably complete. The most important extensions should be
to the corresponding (very difficult) problem with unbounded input operator, for which
there exists little approximation theory. Because of the different kinds of boundary
input operators, stiffness operators and structural damping, all of which must be
considered in detail when Bo is unbounded, it seems unlikely that the approximation
theory for the unbounded-input case can be made as complete as the theory here.

The convergence results in 8 for the estimation problem are less complete than
those for the control problem because rigid-body modes present more technical difficul-
ties for the proofs in the estimator case. However, our analysis and numerical experience
suggest that the difficulties only make the proofs harder and that the convergence in
the estimation problem is identical to the convergence in the control problem, and
that controllable and observable rigid-body modes make no qualitative difference in
either problem.

Where we would most like to have substantial improvement over the results of
this paper is in 9.2, which considers how the approximating closed-loop systems
obtained by controlling the distributed model of the structure with the finite-
dimensional compensators converge to the optimal closed-loop system, obtained with
the infinite-dimensional compensator. Theorem 9.4 gives us what we want for problems
where the damping does not couple the natural modes of free vibration, and where
the natural mode shapes are the basis vectors for the approximation scheme. In
particular, this theorem says that, if the optimal closed-loop system is uniformly
exponentially stable, then so are the approximating closed-loop systems for sufficiently
large order of approximation. We have verified numerically the stability of the
approximating closed-loop systems for the example in 6 and 10 where the basis
vectors are not the modes. This example and others have made us suspect that Theorem
9.4 is true when the basis vectors satisfy Hypothesis 4.1 only and when the damping
couples the modes. The methods in [I1] should be useful in completing the analysis.

Another possible approach to analyzing the convergence of the approximating
closed-loop systems to the optimal closed-loop system is to use the input-output
description in frequency domain. Results such as those in 9.3 are useful for this,
although for the closed-loop stability we want, we probably need the transfer functions
of the finite-dimensional compensators to converge more uniformly on the compensator
resolvent set than we have proved here. In our example, Fig. 10.2 indicates that these
transfer functions converge uniformly on the imaginary axis, but we have no theorem
that guarantees this.
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Appendix. Errata for [G1]. In the first paragraph of the proof of Theorem 2.1 on
page 689 of [G1], the first sentence should be:

If a dissipative operator is invertible, its inverse is dissipative.

At the beginning of the fifth line of the same paragraph, the expression (cex + y) should
be deleted the first time it occurs. The next-to-last sentence of the paragraph should be:

Hence, if a densely defined maximal dissipative operator has dense range, its
inverse is maximal dissipative.

The theorem is correct as stated.

In the current paper, we use Theorem 2.1 of [G1] to conclude that the operator
A defined in 2 is maximal dissipative (see (2.10)-(2.12)).
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SUFFICIENT CONDITIONS FOR DYNAMIC STATE FEEDBACK
LINEARIZATION*

B. CHARLETt, J. LIVINEt, AND R. MARINO$

,Abstract. Sufficient conditions are given for the existence of a dynamic state feedback compensator for
a multi-input nonlinear system such that the closed loop system is transformable into a linear controllable
one b.y_ an extended state space change of coordinates. An example shows that the conditions are not

necessary. Necessary conditions are also given which are shown to be sufficient when the number of states
minus the number of controls is equal to one. Several examples illustrate how the sufficient conditions
obtained lead to the design of the dynamic compensator.

Key words, nonlinear systems, feedback linearization, dynamic compensator
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1. Introduction. We address the problem of transforming a nonlinear control
system

(1) =f(z)+ Z gi(z)ui(t)=f(z)+G(z)u zN", uNm
i=1

with f(0)= 0 and rank G(0)= rn into a linear controllable system

(2) Ax + Bv x "’, v [ "’
with n’ => n, m’_-> m.

Since 1973 [16] this problem has been studied using increasingly more general
transformations. State space diffeomorphisms

(3) x=q(z), q(0)=0, x

were the first transformations to be studied in [16]. State feedback transformations

(4) u=a(z)+v

with a(0)=0 and /3 a nonsingular rn x rn constant matrix were then introduced by
Brockett [3] and later generalized in [15] and [11] by

(5) u:(z)+(z)v

where the nonsingular matrix/3 was allowed to depend on the state as well. The study
of the above transformations led to complete characterizations of those systems (1)
transformable into (2) by (3) ([16], [24]), which are called state linearizable, and of
those systems transformable into (2) by (3) and (5) ([15], [11]), which are called static
feedback linearizable. Adaptive feedback linearization and its robustness versus
unmodeled dynamics are studied in [25]. For those systems that are not static feedback
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linearizable, the problem of partial feedback linearization was posed in [17], namely,
the transformation of (1) by (3) and (5) into a partially linear and controllable system

(1) Ax(l) + By x( P
(6)

where (A, B) is a controllable pair. This problem was solved in [17], [18] where the
dimension and the construction of the largest feedback linearizable subsystem are
given for any system (1).

Partial feedback linearization is related to input-output decoupling. Given m
outputs

(7) y h(z) l<=j<-rn

the input-output decoupling problem is to determine a transformation (3), (5) that
takes the system (1), (7) into

:i () Ax() + By x() P

(8) )(2) ,t(x(l), x(2))_ a(x(1), X(2))v x(2) e n-p

y Cx()

with (A,B, C) in prime canonical form [19], namely, A=block diag[A1,. .,Ae],
B= block diag[B1,...,Be],
i=l,...,p,

0 1

0

block diag[C1,...,Ce] with, for every

C=(0 0 ).

Necessary and sufficient conditions are available for this problem (see 13]). For linear
systems it is known that those conditions can be weakened if one allows for a dynamic
compensator [20]. This motivated the introduction of a nonlinear dynamic state
feedback transformation [23]

(9)
=a(z,w)+B(z,w)v

u ,(z, w) + (z, w)v

Wq

with a(0, 0)= 0, a(0, 0)= 0. The dynamic state feedback (9) is a generalization of the
static state feedback (5).

Necessary and sufficient conditions for input-output decoupling via transforma-
tions (9) and extended state space ditteomorphism

(10) x= q(z, w) x "+q

were obtained in [7], [8], and [21]. In [12] and [14] sufficient conditions are given to
achieve both input-output decoupling and full linearization, that is, x(2)= 0 in (6), via
transformations (9), (10).

In [4] and [5] the problem of transforming the system (1) into (2) via transforma-
tions (9) and (10), which will be called the dynamic feedback linearization problem,
is studied: it is shown that single input systems (1) that are dynamically feedback
linearizable are also statically feedback linearizable; two very special classes of dynami-
cally feedback linearizable multi-input systems are given in [4]. A different approach
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is taken by [9]" transformations (9) are considered, but the closed-loop system is no
longer required to be linear and controllable in some new coordinates of the extended
space (z, w)" the only requirement is the existence of a w-dependent state space change
of coordinates

(11) x=q(z, w), q(0,0)=0, zn, x[
in which the system is linear and controllable from v. While this is a less restrictive
notion of dynamic feedback linearization, the stability properties of the dynamic
compensator (9) remain to be analyzed. This analysis, which could be quite difficult,
is not needed with our notion of dynamic feedback linearization.

In this paper we present fairly general sufficient conditions for a system (1) to be
dynamic feedback linearizable by a special class of dynamic compensators (prolonga-
tions) and extended space diffeomorphism (10). Compensators are restricted to be of

),the following form (u) (du/dt), w=(Ul, "’’, Urn,’’’ L/(/x’")))

(12) a(z, w)+ fi(z, w)

with 0, 1NiNm, == , (0, O) =0, (z, w) of full rank m (m m) in Vo, a

neighborhood of the origin in N+", which can be realized as

=w+ 1NiN-I, 1Nj <m, >1

=(z,w)+ ,(z,w)v,(t)=v(t) lNj<m, >0W
/=1

(13)
uj w{ l j <= m, /j>0

m’

uj-- ozj(z, w)+ j,t(z, W)Vt(t)=
/=1

l<=j<--m, /z 0.

In 4 sufficient conditions are obtained that require the involutivity of certain distribu-
tions defined on the original state space. The distributions are computed on the basis
of the given vector fields f, gl,...,grn and on a set of integers tzl,’",xrn that
characterize the linearizing dynamic compensator (13). The sufficient conditions are
helpful in determining the structure of the dynamic compensator on the basis of the
Lie algebraic structure ofthe system. When/x ]d’m 0 and m’-- rn, the conditions
coincide with the necessary and sufficient conditions for static feedback linearization.
We show by examples that the conditions are not necessary. However, they are general
enough to apply for a detailed nonlinear model of rigid body dynamics that is not
static feedback linearizable but is shown to be dynamically feedback linearizable.

In 3 we show that the controllability of the linear approximation of system (1)
at the origin is a necessary condition for dynamic feedback linearization; as a corollary
of the main result of 4, it turns out that it is also sufficient when rn n- in (1).

2. Basic results and definitions. In this section, we consider a general dynamic
compensator of the form

= a(z, w)+ B(z, w)v w
(14)

u=(z,w)+(z,w)v v’,
System (1) controlled by (14), which is called the extended system, becomes

(15)
2 =f(z) + G(z)ce(z, w)+ G(z)fi(z, w)v

=a(z,w)+B(z,w)v
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and is written as

m’

(16) =jT(y) + ((Y)v jT(y) +
i--1

where Y= (z, w) is the extended state and

a(z,w)
G=

B(z,w)
m’If Uj a.j(Y)+i__ j.()v, 1 <-_j<-m, are viewed as rn outputs for system (16), we can

define the corresponding differential output rank (see [1], [10]). Denoting by uk) the
kth time derivative of u considered as an output for system (16), we define the sequence
of subspaces Eo E En+q by:

Ek sp{d, dti,..., du}.
The differential output rank d(u) is defined by:

d(u)=dim En+q-dim En+q_
In the single input case (rn 1), it is proved in that the computation ofthe differential
output rank reduces to the computation of the classical rank of the decoupling matrix
(see, for example, [13]).

(18)

Let

In this case, the characteristic index , is defined by:

,=0 ifj3(Y)#0 for some i, l_-<i_-<m’

v min {r]Li, L-la(:) # 0 for some i, m’}.)

(19) 6,()
f]/3;() if 0

L,L-’a( if u>0.

When is finite, the 1 m’ matrix

D(Y) (,(Y), , 3m’(Y))(20)

is called the decoupling matrix of the compensator (14) for system (1) with rn 1. In
this case, d (u) rank D.

DEFINITION 2.1. A dynamic compensator (14) is said to be regular for system (1)
if the corresponding differential output rank d(u) is equal to rn in Vo, a neighborhood
of the origin in n+q.

Note that the static state feedback (5), with /3(z) nonsingular, or the dynamic
compensator (13) with/3() nonsingular, are nonsingular compensators according to
the above definition.

DEFINITION 2.2. A system (1) is said to be locally static feedback linearizable if
there exists a feedback transformation (5), (3), in a neighborhood of z=0, which
transforms system (1) into system (2) with n’= n, m’= m.

DEFINITION 2.3. A system (1) is said to be locally dynamic feedback linearizable
if there exists a regular dynamic compensator (14) and an extended space diffeomorph-
ism (10) defined in a neighborhood of (z, w)= (0, 0) which transform system (1) into
system (2) with n’= n + q, and such that q(0, 0)= (0, 0).

) If f is a smooth vector field and c a smooth function, the Lie derivative of c with respect to f is

in local coordinates, by L =’,’,=, f(Oo/Ox). We also not Lc c and Lc Lf(L-’c) for alldefined,
k_->l.
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We now recall from [15] and [11] basic definitions and results. Define the
distributions

o= sp{gj, l <=j <= m}
(21)

i sp{ad}gj, 0 <- <= i, 1 <-j <- m},(2 > O,

which enjoy the recursion properties

(22) i+1 i + ad}+lo + adii
where ad. sp{adf Y, Y }. By definition o c" = %"

We recall that a distribution is involutive if and only if, given any pair of vector
fields g and g2 in 3, their Lie bracket [g, g2] belongs to

THEOREM 2.1. System (1) is locally static feedback linearizable if and only if, in

Uo, a neighborhood of the origin in

(i) is an involutive distribution of constant rank for every >- 0;
(ii) rank

_
n.

The distributions % are invariant under change of coordinates (3), and under the
assumption (i), they are invariant under state feedback transformations (5).

Let mo= rank o, m rank -rank q3_, i> 1, in Uo. The m indices (since
/T/0

k card { i] mi >= j}, 1 <-- j <= m,
are uniquely associated with a system (1) satisfying (i) and (ii)" they are invariant
under a state-space change of coordinates (3) and state feedback transformations (5).
They are called controllability indices.

It has been shown in [5] that dynamic feedback linearizability implies static
feedback linearizability when m’= m 1. We now generalize this result for arbitrary
m’>_m=l.

THEOREM 2.2. The following statements are equivalent:
(i) System (1) with m is locally static feedback linearizable.
(ii) System (1) with m 1 is locally dynamic feedback linearizable.

Proof The proof is an easy generalization of the main result in [5]; (i)(ii) is
obvious.

(ii)(i). By assumption (ii) there exists a linearizing compensator (9) for system
(1) with m 1 and characteristic index ,. We first establish a relationship between the
distributions % defined by (21) for system (1) and the distributions i defined for
system (16) with m 1 obtained by using the linearizing compensator:

Co sp{,k, 1 <-- k <- m’}
(23)

@ _, + sp{ad} , 1 _<- k -< m’}
CLAIM.

(24)

adj () if i<,

ad. g ( "gadj- g + X’i) if

where X., i-,- and y./= (-1)6j, 6 being defined by (19).

(2) We denote by adtg If, g] the Lie bracket of the smooth vector fields f and g. In local coordinates,
[f g] =’,’,=, .’/=, fi(Og/OX)-g(Of/OX))(O/Ox), We also note ad,. g= g and ad. g=[f ad,- g] for all
k=>l.
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Proof of the claim. The proof is by induction on i. For 0 we have

with/3 ), and X,o 0 if v 0 and flj 0 if v _-> 1.
We assume that the claim holds true for an integer i: we shall prove it for i+ 1.

We consider two cases: i_-> v;i< v. If i>_-v,

ad}+ j= [(f(z)+c(z, w)g(z)) (y(z, w)ad}- g+X2,i)]a(z,w)

=(YJ ad}+l- g + Xj,i+),,

SO

Since

then

and Xj,i+l belongs to

_
If < , by assumption

oxj,
Ow k

0
Ladj’JO (-1)iL

if i<v-1

ifi=v-1

1i+1

ifi=v-1.

The claim is proved.
We now show, by contradiction, that the distributions must be involutive.

Suppose that the distributions are not all involutive i, 0-<_ <- n 1. Let k < n be the
smallest integer such that k is not involutive; then for some j, O=<j =< k-1,
(25) [adj. g, ad g] k.

with Fk,j, @ ci_v_l, thus

where

OXX i+ [f, X ] + c[g, X ] + (LTy) ad g (Lal.)g + adg ad g + "a.

Since , __
and y (-1)6, , can be written as

,,(z, w)= 2 (z, w)r,j,,(z),
k
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Let be such that 71 # 0; according to the claim

where X,.+, -1 - and X,+ %_ %-1" it follows from (25) and (26) that

+ is not involutive and this contradicts the assumption (ii). We established that
is involutive for every i, 0N iN n-1. We remark that the claim implies that %
T(%+) where is the projection (x, w) x. To eliminate the input redundancies
we can make a suitable choice of basis and decompose + in the following way"

u+i Ei Fi,

where T induces a bijection from E to % and + ker T. Thus we have

rank + rank

Since the functions Y rank %((Y)) and Y rank G(Y) are lower semicontinuous
and since has constant rank, F and % also have constant rank.

Let , o % and ,=o we have T(,)= ,. Assumption (ii) implies
that ,= Tn+q, so We have ,= T, but since ,= ,_, (z’), we have
rank

_
n.

3. A necessary condition. We give an easy necessary condition for nonlinear system
dynamic linearization.
ToeM 3.1. If system (1) is locally dynamic feedback linearizable, then its linear

approximation at the origin Vzf(O)z + G(O)u Fz + Gu is controllable, i.e.,
rank G, FG, FE-G) n.

Proof According to the assumptions, there exists a dynamic compensator (9) and
an extended state diffeomorphism x (z, w) that transform the extended system into
a linear controllable one (2). Consider the extended system:

e =/(z)+ G(z).(z, w)+ G(z)(z, w)v
(27)

a(z, w)+ B(z, w)v.

It follows that the linear approximation of (27)

e (v/)(0)z + G(0)(V)(0, 0)z + G(0)(V )(0, 0)w + G(0) (0, 0)v
(28)

(Vza)(0, 0)z + (Vwa)(0, 0)w + n(0, 0)v

is equivalent, up to a linear change of coordinates to a linear controllable system and
thus is controllable. A straightforward computation then shows that the controllability
of (28) implies that the linear approximation of (1) is controllable, i.e., it satisfies the
Kalman criterion.

This condition is obviously not sufficient, as is shown by the following example"

X2 + X3,

(29) 22 x3,

23=U.
The linear approximation at the origin of this system is

2 0 x + u,
0
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which is controllable. However, according to Theorem 2.1, the single input system (29)
is not static feedback linearizable and, according to Theorem 2.2, it is not dynamic
feedback linearizable.

4. Sufficient conditions. In this section we investigate the structure of the distribu-
tion for the following extended system, given by system (1) along with a dynamic
compensator (12) or (13)

=f(z)+ Y wgj(z)+ E v(t)gj(z)
j.lj >= j. pcj 0

3 l_--<j < -1(30) i Wi+l m, i > 1 1 <= <=

" =<j< >w.j v.j =m, /xj=l

which can be written as

(31) :f(Y)+ 2 (Y)v(t),
j=l

where

(32)

S=(z,w{ w l<=j<rn, >
m, j-- 1)-(z, w)

gaa if/a=0
J= if >

[ow,.j

#j 1.

The distributions i for system (31) are defined in the extended space (z, w) as

(33) i sp{ad} a, 0=< 1=< i, 1 _--<j _--< m}.

We now define on the original state space a set of distributions that depend on the
indices {/,,...,/,,} and that play a crucial role in this paper"

Ao sp{gt,, =< k =< m,/, 0}
(34)

Ai+, Ai + adt-Ai + sp{gk, 1 <= k<-_ m, I i+ 1}.

By definition, Ao c A1 c... c Ai c.... The following lemma gives conditions under
which the set of distributions ci in the extended state space is clearly related to the
set of distributions Ai in the original state space.

LEMMA 4.1. Iffor all i, >= 0 and for all j, 1 <=j <= m, such that t*a >= 1

then, for >= 0

(35) @ A, + sp

Proof Let us compute

[gj, Ai] c Ai+l

#i > + + sp
OW

#.i_

o sp{,, .,}

sp{g t, O} + sp
OW.,
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By definition of Ao we have:

o=Ao+Sp /xj ->1
OWm

We now proceed by induction in the computation of the distributions i by
showing that if

Ai + sp txj >= + + sp
Wj_

then, under the assumption of Lemma 4.1 we have

@i+l=Ai+l+sP txj >1 +" "+sp
OWm-i-I

.= /xj ->-i+2

which can be shown by computing

ci+l @i + ad .
We have

ad7 , sp{adf X; X 6 @}

sp{adf Y+ 2
j,txj >=

w( adg, Y; Y A -1
t- sp{gjlj + 1}

+ sp ;xj>__-I + + sp
OW

.j

;/xj >- i+2}.
Consider [gj, Ai] for those j such that /xj_-> 1; by the assumptions of the lemma we
have [gj, Ai] c Ai+ for all j such that/xj >- 1. According to the definition of A+l, we
have proved that the lemma holds true for + 1. Since the induction has been proved
for i- 0, the lemma holds true for every > 0.

THEOREM 4.2. Iffor a set ofintegers {/xl, ,/Xm}, 0
the distributions, up to input reordering,

Ao sp{gk; /xk O}

i=>OAi+l Ai + adfAi + sp{gk; ik + 1},

are such that in Uo, a neighborhood of the origin

(i) A is involutive and of constant rank for O<= i<= n + tx,- 1;
(ii) rank A,+,,,._ n;
(iii) [gj, A] c Ai+i for all j, l <=j <- m, such that txj >- and all i, O<- <- n + lxm -1;

then the system (1) is locally dynamic feedback linearizable by a dynamic compensator
(12) with indices/x,...,/x,, and a local diffeomorphism in Vo, a neighborhood of the
origin in the extended state space Nn+,.

Proof According to Lemma 4.1, assumption (iii) guarantees that (35) holds for
every i>_-0. Since Ai only depends on z, being defined on the original state space, it
follows from (35) and assumption (i) that the distributions are involutive and of
constant rank for every i_-> 0.

By assumption (ii), equality (35) for i= n+/.Lrn- 1 implies that rank (-n+/x,,,--1--
n +/x and thus rank +,-1 n +/x. We can then apply Theorem 2.1 to the extended
system (30), which guarantees the existence of an extended state feedback

v’= (z, w)+ t3(z, w)v
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with c(0,0)=0, fi(z, w) nonsingular mm matrix, and of an extended space
diffeomorphism

x= q(z, w), (0, 0) =0 z+
transforming the system (30) into a linear controllable one in x-coordinates. In con-
clusion we have proved that there exist a dynamic state feedback compensator (12)
with indices/, [.L and an extended space diffeomorphism (10) transforming the
system (1) into a linear and controllable one of dimension n + .

COROLLARY 4.3. Consider system (1) with m n- 1. The following statements are

equivalent:
(i) System (1) is locally dynamic feedback linearizable.
(ii) The linear approximation of system (1) at the origin is controllable.
Proof (i)=(ii) follows from Theorem 3.1.
(ii)(i). Since the linear approximation of system (1) is controllable, there exists

a vector field gi such that ad;gi does not belong to o; furthermore Cl T". There
are two cases. Either o is involutive and therefore, since Tn, according to
Theorem 2.1, system (1) is static feedback linearizable. In the opposite case, we set

]Zk --1 if k i and/z 0, we have
A0 sp{g} which is of rank 1 and involutive.
Al=o+sp{adgi}= T since n=m+l.

The assumptions of Theorem 4.2 are met and system (1) is dynamic feedback
linearizable.

Remark 1. Corollary 4.3 agrees with the sufficient conditions obtained in [5].
Corollary 4.3 is false if rn < n 1 in system (1), as shown by (29) (single-input system).
A multi-input counterexample is given by the following system

x2 + x3

)2 X3

3=Ul

4 U2

Its linear approximation at the origin is controllable; nevertheless, it can be easily seen
that the system is a dynamic extension of (29) by setting m’= 2, w x4, u2, and
u u with the notations of (14). Since (29) is not dynamic feedback linearizable by
virtue of Theorem 2.2, it is also true for any dynamic extension of (29) (by contradic-
tion), which proves that our multi-input system is not dynamic feedback linearizable.

Remark 2. Conditions (i) and (iii) of Theorem 4.2 have some redundancy. In fact
the involutivity of Ai+l and the inclusion Ai Ai+ imply

[g., A+] A+
and therefore

[gj, Ai] Ai+l

for all j, 1 <-j <= m, such that/z <- + 1. Hence only the conditions

[g, Ai] = Ai+
for all _>- 0 and for all j, 1 _-<j <_- m, such that > + 1 are not contained in assumption
(i).

Remark 3. The conditions of Theorem 4.2 are invariant under state space
diffeomorphism (3), but they are not invariant under feedback transformations (5).



48 B. CHARLET, J. LIVINE, AND R. MARINO

Remark 4. If ]Ji--0, 1 _-<i=< m, then Aj % for every j=> 0. Since condition (i) of
Theorem 4.2 requires that the distributions Aj % be involutive, condition (iii) of
Theorem 4.2 is always satisfied (in fact [g/, Ai] c Ai, =<j --< m, in this case). Conditions
(i) and (ii) of Theorem 4.2 coincide then with the necessary and sufficient conditions
of Theorem 2.1. Theorem 4.2 can be viewed as a generalization of Theorem 2.1.

Remark 5. For those systems for which Theorem 4.2 applies, we can compute the
controllability indices of system (30) from (35) on the basis of the distributions Ai. Let

trio rank o m

/’i--rank i- rank (i-1
rank A rank Ai_ + card {j I/x _-> + 1; 1 _-< j _-< m },

then

/ card { rfii --> j}, _-< j -< m,

is such that= n +. Up to an input renumbering, we can then associate to any
vector field g an index k.-x so that

rank {g,. ., adJ-";- g; -<j _-< m} n.

System (30) can be transformed into a linear controllable system with controllability
indices (k,..., kin) as follows:

1. Determine m functions q(z), , (rn (Z) such that:
(i) The m m matrix

D(x) ((dqi, adff’-"j-’
is nonsingular;

(ii) (dqi, ad. g) 0, for every j, 1 j <= m, and every )t, 0 )t </i j 1.
2. The extended state space diffeomorphism is given by

 tz,

with f and being given by (30) and (32).
3. The extended state feedback transformation is (up to the former input renum-

bering)

v’(t)--c(z, w)+(z, w)v(t) --/-’

with

/! LJ-I.,(z, w)= L, ](z, w).

Remark 6. The sufficient conditions of Theorem 4.2 may be helpful in finding the
structure of a dynamic compensator if it exists. We sketch the analysis in a particular
case.

Assume that Ao sp{g,..., gin-l} is an involutive subdistribution of go. We
assume that for each i>_-0, we have

3i q3i + I({ad.) gm, 0 <-- k <--_ i})

where I({ad.. gm, O<--k<--i}) is the Lie ideal of the Lie algebra - generated by
{ad) g,, 0-<_ k -<_ i}. These conditions mean that the noninvolutivity of the distributions
3 is due to brackets involving
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This specific Lie algebra structure of the distributions Cs and s leads to the
construction of a dynamic compensator of type (12) with 1 /*m-1 =0 and
/*m 0. It remains to choose the value of/m. The following procedure gives bounds
on the length of the chain of integrators.

We define the following distributions and indices

Ai+ Ai + adf Ai

io inf{i[ c$ #

sup {0, (io k lad.) gm, ad Ao] t q3, 0 <= k <= io}}

r sup {i[ As involutive and adg,,, Ai-1

Let/l ].Lm_ --0. Assume that =< r. Then let us choose jtm and the distributions
Ai as follows:

+ 1 <lm<r-k 1

Ai Ai V <= Im 1
(36)

Am,, Am,,+ sp{gm}

Ai+ As + ad,,.Ai V _>

According to the definition of the distributions As and of the index r, to Theorem 4.2
and to Remark 2, if As is involutive for all i>= j[L then system (1) is dynamic feedback
linearizable by the dynamic compensator (12) defined with /1 bm-1 =0 and
/Zm given by (36).

If/z, is chosen less than or equal to/z, A cannot be involutive:

A= y. ad.) Ao+ sp{ad) gm, 0 <= k <= io--I.*m},

ad’t-"gm c Aio which implies, according to the definition of /, that ASo< io is not
involutive.

On the contrary, if the index/, is chosen strictly greater than r+ 1, then

Ar+l Ar+l

and according to the definition of r, Ar+ is not involutive. Therefore, the only possible
choice is + 1 =< ].g r + 1.

5. Examples.
Example 1. This example illustrates how the sufficient conditions of Theorem 4.2

can lead to the construction of a linearizing dynamic compensator. Consider the system

3 U2,

4 X3 X3Ul;

that is,

:f(x) + u,g,(x) + u2g2(x)
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with

0 0
f= xz -"X ,

Oxl Ox4

0
gl x3

0

OX4

Easy computations give

0

Ox3

0
adg, g:-

OX4

o
a-v g2

Ox4

0
adsg

The system is not feedback linearizable since o is not involutive and, therefore,
condition (i) of Theorem 2.1 fails, whereas condition (ii) is satisfied, i.e., rank 31 =4.
Analyzing the Lie algebraic structure of the system we have that sp{gl, g2, adfg2} is
involutive and of constant rank 3 whereas sp{gl, g2, adsg} is not involutive. According
to Remark 6, this leads us to choose l 1 and 2--0, so that we have

Ao sp{g:},

A= sp{g2, adf g2, g},

A= sp{g, gl, adsg,, g2}.

The conditions of Theorem 4.2 are satisfied. The controllability indices are (3, 2) and

rank {gl, ad,.g, g2, adsg2} 4.

The dynamic compensator is then

d/
1, /22-- )"

dt

Following the procedure outlined in Remark 5, the extended space change of coordin-
ates is obtained solving

dq, (A1)1, dqz (Ao)1

with

adCg,) (dql, ad. gz))(dcp2, gl) (dcp,, adfg2)

nonsingular; a solution is x, 2 x4. The diffeomorphism is then

(,, Lye,, L},, , L?) (x,, xz, u,, X4, X3--X3Ul)

and the extended state feedback transformation is

V] --X 1-u vz
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The dynamic compensation has a singularity at ul 1 where there is a loss of controlla-
bility.

Example 2. This example shows that condition (iii) ofTheorem 4.2 is not necessary.
Consider the system

21 X2 -’t- X3/,/2

22 X3 q-/1 I,/2

23 U1-1c-/2U2,

24 /’/2

2 =f(x) +/./lgl(X) t- bl2g2(X

We can compute

0 O O
-, adadg gl
OXl ad gl

OX g2 gl
OX

that is, rank o 4, and

0 O 0 O
=-, ad}g- adg2=-x+x3.adfg

Ox2 OXl Ox Ox3

Since qdo is not involutive, the system is not static feedback linearizable; however,
rank 2 4 and the linear approximation at the origin is controllable. If we set/x 0
and [,2--3, the extended system

21 X + X W1,

2 X3 + X1 Wl

4

turns out to be static feedback linearizable; in fact,

@0 sp
OW3, 023-W1 0+ sp

OW2 0X2

, +W +W2 @1 + sp ;W OX1 OX2

with

o o o o o o o
f= x2+X3, gl g X3 _-----q- Xl q" X2--.

OXl OX OX30X OX2 OX OX4
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When w + we- 1 0 (i.e., when ul satisfies il 1 u) we have

{0 0}d d -- sp 0X1, OX2

Thus rank 2 6 and, again when w + w2- 1 0, we-have3 TNv. Hence the distribu-
tions @i satisfy the conditions of Theorem 2.1 as long as w + w2-1 0. On the other
hand, Ao= sp{O/Ox3}, A Sp{(O/OX3) (0/0X2)} and condition (iii) of Theorem 4.2 fails
since adg gl is not contained in A; note that formula (35) does not hold for i= 1.

This example illustrates the role of condition (iii)" although not necessary, it allows
us to check the involutivities and constant rank condition for the distributions i on
the basis of the distributions A defined on the original state space.

Example 3. Theorem 6.5 of 12, p. 136] was the first general result where dynamic
feedback linearization was achieved. The present example shows that the sufficient
conditions obtained in Theorem 4.2 and Corollary 4.3 are different than those given
in 12], which we now recall. The notations are those of 12]. Define the codistributions, k->O:

fo sp{dh} sp{dh,,.-., dht,},

f*= N
k=0

Recall that if o Y o) dx is a smooth 1-form and y Yi yi(O/Ox) is a smooth vector
field, we have

Lw k y + W.Ox
Recall also that *= (O*)x is the largest (f g)-invariant distribution contained

in Kerdh =.
In [12] the following result is proved.
Assume that:

(A1) a* {0},

(A2) 2 Lg,( O ) c for every k O.

en the system is locally dynamic feedback linearizable.
Consider the system, which was suggested to us by Respondek:

2=1,

2z=x3+(x)u,

(37) 23= u:,

yl=hl(X),

y h:(x),

with (0) 0, (O/Ox3)(x) # O, for all x 3, and h, h: two generic output functions.
The linear approximation at the origin is controllable and Corollary 4.3 applies. Thus,
h, h can be constructed according to Remark 5.
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Let us prove that there cannot exist two analytic output functions hi, h2 for the
system (37) such that the sufficient conditions of [12] are satisfied.

We have

0

Ox2

and

0 0 0
+, g2-gl
OX OX OX

Thus -= sp{(,-1, 0)}. Since cg- is one-dimensional, two cases can arise:- f-1120 0, which implies that 12" 120 and thus A* is one-dimensional, A* # 0.
Thus (A1) is violated.
cg- f-i 120 cg- and we have Lg,(qg,-1, O) ((OqP/OX2) --(OqP/OX2)
-(0/0x3)), Lg2(, -1, O) ((0/0x3), 0, 0). It results that, if (0/0x3) O,
l)o+Yi Lg,(l)o 3-)= T*3# fo, which proves that (A2) is violated.

The claim is proved.
Example 4 (rigid body dynamics). We consider a general model of rigid body

dynamics that includes the case of aircraft dynamics [5]. Our general purpose here is
to show that Theorem 4.2 applies to important classes of mechanical systems rather
than deal with specific applications of aircraft control.

Let (x, y, z) be the coordinates of the center of mass in an absolute frame with
the vertical z-axis oriented downward, (u, v, w) the velocity components in a relative
frame linked to the rigid body, (p, q, r) the components of the kinetic moment in the
relative frame, (, 19, q) the roll, pitch, and yaw angles, respectively. Let =(x, y, z, u, v, w, , 19, )r be the state vector.

We consider p, q, r, and p (p is the thrust) as control variables. The equations of
motion are

cos qt cos 19 + v(cos W sin 19 sin- sin * cos )

+ w(cos q sin 19 cos + sin qt sin ),

sin W cos 19 + v(sin q sin 19 sin +cos q cos )

+ w(sin q sin 19 cos -cos q sin ),

(38)

-u sin 19 + v cos 19 sin + w cos 19 cos ,
ti =-g sin 19 + rv- qw +

m m

cos 19 sin ru + pw + Y(()
m

cos 19 cos + qu- pv+z()
m

+ =p + tg19(q sin + r cos ),

6t q cos - r sin ,
q q sin + r cos

COS 19
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where (Xo(:) + Jp, Y((), Z()) are the components ofthe force vector excepting gravity.
The model is of the type

(39) =f() +pg() + qg2() + rg3(:) nt- Pg4(:)

with f, gl, g2, g3, and g4 obtained from (38).
The reader can compute the Lie brackets adg, gj with 1 <-i,j <_-4 and check that,

independently of the type of functions that Xo(), Y(:), and Z(:) may be in specific
cases,

sp{gl, g2, g3} is involutive;
c0 sp{g, g2, g3, g4} is not involutive, rank Co 4;
o o+ sp{adg4 g2, adg4 g3}

sp{(O/Ou), (O/Ov), (O/Ow), (0/0), (0/00), (0/0)}, rank o 6;
l o+ adzo # -- TR9, rank 031 7 and rank 3--- 9.

Since o is not involutive, the system is not feedback linearizable. However, it is clear
from the Lie bracket configuration that all the noninvolutivities are caused by g4 and,
according to Remark 6, if we choose/x =/x2 =/x3 0 and U,4 1, we have

Ao sP{gl, g2, g3}

A A0 -- adj. Ao + sp{g4}

A2 A --adz A1 T[9.

Therefore, the sufficient conditions of Theorem 4.2 are satisfied, which leads to the
compensator

(40)
P /-)1,

r- ’/.)3.

Define the functions

Yl X,

Y3 z,

and the extended space diffeomorphism

p) ,-->

where

= (Yl, L7y, L}y,, y2, LIy2, L}y2, Y3, Lfy3, L}y, Y4)r.

The dynamic compensator (40) together with extended state feedback

V= D-l(v’-- Do),
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where

D LXo LYcos cos (R) +(cos sin (R) sin (t,- sin T’ cos
m m

LyZ
+(cos sin (R) cos (I)+ sin sin (I)),
m

L, LI.YD=/Xo sin cos + (sin sin sin + cos cos )
m m

+ LJZ(sin sin (R) cos (I)- cos sin (I)),
rn

L,X LZD3o=/ sin (R) + LYcos (9 sin (P +
m m m

cos 0 cos (I),

D=0,

and

(cos sin (R) cos ) __Z (cos q sin (R) sin )+ e
m

Z 2D2 _X
+Jp

(cos xp sin (R) cos + sin sin ) + cos ’kid’ cos 0 .qt_ E 1,
m m

D3 Xo+ Jp
(cos sin (R) sin sin cos )

Y
---cos cos 0 + e31,

m m

cos cos (R),

--Y(sin sin (R) cos - cos sin )-
Z

(sin sin (R) sin + cos cos )+ e2,
m m

Xo+ Jp
m

Z
(sin sin (R) cos - cos sin )+--sin q cos (R) + e,

m

D3 Xo + Jp
(sin sin (R) sin + cos cos )

Y
m m

sin cos (R) + e3,

D J
sin cos (R),

m

cos 0D- m
(- Y cos + Z sin ) + e 3,

D2 Xo+ JP
3

m

Z
cos (R) cos + sin (R) + e,

m

Y )cos @ sin +-- sin @ +e,
m

sin (R),
m
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and D D D34 0 and D44 1, with

Lg.Xo
81 COS XlY COS 19 + (cos W sin 19 sin - sin W cos ) ggi Y

m m

+ (cos W sin 19 cos q + sin qY sin q)
Lg,Z
m

1=<i=<3,

Lg.Xo
e 2 sin q* cos 19 +(sin q* sin 19 sin q+cos xI, cos q)

Lg, Y
m /7"/

+ (sin qY sin 19 cos q- cos qY sin
m

1_-<i__<3,

Lg.Xo Lg. Y Lg.Z
e3 sin 19 + cos 19 sin q + cos 19 cos

m m m

makes the closed loop system linear and controllable:

d3y
dt

1<=i<=3

1<_i=<3

Y4--- /)4"

6. Conclusions. We have studied the problem of dynamic feedback linearization
(Definition 2.1 and Definition 2.3) for nonlinear systems (1). Theorem 2.2 shows that
for single input systems the set of dynamic feedback linearizable systems coincides
with the set of static feedback linearizable systems. Theorem 3.1 shows that the
controllability of the linear approximation at the origin is a necessary condition for
dynamic feedback linearization, which is also sufficient when m--n-1 in (1); this
means that mild conditions identify dynamic feedback linearizable systems when the
number of states minus the number of controls is equal to one. This is no longer true
if m<n-1.

Theorem 4.2 gives sufficient conditions for dynamic feedback linearization via
special types of dynamic compensators (prolongations). The conditions are not
necessary (Example 2) but are more general than existing sufficient conditions (Example
3) and include the known necessary and sufficient conditions for static feedback
linearization. A contrived example (Example 1) and a model of complex dynamical
system, namely the dynamics of a rigid body (Example 4), show how the sufficient
conditions of Theorem 4.2 lead to the explicit determination of the linearizing dynamic
compensator.

The challenging problem of finding necessary and sufficient conditions for dynamic
feedback linearization remains open however. We have solved the problem only when
m n 1 and we have established that it is a multi-input phenomenon; in the general
case we have obtained constructive sufficient (but not necessary) conditions and
necessary conditions.

REFERENCES

[1] M. D. DI BENEDETTO, J. W. GRIZZLE, AND C. H. MOOG, Rank invariants of nonlinear systems,
SIAM J. Control Optim., 27 (1989), pp. 658-672.

[2] M. D. DI BENEDETTO AND A. ISIDORI, The matching of nonlinear models via dynamic state feedback,
SIAM J. Control Optim., 24 (1986), pp. 1063-1075.



DYNAMIC FEEDBACK LINEARIZATION 57

[3] R. W. BROCKETT, Feedback invariantsfor nonlinear systems, Proc. VII IFAC Congress, Helsinki, 1978,
pp. 1115-1120.

[4] B. CHARLET, J. LIVINE, AND R. MARINO, Two sufficient conditionsfor dynamicfeedback linearization,
in Analysis and Optimization of Systems, Lecture Notes in Control and Information Sci., Vol. 111,
A. Bensoussan and J. L. Lions, eds., Springer-Verlag, Berlin, New York, (1988) pp. 181-192.

[5] , On dynamic feedback linearization, Systems Control Lett., 13 (1989), pp. 143-151.
[6] ,New sufficient conditionsfor dynamicfeedback linearization, Proceedings ofthe IFAC Symposium

on Nonlinear Control Systems Design, Capri, June 14-16, 1989.
[7] J. DESCUSSE AND C. H. MOOG, Decoupling with dynamic compensation for strong invertible affine

nonlinear systems, Internat. J. Control, 42 (1985), pp. 1387-1398.
[8] Dynamic decoupling for right invertible nonlinear systems, Systems Control Lett., 8 (1987), pp.

345-349.
[9] M. FblESS Gnralisation non linaire de la forme canonique de commandeet linarisation par bouclage,

C.R. Acad. Sci. Paris, SOrie I, 308 (1989), pp. 377-379.
[10] Automatique et corps diff(rentiels, Forum Math., (1989), pp. 227-238.
[11] L. R. HUNT, R. Su, AND G. MEYER, Designfor multi-input nonlinear systems, in Differential Geometric

Control Theory, R. Brockett, R. Millman, and H. Sussmann, eds., Birkhiuser, Basel, 1983, pp.
268-298.

[12] A. ISIDORI, Control of nonlinear systems via dynamic state feedback, in Algebraic and Geometric
Methods in Nonlinear Control Theory, M. Hazewinkel and M. Fliess, eds., D. Reidel, Boston,
1986, pp. 121-145.

[13] Nonlinear control systems, Second edition, Communications and Control Engineering Series,
Springer-Verlag, Berlin, New York, 1989.

[14] A. ISIDORI, C. H. MOOG, AND A. DE LUCA, A sufficient condition for full linearization via dynamic
state feedback, Proc. 25th IEEE CDC, Athens, 1986, pp. 203-207.

[15] B. JAKUBCZYK AND W. RESPONDEK, On linearization of control systems, Bull. Acad. Pol. Sci., Ser.
Sci. Math., 28 (1980), pp. 517-522.

[16] A. J. KRENER, On the equivalence of control systems and the linearization of nonlinear systems, SIAM
J. Control, 11 (1973), pp. 670-676.

[17] A. J. KRENER, A. ISIDORI, AND W. RESPONDEK, Partial and robust linearization by feedback, Proc.
22nd IEEE CDC, San Antonio, Texas, 1983, pp. 126-130.

18] R. MARINO, On the largestfeedback linearizable subsystem, Systems Control Lett., 6 (1986), pp. 345-351.
[19] A. S. MORSE, Structural invariance of linear multivariable systems, SIAM J. Control, 11 (1973), pp.

446-465.
[20] A. S. MORSE AND W. M. WONHAM, Decoupling and pole assignment by dynamic compensation, SIAM

J. Control, 8 (1970), pp. 317-337.
[21] H. NJMEIER AND W. RESPONDEK, Dynamic input-output decoupling of nonlinear control systems,

IEEE Trans. Autom. Control, AC-33 (1988), pp. 1065-1070.
[22] H. NJMEER AND A. J. VAN DER SCHAFT, Controlled invariancefor nonlinear systems, IEEE Trans.

Automat. Control, AC-27 (1982), pp. 904-914.
[23] S. SNGH, Decoupling of invertible nonlinear systems with state feedback and precompensation, IEEE

Trans. Automat. Control, AC-25 (1980), pp. 1237-1239.
[24] H.J. SUSSMANN, Lie brackets, real analyticity and geometric control, in Differential Geometric Control

Theory, R. W. Brockett, R. S. Millmann, and H. J. Sussmann, eds., Birkhiuser, Boston, MA, 1983,
pp. 1-116.

[25] D. G. TAYLOR, P. V. KOKOTOVIC, R. MARINO, AND I. KANELLAKOPOULOS, Adaptive regulation
of nonlinear systems with unmodelled dynamics, IEEE Trans. Automat. Control, AC-34 (1989), pp.
405-412.

[26] A.J. VAN DER SCHAFT, Linearization and input-output decouplingfor general nonlinear systems, Systems
Control Lett., 5 (1984), pp. 27-33.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 29, No. 1, pp. 58-70, January 1991

(C) 1991 Society for Industrial and Applied Mathematics

OO3

QUADRATIC APPROXIMATIONS IN CONVEX NONDIFFERENTIABLE
OPTIMIZATION*

MANLIO GAUDIOSO? AND MARIA FLAVIA MONACO?

Abstract. An implementable descent method for the unconstrained minimization of convex nonsmooth
functions of several variables is described. The algorithm is characterized by the use of a set of quadratic
approximations of the objective function in order to compute the search direction. The resulting direction
finding subproblem is shown to be equivalent to a structured parametric quadratic programming problem.
The convergence of the algorithm to the minimum is proved, and numerical experience is reported.

Key words, nondifferentiable optimization, bundle methods
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1. Introduction. The research in the area of the numerical methods for non-
differentiable optimization is presently stimulated both by the relevant results that are
being obtained in the field of nonsmooth analysis as well as by the practical need of
algorithms performing better than those currently available.

The above motivations concurrently stimulate the research for numerical methods
no longer exclusively based on piecewise linear approximations of the functions to be
minimized.

In particular, the results presented in [7], [24] provide an extension to the convex
nondifferentiable functions of the concept of second order derivative, through the
definition of second subdifferential; on the other hand, parallel to the historical
development of the numerical methods for the unconstrained minimization of smooth
functions, "Newton type" methods are expected to replace "gradient type" methods
[17].

This paper describes an implementable descent method for the unconstrained
minimization of convex (not necessarily smooth) functions of several variables which
takes advantage of the information available on the curvature of the objective function
along certain directions. The algorithm is related to the family of bundle methods 12],
[16], [5], the substantial difference being in the direction-finding step.

In fact, generalizing the approach presented in [6], the search direction is obtained
by minimizing the directional derivative on a compact set which approximates the
level set of the objective function. The approximation consists of a set of quadratic
constraints generated on the basis of the "bundle" of information available.

The paper is organized as follows. In 2 the approach is described with emphasis
on the definition of the auxiliary problem to be solved at each step of the algorithm
in order to find a search direction. Section 3 is devoted to the analysis of the auxiliary
problem and to its reduction to a parametric quadratic program. The overall algorithm
is stated in 4. Finally the results of numerical experiments are reported in 5.

The basic background of the paper is convex analysis, for which the fundamental
reference is Rockafellar’s book [20]. General references for the numerical methods
are [1], [9], and [26]; in particular the bundle methods, which are strictly related to
our approach, are surveyed in [14].

Standard notations are adopted throughout the paper. The symbol I]" denotes
the euclidean norm. In the sequel, given a set A of the n-dimensional euclidean space,

Received by the editors June 13, 1988; accepted for publication (in revised form) April 11, 1990.
Dipartimento di Sistemi, Universita della Calabria 87036 Rende (CS), Italy.

58



QUADRATIC APPROXIMATIONS 59

we denote the convex hull of A as conv (A) and the vector of minimum norm in A
(i.e., the nearest point to the origin) as Nr (A).

2. Preliminaries. Let f be a proper convex function defined on the n-dimensional
euclidean space R n. Our aim is to devise a descent method for the unconstrained
minimization of f Since the core of our approach is the determination of a search
direction (possibly a descent one), we focus on this problem.

We assume that, in some iterative procedure, at a given current point x R n, the
following information is available: a subgradient vector of f at x, g Of(x); a set of
previously generated points xi, i F such that f(xi)>f(x), and the corresponding
subgradients gi Of(x), F.

We look for a search direction d* obtained as a solution of a problem of the type

min f’(x, d) h(d)<-O,
d

wheref’(x, d) is the directional derivative off at x along d and h(d) is some reasonable
model of f(x + d)-f(x). In other words, the feasible region is an approximation of
the level set of f at the point x, i.e., of the set

S(x) {d [f(x + d) =<f(x)}.

The approach is motivated by a simple interpretation of Newton’s direction in
the convex quadratic case. In fact, if this is the case, a scalar multiple of Newton’s
direction is obtainable as a solution of

min f’(x, d).
deS(x)

The approach has been utilized in [6] in connection with piecewise linear approxi-
mations of f, giving rise to a variant of the bundle type methods.

In this paper we will define the function h(d) through explicit consideration of
the curvature of f To this aim some basic concepts are in order. Let a and a’, i F
be defined as follows:

5i =f(x) f(xi) gi (X Xi) F

0I f(xi) f(x) gr (X X) F.

The value ai represents the difference between f(x) and the value at x of the
linearization obtained starting from xi, i F. Symmetrically, a’i is the difference
between the actual value off and the linearization based on x, both evaluated at xi. By
convexity both a and a l, i F are nonnegative.

From the definitions, letting di x- xi, i6 F, it follows that

ci + tl (g- gi)’rdi F

and, if in additionf is quadratic, sayf(x) 5x r0x + b rx, we have that a a 1/2d Qd.
The meaning of ai and a is pictorially described in Fig. 1.
Letting d y-x, y R", we define a set of convex quadratic functions hi(d), F

in the following way:

hi(d) -id Td -- (gi q- jidi) Td 1,

where

and Oi =1/2]ai- a].
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The functions hi(d) are the basic elements for constructing the desired approxima-
tion of the level set. We note that the gradient of hi(d) evaluated at d =-di is gi and
the directional derivative of hi(d), evaluated at d 0, along the direction di is equal
to g rdi.

This means that hi(d) interpolates the first order properties of the function f at
the points xi and x, in the latter case solely along the direction

As far as the values of the functions are concerned, it is easy to verify that

hi(O)

hi(-di)
f
i
f(xi)
f(x,)-f(x)-(l-.,)

if "0 OI)
if Oi 1/2(c ci).

Note that hi(d) is a convex quadratic function whose curvature is completely
defined by the value/3i obtained from information on f along di; its gradient at the
point d 0, gi +/3idi, can be considered as the gradient of the original function f at
xi, "transferred in a quadratic fashion" to the point x.

We define the sets Si, e F as

Each set Si is consistent with the level set S(x) in the sense that S (] S(x) & (in fact
at least d--0 is in the intersection).

We define the function h(d) as follows:

h(d)=maxhi(d)

and, therefore, the approximation adopted for the level set is

S’= n S,={dlh,(d)<=O, iF}.

In conclusion, in order to find a search direction from the current point x, we solve

minf’(x,d) hi(d)=1/2idrd+(gi+idi)Td-Oi<-_O, iF.
d

If the information available on the subdifferential at x is solely g, the objective
function is the inner product grd. More in general, if a set of e-subgradients
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gi Of(x), i C of f at x are available, the directional derivative is replaced by the
e-directional derivative, i.e., the objective function becomes

min max gTd
d gconv (I’c)

rc=(glic}.
Consequently the problem may be rewritten as

(P) minv v>=gfd iC hi(d)<=O iF.
d,

Before discussing the properties of (P) we just note that its feasible region is
nonempty and convex.

3. The search direction finding subproblem. In this section we discuss some proper-
ties of problem (P). In the sequel we assume/3i > 0, F and, for simplicity of notation,
we define g g +/3d, F.

The following proposition summarizes the properties of (P).
PROPOSITION 1. Let S’ be the set of directions d feasible for (P) and let (d*, v*)

be the optimal solution. Then
(a) S’ has nonempty interior unless it reduces to {0};
(b) v*-<_0;
(c) if O>O for all iF then v*=0 if and only if 0conv (Fc);
(d) if the set l={iFlO=O} is nonempty, then v*=O is equivalent to O

conv (Fc U FI) where F {gli I}.
Proof (a) S’ is the intersection of the closed balls Si, i F

2___Si {dl lid +gl/,11 --< r,}, where i’i Ilgl/t ,ll +2o,//3,.

S’ is nonempty since each S contains the origin. The property follows from convexity
of S’ and from strict convexity of the euclidean space;

(b) consequence of feasibility of (d, v)= (0, 0);
(c) the condition O > 0 for all F implies that S’ has nonempty interior (in fact

0 int S’). Since (P), the feasible region of (P), is the epigraph of the convex function

maxc gd, d S’, it follows from Lemma 7.3 in [20, p. 54] that (P) has nonempty
interior, and consequently, that Slater’s constraint qualification holds for (P); thus,
(P) being a convex program, Kuhn-Tucker conditions are both necessary and sufficient
for optimality.

The Kuhn-Tucker conditions for (P) are:

(1) ig+v n-g,+(Fri/3)d=0
(2) /x => 0 C

(3) r>=O i F

(4) 2 /x 1
iC

(5) ri(h(d)) 0 i6F

(6) i(v--gT d)=O 6 C.

If v* =0, the direction d =0 attains the optimal value. Since 0int S’, from (5)
the multipliers r must be identically zero, hence the "only if" part follows from (1).

where Fc is defined as
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The "if" part follows by noting that 0 conv (Fc) implies that the Kuhn-Tucker
conditions are satisfied by letting d 0, v- 0, ri 0, for all F.

(d) We note first that v* 0 if and only if the following system of linear inequalities
has no feasible solution d:

gfd<O iC

grd < 0 L

From Gordan’s theorem of the alternatives 18] we have that infeasibility of the above
system of linear inequalities is equivalent to feasibility of the system

iC il

(7)
0, 0 and not all the and the equal to 0

which in turn is equivalent to 0 conv (Fc
The meaning of v* =0 is different in (c) and (d). In particular, under the hypothesis

of (c), v* =0 indicates that an approximate optimality condition is verified at the
current point x. Under the hypothesis of (d), v* =0 may either indicate that the
approximate optimality condition is verified or that the model of the level set is
inadequate. More precisely, the approximation of the level set may be inherently
contradictory (S’= {0}) or it may not fit with the local descent properties off (empty
intersection of S’ and the set of the descent directions at x).

Our approach to the solution of (P) is based on the solution of its dual:

max g d+ ih(d)
,,d iF

iC

(

0 iC, 0 iF.

It is easy to verify that problem (D) is always feasible. Moreover, corresponding
to the feasible triplets (, , d) for which 0, it is possible to express d as function
of and . (We note in passing that feasible triplets (, O, d) exist if and only if
0 conv (Fc)).

Thus we eliminate d by putting

d cg+e g’.

Consequently (D) becomes

min

iC

2i F 7’i

ieC

ieF
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Defining the matrices G and G’ whose columns are, respectively, the vectors
i C, and g’ (1, 1, 1,..., 1) of appropriatei, F and, also, the vectors/x, 7r,/3, O, e r

dimension, the above problem may be rewritten in compact form as follows:

min
2 r

(FD) e=l
0, 0.

Hence (FD) is a fractional programming problem, the numerator being a quadratic
function and the denominator linear. Moreover, numerator and denominator are,
respectively, convex and nonnegative on the feasible region.

In order to approach problem (FD), we define the following parametric quadratic
programming problem in the nonnegative scalar parameter p

min(lla +a’lla+r(O +0))
(QP(P))

e 1 0 0.

Poposwioy 2. For positive values of the parameter p, thefollowing statements are
equivalent"

(a) (QP(p)) is unbounded from below:
(b) there exists a solution O, 0 to the system of linear equations

G’ O, 0 O.

Proof The implication (b) implies (a) follows immediately by noting that, by
hypothesis, > 0 and that conv (Fc) is bounded.

To prove (a) implies (b) we note first that, because the norm of G is bounded
on the feasible region, for all feasible g the following holds:

(lla +a’[l+(O +0))
T T T(llG’ll2+ (o +o ))+ min gW(G’)+llull2-p

giI’c

where u Nr (Fc).
Defining q(w) as the function on the right-hand side of the above inequality, we

have that

q() rain q()
iC

where, for all i C, q() is the quadratic function

) G’ 2

From the unboundedness assumption, it follows that q() must be necessarily
unbounded on the feasible region. Moreover, since the cardinality of Fc is finite, at
least one of the functions q() must be unbounded from below. On the other hand,
if (b) is not verified, all the quadratics q() have finite minimum since the hessian
matrix is strictly copositive [19]. Hence the proof follows.

Proposition 2 indicates how to proceed to solve (FD). In fact, by solving (QP(p))
for any choice of the parameter p > 0, two possible outcomes may result"

(a) unbounded solution;
(b) finite minimum.

Case (a) may occur if and only if S’= {0}, which in general indicates inconsistency of
the level set approximation. Whenever case (b) occur we may infer that problem
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(QP(p)) has finite minimum for all the values of the nonnegative parameter p and,
hence, that the function

(QP(p))
F(p) min 1/2(]] Gtx + G’rll + rr(O r +0r)r)-p
er/x /x=>0,

is well defined for p _>- 0.
Further insight may be gained by determining F(0). In fact different conclusions

about (P) may be drawn according to F(0)=0 or F(0)>0. We observe first that
F(0)=0 with the corresponding r=0 imply 0econv(Fc); otherwise F(0)=0 and
r # 0 imply the existence of a feasible solution to (7).

The implications of the case F(0)> 0 are analyzed in the following proposition.
PROPOSITION 3. IfF(O) > 0 then:
(a) 0 cony (Fc);
(b) the system (7) has no solution.

Moreover there exists a positive p* such that F(p*) 0 and the corresponding r(p*) O.
Proof (a) and (b) follow immediately from the definition of F(0). Recalling the

Kuhn-Tucker conditions for (QP(p)):

GrGIx + Gra’Tr o’e >= 0
G TG x -t- G TG -t Off T

__
’0 T

Tr pfi >-- 0

(8) T GTGtx + GTG’r ere) 0

.r[ G,rGi,x + (G,rG,+ 0/3 r + flOr) -p/3] 0

e/x=l _-->0, r_-->0

where o- is the multiplier (unconstrained in sign) of the constraint ex 1, we have,
from (8) and from boundedness of cony (Fc), that, for sufficiently large values of p,
the optimal pair (/x, r) cannot be of the type (x, 0). Moreover, it is easy to show that
F(p) is continuous and limp_ F(p)=-o. Hence, since F(0)>0, we conclude that
a solution p* to the equation F(p) =0 exists. Finally we note that, corresponding to
the optimal pair (/x(p*), r(p*)), it is r(p*) 0 (otherwise the same pair should have
been optimal for p 0, determining F(0)= 0, which contradicts the hypothesis).

As it will be explained in detail in the next section, the case F(0)=0 suggests
either stopping or resetting in a possible descent procedure. On the other hand, assuming
F(0)>0, we have the equivalence of solving the nonlinear equation F(p)=0 and
solving the fractional programming problem (FD) (see 8], 21 for a complete treatment
of the parametric approach to fractional programming).

In fact, taking into account that r(p*) 0, it is easy to show that the couple
(x (p*), rr(p*)) is optimal for (FD). Moreover since F(p) is a concave, strictly decreas-
ing function, the solution p* is unique and the standard numerical methods for
fractional programming apply to our case.

4. The algorithm. In this section we introduce a model descent algorithm charac-
terized by the use of a search direction obtained through solution of problem (P). In
the sequel, for the sake of simplicity of notation, we describe one iteration of the
method that we define as the "main step." We assume that at x, the current estimate
of the minimum, the following information is available:

An approximation of the e-subdifferential off at x, for a given e > 0, i.e., a bundle
Fc of subgradients of f evaluated at points "sufficiently close" to x. The bundle
is assumed to contain at least g, a subgradient of f at x; in fact it reduces to the
singleton after a successful line search (see step 3 below).
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The points xi, i F (considered "far" from x), the scalar parameters /3i, Oi i F
and the related bundle of subgradients Fv- {gi[i F}.
The meaning of points "close" and "far" deserves explanation. We consider close

to x any point y such that, for the given e > 0, each subgradient at y belongs to the
e-subditterential of f at x. This is certainly true for all y satisfying

Ily-xll--< t’

where t’<-_ e/2K and K is any upper bound on the norm of the subgradient (see [6]).
In our approach we consider "far from x" all points previously obtained in the descent
procedure. Whenever F , as is the case either at the beginning of the algorithm or
after a reset (see Step and Step 2 below), the search direction is obtained by letting

d*= -Nr (conv (rc)).

Moreover, in this case, v* is set to the value -lid*l[ 2.

Main step. The positive parameters t’, r T], m l, m2, 0 < m2 < m < 1 are given.
STEP 1. Define the current parametric quadratic programming (QP(p)) and solve

for p=0.
Case (a) F(0) 0 and r* 0: Stop (Optimality).
Case (b) F(0)=0 and r* 0: Exit from main step (Reset F).
Case (c) F(0)> 0: Go to Step 2 (Finding a search direction).
STEP 2. Select a positive p and solve (QP(p)).
Case (a) Solution unbounded: Exit from main step (Reset F).
Case (b) Solve the nonlinear equation F(p) 0to obtain p* and the corresponding

optimal pair (/x*, 7r*); set

d* G/x* + G’r*
/ 7"3T

If IId*ll > rmax, then scale d* by putting d*= rma (d*/lld*l[); set

v* 1/2/3 T0r* IId * 2 Orr*.

If Iv*l < then exit from main step (Reset F) else go to Step 3.
SrEP 3. Perform a line search along d* finding > 0 and g/ Of(x + td*) such that

(9) g+rd*>-_mlv*

and either

(10) Case (a) f(x + td*)-f(x) <= m2tv*
or

(11) Case (b) d* t’.

In Case (a) update the estimate of the minimum putting x+ x + td*, set F: F: [_J Fc
and calculate the new vectors/3 and O. Moreover set Fc {g/} and iterate the main
step. In Case (b) set Fc Fc U {g+} and return to Step 1.

Before stating the convergence properties of the algorithm, we briefly comment
on the various steps.

We note first that, whenever Case (a) at Step 1 occurs, 06 conv (Fc); hence the
calculations are stopped because the current x is e-optimal.
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Case (b) at Step 1 indicates that no feasible descent direction exists, i.e., that
possibly the local model (represented by Fc) and the global one (represented by Fu)
are incongruent. Thus we cancel the information provided by the points xi, e F, and
exit from the main step. Possible satisfaction of the e-optimality condition at the
current point will be detected at the restart.

Coming to Step 2 we note that, according to Proposition 2, occurrence of Case
(a) implies that Fv does not provide useful information in order to determine a search
direction and that, on the other hand, the e-optimality condition 0 e conv (Fc) is not
satisfied. Hence we reset F by letting F . The scaling of d* is to prevent the search
direction from becoming arbitrarily large in norm: it has the same effect of introducing
a safeguarding ball constraint in problem (P). On the other hand, the reset based on
the value of Iv*l is aimed to avoid shrinking phenomena of the feasible region of (P)
that may occur even at points far from the minimum.

As for the line search (Step 3), the algorithm does not differ significantly from
the usual line searches procedures in bundle methods [26]. Here we remark that success
or failure of the line search (Case (a) and Case (b), respectively), apart from the actual
modification of the current estimate of the minimum, results in different strategies for
updating the bundle of information. In particular in Case (a), since a "serious step"
is performed, all the information related to x is kept and the set F is updated, whereas,
in Case (b) (null step), the e-subdifferential at x is enriched by the gradient g+.

The convergence of the algorithm is based on the following two propositions.
PROPOSITION 4. If at any point x the algorithm generates a sequence {d*} of

nondescent directions, then the corresponding sequence {v*} converges to zero.

Proof Suppose that a sequence of search directions has been generated and no
significant descent steps have been obtained along any of them (Case (b) of the line
search). Since at most only one reset may occur, it is sufficient to consider only the
sequences {v*}, {d*} generated after the reset. As a consequence of (9) and being
m < 1, the sequence {v*} is monotonically increasing. Moreover it is bounded from
above by zero and hence it is convergent, say to v’. To prove that v’= 0, we note first
that {]]d*]]} is bounded. Thus consider two convergent subsequences {d*}, {v*}, h H
and let s be the successor of h in the subsequences. Assuming that g+ is the subgradient
evaluated along d*, the following hold:

+ g+ *g rd* >= mv* rd <= v.,
hence

g+’(d d* <-_ v* m v*
Passing to the limit, we have (1-ml)v’->0 and, since v’-<0, we conclude
that v’= 0,

Proposition 4 ensures that the procedure may not remain blocked for infinitely
many iterations at a point not satisfying the e-optimality criterion. On the other hand,
the following proposition guarantees that after a finite number of successful line
searches the e-optimality condition is satisfied if the objective function is bounded
from below.

PROPOSITION 5. If the function f is bounded from below and has finite minimum,
for any choice of the starting point Xo the algorithm terminates in a finite number ofsteps
at a point satisfying the e-optimality criterion.

Proof Assume that the algorithm generates an infinite subsequence {d*}, k e K
of directions corresponding to successful line searches. Thus we may write

f(Xk + tkd* f(Xk) <- m2tkV* kK
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with

Since f is bounded from below, we have that {tkv*}, k K must converge to zero,
which contradicts Iv*] > r/and tk > t’/rm,x. Hence after a finite number of descent steps
the algorithm cannot generate further descent directions and, as a consequence of
Proposition 4, the current point satisfies the e-optimality condition.

5. Numerical experiments. We report briefly on some numerical experiments per-
formed coding our algorithm in FORTRAN 77 (double precision) on an IBM PC.

Before discussing the results we wish to emphasize that the algorithm previously
described may in fact be considered as a model algorithm, for a number of decisions
may be made differently at various steps, giving rise possibly to quite distinct
implementations of the basic idea. In particular, the proximity threshold t’ has to be
properly decided; it is necessary to specify the resetting strategy (partial resetting could
be taken into consideration as well), to define appropriate maximum sizes for both Fc
and FF, to set the tolerance parameters for F(0) =0 and F(p)=0 etc.

The equation F(p)=0 has been solved via Newton’s method and the quadratic
programming problem solved by the Harwell Subroutine Library code VE02AD.

The line search has been implemented by adopting a slightly modified version of
Lemarechal’s subroutine MLIS4.

We have considered the following standard test functions; their complete
definitions may be found in the quoted references.

1. MAXQUAD [15].

f(x) max {xrAix b x}
i_<__5

Tn=10, f(x*)=-0.841408, Xo =(1,1,’’’,1), f(xo)=5337.

2. SHOR [253.

f(x)= max {b, (x.i-a,j)2}.1i10 j=l

r (0, 0, 0, 0, 1) f(xo) 80.n=5, f(x*)=22.60016, Xo

3. ROSEN-SUZUKI [2].

f(x) max {f/(x)}, f(x) quadratic
1i4

r (0,0,0,0) f(xo)=O.n=4, f(x*)=-44, Xo

4. CHARALAMBOUS-CONN [2].

f(x) max {x + x42, (2- x,) + (2- x2) 2, 2g-xl+x2}
Tn=2, f(x*)=l.95222, Xo=(1.0,-0.1), f(xo)=5.41.

5. CHARALAMBOUS-CONN [2].
4 (2-Xl) Xlq-X2}f(x) max {x, + x2, + (2- x2) 2, 2e-

r (2,2), f(xo)-20.n=2, f(x*)=2.0, Xo
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6. DEMYANOV-MALOZEMOV [3].
f(x) max {5x, + x2, -5Xl + x2, x + x2 + 4x2}

Tn=2, f(x*)=-3, Xo =(1,1), f(xo)=6.
7. MAXQ [22].

2f(x)= max xi
li20

T (1 2,... 10,-11 -12,... -20) f(xo)=400n=20, f(x*)=0, Xo
8. EQUILIBRIUM [15]. It is a set of three problems (n 5, 8, 10) of the form"

f(x)= maxf/(x) subject to Y xi=l xi >-0, i=l,...,n
l<=i<:n i=1

T/(x*) 0, Xo -(l/n, l/n,..., l/n)
n 5, f(xo) 20.22; n 8, f(xo) 9.78; n 10, f(xo) 26.97.

The above test problems are widely adopted in the literature and numerical results
may be found, for example, in [2], [4], [9], [10], [11], [13], [22], [23], [25], [27].

In our experiments we have noted some degree of insensitivity to the choice of
the tolerance parameter in the solution of F(p)=0, (which has been set to 10-8),
whereas the tolerance parameter on the condition F(0)=0 seems to have a stronger
impact on the performance of the algorithm; in fact it not only dictates the accuracy
of the solution but also influences the frequency of the resets (Cases (a) and (b) at
Step of the algorithm). We have adopted values ranging between 10-4 and 10-6.

Since the test problems are all of finite minimax type, we have set the maximum
size of the bundle Fc to the number of functions to be maximized. We have noted
that a too large size of F: increases the computational overhead with no apparent
improvement in the overall performance (in general very few ofthe quadratic constraints
are active at the solution of the auxiliary problem). Thus we have set the maximum
size of FF equal to that of Fc.

Our results are summarized in Table 1 where we report, for each test problem,
the total number of iterations (both descent and nondescent ones), the number of
function and gradient evaluations, and the function value at the stop.

On the limited number of problems tackled, the results seem comparable with
those available in the literature. They demonstrate that the use of nonuniform ball
constraints in the auxiliary problem is viable. On the other hand, substantial improve-
ment in the performance would be expected by devising more sophisticated answers

TABLE

Test
problem Iterations fig eval. f(xk) f(x*)

40 65 -0.84140 -0.841408
2 29 59 22.60016 22.600162
3 24 53 -43.99999 -44
4 11 21 1.95222 1.952224
5 8 19 2.00000 2
6 20 41 -3.00000 -3
7 86 135 0.00000 0
8 n 5) 23 79 0.00001 0
8 n 8) 36 106 0.00006 0
8 (n 10) 38 120 0.00040 0
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tO a number of open questions (e.g., more judicious management of the exchange of
information between the bundles Fc and F).

6. Conehsions. We have described a model algorithm for minimizing a convex
function based on the construction of suitable quadratic constraints. It may be inter-
preted as a bundle method embedding an automatic technique for bounding the norm
of the stepsize.

The numerical experience on some standard test problems, which shows feasibility
of the basic ideas underlying the approach, suggests that further research efforts should
be made in order to make the proposal more competitive.

Aeknowlelgment. We are indebted to K. Kiwiel for suggesting some corrections
to a preliminary version of the paper.
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AN INVERSE CONVOLUTION METHOD FOR REGULAR PARABOLIC
EQUATIONS*

D. S. GILLIAMt, B. A. MAIR$, AND C. F. MARTIN

Abstract. In this paper, the problem of determining an unknown boundary control of a parabolic
distributed parameter system, evolving over finite or infinite time, from incomplete, approximate interior
temperature measurements is investigated.

First, an exact solution is obtained for square integrable boundary controls associated with a general
class of parabolic equations on a finite spatial interval under the assumption that the interior temperature
is known for all times.

Then, it is shown that this exact solution can be used to develop a stable algorithm for the numerical
solution of this problem, without the introduction of standard regularization techniques. This algorithm
assumes only knowledge of a finite, discrete set of approximate temperature readings.

One advantage of this inversion process is the availability of a priori error bounds based on the
measurement errors and frequency of sampling that are obtained in this paper. Another useful feature is
that it encompasses boundary controls which are arbitrary linear combinations of surface temperature
and flux.

Numerical results are presented.

Key words, eigenvalue, Sturm-Liouville, convolution, Green function, iterate, spline, ill-posed, inverse
heat conduction
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1. Introduction. There has been considerable interest in the control, observation,
and stabilization of parabolic distributed parameter systems via point sensors and
actuators [8], [9]. The present work is concerned with the related question of whether
or not point observation uniquely determines the boundary control for a class of
parabolic boundary value problems. More precisely, the problem can be stated as
follows: From incomplete data obtained by observing the system at a given point in the
spatial domain over a finite time interval, uniquely reconstruct the boundary control for
this time interval within a specified class. Varying forms of this type of problem can be
found in the literature under the general heading of inverse heat conduction problems
[1], [4], [6], [7], [18], [20]. The problem is often recovering the temperature and/or
heat flux at the boundary from data sampled in the interior of the domain. Numerous
applications of physical importance can be cast in this general setting but as is well
known, such problems are ill-posed.

The technique considered here for recovering unknown surface data is based on
an extension of the method developed in [12] for a very special class of problems.
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The present method is to first compute the transfer function between the observation
and control and then use a product representation for the transfer function to obtain
a sequence of approximates to the control using a convolution method. It is shown
that the iterates {fn} converge in the sense of L2(0, ) assuming that the sampled data
derives from an L2 control. The analysis is carried out for parabolic equations in one
spatial dimension for general, regular, self-adjoint Sturm-Liouville spatial operators
acting in the Hilbert state space of functions square integrable in a finite interval a, b];
however, this technique can be extended to higher-dimensional rectangular bodies by
using results in [13].

In addition to investigating theoretical aspects of this inverse heat conduction
problem, this paper shows that the exact solution obtained in Theorem 2.1 can be used
to develop a numerical solution to this problem. An important consideration here is
the behavior of the inversion process in the presence of finite, noisy data. Due to the
ill-posedness of this problem, the iterates obtained by using approximate data, instead
of the true temperature readings, may not converge to the unknown boundary
control.

Despite this unpredictable behavior of these approximations for large iterations,
this paper shows how to obtain a suitable iteration level depending on the noise
measurement error and frequency of measurements. Error bounds are also given for
this iteration level. This problem of choosing an appropriate iteration level is similar
to optimal selection problems that occur in standard regularization techniques (cf. [7],
[17], [183, [20], [22]).

In 2 we describe the basic model and state the main result. Section 3 contains
a discussion of the solution of the direct problem and a useful representation for the
solution of this problem as a convolution integral with kernel K (x, t). In 4 we obtain
an infinite product representation for the Fourier transform of K (x, t) (i.e., the system
transfer function). This is in part carried out by introducing an associated Sturm-
Liouville system whose spectrum corresponds to the transmission zeros of the transfer
function as described in [5]. In what follows, considerable use is made of a knowledge
of the properties of these transmission zeros and their relation to the eigenvalues of
the original system. Also in 4, we prove the main result stated in 2 under the
restriction that the eigenvalues and transmission zeros lie in the left half-plane, and
in 5 we remove these restrictions using a state feedback argument to shift the spectrum
into the left half-plane.

We now briefly describe the inversion scheme developed in 6. Assume that
finitely many temperature readings {vk} are taken at the interior spatial point Xo and
at equispaced time points {tk} in the finite interval [0, T], with error bounded above
by e and timestep size h. Let v be an approximation to the true temperature u at Xo
formed by interpolating the points {(t, v)} (e.g., by a polynomial spline). Now, by
inserting v for u in the exact solution {f,} obtained in Theorem 2.1, we obtain a
sequence of iterates {g,}. As mentioned above, {g,} may be badly behaved for large
n. However, we show that there is an integer N(h, e) such that {guh.)} converges to
the true boundary control in L2[0, T] as h and e 0+. In addition, a method of
obtaining the value of N(h, e) is given, with the corresponding error estimates.

Finally, 7 contains results of numerical experiments that demonstrate the
appropriateness of the choice of N(h, e) and the numerical feasibility of this inversion
process.

2. Notation and statement of the main result. In what follows we consider spatial
and boundary operators L, B1, B2 given by:
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1
(Lv)(x) [(p(x)v’(x))’- q(x)v(x)], a < x < b

,o(x)

(2.1) Bl(v) hlv(a)-kv’(a)

B2(v) h2v(b)+ k2v’(b)
where prime denotes differentiation with respect to x, pc C[a, b]; q, w C[a, b], p
and w are strictly positive on [a, b]; h, k, h2, and k2 are nonnegative constants such
that h + k 0 and h2 + k2 0.

The present paper is concerned with the problem of determining f(t), assuming:

Lu u,, a < x < b, t> 0

B,u(’, t)=f(t),
(2.2) B2u(’, t)= O, > 0

u(x, 0) =0, a<x<b,

and we are able to observe the temperature values

{U(Xo, t): t> 0}

for a fixed Xo (a, b). Furthermore, we assume thatf L2(0, ). In general, additional
conditions on f are necessary to guarantee the existence of a unique solution to the
direct problem of finding u(x, t) given f(t) in (2.2). However, here we are interested
in the inverse problem of determining f assuming that u(x, t) exists and that we know
some of its values. One very important feature of the present method is that it can be
used to recover data which is only square-integrable on finite subintervals. The reason
for this is that the method only requires knowledge of the solution over a time interval
(0, T) to recover the unknown data for the interval (0, T). Therefore, even though the
results below are stated for square-integrable boundary data on (0, c), much more
general data can be considered on any finite subinterval.

Throughout this paper a central role is played by the following Sturm-Liouville
systems:

(2.3) (L-/x,)q,=0, x[xo, b], 0,(Xo)=0, B2On=O,

(2.4) (L-,,)q,=0, x[a, b], Bq,--0, Bzqn-0,

and the function w a, b] x C - C which satisfies

(L-h)w(x,h)=O, a<x<b
(2.5) w(b, , k2, w’(b, h -h2.

For notational convenience, we define

b-a
(2.6) A

b X0

Then from standard estimates for eigenvalues of regular Sturm-Liouville systems
(el. [3]),

lim/xn A2 > 1.(2.7)
hn

Hence, there exist a _-> 1 and integer rn-> 1 such that

(2.8) 1 </x___, _-< a A2, for all n >= m.

Throughout this paper, ce and rn are considered fixed constants.
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In the particular case when the spatial operator L is of the form k(dZ/dx2) for
some constant k, and kl k2 0, then (/Xn/hn) A2 for all n, so we can take a rn 1.

With the notation from (2.1)-(2.8), we can state the main result of the paper.
THEOREM 2.1. Assume u and f satisfy system (2.2), Xo (a, b) is chosen so that

W(Xo, O) O, and the values {U(Xo, t): > 0} are known. Also, assume that the eigenvalues
{/xn}=l, {hn}= of the systems are strictly negative. Then the sequence f given by

hw(a,O)-kw’(a,O)
fo( t) U(Xo, t)

W(Xo, O)

h,
,_l t) /x, 1- exp (tx,(t-s))f,_(s) ds

converges to f in L2(O, co). If in addition f’ L2(0, o), then IIf -f]] <= (C/n)]l/’l[z, for
all n >= m, where C is a constant (independent of n, f ).

In 5, we use the result of Theorem 2.1 combined with state feedback to analyze
the more general case of nonnegative eigenvalues. Also, conditions are given that
ensure that W(Xo, 0) 0 holds for all Xo (a, b). In general, the set of points for which
W(Xo, 0)= 0 is a finite set.

The numerical implementation of this scheme involves the calculation of certain
parameters (such as eigenvalues) of the system, which might not be known exactly.
Even if U(Xo, t) is known exactly, the inherent ill-posedness of the problem may lead
to magnification of any errors due to approximating these parameters. However, it is
shown in [14] that this inversion scheme is stable under the approximation of eigen-
values.

In 6 we show how to compensate for its instability under noisy data by the
choice of an appropriate level of iteration. Furthermore, if w(., 0) is not known in
closed form, the values w(a, 0), w’(a, 0) and W(Xo, 0) may be obtained either by a
series solution of the initial value problem (2.5) or by the numerical solution of the
two-dimensional linear system of ordinary differential equations,

W’=( 0 1/oP) W W(b) (k)q -p(b)h2

where

w(X)x))W(x)=(p(x)w,
3. The tirect problem. We now describe the well-known solution of the direct

problem in terms of a convolution of the control f with the inverse transform of the
system transfer function, denoted by K(x, t). Although many of the following results
appear in a variety of sources, they are briefly repeated here for completeness and
notational convenience.

From the classical theory of ordinary differential equations, we can find a function
v: [a, b] x C - C such that

(L-h)v(x,h)=O, a<x<b
(3.1)

v(a, h) k, v’(a, h) hi
and the functions

v(x,a), w(x,;)

are entire functions of of order _-<5 (cf. [15]).
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Let

w(v, w)(x, v(x, , )w’(x, ;t )- v’(x, )w(x,

be the Wronskian of v, w. Then, by a result of Abel (cf. [15]), p(x)W(v, w)(x,A) is
independent of x e [a, b]; hence, we define

(3.2) W(A)=p(x)W(v, w)(x,A).

Therefore, W is an entire function of A of order _-<1/2.
Now, consider the regular Sturm-Liouville eigenvalue problem in (2.4). This system
has countably many distinct eigenvalues {A, n--1, 2,... } such that

’’A3<A2<A
and lim_ A =-oe with corresponding eigenfunctions {q} which form a complete
orthonormal basis for L[a, b].

In this section (and the succeeding one) we assume that A < 0. In this case, the
Green’s function for the above system,

v(x,)w(y,)
W(A) a<--x<Y

g(x, y; ;)
v(y, )w(x, ;t)

w(t)
y<-x<-b

satisfies the following conditions.

1. The map

(x, y)[a, b]x[a, b] g(x, y,A)

is continuous for each A C.
2. For eachy[a,b],AC,

(L- )g(., y, ;) (. y), g(., y, ;) g( , y, ;) 0.

3. For each x, y, the function,

A -> g(x,y,A)

is analytic on C except for simple poles at each eigenvalue A.
4. The function g is represented by

g(x, y, ;)= E
=o h h

if A CA..
Now, for each x, y [a, b], define,

q,(x)q,(y) e’ t>O
G(x, y; t)= =o

0, t=<0.

Then it is easily seen that for each x, y, the following conditions hold.
5. The function

t-- G(x, y, t) L().
6. The Fourier transform of G(x, y,. is given by

(3.3) (x, y, )- g(x, y; i), .
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7. For each y,

8. For each y,

(L-i)G(., y, )= t(.-y).

L- G(., y, t) 6(.- y)t3(t)

BG(., y, t)= O= B2G(., y, t).
9. G(x, y, t) is the fundamental solution for the parabolic equation

OU
Lu= on[a,b](O,

Ot

(cf. [11], [15]) satisfying

a(x_y)2)(3.4) IG(x, y, t)] Ct-/2 exp > 0

(3.5)

and

OG
xO (x, y, t) Ct-3/2 exp(-a(X

for strictly positive constants C, a.
From [22], the solution of the direct problem defined by the system (2.2) is

given by:

-p(a) Io 0
u(x, t)- -hi -y G(X, y, t-S)ly=f(s) ds, ifhO

u(x, t)
-p(a)

G(x, a, t- s)f(s) ds, if k 0.
k

Hence, if we define, for each x [a, b], > 0,

-p(a) 0
G(x, y, t)]y__,, if hi # 0

h Oy

-p(a)
G(x, a, t), ifk0,

(x, t)=

we have the following result.
THEOREM 3.1. Iff L2(O, ), the function u(x, t)= K(x, .) . f(t), is a solution of

the direct problem defined by (2.2) and this u is the unique solution of (2.2) if f is
continuous on (0, o0) with limit 0 at O.

4. Proof of the main result. In this section, we use the above representation for
the solution of the direct problem to solve the inverse problem of determiningf in (2.2).

Before turning to the proof of the main result, it is necessary to obtain an infinite
product expansion for the Fourier transform of the function t- K(xo, t) for any
Xo (a, b) for which W(Xo, 0)0 in terms of the eigenvalues for two regular Sturm-
Liouville problems.

Throughout this section, Xo denotes a fixed point in (a, b), and A < 0.
THEOREM 4.1. The Fourier transform,

W(Xo, i)
W(i()

K(xo, )=-p(a)

=-W(Xo, i()/W(v, w)(a, i(), .
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Proof First, consider hi 0. For all > 0,

K(xo, t) --p(a) 0
G(xo, y, t) ly=a.

h Oy

By (3.5),

IK(xo, t)l<__Ct-3/2exp(-a(x-a)2) t>0.

Hence, t-- K(xo, t) is in LP(O, x3), for all p>_- 1. For any and a<=y<=a+e <Xo,
where e > 0,

OG -it C 1/4

(Xo, y, t) e <-
13/2 (xo_y),/2 Ct-5/4(xo-y)-’/2

<= Ct-5/a(x0 a e )--1/2
and

Hence,
oG --it--y(XO,y, t)e at

is uniformly convergent for y [a, a + e]. This implies that,

f -P(a)(fK(Xo, t) e -i’ dt- G(xo, y, t) e -iet dt

Now,

K (Xo, t) e -it dt
h

G(xo, y, t) e -it dt

That is,

I(xo, )--p(a) 0 d(Xo, y,
h Oy

-p(a) 0

h Oy
g(xo, y, isC)ly_-,, by (3.3)

-p(a) v’(a, i)w(xo, i)
h, W(i)

W(Xo, i)
=-p(a) by (3.1).

W(i)

-p(a)
g(xo, a, isc), by (3.3)

-p(a) v(a, isC)W(Xo, i()
k W(i()

W(Xo, i)
=-p(a) by (3.1).

W( isc)

-p(a) d(Xo, a, )(Xo,

For k
for all p _-> 1. Hence
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THEOREM 4.2. If W(Xo, O) O, then,

W(Xo, 0) Hn=l (1-(i/tx,))K (Xo, )
hlw(a, O)-k,w’(a, 0) Hn:l (1-(i(/A.))

Proof W(Xo, z)= 0 if and only if

(L- z)w(x, z) O, x [Xo, b]

W(Xo, z)=O

h2w(b, z)+ k2w’(b, z)=0,

which holds if and only if there exists n 1, 2, 3,. such that z =/x,. Notice that

W(v, w)(a, z): -v(a, z)w’(a, z)+ v’(a, z)w(a, z)

=h,w(a,z)-kw’(a,z).

Thus, -W(v, w)(a, z)= 0 if and only if

(L-z)w(x,z)=O, x[a,b]

h,w(a,z)-klw’(a,z)=O

hew(b, z)+ kew’(b, z)=0

which is true if and only if there exists n 1, 2,. such that z
The result follows from Hille [15], since

z W(Xo, z)

and

z W(v, w)(a, z)

are entire functions of order -< 1/2, W(Xo, 0) 0 and A, < 0 for all n. In fact, for all z C,

W(Xo, z)= W(Xo, O) l-I 1-
=1

h w(a, z) k w’(a, z) (h,w(a, O)- kw’(a, 0)) I-I 1
=1

Proof of Theorem 2.1 By Theorems 3.1 and 4.2,

f()=hw(a, O)-kw’(a, O)

__
(1 + ia,)

W(Xo1-0- ,,,,_, (1 + ib.)
a(Xo, ),

where a,=-l/A,>0 and b,=-l//x,>0. By (2.8), a,>b, for all n>-m. Standard
estimates (cf. [3]) give a,=0(n2), hence Y.a a,< and E,=u+ a,<--C/N for all
N-> m where C is a constant.

The result follows from an easy modification of Theorem 3.1 in [12].

5. The general case. In this section, it is shown that it can be assumed that the
eigenvalues of the operator L on the interval [a, b], with respect to the classical
homogeneous radiation boundary conditions (2.1), all lie in the left half-plane. As has
been the case thus far, we assume that the system parameters are all known so that,
in particular, all the eigenvalues are known. If finitely many of these happen to be
nonnegative, we show that by using state feedback, it is possible to reconstruct the
original unknown boundary input f by a modification of our main result.
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If the eigenvalues for the systems (2.3), (2.4) are all strictly negative, define r 0.
If not, choose r > 0 such that for every x, A satisfying (2.3), (2.4), respectively, we have

(5.1)

and

Then the systems:

and A < r/.

Lu ut, a < x < b,

Blu(’, t)=f(t), t>0

B2u( t) O, > 0

u(x, 0) 0, a<x<b

(5.2)
B2U(’, t)=0,

U(x, 0) =0,

are equivalent if U(x, t)= e-"u(x, t).
Also note that if w, satisfies

(L-rI)U= U,, a<x<b,

B,U(.,t)=e-nf(t), t>0

t>0

a<x<b

t>0

t>0

(5.3)
((L-rl)-A)wn(x,A)=O a<x<b

w(b, A k2, w’(b, A -h
then wv(x, ) w(x, rt + ).

Let {}_ and {} be as defined earlier in (2.3), (2.4).
Now, for> and W(Xo, )0, define for t>0 the sequence f2(t) by:

fn(t) h, w(a, n) kl w’(a, n)
U(xo, t)

W(Xo, n)

( (,-n)(n)
exp ((,-n)t)* fn21(t).fn)(t)- nf,2(t)-(.-n)

Then, {f} converges to f(’)= e-’(t) in L2(0, ) and if (f(’) LZ(0, ), then

In order to apply the inversion process it is required that

W(Xo, n) w,(xo, 0) 0.

It is therefore of interest to know exactly what restriction this places on the choice of
Xo. The following remark indicates that under a variety of conditions, there is no
restriction on the choice of Xo, or, at most one point must be omitted. In general, the
set of Xo that must be excluded is a finite set. We note the following special cases.

1. If q in (2.1) is identically zero, then W(Xo, ) 0 for all Xo (a, b).
2. If q is strictly positive, then

W(Xo, ) oox (Xo, )=0
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for at most one Xo [a, b] (cf. [15, p. 437]). Hence, in this case if hi or kl, or h2 or k2
is zero, then W(Xo, q) O, for all x0 (a, b). Also, if q is strictly postive and h and k2
are not zero (or hi and kl are not zero), then W(Xo, r/)=0 for at most one Xo (a, b).

6. The inversion scheme. Here we describe and analyze a technique for the numeri-
cal implementation of the inversion scheme obtained in 4. Numerical evidence of
the success of this method in dealing with both surface temperature and heat flux is
presented in the next section. An interesting and very useful feature of this technique,
which is obtained here, is the availability of an estimate on an appropriate iteration
level which depends on the accuracy of the available temperature readings. The method
described here assumes only the knowledge of a finite, discrete set of approximate
values of the temperature at an interior point Xo.

Throughout this section we assume that the system (2.2) is being observed for a
finite time T, so the boundary control f is defined only on [0, T]. We extend f to all
of by defining it to be zero off [0, T]. Let Xo be fixed in (a, b) such that W(Xo, O) O,
and/xl, A < 0. Denote the true temperature u (Xo, t) by u (t).

Now assume that the temperature is observed at a discrete set of times
{ tl, t2, tM}, where tk kh, h > 0 is fixed, and t4 T.

Let Vk be the approximate temperature reading at time tk, k 1, 2," ", M, with
measurement error given by

(6.1) Ivy-u(t)l e, fork= 1,2,. .,M.

For notational convenience, let to 0, Vo 0.
Due to the accumulation of round-off errors, it is more efficient to replace the

iterative generation of the sequence {fn} of approximations to the boundary control f
by the following formula:

hlw(a,O)-klw’(a,O)
A=

W(Xo, O)

k=l k=l
kn

This result is easily obtained by a partial fraction decomposition of the Fourier
or Laplace transform of fN.

Now the first step in this numerical procedure is to generate an approximation,
v, to the true temperature u, such that

(6.3) V( tk) Vk, k O, 1, 2," ", M.

In the numerical examples presented here, v was chosen to be the cubic spline with
the "not-a-knot" condition (cf. [10]). However, higher degree polynomial splines may
also be used. Since Vk is only approximately equal to U(tk), to analyze the error between
u and v, we introduce an intermediate function o-.

LEMMA 6.1. For each 6, 0< < h, there exists cr () such that:
(a) o-(t,)= vk, for k O, 1,’’’, M.
(b) cr(t)=O for t<-O and cr(t)=u(t) for > T+6/2.

where

(6.2) fN(t) A /zn u(t) + Z Yu,, exp (/x,t) u(t)
n:l An/
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(d) IIllo<c,(e/6+[Ifllz), for all n=l,2,...
(independent of 3, h, e).

Proof Choose oo() such that
(i) 0-< (t) =< 1, for all 1,
(ii) (")(t)=0, for all It[>= 1 and n=0, 1, 2,. .,
(iii) ]]][oo (0)= 1.
For each k= 1, 2,..., M, define,

and

Jk=(tk--6/2, tk + i/2),

g(t)=((t-t)),
MLet tr= k= (Vk U(tk))XIl’k -- U.

for J.

Then, by the disjointness of {Jk" k 1, 2,’’’, M},

f (Vk U( tk))qt( t) + u( t),

’(t)= }u(t), if C-kU=l Jk.

From Theorem 3.1 and [14], we have that,

u=K(Xo,.), f,

where

where C, is a constant

if tJk

I/(Xo, s)l -<Cexp
2 V--

for all s , for some constant C.
Hence the Sobolev embedding theorem implies u z %() and Young’s inequality

gives

It then follows that rz %(R) and
(a) and (b) of Lemma 6.1 are easily verified.

k=l

If Jk, then
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This completes the proof.
Consequently, v is an interpolant of the points (tk, 0-(tk)) on the graph of the cgo

function 0-, hence, depending on the other imposed conditions on v, we may have an
estimate of the form:

(6.4) v 0"[[ -- Cp w(P)lloohP
for some integer p and constant Cp > 0.

Throughout the remainder of this paper, C denotes a constant which is not
necessarily the same at each occurrence, and p is a fixed constant.

THEOREM 6.1. If v satisfies (6.4) then

Proof By choosing n =p and 8 h/2 in Lemma 6.1(d) and using (6.4), we obtain

v o-112 <- C( e + hp 11/]12).
The result follows from the triangle inequality and Lemma 6.1(c).

The strategy for the numerical implementation of Theorem 2.1 is to compute
approximations to f by using the formula (6.2) where v is inserted for the unknown
function u. These approximations will be denoted gN- So,

(6.5) gN(t) A txn v(t) + 2 YN, exp (/x,t) * v(t)
n=l An/ n=l

Since v is "close" to u, gN is "close" to fN for each N, however, due to the
ill-posed nature of the problem, {gN} usually will not converge to f It will now be
shown how to overcome this difficulty by choosing an appropriate level of iteration.

LEMMA 6.2. Let r > O, s > O. If
h =<exp (-(2aA2-1)(’+’)/r)

and

e -<_exp (-(2aA2- 1)(m+l)/s),
then there exist positive integers Nr(h), M, (e), and Mr,, (h, e) such that

r log log 1/h
log (2aA2- 1)

=< N(h)_-<
r log log 1/h
log (2aA2- 1)

and, if e >0,
s log log 1 / e)
log (2aA- 1)

-l<_-Ms(e) <
s log log 1 / e)
log (2aA2- 1)

Nr,s(h, e) min (N(h), Ms(e)),

and, Nr, h, O) N h ), and

.lg,,(,,)_fllz< C (2aA2+ 1)
’-1

2aAz- 1
{hP(log 1/h)r[lf2 + e(log 1/)2}

+ 112.
Proof By using the recurrence relations satisfied by {f} and {g,}, Young’s

inequality, and (2.7), it can be shown that

Ilg,--fn [[2 -< C(aA2q-I
m-’

aA2_ (2a2 --1)n [Iv-ull, for n m,
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(cf. [16]). Hence, by Theorem 6.1,

IIg.-fll= c 2aA2 (2ozA2- 1)"(e + hllfll)+ IlL

Now, by the assumptions on h and e,

r log log (1 / h)
m=< -1

log (2cA2- 1)

and

s log log 1 / e)
m_-< -1.

log (2cA2- 1)

So we can choose Nr(h), M(e) and Nr,,(h, e) as in the statement of the lemma, and
N(h, e)_>- m. The result follows by noting that

(2aA2- 1) u",.(h’) <= min {(log 1/h)r, (log 1/e)’}.

Now, as e, h approach zero, there must exist r, s such that h, e, r, s satisfy the
conditions in Lemma 6.2. In the following, we assume such r, s are fixed and let h, e

tend to zero.
Let H denote the Sobolev space {fe L2: f’e L2} and II.]IH, the norm on H.
THEOREM 6.2. Let h, e and Nr.s(h, e) be as in Lemma 6.2. Then,

lim grv,. (h,) f, in L2.
h,eO+

Furthermore, for all f in any given ball, {f H1". Ilfll.’ D},

IIg,.v,.,.,(h,.)--fll2 O(hP(log 1/h) -f- e(log 1/e) s)

1
+O

log logl/h log log 1/e

1
=O

log logl/h 1)log logl/e

Proof The first assertion follows from Lemma 6.2 and from the first assertion in
Theorem 2.1.

For the second assertion, note that,

1
<

1 1 ( 1 )Nr(h, 8)-- N,.(h-- 0 +
M. (e) log log 1/h log log 1/e

The proof then follows from Lemma 6.2 and Theorem 2.1.
Now, the conditions on on e, h, r, s in Lemma 6.2 only require r and s to be

bounded below. Hence, for given e and h, Nr,,(h, e) may be chosen arbitrarily large.
However, Theorem 6.2 indicates that the error between gN,;.,.(h,) and f may become
unbounded as r, s-> oo. To make an appropriate choice for r, s it seems reasonable to
require that the error be minimized.
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From the proof of Lemma 6.2 and Theorem 6.2, this leads to the problem of
minimizing

H(r) Cm(A)hP(log l/h) + log (2aA- 1)
rloglogl/h

r>_ro=(rn+l)
lg(2aA2- 1)
log logl/h

and

E(s)= Cm(A)e(log 1/e) +
log (2aA2- 1)
sloglogl/e

log (2aZX2-1)
s _-> So= (m + l) where

log log 1 / e

2aA2+ 1) m-1

Cm(A)=A\2aA2_

subject to

subject to

By elementary calculations, the minimum of H occurs either at ro or at rl for
which H’(rl) 0 and ro -<- r,. By using the equation H’(r,) 0 and the inequality r, -> ro,
it can be seen that the minimum of H occurs at a point in the interval

(6.6) [ro, {hPCm(A)(m + 1) log (2aA2- 1) log log l/h}-’].

A similar analysis for E (r) shows that the minimum of E occurs at a point in the
interval

(6.7) [So, {eCm(A)(rn + 1) log (2cA2- 1) log log 1/8}-1].

The determination of the exact location of these minima requires the solution of
a highly nonlinear equation which cannot be solved exactly. However, by using the
bounds in (6.6), (6.7) and the convexity of the functions H and E, it is readily shown
that the Newton-Raphson technique (applied to the location of the zeros of H’ and
E’) enables us to numerically determine the location of these minima to any desired
degree of accuracy.

Using these approximate values of r and s in Lemma 6.2, we obtain an approximate
level of iteration which guarantees the stability ofthe inversion process. In the numerical
results presented later, these iteration levels are referred to as recommended iterates.

This demonstrates the feasibility of the proposed inversion process given only
finite, discrete, noisy temperature readings.

We conclude this section by examining the problem of the computation of the
convolutions appearing in the inversion scheme. To overcome this, it is suggested that
the approximation v be chosen to be a polynomial spline of some degree q. Then the
convolutions can be calculated exactly as follows.

q

v(t)= E Ci3(t-ti) J, fort[ti, ti+,],
j=l

i= 0, 1, 2,..., M-1, where Co are known.

ti+l
exp (/xnt) * v(t)I,=, exp (txn(tk-s))v(s) ds

i=0

k-1 p

2 exp(tx,h(k-i)). CoI,
i=0 j=l
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where

1-exp (-/xnh)
Inc-

h j
I(+1 exp (-/xh)+ In.

Finally, this inversion scheme can be extended to deal with higher-dimensional
rectangular bodies. For example, consider the following system on a two-dimensional
rectangle.

02hi 02hi OU
0<x<a, 0<y<b,

OX Oy Ot’

u(x,y,O)=O, O<--x<=a,

u(x, O, t)= u(x, b, t)=.0,

u(a,y,t)=O, O<=y<-b,

O<=y<=b

O<-x<-_a,

t>=O

u(O, y, t) f(y, t), O <= y <= b, >= O.

t>0

thus determining f by f(y, t) . fm(t) 6m (Y).

and

7. Numerical results. In this section, we present the results of numerical tests of
the inversion scheme described in 6 for surface temperature and flux, boundary
conditions in the cases when the boundary function is the characteristic function of
[0.25, 0.5] and sin (2rt). The system is observed at discrete, equispaced points over
the interval [0, T], T 1 or T- 2. Our results demonstrate the appropriateness of the
choice of the so-called recommended iterates, for an oscillatory boundary control which
lies in the Sobolev space H. The effectiveness of this method is also demonstrated
for the characteristic function boundary control, although our mathematical analysis
does not seem to cover this case.

In all the results presented here, the following values are fixed.

a =0, b vr, Xo 0.1, h2 1, k2--0

d 2

fro(t) tPm(y)f(y, t) dy,

where qa and Gb are Green’s functions for corresponding one-dimensional problems.
In [13], it was shown that for each fixed xo (0, a), the values of U(Xo, y, t) for

y (0, b), > 0, uniquely determine the boundary function f Due to the form of the
kernel appearing in the above integral representation, Theorem 2.1 extends naturally
to a technique for recovering the Fourier coefficients

Then, the following integral representation theorem is well known (cf. [13])"

U(X, y, t)= qa(X, t-s) Gb(y, t, , s)f(, S) d ds,
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As it is not possible to obtain exact solutions to these direct problems for the
finite rod, the data was generated by using a series solution and taking enough terms
to guarantee an accuracy of 10-4 at each sampling point

(Xo, t/,).
Then random noise was added to these approximate values with standard deviation
the magnitude of std. dev. as indicated in each figure below. The quantity error indicated
in each diagram is the L2(0, T) error between the indicated iterate and the true boundary
function.

In all the figures below, the approximation produced by the inversion scheme is
in solid line and the true boundary function appears as a dotted graph.

0.5

0

0.5

ITERATE 11 ERROR 0.03402 STD. DEV. 0.01
1.5

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

TIME
FIG. 1. Sine surface temperature, 11 iterates.

ITERATE 4 ERROR 0.2415 ITERATE 6 ERROR 0.1405
STD.DEV. 0.01 1.5

STD.DEV. 0.01

0"4t// \\ // \ ; 1[ /

0 0.2 0.6 1.4 1.8 2 0 0.2 0.6 1.4 1.8 2

TIME TIME

FIG. 2. Sine heat flux with time step size 0.01.

ITERATE 15 ERROR 0.09697
STD.DEV. 0

1.2

0.8
0.6

0.4
0.2

[" 0
-0.2

0 0.1 0.3 0.5 0.7 0.9
TIME

0.8

0.4

-[" 0
-0.2

ITERATE 13 ERROR 0.09793
STD.DEV. 0.01.1.2

0 0.1 0.3 0.5 0.7 0.9
TIME

FIG. 3. Discontinuous surface temperature.
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ITERATE 15 ERROR 0.09598
STD.DEV. 0

1.2

0.8

0.6!
0.4

0.2’

ITERATE 5 ERROR 0.1775
STD.DEV. 0.011.2

0.8

0.6
0.4
0.2
0

-0.2
0 0.1 0.3 0.5 0.7 0.9 0 0.1 0.3 0.5 0.7 0.9

TIME TIME

FIG. 4. Discontinuous surface heat flux.

Example 7.1. In this case, hi 1, kl=0, f(t)=sin (27rt) on [0,2] and time step
size, h--0.04. The inversion scheme produced Table 1 and Fig. 1.

We now present a result for the recovery of flux (Table 2, Fig. 2).
Example 7.2. Here, hi 0, kl 1,f(t) as in Example 7.1 and time step size, h 0.01.
The next two examples (see Figs. 3, 4) present data on the recovery of f in the

case when

1, z:t=f(t)=
0, otherwise.

Although the analysis in the paper does not provide explicit error bounds for this case,
the numerical results are surprisingly good. In both examples the time step size is 0.01.

These numerical results compare favorably with those in [7], [18]. In this regard,
it is important to note that the problem was analyzed in [7], [18], for a semi-infinite
rod, whereas our results are valid for a rod of finite length.

TABLE 1. Data for Fig. 1.

Recommended iterate 11
Predicted error 0.2000

Iterate 9 11 15 17 19 21

Error 0.0406 0.0340 0.0288 0.0295 0.0321 0.0365

TABLE 2. Data for Fig. 2.

Recommended iterate 4
Predicted error 1.0900

Error 0.3482 0.2415 0.1405 0.1140 0.1420 0.2120

Iterate 3 4 6 8 10 12
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INITIAL BOUNDARY VALUE PROBLEMS AND OPTIMAL CONTROL
FOR NONAUTONOMOUS PARABOLIC SYSTEMS*

P. ACQUISTAPACE, F. FLANDOLI,$ AND B. TERRENI

Abstract. A large class of linear nonautonomous parabolic systems in bounded domains is considered,
with control acting on the boundary through Dirichlet or Neumann conditions, from the point of view of
semigroup theory. The results from Rend. Sem. Mat. Univ. Padova, 78 (1987), pp. 47-107], Onfundamental
solutions for abstract parabolic equations, Lecture Notes in Math., Vol. 1223, Springer-Verlag, Berlin,
Heidelberg, 1986, pp. 1-11] on abstract homogeneous parabolic Cauchy problems allow operators with

varying domains and Halder continuous coefficients to be handled. A representation formula for solutions
corresponding to square integrable control functions is derived and used to solve a linear-quadratic regulator
problem over finite time horizon, by a direct study of the associated integral Riccati equation.

Key words, optimal control, parabolic systems, boundary control, Riccati equation
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1. Introduction. During the last two decades relevant progress has been made in
the theory of boundary control of partial differential equations. In the case of equations
of parabolic type, both variational and semigroup methods have been successfully
applied (see, for instance, [L2], [DS], [S1], [$2], [Fa], [B1], [La], [LT1], [LT2], [F1],
[F2]). Most of these (and other) papers deal with autonomous parabolic equations.
Only [L2] and [DS] present results on the boundary control in the nonautonomous
case, by variational techniques.

This paper concerns nonautonomous systems of parabolic type, from the point
of view of semigroup theory. Our first purpose is to develop a suitable approach to
nonhomogeneous initial boundary value problems based on the theory of evolution
operators, in view of its application to boundary control problems.

Section 2 is devoted to this basic question. As in the autonomous case we are able
to deal with control functions which are only square integrable in time and space. In
particular our main goal is to derive a representation formula for solutions, similar to
the classical one (see [B2], [La], [LT1]), which will prove to be very useful in the
treatment of control problems.

Section 2 is organized as follows. Section 2.1 contains a detailed analysis of two
concrete systems of equations of parabolic type with nonhomogeneous Dirichlet or
Neumann boundary conditions, which motivate the abstract model to be introduced
afterwards. In 2.2 and 2.3 we study an abstract homogeneous nonautonomous
parabolic Cauchy problem by the methods of [AT1], [AT2], which allow us to handle
operators with variable domains and whose coefficients are just Halder continuous in
time. In 2.4, by using the properties of the Dirichlet and Neumann maps, we obtain
an abstract formulation of the concrete nonhomogeneous problems analyzed in 2.1.
Finally, in 2.5 we derive the representation formula for solutions of the abstract
version of nonhomogeneous initial boundary value problems; this formula is meaning-
ful for nonregular boundary data and will be considered as the state equation for the
control problems of 3.
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The second part of the paper, namely 3, deals with the linear-quadratic regulator
(L-Q-R) problem, over finite time horizon, for an abstract evolution equation which
includes the concrete models discussed in 2. Here we follow the approach of IF2],
based on a direct solution of the Riccati equation arising in the L-Q-R problem.
However our assumptions on the final state cost operator PT (see (3.13) below) are
weaker than those imposed in [F2], and suggested by the more general results of[DI1].
We are able to solve directly the basic integral Riccati equation under general assump-
tions, much weaker and more natural for the applications than those imposed in [DS],
where the Riccati equation was deduced from the optimality system (see Remark
2.3(iii) below). It turns out that our approach in the more general setting of non-
autonomous problems still allows us to employ standard techniques of control theory.
This fact lets us hope that many other results on boundary control problems, such as,
e.g., infinite horizon optimal control [F2], [LT3], [DI2], [D], and the control of
stochastic systems [F2], [I], can also be extended to the nonautonomous framework.

We conclude this section by listing some notation.
If X is a Banach space and a < b we set:
LP(a, b; X):= space of strongly measurable functions f’]a, b[-X such

that llf(t)llPxdt<oo (1-<p<oo; obvious modifications for p=oo);
ck([a, b], X) := space of functions f:[a,b]-X which are k times con-
tinuously ditterentiable (k );

ck+([a, b], X):- space of functionsf ck([a, b], X) such thatfk) is O-H/51der

continuous (k , 0 ]0, 1[).
If X, Y are Banach spaces, we set"

(X, Y):= space of bounded linear operators T" X- Y;
(x):=(x,x);
C([a, b], ct(X, Y)):= space of operator-valued functions T(.)’[a, b]-(X, Y)

which are strongly continuous, i.e., T(. )x 6 C([a, b], Y) for each x X.
If H is a Hilbert space, we set:

Z(H) := space of self-adjoint operators T 6 -W(H);
Z+(H) := space of self-adjoint operators T (H) which are positive, i.e.,

(Tx]x)u=O for each xH.
If H is a Hilbert space and T is a linear operator in H, we set"

DT := domain of T;
or(T) := spectrum of T;
p(T) := resolvent set of T;
T* := adjoint operator of T (whenever it exists).

Finally, if m N* and f is a bounded open set of ’, we shall use the following spaces
of Cm-valued functions"

[Ck(fi)]m,[ck+(fi)]",[LP(f)]m(ktN, O]0, l[,p [1, oo]),
whose definitions are clear, and the usual Sobolev spaces

w,()]% w,()](p [, oo[, o),
W’’P(f)]m(p [1, oo[, O ]l/p, oo[).

2. Nonautonomous parabolic systems.
2.1. Two classical examples. We consider in this section two particular types of

parabolic initial boundary value problems, namely, two parabolic systems with Dirichlet
and Neumann conditions, respectively. We think of them as prototypes of the class
of problems which are covered by the general theory of this section.

Let be a bounded open set of , with boundary of class C. Fix T> 0 and
let {A(t,x)},,.-,..., a set of N N complex-valued matrices defined in [0,
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fulfilling the following hypotheses"

(2.1) (regularity)

Aj C+’/2([0, T], [C((I)]N2) -1C([0, T], [CI(I)]N2),
(2.2) (strong ellipticity)

Re (Aq(t,x). Tjl7.)c
,sj=l

Under the above assumptions we consider the following problems:

(,> 0).

D,y(t,x)- D[As)(t,x). D)y(t,x)]+ y(t,x)=O in[0, T]x(l,
sj=

(2.3) y(t, x) u(t, x) in [0, T] x

y(O, x) yo(x) in

D,y(t, x)
sj=

(2.4) Aq(t,x)" Dy(t,x),(x)=u(t,x) in[0, T]OYI,
sj=l

y(O, x)= yo(x) in

where Yo, u are prescribed data on the parabolic boundary of [0, T] x fl. Here ,(x)
is the unit outward normal vector at x 0fl. It is well known that if u, Yo are sufficiently
smooth and fulfill suitable compatibility conditions at 0fl at 0, then problems (2.3),
(2.4) possess a unique solution; in addition we want to prove a representation formula
for such solutions which will allow us to generalize the concept of solution to the case
of less regular data u, Yo.

Concerning existence and uniqueness, we will invoke the results of Theorem 4.7
of [AT3]; to this purpose we just need that problems (2.3), (2.4) obey the requirements
given there, namely, we need that the operator {Y.q=l D,(A,j(t, x) D)}, with boundary
conditions of Dirichlet or of conormal derivative type, satisfies the ellipticity assump-
tions of [ADN] and [GG]. This is in fact true, as pointed out in Remark 2.3(i) below.
Hence we can state the following propositions.

PROPOSITION 2.1. Under assumptions (2.1), (2.2), let yoG[W2’2(-)] N, and
let u be the trace on [0, T]x0fl of a function UC([O,T],[WI’2(fl)]N)KI
C+I/Z([0, T], [LZ(fl)]N); assume moreover that

(2.5) Asj(O x) DjYo(X)l,(x u(O, X) a.e. on Ofl.
sj=l

Then problem (2.4) has a unique solution y such that

(2.6) y C1([0, T], [L2(I))] N) VI C([0, T], wz’2(fl)]N).
PROPOSiTiON 2.2. Under assumptions (2.1), (2.2) let yo[W’2(fl)] N, and

let u be the trace on [0, T]x0fl of a function UC([O,T],[w’Z(fl)]N)VI
C+1([0, T], [LZ(fl)]N); assume moreover that

(2.7) yo(x) u(O, x) a.e. on

Then problem (2.3) has a unique solution y such that (2.6) holds.
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Proof The proofs of Propositions 2.1, 2.2 follow by Theorem 4.7 of [AT3] with
minor modifications (since the operators considered there are not in divergence
form).

Remark 2.3. (i) If we confine ourselves to problem (2.3), we may replace
hypothesis (2.2) by the weaker one

(2.8) Re (A.,;(t,x).i. rlll)c>=,l(ll)l 2 vE", vlEc, V(t,x)E[O,T]x;
sj=l

then the operator {.;= D(A.;(t, x) Di)}, with Dirichlet boundary conditions, still
satisfies the ellipticity assumptions of [ADN] and [GG], as pointed out in [Am,
pp. 659-660]. On the other hand, we are not able to prove the same assertion in the
case of problem (2.4); that is, in order that the above operator, endowed with boundary
conditions of conormal derivative type, satisfies the ellipticity assumptions of [ADN]
and [GG], we need the stronger hypothesis (2.2) (this can be seen by adapting the
argument of [ADN, p. 44]).

(ii) Adding lower order terms in problem (2.3), or (2.4), does not alter the
situation: indeed, the change of unknown v := e’ty (for a suitable w 6) leads to a
new problem where the new differential operators still enjoy the properties stated in
Proposition 2.4 below; in particular, the abstract hypothesis (2.29) is preserved.

(iii) In (2.1) it is assumed that the coefficients of the differential operators satisfy
suitable H61der conditions with respect to time. Such a requirement is necessary in
order to fulfill the abstract assumption (2.29)(ii) below, which in turn allows us to
construct the evolution operator for the abstract problem (2.28), with its regularity
properties (3.4). If the coefficients are just bounded and measurable in t, then we can
get some results for the concrete problems (2.3), (2.4) (see [LM1]), i.e., for the state
equation; however the subsequent step, namely the study of the Riccati equation,
seems very difficult and needs stronger hypotheses (see [DS]).

Existence and uniqueness of the solution of problems (2.3) and (2.4) is now
guaranteed, at least for smooth data Yo, u. Our next goal is to establish a representation
formula for the solution, which should possess the following features:

(i) It reduces to known representation formulas whenever they hold: see, e.g.,
[Te] for the autonomous versions of (2.3)-(2.4), [AT1] and [AT2] in the case
of homogeneous boundary conditions, [B2] and [La] within the context of
control theory;

(ii) It yields "weak" solutions, in some sense, when the data are less smooth;
(iii) It is handy from the point of view of control theory.

In order to construct such a formula, we need to reformulate problems (2.3), (2.4) in
an abstract form, and to establish some properties of the evolution operators of the
new problem. This will be the object of the next section.

2.2. The abstract formulation of initial boundary value problems. Consider again
the situation of 2.1, under assumptions (2.1), (2.2). If we define, for each [0, T],
the differential operators

(2.9)
sj=l

(2.10) 3oV :=

(2.11) l(t,x,D):= A,v(t,x)u,(x)’D.iv xO,
s,j=
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then we can introduce the following linear operators:

(2.12)
Dao,): {v e W2’(a)]u" 30v 0},= W2’(O) W’2()] u,
Ao( t)v :- s( t, ", D)v,

(2.13)
DAI(t):-- {V W2’2(-)]N: l(t, ", D)v 0},

Al(t)v:=(t,’,D)v,

where [0, T].
The main properties of the operators A0(t), Al(t) are listed in the following

proposition.
PROPOSITION 2.4. Under assumptions (2.1), (2.2) we have for r=0, 1:
(i) For each [0, T], At(t) is the infinitesimal generator ofan analytic semigroup

in
(ii) for each [0, T], DA,.(,) is dense in [L2(12)]N;
(iii) the family {Ar(t)},[o,T] satisfies Hypothesis II of [AT1], i.e., there exists

Oo r/2, r such that

IIAr( t)[A Ar( t)]-’[Ar( t) -1-

(2 14) It- l +’/_--<c Vt, re[O, T],

provided A belongs to the sector Soo := {z C: larg z < Oo}.
Proof (i) It is well known (see [Am], [GG]) that the resolvent set of the operators

At(t) contains the sector

Soo + to {z e C: larg (z- to)[ < 0o}

for suitable Oo ]r/2, r] and to e[; we want to show here that we can choose to =0
and that

C
(2.15) [l[A-Ar(t)]-ll.(,())l+lA VA Soo.

Suppose first r=0. Fix te[0, T] and let A e C be such that either ReA>0 or

(M/,)IRe Al-<_1/21Im AI. For ve [W2’(12) 71W’2(12)] N set

f(x) := Av(x) sd( t, x, D)v, x e 12.

Multiplying by v (with respect to the inner product of [L2(12)] N) and integrating by
parts, we get

(2.16)

(I+A) Ia Ivl: dx+ I (Aj(t,x)" D.v(x)lD.v(x))c dx
sj=l

I (f(x) lg(x))c’ dx.

By taking the real part, we obtain by (2.2)

(2.17)
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on the other hand, by taking the imaginary part in (2.16),

where

(2.18) M:= sup IA.j(t, x)[.
sj=l {0, T]O

Hence by (2.17)

IXml I1dx- 1/ II/11c,2 IIllc2</--IRel IDol=dx.

Consequently, if (M/u)lRe A[]Im A[ we deduce that

(2.19) limA,

whereas if (M/u) Re A >]Im A (2.17) yields

(2.20) (1 + Re A)

Combining (2.19) and (2.20) we get the estimate

-I+]A]

where

Oo=r-arctg, c=2 1+ x/l+(,/2M)2+l;
//

since we already know that p(Ao(t)) is not empty, the desired estimate (2.15) for r 0
follows from the above inequality by standard arguments.

The case r 1 is completely analogous and we find the same constants Oo and c.
The proof of part (ii) is obvious in both cases r 0, 1.
(iii) Consider the case r=0. Fix fE[L2())] N, and set v:=[Ao(’)]-f, w:=

[A-Ao(t)]-[A-Ao(-)]v; then we must estimate

v- w ao(t)[A -ao(t)]-l[ao(t)--ao(’)-]f

The function v-w solves the problem

A(v-w)-M(t,.,D)(v-w)= D([a,(t,.)-Aq(’,.)]. D.v) in,
,sj=l

v w w,() wU()].
Multiplying by v-w (in [LZ(-)]N), an integration by parts yields

(l+A)f,v-w,dx+{ (A(t,x)" D(v-w)]D.(v-w))cN dx
sj--1

[ ([A(, x-A(,, x)]. )IZ(,- w)) x,
sj=l
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which implies

(2.21)

(2.22)

If we set

(2.23) N:= sup sup
IAsj(t’x)-Asj(z’x)l

sj= o<_-,<,<_-r a [t-’[+/

then by (2.22) and (2.21) we easily get

limA[ fa [v-w[ dx<=NZ[+(M+) p--2] [/_,r[2+ fa [Dv[2 dx

/- M/ IReAI Iv-wl=dx,

Hence if (2/ u)(M +1/2)IRe Al_-<1/2llm

(2.24) [Im 11a [v- w[2 dx <- N2[1 +
whereas if (2/,)(M +1/2) Re

(2.25) Re h Iv-w[2 dx <-
2p

Recalling that, by (2.17),

we conclude that

2M+l
2

IDoldx- Ifldx,

[h[ Iv-w] dx<-_ 1 + /1 +[v/(4M+2)]]t-’[+ ]fl 2 dx,

and (2.14) follows for r=0, with

4M+2 ( 2M?1)’/2[ (,)2] 1/4

Oo r- arctg, c N,-1/2 + 1 +
v 4M+2

Concerning the case r- 1, we proceed similarly and we find that v- w now solves the
problem

A(v-w)-s4(t,’,D)(v-w)= D([Asj(t,’)-Asj(z,’)]" Djv) inl2,
sj=

Asj(t,’)vs" Dj(v-w)= [Asj(%’)-Asj(t,’)]u" Djv on
sj= sj=
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arguing as above, and taking into account the boundary conditions, we obtain the
result with the same constants Oo and c. The proof of Proposition 2.4 is complete.

Remark 2.5. The estimates (2.15) and (2.14) do not need that Asj belongs to
C([0, T], [C’(fi)]N).

Consider now the operators Ar(t)*, i.e., the adjoint operators of Ar(t)(t
[0, T], r 0, 1). It is easy to verify that they are defined by

DAo(,>. := W"2(f) fq W’2(O)]u,
(2.26)

Ao(t)*y := 4(t,., D)y Dj[tAsj(t," )" Dy] y,
sj=

(2.27)
DA,(,). := {y[ WZ’2(fl)] u" 31(t, ", D)y= tAj(t,’)v’Djy= 0},

sj=

Al(t)*y := g( t, ., D)y,
where ’Aj is the matrix whose elements are the conjugates of the elements of the
transposed tAsj of Aj. Consequently, it is clear that the following result holds.

PROPOSiTiON 2.6. All statements of Proposition 2.4 are true if Ar(t) is replaced by
At(t)*.

The results of Propositions 2.4 and 2.6 allow us to apply to the operators
{A(t)} tto,r, {A(t)*},to, r the abstract theory of [AT1 ], [AT2], and [Ac] concerning
linear nonautonomous parabolic Cauchy problems of the following kind:

u’( t) A( t)u( t) =f(t),
(2.28)

u(0) =x,

t[0, T],

wheref C([0, T], E), x E (E being a general Banach space) and {A(t)} tG[0, T] fulfills
(2.15) and (2.14). In the next section we will recall some facts concerning a problem
such as (2.28).

2.3. The study of the abstract problem. We now consider problem (2.28), but we
restrict our considerations to the case of a Hilbert space H, which is enough for our
successive applications. We assume that:

(2.29) {A( t)} t[O,T] is a family of closed linear operators in H, such that:

M
(i) [A A( t)]-’ e(,

< VZ Soo, Vt[0, T],

(ii) IIA( t)[A A( t)]-[A( t)-’- A(s)-] .)<- B
[t--s[ a+/2

VhSoo, Vt, s6[0, T],

where Oo ]zr/2, zr] and a, M, B> 0.

In particular, A(t) generates an analytic semigroup eat which can be represented as
a Dunford integral:

(2.30) eIA(,) (27ri) -a f eCX[A A(t)]- dh,
F
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F being a smooth path contained in So and joining +c e-i to +c e i, 0 ]7r/2, 0o[.
Moreover, the fractional powers [-A(t)] r are well defined and we have the representa-
tions

(2.31) [-a(t)]-=(ZTri)-1f (-A )-[A A( t)] -1 dA’, y>0,
I"

(2.32) [-A(t)]-v eA=(27ri)-I f (--A) -v e[A-A(t)]-1 dA
F’

where F’ Soo joins +co e-i to /oo ei leaving 0 on its right-hand side. We also recall
the well-known continuous inclusions

DA( t)( T -+- 8, o3) c D[_A(t)]3/c DA(t)(% o3)
(2.33)

/7 e ]0, 1[, ’e e ]0, 1 7[, /t e [0, T];

here Da(,)(y, p), 1-<p=<, is the real interpolation space (Da(t), H)I-/, introduced
in [LP], which can be characterized in the following way"

(2.34) DA(t)(T, p)= {x H" :- -v I[e#a(t)- 1]xll. t(0, ; dU)}.

We need the following lemma.
LEMMA 2.7. Under assumption (2.29) we have for each t, s [0, T]"

(i) II[-m(t)]-
c(O. )lt-sl +/2 ifO>-
c(O.c.r) t-s[+/ Vr]0.20[ ifO]0.1/2];

(ii) II[-A(t)] eea(’)ll(..) <- c(O)-
(iii) II[-A(t)] eea(’)-[-A(s)] eeA(ll(.

--<C(O. )It--sI+/=U-/

Proof (i) An easy check shows that

[A A(t)] -1 -[A A(s)]- -A(t)[h A( t)]-[A( t)-- A(s)-]A(s)[h A(s)]-l;
hence by (2.31) and (2.29) we get

[[[_a(t)]_o_[_a(s)]_oll(H<=cf il_o[ M 1r, I/IAI IAi7 _1 IdAI

Vo- [0, 1],

which easily leads to the result.
Parts (ii) and (iii) follow similarly by (2.32) and (2.29).
We are ready to state the main result concerning problem (2.28).
PROPOSITION 2.8. Under assumption (2.29), the evolution operator U(t,s)6

(H, DA,), associated to problem (2.28), exists and possesses the following properties"
(i) (t, s) - U(t, s) 6 C(A, (H)) 0 Cs(A, (H)), where A := {(t, s)

t}, and

U(t,t)=l, U(t,r) U(’,s)=U(t,s) fr[s,t];

(ii) (t, s)- A(t)U(t, s) C(A, (H)) and

o
A(t)U(t,s)=- U(t,s), IlA(t)g(t.s)ll.)<-M(t-s)- fO<=s<=t<=T;
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(iii) If s[O, t[ and x6 DA(s) then O/OsU(t,s)x=-U(t,s)A(s)x in the following
sense"

h-l[U(t,s+h)-U(t,s)]x->-U(t,s)A(s)x inH ash-->O+,

h-[U(t,s+h)-U(t,s)]A(s+h)-Ia(s)x->-U(t,s)A(s)x inH ash->O_;

(iv) If y, fl[0, 1], then (t,s)-[-a(t)]vU(t,s)[-a(s)] -t3 C(A,(H)) and

]][--a(t)]vU(t,s)[--a(s)]-t3l]<H<-Mv[(t--s)t3-v+ 1] 0<-s <- t<: T;

(v) If 0<--3,<--/3_<--1, then (t, s)->[-a(t)]vU(t, s)[-a(s)]-t C(, (H)).
Proof Parts (i)-(iii) are proved in Theorem 3.2 of [Ac] (recall that the domains

DA, are dense in H here), with the exception of the assertion (t,s)- U(t, s)
Cs(A, W(H)). In order to show this property, we first recall that by the density of
domains and by Lemma 1.9(i) of [AT1] we have

(2.35)

(2.36)

lim Ilx-n[n-A(’)]-’xl].:O VxH, Vr[0, T],

IIA(s)[n A(s)]-’ A(-)[ n A(r)]-’ .> -< Bn /21 - sl
Vn +, ’, s [0, T].

Now let (% ’)0A, x H; then we have (see [Ac, formula (2.6)])"

U(t,s)x-x=[e(-’(x-x]+ Z(r, s)xdr

[e(’-’(- 1]{[x- n[n A(’)]-’x]
+ n[ n A(r)]- n[ n A(s)]-]x}

+ e([nA(s)[n-A(s)]--nA(r)[n-A()]-]xd

+ eA(nA(r)[n-A()]-xd+ Z(r, s)xdr;

hence by (2.36) and Lemma 2.2(i) of [Ac] we easily obtain

u(t. s)x-x[J. c(M. , ){( + n(t-s))l[x-n[n- a()]-x]].
+ Ilxll.[l + n(t- ).1/

_
l+,/+t-

By (2.35) there exists v* such that

[[x- [-a]-x[[, <[cM, , ]-1;
choosing n v and > 0 such that

c(M, , )[ + )[(M, , .)]-1+ Ixll. + ,/7+1/+ lJxJl.;] < ,
we immediately get

IIu(t,s)x-x[[ if[t-l+[-sl < .
Note that, in paicular, the above proof shows that

(2.37) t, s) e’-a C(, (H)).

Let us prove (iv). We write

[-a(t)]rU(t, s)[-a(s)]- -[-a(t)]r-l[a(t)U(t, s)][-a(s)]-;
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since each operator in the right-hand side is in C(A, (H)), we get that the left-hand
side also belongs to C(A, (H)). In order to prove the estimate, we remark that if
x H, then -> U(t, s)[-A(s)]-x is the classical solution [AT1, Def. 1.6] ofthe problem

u’( t) a( t)u( t) O, ]s, T],

u(O) [-A(s)]-t3x,
and consequently [AT1, Thm. 6.3(i)] t--> [A(t) U(t, s)][-A(s)]-x solves the integral
equation

(2.39) v(t)-[Qv](t)=A(t) e(t-s)A(t)[--A(s)]-X, t[s, T],

where the integral operator Qs is defined [Ac, (2.1)-(2.2)] by

Is(2.40) [Q,v](t) := A(t)2 e’-)a[A(t)--A(z)-]v(T) dr, t6[s, T].

Hence we can write

[-A(t)]rU(t, s)[-A(s)]-tx

(2.41)

-I-A( t)]-[ Qs ([A(t) U( t, s)][-A(s)]-tx)](t)

[-A(t)] v e(t-s)A(t)[--A(s)]-flX

[-A(t)]r+ e(t-’)a(t)[A(t)--A(z)-]A(z)g(z, s)[-A(s)]-t3xdz

[[-A(t)] v e(’-’)A(’)--[--A(s)] v

[_A(s)]r-t3

[[([-A(s)]-t e(-’)A(’)--[--A(’)]-t)xll - 0.

If/3 y this follows by (2.37); otherwise we can write

([-a(s)]- e(t-s)A(s) -[-a(t)]r-t3)x
-S

[-A(s)]r-t3+ eCA()xd+[[-A(s)]--[-A(r)]r-]x,

which by Lemma 2.7 implies the result. [3

Assume now that the adjoint operator A(t)* of A(t) also satisfies (2.29), i.e.,

M
(2.42) (i) II[,x-A(t)*]-’ll(,_,)]+l,l v,so:, Vte[0, T],

(ii) IIA(t)*EA-A(t)*]-’EEA(t)*]-’-EA(s)*]-’]II:e(.)

B
[h[/

Vh e Soo, Vt, s e [0, T].

Then Proposition 2.8 also holds for A(t)*.
The next result concerns the adjoint operator U(t, s)* of the evolution operator

U(t, s) relative to A(t).

and by Lemma 2.7 we readily obtain the result.
Finally, we prove (v). By (2.41) it is enough to show that if (t, s)-> (-, -) in A and

x H, then
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PROPOSITION 2.9. Under assumptions (2.29), (2.42) let U(t, s) be the evolution
operator ofproblem (2.28). Then:

(i) U(t, s)* (H, DA(s.), for all s [0, t[;
(ii) For each q H, s - U( t, s *q solves the problem

d

(2.43) d-- U(t,s)*q=-A(s)*U(t,s)*q, s[0, t[,

U( t, t)*q q.

Proof First of all, we show that the solution of (2.43) exists. Fix to ]0, T] and set

(2.44) V(to; t, s):=the evolution operator relative to B( t) := A( to- t)*, t[0, to].

d

(2.45) d-- V(to; t, s)q A(to- t)*V(to; t, s)q, ]s, to],

V(to; s, s)q q.

Set W(t, s) := V(t; s, 0), s [0, t]. Then, applying Proposition 2.8 to problem (2.45),
we get W(t,s)(H, Da(s)*) and

d
W(t, s)q V(t; ’, O)q9 -[A(t-’)*V(t; r, 0)p]=t-s

ds ,=,-s

-a(s)* W(t, s)q, s [0, t[,

W(t, t)q V(t; 0, 0)q

i.e., W(t, s) solves (2.43). The proof will be complete by showing that

(2.46) V(t; t- s, 0) W(t, s) U(t, s)*.

Indeed for r Is, t[ we have

d
d- W(t, r)q U(r, s)x)u

=-(A(r)* W( t, r) U( r, s) / w( t, r)q [A(r)U(r, S)q n O,

SO that (W(t, r)q U(r, s)x)l const, for all re[s, t]. As r- t- and r- s+ we get

(qIU(r,s)X)H=(W(t,r)IX)H Vq,xH,

i.e., W(t, s) U(t, s)*.
COROLLARY 2.10. Under assumptions (2:29), (2.42) we have for y, /3 [0, 1]"

I[[-a(s)*]U(t, s)*[-A(t)*]-ll(,<=Mt[(t-s)-/ 13 V0=<s < t_-< T.

Proof We have by (2.44) and (2.46)

[-A(s)*]vU(t, s)*[-A(t)*]7t3 =[[-B(r)]rV(t; -, 0)[-B(0)]-t]__,_
hence the result follows by applying Proposition 2.8 to problem (2.45).

COROLLARY 2.11. Under assumptions (2.29), (2.42) let fl, y[0, 1]. Then for
0 <--s < <= T the closed linear operator

[-a(t)]-U(t, s)[-a(s)]

This means that
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possesses an extension [-A(t)]-’U(t, s)[-A(s)] v (H), which satisfies

[[[-A(t)J-’U(t, s)[-A(s)JVl]:e(n) <- Mv[(t-s)[3-v+ 1] VO<-_s<t <- T.

Proof. As

[[-A(s)]V]* [[-A(s)]*] Vy [0, 1],

if x D-A() and H we have

([-A(t)]- U( t, s)[-A(s)]x )n (x [-A(s)*]U( t, s)*[-A(t)*]-and by Corollary 2.10

[([-A(t)]-U( t, s)f-A(s)]Yx )nl <= My,[( s)-’ + 1]llxll Ilq [In

choosing y := [-A( t)]- U( t, s)[-A(s)]Yx and q := y/llyll., by the density of D_A)I
in H we get the result. F]

The study of the abstract problem (2.28) (which concerns homogeneous boundary
conditions) is complete. In the next section we will introduce nonhomogeneous
boundary data in the abstract framework.

2.4. The Dirichlet and Neumann maps. Let us go back to problems (2.3), (2.4):
we will examine the regularity properties of the Dirichlet and Neumann maps G0(t),
Gl(t) which are defined by (see (2.9)-(2.11)):

D)u =0 inf,,
(2.47) u := Go(t)g

oU g on 0f,

D)u =0 in f,
(2.48) u := Gl(t)g

PROPOSITION 2.12. Let Ao(t), A(t) be defined by (2.12), (2.13), respectively. If
r-0, 1 the operator Gr(t) is well defined from [L2(0f)] rv into Dt_art)lo, for each

]0, ar[, where ao :=z and a := Moreover,

[-A,(t)]Gr(t) Loo(O, T; .([L:(OI))]N, [L2()]N)) V06]0, a,[.

Proof This result was pointed out in [La] assuming 0f C; here we give an
independent proof.

Let us start with the case r 0. Fix [0, T], let g w1/Z’Z(o-)]N, and consider
the variational problem corresponding to (2.9), (2.10):

(2.49)

which means

sd( t, ", D)uo 0 in

Uo g on 012,

Ja [(Asj(t,x) OuolDs) +(Uol)] dx=O V[C(a)]’,
(2.50) sj=

/,/0 G W’2(-)]N
where G is an element of W’:(f)]u whose trace on 01 is g, and such that

(2.51) [[gl[[wl/2,2(oml,-<- CollG[l[wl,2(m],<-_ callglltw,/=,2(oma.
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By Poincar6 inequality and Lax-Milgram theorem, problem (2.50) is uniquely solvable:
we denote its solution Uo by So(t)g, and we easily get the estimate

(2.52) IISo(t)glltw,2(m<-c(M, v, Co, Cl)[Igllrwl/2,2(oa)" Vg[W1/2’2(Ot2)]
N2where M := Esj=l [Imsjll c(to,,t’() ).

Note that if g G[W3/2’2(O)]N, then by (2.1) and the classical results of [ADN]
we have So(t) W2’2(f)]u and

(2.53) IlSo(t)glltw2,2m)l,<=cllg[ltw3/2,2o,), Vg[Wa/2’2(Of)]s.
We want now to estimate So(t) in a lower norm. For g 6 W1/2"2(Of)]u set Uo := So(t)g
and let be the variational solution of

(2.54)

6=0 on 0fl;

as Uo WI’2(fl)]u c [L2(fl)] u, we have 6 W2’2(fl)]u fq W’2(fl)] u, and

(2.55)
sj=

in addition

By density we may choose q qs in (2.50); an integration by parts yields

v [cY()]

tAsj t, x) Dqsvj) do,
sj=l C

’Av(t, x).
sj= C

Now, as 0fl C2, the function d (x), i.e., the distance of x fl from 0fl, is of class C2

in a neighbourhood of 0fl and Dd(x) -v(x) on 0fl (see [GT, Appendix]); moreover
we can clearly modify d(x) inside 12 in order to get d Cz(). Hence by (2.57) and
(2.56) it follows that

(a) [(g, ’as( t, x) DOv) w-,/,(oa)tw,/,(oa)

]g[w-1/2,2(oo)]u]ltAsj

that is,

We now interpolate between (2.58) and (2.52), using Theorems 7.7 and 9.4 of [LM]"
the proof of such theorems requires 0 e C, but it can be readily adapted to our case.
The result of interpolation is the estimate

(2.59) llSo(t)gllt,,(o.)c[[gllt(oa) g[w’/2’(o)]

I’( )UoIO-- uj[tAsj( t, x) DsO]
c1" sj=l

and by (2.55) (since uo-g on

(2.57) faluol2 dx=- foa (g
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which shows that the linear operator So(t) may be boundedly extended to an operator
Go(t)([L2(Ol)]N, W1/2’2(1)] N) defined by (compare with (2.47))

Go(t).[Lz(al)] --> W1/2’2(-)]N
(2.60)

Go(t)g := So(t)g Vg W1/2’2(0)].

We now turn to the case r= 1. Fix 6 [0, T], let g [W1/2’2(O’)]N and consider the
problem corresponding to (2.9), (2.11):

,if(t, x, D)Ul 0 in
(2.61)

31(t,x,D)Ul=g on 01,

which, by [ADN], has a unique solution Ul := S(t)g W2’2(1)] N, such that

(2.62) Ils,(t)gll[v,{)]<-cllgll[v,,{o)] Vg[W1/2’2(O)]N.

Multiply by u in [L2()]u in (2.61) and integrate by parts" the result is

’ f lDu12 dx + f lul dx<- I [(Asj(t, x) DjulDsu)c’ +(u’u)c’] dx

I" (g] ua)cNd’-l(g,

which implies

(2.63) I[S(t)g[l[w.2(3,<-cllgllw-,/2.o Vg[W/:’2(OII)]N.

Interpolation between (2.63) and (2.62) (see the remark after (2.58)) yields

(2.64) IlSa(t)gl[[w/2,()], <- Cllgl[[L2(ao)] Vg w1/Z’2(0’)]N

i.e., S may be boundedly extended to an operator G(t) ([L2(01)] N, W3/z’z(I1)]N)
defined by (compare with (2.48))"

GI( t) [L2(O)]N --> W3/2"2()] N,
(2.65)

Gi(t)g:= Sl(t)g VgE[W/2"2(O)].

Now we recall that by Theorem 3.1 of [L1] we have for r=0, 1 (see (2.34))"

(2.66) D[_A,(t)] DAr(,)(O, 2) VO ]0, 1[,

(2.67) O[-a,(t)*] Oa,(t)*(O, 2) VO ]0, 1[.

On the other hand, the real interpolation spaces DA,(,)(O, 2) and Da,(t).(O 2) can be
characterized in the following way:

Dao(,)(’O, 2) Dao(,). O, 2)

W’2(1)]N if O ]0, 1/4[,

(2.68)
d(x)- lu(x)l

W’(a)] if O ]1/4, 1[\{1/2},
[B’(a)] if O =1/2;
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(2.69)

DA(,)(O, 2)

(2.70)

DAI(,)*(0,2)=

W2’2(12)]N if 0 ]0, [\{1/2},
[B"2(12)]v if 0 =1/2,

{ u E W3/2’2(’)]N" ff M(x)-I Au(t,x)’Dju(x)Dd(x)
sj=

{u E W2’2(12)]u" 31(t,., D)u 0 on 0f} if O e ], 1[;
if 0 =-],

W2’(O)] if 0 ]0, [\{1/2},
[B1’2(-,)]N if O =1/2,

u W3/’(a)]" d(x)- ’Au(t,x)’Du(x)Dd(x)
sj=

if 0=,

c

so that F,( t)--) [-Ar( t)]Gr( t) in ([L:(OO)]N, [L:(O)]) as n--) c, uniformly with
respect to t; thus [-A(. )]Gr(. is a continuous function. This shows that

(2.72) [-Ao(" )]Go(" e C([0, T], ([L2(00)], [L2(f/)]N)) VO E ]0, ][,
(2.73) [-A(. )]G(" e C([0, T], ([L(0f)], [L(f)]’)) VO e ]0,-34[,
and, in particular, the proof is complete.

We are ready to write a representation formula for (regular) solutions of problems
(2.3), (2.4), which depends just on low-order norms, and hence can be extended to
the case of less smooth data. This construction will be performed in the next section.

2.5. The representation formula. Consider again problems (2.3), (2.4) with smooth
data: our representation formula for their solution is provided by the following
proposition.

{u 6 W2’2(1)]u" ,(t,., D)u 0 on 0f} if O e ]], 1[.
Here [B’-(f)]u is the Besov-Nikol’skij space. A proof of the results (2.68)-(2.70) is
in Theorem 7.5 of [Gr] (see also [Tr, Thm. 4.3.3]) in the case N 1 and 0f C, but
the same argument works in our situation.

The above results (namely, (2.66)-(2.69) together with (2.60), (2.65)) show that

ao(t)([L2(OO)] D[_ao()]o) VOG ]0, [,
(2.71)

G,(t) ([Lz(Oa)] u, D[_a,(,)]o) VO ]0, [;
the norms of Go(t), G(t) are bounded independently of [0, T] in view of (2.59),
(2.64).

On the other hand, if we set

F,( t) := [-Ar( t)] exp ( Ar( t)) G( t),

we have F, e C([0, T], ([L(0)], [LZ(o)]N)) by Lemma 2.7(ii); in addition, choos-
) we see thating p ]0, r [ (with ao z, a

[-At(t)] 1- exp (Ar(t)) d
([2(o)])u
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PROPOSITION 2.13. Assume (2.1), (2.2), let Y0
C([0, T], wZ-r’2(12)] N) VI C’+1-r/2([0, T], [LZ(E)]u) (r=0 or r= 1), and suppose
moreover that the compatibility conditions (2.7) or (2.5) hold. Then the solution ofproblem
(2.3), or (2.4), is given by

(2.74)
y(t, ")= Ur(t, O)yo+ [[-Ar(s)*]I-Ur(t,s)*]*[-A(s)]G(s)u(s, .)ds,

t[0, T] (O]0, ar[).

Proof By Proposition 2.2 or 2.1 we know that problems (2.3) or (2.4) have a
unique solution

y C([0, T], W2’2(f)]u) f] cl([0, r], [t2(f)]u).

Consider the function y- Gr(t)u" by (2.47), (2.48), (2.53), and (2.62) we get (see (2.9))

(2.75)
y( t, Gr( t)u( t, PAr(t),

Ar( t)[y( t, G( t)u( t, )] ( t, D)y( t, ).

Next, denoting by Ur(t, S) the evolution operator associated to {A(t)},O,T, we have
by Corollary 2.10

I[[-Ar(s)*]rUr(t,s)*ll:e(tL(n)l<-Mr(t-s)- Vy]0, 1[, V0__-<s<t--- T,

and consequently

(2.76) II[[-Ar(s)*]Ur(t,s)*]*ll(t(,)<-M(t-s)- V,]0, 1[, VO<-s<t < 7".

Now fix [0, T], let z PAr(t)*, and define

(2.77) h(s):=(y(s,’)[Ur(t,s)*z)tc(a), se[0, t[.

By Proposition 2.9 and (2.75) we may compute

h’(s) (Dy(s, Ur( t, s)*z) (y(s,.)- G(s)u(s, [Ar(s)* Ur(t, S)*Z)

--(Gr(S)U(S, )lA(s)*U(t, s)*z)

(A(s, ", D)y(s," )1U(t, s)*z)

-(ar(s)[y(s, )-Or(s)u(s,. )]l Vr(t, s)*z)-(Gr(S)U(S, )lar(s)*Ur(t, s)*z)

--( Gr(s)u(s," )JAr(s)* Ur( t,

__1On the other hand, by (2.72), (2.73) we may write for 0

h’(s) ([-Ar(s)]Gr(s)u(s, l[-Ar(s)*]l-Ur( t, s)*z)

=([[-Ar(s)*]l-Ur(t,s)*]*[-A(s)]Gr(s)u(s,.)]z), -s ]0, t[,

and h’ L(0, t). Hence by integrating in ]0, t[ we get

(y( t," )l z) [L(m] Ur( t, O)yo(" )l z) [L(--)]

[[-Ar(s)*J’-oUr(t, S)*J*[-Ar(s)]G(s)u(s, dslz
L2(’)]

and finally by density we deduce (2.74).
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Remark 2.14. (i) The representation formula (2.74) makes sense for any yo
[L2(f)]N and u [L2(]0, T[ 0f)] N, since by Proposition 2.2(i), (2.76), and (2.72),
(2.73) we have

(2.78) IlY(t," )ll[/2(a)]N <- c [[yoll[=(n)] + (t- s)-lu(s, )l}(oa)] ds

which implies

(2.79) [[yll(o,r{m < c Tllyo[I [Lz(]O,T[xo)]NL2() +]2

(ii) We may rewrite formula (2.74) in a shoer, although improper, form, namely

(.a0 (= gr(,0o- g(,slr(sla(slu(sl &, e[0,

where the integrand is to be understood as in (2.74). In the foregoing section we will
study an abstract version of (2.80) (see (3.1) below) within the context of control theory.

3. Te L-Q-R rble er ite-fie r.
3.1. Ste rle est fefil. This section concerns the classical linear-

quadratic regulator (L-Q-R) problem, over finite horizon [0, T], for a class of abstract
evolution equations corresponding to nonautonomous parabolic systems with boundary
control. As we have shown in 2, an equation of the form

(. (= g(,0o- u(,sa(sa(su(ss, e[0,

is appropriate to cover a wide class of concrete problems. In 2 we derived in two
concrete examples equation (2.80), which is an equation of the form (3.1), under
hypotheses (2.1) and (2.2) (or, from the abstract point of view, (2.29) and (2.42)).
Such assumptions will not be directly needed in most pa of the next results on control
problems; thus, in order to identify those propeies which are really relevant from
the control point of view, and to point out both analogies and novelties of the
nonautonomous case with respect to the autonomous one (treated, e.g., in [B1], [La],
[LT1], [LT2], [F1], IF2]), we will hereafter impose explicitly only assumptions (3.2)-
(3.5) listed below.

Let H, U two separable (for simplicity) complex Hilbe spaces. In (3.1) we shall
take Yo H and u L(0, T; U). Here is our list of hypotheses"

(3.2) {A(t)},0,rl is a family of closed linear operators in H with (dense) domains
D(,, such that A(t) generates an analytic semigroup in H and 0 o(A(t)).

(3.3) { U(t, S)}o,r is the (strongly continuous) evolution operator in H associ-
ated to {A(t)}o,r; in particular,

u(, x)ll( Mo, for all (t, s) , where := {( t, s) [0, T]: s < t}.

(3.4) The operator-valued function (t, s) U(t, s)* belongs to C([0, T], (H));
moreover, for each e[0,1] and (t,s), U(t,s)*e(H,D_(.?), the
map (t, s)[-A(s)*]U(t,s)* is strongly measurable and satisfies

II[-a(s*](, s*[-a(*]-" ,[( s"- + ]

V(t,s)eA, Vr/, /x e [0,1].
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(3.5) {G(t)},to, T3 is a family of operators in( U, H) such that there exists a ]0, 1]
with the following properties: G(t) ( U, Dt_A(,.-) for each [0, T] and
the map t[-A(t)]G(t) belongs to L(0, T; (U, H)).

Remark 3.1. (i) The above assumptions can be relaxed in various directions, with
minor consequences on the subsequent results. So, for instance, (3.4) is needed only
for r/= 1- a: in this case we would obtain slightly weaker regularity results for the
Riccati equation. However, the applications discussed in 2 do not motivate a further
level of generality.

(ii) Condition (3.4) with/z > 0 is not necessary to give sense to equation (3.1):
just a much weaker version of it is needed in order to define the L-Q-R problem (3.10)
below. However it will be used in (more or less) this generality as a technical tool in
the study of the Riccati equation. Except for (3.4) with/x > 0, all the other assumptions
are the natural (and minimal, in a sense) ones in order to give a meaning to equation
(3.1) and problem (3.10).

(iii) In the examples of 2, we have under assumptions (2.1), (2.2):

H [L2(f)] N, U- [Lz(Of)]N;
{A(t)}, defined by (2.12) or (2.13), fulfills (3.2) by Proposition 2.4;
The existence of {U(t, s)} with the properties (3.3) is guaranteed by Proposition

2.8(i);
Conditions (3.4) for { U(t, s)*} are proved in Corollary 2.10;
{G(t)}, defined by (2.47) or (2.48), satisfies (3.5) in view of Proposition 2.12.

As at the end of 2, we agree that the formal notation U(t, s)A(s)G(s) stands for
[[-A(s)*]l- U( t, s)*]*[-A(s)]G(s), which is well defined as an element of( U, H)
for each (t, s) A, by (3.4)-(3.5). More precisely we have Lemma 3.2.

LEMMA 3.2. The operator-valued function

(3.6) U(t,s)a(s)G(s):=[[-a(s)*]’-U(t,s)*]*[-a(s)]G(s), O<=s<t<= T,

is strongly measurable with respect to s [0, t[ for each fixed ]0, T], and strongly
continuous with respect to ]s, T] for each fixed s [0, T[. Moreover,

(3.7) [Iu(t. s)a(s)G(s)ll...-.)<--c(t-s)-’ V(t,s)6A.

Proof The first assertion follows directly by (3.4), (3.5). Concerning the second
one, let s [0, T[ and to ]s, T] be fixed: it is easy to verify that if t ](s + to)/2, T]
we have

U( t, s)A(s)G(s) U( t, (s + to)/2)[ U((s + to)/2, s)A(s)G(s)];

but t- U(t, (s+ to)/2) is strongly continuous, whereas the bounded operator U((s+
to)/2, s)A(s)G(s) does not depend on t, so that U(t, s)A(s)G(s) is strongly continuous
at to. Finally, the estimate (3.7) follows by (3.4) and (3.5). E]

The next lemma gives a precise interpretation of the function (3.1).
LEMMA 3.3. (i) Ifu L2(O, T; U), then (3.1) defines afunction y L2(0, T; H) and

(3.8)

(ii) If uLP(O, T; U) for somep> l/a, then y C([O, T],H) and

(3.9)

Proof Part (i) is an easy consequence of (3.3), (3.7) and Young’s inequality.



108 ACQUISTAPACE, FLANDOLI, AND TERRENI

(ii) If p> l/a, by (3.7) we have for O<-_rKt<-_ T

U(t, s)A(s)G(s)u(s) ds <-- (l-s) -(1-)p/(p-1) ds [[U[ILP(r,T;U
H

<-- c P-
1

(t- r)a-1/P[[II[JLP(O,T;U),
ap-

which, together with (3.30), implies in particular (3.9). Moreover, if to ]0, T] and
e > 0, we have for small 6 > 0

U(t,s)A(s)G(s)u(s)ds -<_e Vt[to-,to+].
to-- H

Therefore by (3.3) we get for It-tol--< 6"

{ly(t)-y(to)ll.

=< u(t, O)yo- U(to, O)yol[

+ [U(t, to-t)-U(to, to-6)] U(to-6, s)A(s)G(s)u(s)ds
H

+ U(, s)A(s)G(s)u(s) ds + U(to, s)A(s)G(s)u(s) ds
o-- H 0--6 H

-<-II c(t, 0)yo- t(to, 0)yoll,, + (2Mo+),
and the result follows by the strong continuity of t- U(t, 0). The case to 0 is even
simpler.

We can now define the optimal control problem which is the object of our study
in this section. We shall consider the following L-Q-R problem"

(3.10) Minimize

over all controls u L(0, T; U) subject to the state equation (3.1).

Here we assume:

(3.11) M(t)+(H), for all t[0, T] and MeL(O, T; (H));

(3.12) N(t) N+(U) with N(t) > 0, for all [0, T]
and N C,([0, T], ( U));

(3.13) Pre+(H), and there exists e](-),][0,] such that
(H, Df-a(r)*).

Remark 3.4. Due to Lemma 3.3 of[F1 ], assumption (3.13) implies that the operator
[-A(T)*]-Pr[-A(r)]-(ee]O,]) can be extended to an operator L (H).

Note that y, given by (3.1), is not continuous in general, but only in L(0, T; H)"
hence the term (Pry(T)y(r)) is not well defined a priori for all controls
L(0, T; U), but only for controls in a dense subspace of L(0, T; U), by Lemma
3.3(ii). However, the regularity propey (3.13), along with (3.4), yields Lemma 3.5.

LEMMA 3.5. e mapping u(Pry(T)ly(r)), defined (for instance) from
C([0, r], U) into N, is locally uniformly continuous with respec o the topology of
L(O, T; U), and hence it can be excended to L(O, T; U).
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Proof. Let L be the bounded extension to H of the operator
[-A( T)*]-PT[-A( T)]- (see Remark 3.4). If u C([0, T], U), choosing e ]0,/3
(1/2-a)[ we have by (3.1), (3.3), (3.4), and (3.5)

(Pry(T)Iy(T)),

IILI/2[-A(T)J-+Y(T) ,
.) II[-A(r)3 -+U(T,0)yolIH

Hence if u, u C([0, T], U) and y, y are the corresponding functions (3.1) with
initial state Yo we have

(Pyl(T) lye( T))H --(PTYe(T) lye( T))HI

[IIL/=[-A( T)]-+Y( T)llH + IIL/[-A( T)]-+Y(T) H]

IlL/[-J(T)]-+[y,(T)-y( T)] II.- cllYollu + Ilull=<O,T.U + IlUII=<O,T;UII u, ull ==<0,T; U"
Remark 3.6. The initial state Yo can be taken in a space larger than H with-

out changing the main results of this and subsequent sections. More precisely, we
need to fulfill two essential requirements, namely (1) yLe(0, T; H), and (2)
I-A( T)]-y(T) is well defined; in order to get them, it is sucient that [-A(0)]-yo H
for some ]0, [, i.e., that Yo belongs to the dual of Dt_o). with respect to H
(indeed I-A(0)]- can be extended to an isomorphism between the dual of Dt_A(O).
and H). In this case the condition y L(0, T; H) is satisfied because of (3.4) (with
=0), since we have

(U(t, O)yolX)u ([-A(O)]-OYol[-A(O)*]OU(t, 0)*x),

i.e., o(t, O)yo[u ct-, 3O, [; on the other hand, I-A( T)]-y(T) is well defined
(even if [, 1[) by (3.4), since

I-A( T)]- U( T, 0)yo [[-A(0)*] U( L 0)*I-A( T)*]-]*[-A(O)]-yo.

3.2. The Rieeati equation. The main step in the solution of problem (3.10) is the
direct study of the associated Riccati equation, which takes the form

(3.14)
[M(s)-P(s)A(s)G(s)N(s)-G(s)*A(s)*P(s)]U(s, t) ds.
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The nonlinear term in (3.14) is not well defined in the present form. For this reason
we consider the following version of (3.14)"

(3.15)

where

T

P(t) U( T, t)*PrU( T, t)+ U(s, t)*

[M(s)-[[-A(s)*]-"P(s)]*K(s)[-A(s)*]-P(s)]U(s, t) ds,

(3.16) K(s) := [-A(s)]G(s)N(s)-a[[-A(s)]"G(s)]*.

By (3.5) and (3.12) we have

(3.17) K(.)L(O, T; Z/(H)).

Note that the integration in (3.15) is performed in the strong sense.
PROPOSTO 3.7 (local solution). There exist an interval To, T] and a unique

function P C([ To, T], Z(H)) such that"
(i) [-A(.)*]-P(.) is well defined and strongly measurable from [Te, T]

into .L# H
(ii) II[-A(t)*]-"P(t)[l. <- c( T- t)---2, for all To. T[.
(iii) P(. solves (3.15) in To, T].
Proof For any To [0, T[ denote by Br(To, T) the Banach space of all strongly

measurable functions Q’[ To, T[ (H) such that

IIQII(To.T:-- sup

where 3’ := (1 a 2/3) v 0. For Q B/( To, T), define

FTo(Q)(t):=[-A(t)*]-’U(T, t)*PTU(T, t)

+ [-A(t)*]-U(s, t)*[M(s)-Q(s)*K(s)Q(s)]U(s, t) ds,

t6[To, T].

Let us show that F maps By(To, T) into itself. By (3.4), (3.13), (3.3), (3.11), and
(3.17) we get

_-< M,_,,e[1 +(T- t)23+-]ll[-A

+ M_,o (s- t)"-[llM(s)ll(,

/ IlK(s)II (.(T- s)-2[1011 o.311U(s. t)ll(. as
< el(T- t)- /(T- t) /(T- t) -211Q I12(To,r] Vt To, T[;

this shows that Fo(Q) Bv(To, T) and

(3 18) [[rTo(Q)ll,o,T<C,+c2(T-To)"-llOl[ B,(To,T

Next, we show that Fw is a contradiction in the ball

B,(To, T; p):={QB,(To, T)"
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for a suitable p > 0. Indeed if Q1, Q2 E B(To, T; p) we have as before:

IIr Q1)( t)- Fro( Q)(t)

<-_c (s-t)-[llQ.(s)ll(.+llO(s)ll(.JlIO.(s)-O(s)ll( ds

<-_c(T-t)"-pllQ.-Q]l.(o.), Vte[To. T[.

which implies

(3.19)

By (3.18) and (3.19) we see that it is possible to choose a (large) p >0 and a ToE[0, T[
(close to T), such that F maps B(To, T; p) into itself and is a contraction in

B(To, T; p). Thus we get a unique solution of the equation

Q=FTo(Q) in[To, T[.

Hence P:= [--A(.)*]-IQ(.) is the unique operator-valued function that satisfies
(i)-(iii). The property P E Cs([To, T], (H)) follows by (3.15), whereas the property
P(t)EZ(H) is a consequence of the fact that P(.)* is also in Cs([To, T], (H)) and
satisfies (i)-(iii), so that P( t)*=- P( t) in To, T].

Remark 3.8. Since [-A(To)]-P(To)E(H), for each
2[ fq [0, (1 a)/2[ the operator [-A(To)*]P( T0)[-A( T0)] is continuous with respect
to the topology of H (see [F1, Lemma 3.3]).

The result of Proposition 3.7 justifies the following definition:
DEFINITION 3.9. Let J be an interval in [0, T] such that TE J. We say that P is

a solution of (3.15) in J if:
(i) P E C(J, Z(H)), [-A(.)*]-P(.) is well defined and strongly measurable

from J into (H),
(ii) For each " E J\{ T} there exists a constant c(r) such that

II[-A(t)*]’-P(t)ll(H)<-c(-)(T-t)- VtE[-, T[,

where y= (1-ce-2fl) v 0,
(iii) P(.) satisfies (3.15) in J.
We must prove the existence and uniqueness of a global solution, i.e., a solution

in [0, T], of (3.15). The proof will be based on an a priori bound; to this purpose we
introduce an evolution operator which will be related to the optimal trajectories of
problem (3.10).

LEMMA 3.10. Let P be a solution of (3.15) in J. .Consider the integral equation

(3.20)

P(t,s)x= U(t,s)x+ [[-A(r)*]’-U(t,r)*]*K(r)

[[-A(r)*]’-n(r)]*(r, s)x dr, E J,

where x E H. Then there exists a unique operator-valued function O:Aj W(H), with
Aj := {(t, s) E j2: > s}, such that O(t, s)x is a solution in C([s, T], H) of (3.20) for each
x E H and s E J. Moreover, is a strongly continuous evolution operator.

Proof Fix s E J. If O(., s)x E C([s, T], H), then

[-A(. )*]’-P(. )O(., s)x E LP(s, T; H)

for some p > 1/a (by Definition 3.9(ii)); thus (3.16), (3.5), (3.12), and Lemma 3.3(i)
imply that the right-hand side of (3.20) is in C([s, T], H). Therefore it is standard to
apply the contraction principle to (3.20), in order to get existence of a unique solution
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of (3.20) in C([s, T], H), denoted by (., s)x. The proof that is a strongly continuous
evolution operator is classical.

Using the evolution operator it is possible to rewrite the Riccati equation (3.15)
in two alternative integral forms as follows.

LEMMA 3.11. IfP is a solution of (3.15) in J and T J, then for each J f [0, T]

P(t) dp(T, t)*P( T)( T, t) + J cb(s, t)*

(3.21) [M(s)+[[-A(s)*]l-p(s)]*K(s)[-A(s)*]-P(s)](s, t) ds,

(3.
e(= u(L *P(’(L + u(, *M(,(, .

Proof The proof is classical (see, e.g., [Gi], [LT1]).
We are now able to prove the following a priori bound, which is the key point in

showing global existence.
LEMMA 3.12. There exists c >0 with the following property" if P is a solution of

(3.15) in some interval J, then

(3.23) II[-a(t)*]’-P(t)llen<-c(T-t)-v VtJ\{T},

where V (1 a 2 v O.
Proof Of course (3.23) is obvious if J To, T[, with To given by Proposition

3.7. Thus we may confine ourselves to consider the interval J 71 [0, To].
Our first step consists in showing that there exists c > 0, independent of P and J,

such that

(3.24) [IP(t)llen<=C VtJ.

Indeed, choose T T in Lemma 3.11" by (3.21) we have

(3.25) P(t) _-> 0 /t J;

moreover, by (3.15) we get

(P(t)XlX)H<--llPlr/ZU(T, t)XIIH + IlM(s)’/ZU(s, t)xl]zH dS

<--cllxll , VxH, VtJ,

with c independent of P and J. Thus (3.24) follows by (3.25). Next, by (3.22) we
deduce for s, J (q [0, To], s <- t"

[-A( t)*]l-p( t)( t, s) [-A( t)*]l-U( To, t)*P( To)dP( To, s)

(3.26) + [-A(t)*]I-U(G, t)*M(o)Cb(tr, s) dcr

=: Ii(t, s)+ I2(t, s),

where To is taken as in Proposition 3.7. By (3.21) and (3.24) we obtain a first estimate"

)* )xll% dt-cllxll% VxH,[[K(t)l/[_A(t ]l-p(t)dP(t, s

(3.27)

with c independent of s 6 J (q [0, To] and x H.

Vs e JC? [o, To],
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The proof now proceeds in the following manner. Starting from (3.27), we will
apply a bootstrap process in order to get more and more summability for the function
[-A(. ),]l-p(. )(., s)x in the interval J (’1 [s, To], where s J f-) [0, To]. Our final
goal is the estimate

(3.28) [-A( t)*]l-P( t)( t, s)xll. cllxll. Vx H, Vs, J [0, To], s t,

with c independent of x, P, s, t, and J" choosing in (3.28) s t, (3.23) will follow, thus
completing the proof of Lemma 3.12.

The bootstrap procedure works as follows. Let p [2, oe[ be given, and set

1 ap
po := I 1 ]ifp 2,--,

1
if p__>-

Clearly, if a [1/2, 1] we have 1/a _-<2 so that Po + whatever be p. If otherwise
a ]0, 1/2[, then

aP----- >- >0 Vp6 2,(3.29) Po-P 1 ap 1 2a

Assuming the truth of the estimate (c independent of x, P, s, J)

(3.30) II[-A(’)*]-P(’)q(’, S)XlILv(.,To;.)<= ClIxlI. VX H, Vs J [0, To],

we will prove the same estimate with p replaced by Po. This argument starts with p 2,
in which case we assume (3.27) instead of (3.30), and stops after a finite number of
iterations (by virtue of (3.29)), the final estimate being (3.28). Suppose that (3.30)
holds for a certain p_-> 2: by (3.26) it is enough to show that

(3.31)

(3.32)

Concerning (3.31), by (3.27), using (3.3), (3.4), and (3.17) we get

c Ilxll+ (t-r)"-ll[-A(r)*]l-"P(r)(r,s)xlll_ldr dt

and a Young-type estimate [HLP, Thm. 383], along with our assumption (3.30), yields

I1( t, s)xll dt< cllxll "o
H,

with c independent of P and J (with obvious modifications if Po o). The bound
(3.31) now follows by (3.4) and (3.11), applying the simplest version of Young’s
inequality.

Let us verify (3.32). First we observe that for any r/ [0, 1[ and e ]0, 1 r/[ the
operator [-A(To)*]I-’-P(To)[-A(To)]" can be uniquely extended to a bounded
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linear operator in H. Indeed, by (3.15) and (3.13) we have for each x D[-A(To)]"

[-A( To)* -’- P(To)[-A(To)]’x

[I-A( To)*] 1-- U( T, To)*[-A( T)*]-2t Ill-A( T)*]2pT]
T

[I-A( To)*]" U( T, To)*]*x + I-A( To)*] 1-r/-e U(s, To)
To

[M(s)-[[-A(s)*]l-p(s)]*K(s)[-A(s)*]l-p(s)]

[[-A(To)*]nU(s, To)*]*x ds,

and hence by (3.4), (3.13), (3.11), and Proposition 3.7

I-A( To)* 1-’- P(To)[-A(To) "x [[.

To

(with c independent of x, P, J). Moreover, if 7 > 1/p-a we have by (3.20), (3.3),
(3.4), (3.17), and (3.30)

Ill-A( To)]-n(To, s)xlln <= cl[xllH + c (To- r) "-I+")p/p-1) dr

liE-A(" )]l-,p(. )(., S)X]]LpO.To;H)< clIxlIH
(c independent of x, P, s, J). Therefore we can rewrite Ii(t, s) as

I(t, s).= [[-A(t)*]l-U( To, t)*[-A( To)*] "+-1]
[[-A( To)*] 1-’-P( To)[-A( To)]’ ][[-A( To)]-"( To, s)];

hence if we take r/ ]l/p a, 1/p[ and e ]0, 1/p[ we see using (3.4) that

7
[[[-A(t)*]l-"U( To, t)*[-A( To)*]n+-lxl[ at

--< c (To-t)(-’-)p dt[[xll p<H=clIxll

since (7 + e- a)po < 1. Thus we immediately obtain (3.32). Hence we get (3.30) with
p replaced by Po; consequently (3.28) follows, and the proof of Lemma 3.12 is
complete. [3

We can now prove the main result of this section.
THEOREM 3.13 (global solution). There exists a unique solution P ofequation (3.15)

in [0, T]. Moreover, it has the following properties:
(i) P( t) >-_ 0 for each [0, T];
(ii) P satisfies the integral Riccati equations (3.21) and (3.22);
(iii) P satisfies the bounds (3.24) in [0, T] and (3.23) in [0, T[;
(iv) For each [0, 1[, the linear operator [-A(t)*]’P(t), 6 [0, T[, is well defined,

strongly measurable in t, and equibounded on compact subsets of [0, T[.
Proof Let To be given by Proposition 3.7. For each T1 [0, To[, consider the

Banach space L(T1, To; (H)) and the balls

B(T1, To;p):={QL(T1, To; (H)):
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Define the mapping Fr,,To on L(T1, To; (H)) by

Fr,,To(Q)(t) := [[-A(t)*]I-"U( To, t)*[-A( To)*]-I][[-A( To)*]I-P( To) U( To, t)]

+ [-A(t)*]l-’*U(s, t)*[M(s)-Q(s)*K(s)Q(s)]U(s, t) ds,

FT,.To( Q)(To) := [-A( To)*] 1-"P(To).
As in the proof of Proposition 3.7, we have

rT..To(Q)II T..o;H <-- Clll I-A( To)*] 1-P(To) ./ c
(3.33) + c3(To-

t[T1, To[,

VQ L(TI, To; (H)),

(3.34)
=<4fl(To- T)llt21-Q=ll.<=,,o;t.)) VQ1, Q2 L(T1, To; (H));

here cl," , c4 are constants independent of T1, To. Using the a priori bound (3.23),
by (3.33) and (3.34) we see that we can select p > 0 and T1 ]0, To[ such that:

(a) To-T1 and p are independent of To;
(b) FT1,To is a contraction which maps B(T1, To; p) into itself. Thus there exists

a unique solution Q of the equation

Q r,,o(Q)
in the space L(T1, To; (H)), and this procedure can be repeated in the interval
T1- (To- T1), T1], and so on, with constant step. As in the proof of Proposition 3.7,
we conclude that there exists a unique solution P of (3.15) in [0, T].

Finally, property (i) follows by (3.25), and similarly properties (ii) and (iii) are
proved in Lemmas 3.11 and 3.12. As to (iv), it is sufficient to use (3.4), (3.11) and the
last assertion of Lemma 3.10 in equation (3.22) with T T.

3.3. Synthesis. The results of the preceding section lead to the following theorem.
THEOREM 3.14. Let yo H be given. Then"
(i) There exists a unique optimal control o L2(0, T; U) for problem (3.10);
(ii) Denoting by P(.) the solution of the Riccati equation (3.15), we have

(3.35) J(ao) (P(O)yoIYo)H
(iii) Ifo L2(O, T; H) is the optimal trajectory, i.e., the solution ofthe state equation

(3.1) corresponding to o(" ), we have the feedback formula for o(" )"

(3.36) Oo(t) N(t)-1G(t)*A(t)*P(t) o(t), [0, T[;

(iv) The optimal trajectory o(" is expressed by

(3.37) 33o(t) (t, 0)yo,

where O( t, s) is defined by the integral equation (3.20) with J [0, T];
(v) The optimal pair (o, o) is characterized by the following optimality system"

o( v(, o go- v(, s(a(o( s,

(3.38) ao(t) N(t) -1 G( t)*A( t)*p(t) [0, T[,

p(= v(r, *eo(r+ (, *M(So(S d.
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In (3.36) and (3.38) we have set

(3.39) G( t)*A( t)* :- -[[-A( t)]G(t)]*[-A( t)*] 1-;

as both operators P(t), U(r, t)* (with r> t) have their range contained in D-At*3,
for each / [0, 1[, both (3.36) and (3.38) are meaningful.

Proof Recalling (3.39), set

(3.40) o(t):- S(t)-G(t)*A(t)*P(t)(t, O)Yo;

note that to Lz(0, T; U) because of (3.23) (since 2(1-a-2fl)< 1) and Lemma 3.10
(with J-[0, T]). Now let 33o(.) be the function (3.1) corresponding to o(’). Then

fio L2(0, T; H) by Lemma 3.3(i). Moreover, comparing (3.1) with (3.20), and taking
into account (3.16), we see that (3.37) holds. Consequently (3.40) implies (3.36). In
addition, evaluating P(0) Yo by means of (3.21) with T T, we easily check that (3.35)
also holds. Next, setting p(t):= P(t)o(t), (3.40) and (3.37) immediately yield

lo( t) S( t)- G( t)*A( t)*p( t);

on the other hand, by (3.37) and (3.22) with T= T we obtain the last equation in
(3.38), so that the pair (to, rio) satisfies (3.38).

In order to conclude the proof of the theorem, it is sufficient to show that"
(a) If (o, rio) is a solution of the system (3.38) in L2(0, T; U) Lz(0, T; H), then

Uo is an optimal control;
(b) The optimal control is unique.

From the equality

(Zl z1) (z2 z2) (z1 z2 ]z1 z2) -- 2 Re (z2 ]z1
which holds true for any inner product, we derive for each u L2(0, T; U), denoting
by y(-) the corresponding function (3.1)

(3.41) J(u)-J(o) Ii(u, o)+ I2(u, o),

where J(. is the cost functional appearing in (3.10) and

I(u, ao):- {(M(t)[y(t)- o(t)][y(t)- o(t))/-/

+(N(t)[u(t)-o(t)]lu(t)-o(t))t} at

+(P.[y(T)- o(T)][y(T)- o(T))H,

/2(u, ao) := 2 Re {(M(t)f’o(t)]y(t)-o(t))n+(N(t)ao(t)[u(t)-ao(t))t}dt

+ 2 Re (Pfo(T)lY(T)- o(T))..
Now, using (3.1) and integrating by parts,

I(u, o)= 2 Re (M(t) o(t)l U(t, s)A(s)G(s)[u(s)-o(S)])Hdt

+ (N(s)ao(S)lU(S)- ao(S)) t

U(T, s)A(s)G(s)[u(s)-ao(S)]). as,
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and by the last two identities in (3.38) we easily get

I2(u, 0)=2 Re (-G(s)*A(s)*p(s)+ N(s)ao(S)lU(S)-ao(S))tds=O.

On the other hand, clearly, Ii(u, 0) =>0, so that (3.41) yields

J(u)>-J(ao) VuL(O, T; U),

i.e., o is an optimal control. This proves (a).
Finally, if t7 is another optimal control, the equality J(ffo)= J() implies

I1(5, /o) 0,

and by the uniform coerciveness of N(t) (see (3.12)) we obtain fi o. This proves
(b). The proof of Theorem 3.14 is complete.
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APPLICATIONS OF A SPLITTING ALGORITHM TO DECOMPOSITION
IN CONVEX PROGRAMMING AND VARIATIONAL INEQUALITIES*

PAUL TSENG

Abstract. Recently Han and Lou proposed a highly parallelizable decomposition algorithm for minimiz-
ing a strongly convex cost over the intersection of closed convex sets. It is shown that their algorithm is in
fact a special case of a splitting algorithm analyzed by Gabay for finding a zero of the sum of two maximal
monotone operators. Gabay’s convergence analysis for the splitting algorithm is sharpened, and new
applications of this algorithm to variational inequalities, convex programming, and the solution of linear
complementarity problems are proposed. For convex programs with a certain separable structure, a multiplier
method that is closely related to the alternating direction method of multipliers of Gabay-Mercier and of
Glowinski-Marrocco, but which uses both ordinary and augmented Lagrangians, is obtained.

Key words, maximal monotone operator, augmented Lagrangian, alternating minimization

AMS(MOS) subject classifications. 49, 90

1. Introduction. One of the most important applications of convex duality theory
is in decomposition algorithms for solving problems with special structure. A canonical
example is the following separable convex programming problem

minimize f(x) + g(z)
(1.1) subject to Ax + Bz b,

where f: t
_
(_, ] and g:t" - (-, ] are given convex functions, A is a given

r n matrix, B is a given r m matrix, and b is a given vector in Yt r. In our notation,
all vectors are column vectors and Yt k denotes the/c-dimensional Euclidean space.

By attaching a Lagrange multiplier vector pc r to the constraints in (1.1), the
problem (1.1) can be decomposed into two independent problems involving, respec-
tively, x and z. One algorithm based on this dual approach, proposed by Uzawa [61]
and others, operates by successively minimizing the Lagrangian function

L(x,z,p)=f(x)+g(z)+(p, b-Ax-Bz),

with respect to x and z (with p fixed) and then updating the multipliers by the iteration

p := p+ c(b-Ax-Bz),

where e is a positive stepsize and (.,.) denotes the usual Euclidean inner product.
(We assume for the sake of discussion that the minimum above is attained.) It can be
shown that this algorithm is convergent if both f and g are strongly convex and c is
chosen to be sufficiently small. (In this case the dual functional defined by q(p)=
minx, L(x, z, p) is ditterentiable and this algorithm can be viewed as a gradient method
for maximizing q.)

Unfortunately, for many problems of interest, the function f may be strongly
convex but not g. This is particularly the case when a problem is transformed in a way
to bring about a structure that is favorable for decomposition (see 4 for an example).

* Received by the editors November 21, 1988; accepted for publication (in revised form) January 18, 1990.
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nology, Cambridge, Massachusetts 02139. This research was partially supported by United States Army
Research Office contract DAAL03-86-K-0171 (Center for Intelligent Control Systems), and by National
Science Foundation grant NSF-ECS-8519058.
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A solution to this difficulty is suggested by a recent work of Han and Lou. In [28]
they proposed a decomposition algorithm for minimizing a strongly convex function
over the intersection of a finite collection of closed convex sets. It can be shown, by
introducing auxiliary variables, that this convex program is a special case of (1.1) (see

4). Moreover, it can be shown that their algorithm is similar to the dual gradient
method above, except for the key difference that the Lagrangian function is
replaced by an augmented Lagrangian function when the minimization is taken with
respect to z.

The above discussion suggests the following generalization of the Han and Lou
algorithm for solving the general problem (1.1). (The main interest here is in problems
wheref is strongly convex and separable but g is not strongly convex.) At each iteration
of this algorithm, the ordinary Lagrangian L(x, z, p) is first minimized with respect to
x (with z and p held fixed), and then the augmented Lagrangian

Lc(x, z, p)= L(x, z, p)+ cllax + Bz-bll/2
is minimized with respect to z (with x and p held fixed), where I1" denotes the norm
induced by (.,.), i.e., Ilxll-,/<x, x>. Finally, the multipliers are updated according to
the usual augmented Lagrangian iteration

p := p+ c(b-Ax- Bz),

and the process is repeated. This algorithm, which for ease of reference will be called
the alternating minimization algorithm, has the nice feature that, if B has full column
rank, then both minimizations involve strongly convex objective functions. Moreover,
if f is separable (in addition to being strongly convex), then the first minimization is
also separable--a feature that makes this algorithm particularly suitable for problems
where f is separable and g is such that the minimization of the augmented Lagrangian
with respect to z is easily carried out.

The above approachof introducing a form of regularization to induce positive
curvature in the objective functions is not new. It was first employed in the alternating
direction method of multipliers, proposed by Gabay and Mercier [20], Glowinski and
Marrocco [25] and extended by Gabay [17] (also see [4], [13], [14], [16], [18], [22],
23 ], 58 for related works), which is another multiplier method that alternates between
minimization with respect to x and minimization with respect to z. The only difference
between this algorithm and the one above (i.e., the alternating minimization algorithm)
is that, at each iteration, x is updated by minimizing the augmented Lagrangian rather
than the ordinary Lagrangian as in the above algorithm. The quadratic term of the
augmented Lagrangian adversely affects the decomposition of the minimization with
respect to x based on separability properties of f, and this is an advantage for the
above algorithm. On the other hand, in contrast with the alternating direction method
of multipliers, the penalty parameter c in the above algorithm must be chosen from a
restricted range (as will be seen later), usually through trial and error.

It turns out that the alternating minimization algorithm is itself a dual application
of an algorithm, suggested by Lions and Mercier and Passty and studied extensively
by Gabay, for finding a zero of the sum of two maximal monotone operators. (Such
operators have been studied extensively owing to their role in convex analysis and in
solving certain partial differential equations. Finding a zero ofthe sum ofthese operators
is a fundamental problem (see for example [5], [11], [12], [34], [50], [57]).) Let Y( be
a real Hilbert space and let II: Y(-* Y( and : Yg- be two maximal monotone
operators such that 1-I -1 is in addition strongly monotone. We associate with 1I and
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the following problem:

(1.2) Find p* satisfying 0 6 H(p*) + (p*).
Lions and Mercier [34] and, independently, Passty [51 suggested the following splitting
iteration for solving (1.2), whereby a forward Euler step for H is alternated with a
backward Euler step for , i.e.,

(1.3) p := [I + c]-1[I cII]p,

with c being some positive stepsize. Passty showed that, under certain assumptions,
the weighted average of the iterates generated by (1.3), weighted by the respective
stepsizes, converges to a solution of (1.2). (Interestingly, Passty’s result does not require
1-I-1 to be strongly monotone.) The first "practical" convergence result was given by
Gabay [19] (also see [17, Chap. 6]), who showed that the iterates converge weakly to
a solution of (1.2) if c is fixed and is strictly less than twice the modulus of 1-I -1. Gabay
also gave sufficient conditions for the strong convergence of the iterates and discussed
applications of the splitting iteration to decomposition in convex programming and
variational inequalities. However, Gabay’s applications were to the original problem
(giving rise to methods such as that of Bruck [6] and of Goldstein [26]) rather than
to the dual. Finally, we remark that Lemaire [32] recently gave a detailed convergence
analysis for (1.3) when is the subdifferential of a closed convex function and II is
in addition strongly monotone.

The purpose of this paper is twofold: (1) to show that the alternating minimization
algorithm (and hence the algorithm of Han and Lou) is an application of the iteration
(1.3) to the dual of (1.1) and, (2) to give additional dual applications of (1.3) to
decomposition in convex programming and variational inequalities. We begin by giving
in 2 a proof of convergence for the iteration (1.3)indifferent from one given by
Gabay--that does not require the stepsize c to be fixed and shows that, if either H or

is strongly monotone, then the convergence is at least linear. In 3 we apply (1.3)
to variational inequalities possessing a certain separable structure to obtain a new
decomposition algorithm for this problem. The latter algorithm in turn is applied, in
4, to (1.1) to obtain the alternating minimization algorithm and, in 5, to linear

complementarity problems with positive semi-definite matrices to obtain a new matrix
splitting algorithm for these problems.

We briefly describe the notation used throughout this paper. For any real matrix
E, we denote by E r the transpose of E and by I1 the L2-norm of E, i.e., lie is the
square root of the largest eigenvalue of E rE. For any set fl, we denote by 6(. the
indicator function for l), i.e., 6,(x) is zero if x 12 and is otherwise. For any real
Hilbert space Y( endowed with an inner product (.,.), we say that a multifunction
T"- is a monotone operator if

(y y’, x x’) -> 0 whenever y T(x), y’ T(x’).

It is said to be maximal monotone if, in addition, the graph

{(x, y) Ygx ly T(x)}

is not properly contained in the graph of any other monotone operator T" Y(- . We
denote by @(T) the effective domain of T, i.e.,

(7") {x xl 7"(x) },

and by T-1 the inverse of T, i.e.,

(T-1)(y) {x ly T(x)}, Vy .
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It is easily seen from symmetry that the inverse of a maximal monotone operator is
also a maximal monotone operator. For any monotone operator T: , the modulus
of T will denote the largest nonnegative scalar r such that

(1.4) (y-y’,x-x’)>o[[x-x’ll e whenevery T(x),y’ T(x’),

where II" is the norm induced by (.,.), i.e., [[xll /(x, x). We will say that T is strongly
monotone (or coercive) if its modulus is positive. For any closed convex function
h:- (-oo, oo] and any x e , we denote by dom (h) the effective domain of h, i.e.,

dom (h) ={x l h(x) < oo},

and by Oh(x) the subdifferential of h at x, i.e.,

Oh(x) {y e Yg] h(x’) h(x) >= (y, x’- x) for all x’ }.

For any other real Hilbert space Y" endowed with an inner product (.,.) and any
continuous linear operator A V- Y( (see [62]), we will denote by A’: Y( V the adjoint
of A, i.e.,

(Ax, y) (x, A’y), Vx 7/’, y ,
and by Ilal[ the operator norm of A, i.e,

[[a[[ sup Ilaxl].

2. A splitting algorithm for the sum of two maximal monotone operators. Let ,
V, and be three real Hilbert spaces each equipped with an inner product. For
convenience, we will denote each of these inner products generically as (.,.) and the
norm induced by it as I1" [I, with the choice of the inner product being implied by the
context. Let V- V and F //V - //V be two maximal monotone operators, let A V-
and B: //V- be two continuous linear operators, and let b be an element of .
Consider the following problem [cf. (1.2)]:

(2.1) Find p* 3f satisfying b A(A’p*)+ BF(B’p*).

We make the following standing assumptions regarding (2.1):
Assumption A.
(a) (2.1) has a solution.
(b) - is strongly monotone with modulus or.

(c) BFB’ is a maximal monotone operator.
Notice that Assumption A(b) implies that- is surjective (see [5, Corollary 2.4]),

so that for every pc there exists an x V satisfying x Oi,(A’p). Moreover, there
exists an x* V satisfying

(2.2) x* (A’p*), V solutions p* of (2.1).

To see the latter, note that if p and Pe are two solutions of (2.1), then there exist

x (A’p), z F(B’p) such that b Ax + Bz and there exist x2 (A’pz), z
F(B’pe) such that b Axe + Bze. Hence,

0 (x2- x,, A’p2- A’p,)+ (z2- Zl, B’p2- B’pl)>--  llx2- x =,
where the inequality follows from the facts that F is monotone and that- is monotone
with modulus or. Since cr > 0, this shows x xe.
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Consider the following algorithm for solving (2.1): Begin with any p(0) Y(. At
the tth iteration, we are given a p(t) Y(; we generate the next iterate p(t + 1) Y( by
first computing an

(2.3a) x( t) (A’p( t)),

then a z(t) 7g" satisfying

(2.3b) z(t) e r(B’[p(t) c( t)(Ax( t) + Bz( t) b)]),

and finally setting

(2.3c) p( + 1 p(t) + c( t)( b Ax( t) Bz( t)),

where c(t) is some positive stepsize to be specified. We will show later that z(t) is
well defined [i.e., there exists a z(t) satisfying (2.3b)].

To see the connection between the above iteration (2.3a)-(2.3c) and the splitting
iteration (1.3), let us apply B to both sides of (2.3b). By using (2.3c), we then obtain

[p(t)-p(t + 1)]/c(t)+ b-Ax(t) BF(B’p(t + 1)),

which, when combined with (2.3a), yields

(2.4) p(t+ 1)=[I+c(t)BFB’]-l(c(t)b+[I-c(t)AA’]p(t)),

or, equivalently,

(2.5) p(t+ 1)=[I+c(t)]-l[I-c(t)H]p(t),

where we let II(p)= A(A’p)-b and F(p)= BF(B’p). The iteration (2.5) is clearly
of the form (1.3). In addition, F is maximal monotone [cf. Assumption A(c)] and H-1

is maximal strongly monotone (cf. [19, Prop. 4.1] and the maximal strongly monotone
property of-). A simple calculation shows that the modulus ofI-I- is equal to /IIAII.

Now we show that z(t) is well defined. Since BFB’ is by assumption a maximal
monotone operator, then by a result of Minty [41], the proximal mapping [I+
c(t)BFB’]- is single valued and defined on all of Y(, so that by (2.4), p(t + 1) is well
defined. This in turn shows that F(B’p(t + 1)) is nonempty so that, by (2.3b) and (2.3c),
there exists z(t) W satisfying (2.3b).

By using the relation (2.5), we can conclude from a result of Gabay 19, Thm. 6.1]
(also see [17, Chap. 6]) that {p(t)} converges weakly to a solution of (2.1), provided
that c(t) is fixed at some value between 0 and 2o/llAII (twice the modulus of I1-1)
for all t. Below we sharpen this result of Gabay by showing that {p(t)} converges
weakly even if c(t) is changing with t. Moreover, we show that both {x(t)} and {Bz(t)}
converge strongly, and if either ArbA’ or BFB’ is strongly monotone, then the con-
vergence is at least linear.

PROPOSITION 1. The sequences {x(t)}, {z(t)}, {p(t)} generated by (2.3a)-(2.3c)
are well defined. If in addition {c(t)} satisfies
(2.6) e<-_c(t)<-2r/llA}12-e, Vt,

for some e (0, /IIAII2], then the following hotd:
(a) {x(t)}- x* in the strong topology.
(b) {Bz(t)} b Ax* in the strong topology.
(c) {p(t)}- a solution of (2.1) in the weak topology.
(d) If either AA’ or BFB’ is strongly monotone, then {x(t)}, {Bz(t)}, {p(t)}

converge at least linearly with a convergence ratio of x/(1 62e2)/(1 + r/e2), where 6 and

7 denote the modulus of, respectively, AdpA’ and BFB’.
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The proof of Proposition 1, which is based on an argument used by Glowinski
and Le Tallec [23] (also see [4, 3.4.4]) for the alternating direction method of
multipliers, is given in Appendix A. It is unclear if the proof given by Gabay can be
extended to show Proposition since it uses a lemma of Opial [46] which requires
the algorithmic mapping to be stationary.

Note that Proposition 1 (b) implies that if B’B is an isomorphism of , then {z(t)}
converges. Also, it can be shown that Proposition 1 holds even if the solutions of (2.3a)
and (2.3b) are computed inexactly. Unfortunately, the amount of inexactness allowable
cannot be easily estimated. Also, notice that, by letting II(p)=AOp(A’p)-b and
(p)- BF(B’p), we can restrict our attention to iterations of the simpler form (2.5).
However, by doing so, we will only be able to infer the convergence of {Ax(t)}, not
the convergence of {x(t)}.

We have thus far assumed BFB’ to be maximal (it is automatically monotone
since F is monotone), but for practical uses we must translate this assumption into
conditions on F and B that are more easily verified. For this purpose, the following
equivalent set of conditions given by Gabay [19, proof of Prop. 4.1] (also see [17,
Chap. 6]) will be useful to us.

LEMMA 1. BFB’ is maximal monotone if and only if, for each c > O, the effective
domain of the multifunetion p- (F-1 + eB’B)-IB’p is all of.

By Lemma 1, BFB’ is maximal monotone if, for each c > 0, F- + cB’B is strongly
monotone (since F-+ cB’B is then surjective by [5, Corollary 2.4]), and the latter
holds if either B’B is an isomorphism of or if F-1 is strongly monotone (cf. (4.7)
and (4.8) in [19]). These requirements can, in certain special cases, be relaxed further.
For example, if F-1 is the subdifferential mapping of a closed proper convex function
g, then it suffices to require that the function z--> g(z)+ ]]Bzll 2 attains its minimum at
some point (see 4).

3. Application to variational inequalities. Let and be two polyhedral sets in,
respectively, n and ?m. Let R:"-" and S: m._). rn be two single valued
continuous functions and let f: "-* (-ee, oe] and g:"- (-oe, oe] be two closed
convex functions. Also, let A be an r x n matrix, B be an r x m matrix, and b be an
element of r. Consider the following problem:

Find x* and z* N satisfying Ax* + Bz* b and

(3.1) (x-x*,R(x*))+(z-z*,S(z*))+f(x)-f(x*)+g(z)-g(z*)>-O,

Vx , z Y satisfying Ax + Bz b.

This problem, called the variational inequality problem, has numerous applications to
numerical computation--including the solution of a system of equations, constrained
and unconstrained optimization, traffic assignment problems, game theory, and saddle
point problems (see [1], [4, 3.5], [9], [16], [22], [30]). For example, the convex
program (1.1) is a special case of (3.1) with R and S taken to be the zero functions.
In this section we will derive a decomposition algorithm for (3.1) by applying the
splitting iteration (2.3a)-(2.3c).

We make the following assumptions regarding (3.1).
Assumption B.
(a) (3.1) has a solution.
(b) R +Of is strongly monotone (with modulus or).
(c) For each c>0, the effective domain of the multifunction p->

(S+Og+O6+cBTB)-IBTp is all of r.
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(d) There exist xri (dom (f)) and zri(dom(g))cLr satisfying
Ax+Bz= b.

Part (c) of Assumption B seems a bit complicated, but notice that it holds
automatically if either S+Og is strongly monotone or if B has full column rank (cf.
Lemma 1). Part (d) of Assumption B combines the usual feasibility assumption for
(3.1) with a constraint qualification. The latter is required in order to assert the existence
of an optimal Lagrange multiplier vector associated with the constraints Ax + Bz b.
Note that we could have embedded the constraints x and z Lr in, respectively, f
and g by the use of the indicator functions 6 and 6. But had we done so, we would
not have been able to infer (from the available duality results) the existence of an
optimal Lagrange multiplier vector without making additional assumptions.

Since R + Of is strongly monotone, it is easily seen that the first n coordinates of
a solution of (3.1) are uniquely determined; i.e., there exists an x* f such that every
solution of (3.1) is of the form (x*, z*), where z* is some element of

We claim that (3.1) is a special case of the problem (2.1). To see this, let (x*, z*)
be a solution of the variational inequality (3.1). Then, it is easily seen that (x*, z*)
solves the following convex program:

(3.2)
minimize

subject to

(R(x*), x)+(S(z*), z)+f(x)+ g(z)

xW, zLr, Ax+Bz= b,

so that, by [54, Thm. 28.2] (also using Assumption B(d)), there exists an optimal
Lagrange multiplier vector p* Yt associated with the constraints Ax + Bz b. From
the Kuhn-Tucker conditions for (3.2) we then have

(3.3a) ATp* R(x*) + Of(x*) + 06e(x*),

(3.3b) B Tp, S(z*) + Og(z*) + 06(z*),

(3.3c) Ax* + Bz* b.

Let F" " -" and G" Yt ._.) tn be the multifunctions given by, respectively,

(3.4a) F(x) R(x) + Of(x) + 069:(x),

(3.4b) G(z) S(z)+Og(z)+O(z).

Then, we can write (3.3a)-(3.3c) equivalently as

(3.5) b AF-I(ATp*) + BG-’(BTp*).

Since both Of+06x and Og+O6 are maximal monotone (see Rockafellar [55]) and
both R and S are monotone and continuous, it is easily seen that both F and G are
maximal monotone. (In general, the sum of two maximal monotone operators need
not be maximal monotone.) Since F is, in addition, strongly monotone with modulus
tr [cf. Assumption B(b)], it then follows that the problem of finding a p* satisfying
(3.5) is a special case of (2.1), and moreover, parts (a) and (b) of Assumption A hold.
By Assumption B(d), for each e>0, the effective domain of the multifunction p
(G+ cBTB)-IBTp is all of r, SO that, by Lemma 1, BG-1BT is maximal monotone.
This shows that part (c) of Assumption A also holds.

Let us apply the splitting iteration (2.3a)-(2.3c) to the problem of finding a p*
satisfying (3.5). This generates a sequence of iterates {p(t)}, {x(t)} and {z(t)} according
to the following iteration: Given p(t), first compute an x(t) satisfying

(3.6a) (x-x(t),R(x(t))-Arp(t))+f(x)-f(x(t))>=O, Vx6,
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then compute a z(t) r satisfying

(3.6b)(Z z( t), S(z( t)) B r(p( t) c( t)(Ax( t) + Bz( t) b))) + g(z) g(z( t)) >= O,

VzY,

and finally update the multiplier vector by

(3.6c) p( + 1) p(t) + c( t)( b Ax( t) Bz( t)),

where c(t) is some positive stepsize. We leave the issue of computing x(t) and z(t)
open. (Methods for computing x(t) and z(t) are discussed in [4], [10], [16], [22], [30],
[49].)

Since Assumption A holds for (3.5), we immediately obtain from Proposition 1
the following proposition.

PROPOSITION 2. The sequence of iterates {x(t)}, {z(t)}, {p(t)} generated by (3.6a)-
(3.6c) are well defined. If in addition {c(t)} satisfies

e<-_c(t)<=Zcr/llallZ-e, /t,

for om o, /llAll=], then the following hold:
(a) {x(t)}-> x*.
(b) {Bz(t)} -> b ax*.
(c) {p(t)}- a solution of (3.5).
(d) If either AF-1Ar or BG-1Br is strongly monotone, where F and G are given

by (3.4a) and (3.4b), respectively, ther, {x(t)}, {Bz(t)}, {p(t)} converge at least linearly
with a convergence ratio of x/(1- tze2)/(1-f-r/2e2), where. 6 and rl denote the modulus
of respectively, AF-1Ar and BG-1B r.

It was pointed out to us by the referee that the relationship between (3.1) and
(3.5) also follows from a general duality framework studied by Gabay [19, 3]. In
particular, let and be two real Hilbert spaces, let A be a maximal monotone
operator on , let h:T’--> (-o, ] be a closed convex function, and let E be a
continuous linear operator from to . For each variational inequality of the form:

(3.7) Find u such that 0 A(u)+ E’Oh(Eu),

let us associate a dual variational inequality of the following form:

(3.8) Find A such that 0 A(A)+(0h)-I(A),
where A(A)= {-Evl-E’A A(v)} =-EA-I(-E’A). Gabay showed that, under the
qualification condition

(3.9) there exists u int (@(A)) such that Eu dom (h),

a vector u is a solution of (3.7) if and only if there exists a solution A of (3.8) such
that -E’A A(u) [19, Thm. 3.1]. Now, it is easily seen that (3.1) is a special case of
(3.7) where h is the indicator function of {-b}, A(x, z) F(x)+ G(z) with F and G
given by (3.4a), (3.4b), respectively, and E [-A -B]. Hence, we obtain from (3.8)
that the corresponding dual variational inequality (in the sense of Gabay) is

Find A such that OAF-I(ATA)+BG-I(BTA)-b,
which is exactly (3.5). An important advantage of Gabay’s duality result is that it
applies to general maximal monotone operators. However, the qualification condition
(3.9), when applied to (3.1), yields the condition: there exist x int (dom (f) c ) and
z int (dom (g) c ) satisfying Ax + Bz b, which is stronger than our qualification
condition, namely Assumption B(d).
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4. Application to separable convex programming: the alternating minimization
algorithm. Let us return to the separable convex program (1.1):

minimize f(x) / g(z)
(4.1)

subject to Ax + Bz b, x g, z ,
where f: "- (-, ], g:m_ (--C, ] are closed convex functions, A is an r n
matrix, B is an r m matrix, and b is a vector in r. In this section we will derive the
alternating minimization algorithm for solving (4.1) by applying the iteration (3.6a)-
(3.6c).

We make the following assumptions regarding (4.1).
Assumption C.
(a) f is strongly convex with modulus c > 0, i.e., for any A (0, 1), there holds

(4.2) Af(x)+(1-A)f(y)-f(Ax+(1-A)y)>=cA(1-A)[[x-yl] 2, Vxn, /yn.

(b) The function g(z)+ Ilnzll 2 attains its minimum at some point in
(c) There exist xri(dom(f)) and zri(dom(g)) satisfying

Ax+Bz= b.
Assumption C(c) implies that the problem (4.1) is feasible. We claim that (4.1)

in fact has an optimal solution. To see this, note that because f and g are closed and
f is strongly convex, if (4.1) does not have an optimal solution, then there must exist
z and w such that Bw =0 and g(z + Aw) is strictly decreasing with A >_-0--contradicting
Assumption C(b). Moreover, the strict convexity of f implies that the x component
of an optimal solution of (4.1) is unique, which we denote by x*.

Notice that Assumption C(b) holds if either g has a minimizer or B has full
column rank. If Assumption C(b) does not hold, but (4.1) has an optimal solution,
then we can define the perturbation function h(w)= inf{g(z)] w Bz, z }, which is
proper convex. If in addition h is closed, we can instead solve the reduced problem
minx,w{f(x)+h(w)lax+w=b}, which can be seen to satisfy parts (a) and (b) of
Assumption C.

(4.1) is clearly a special case of the variational inequality problem (3.1). Further-
more, the strong convexity condition (4.2) implies that Of is strongly monotone with
modulus 2a. Hence parts (a), (b), and (d) of Assumption B hold (with o-= 2a). Finally,
by Assumption C(b), for anyp r and e > 0, the function z
attains its minimum at some point z. Then, z satisfies BpOg(z)+ cBTBz, so part (b)
of Assumption B holds.

By applying the iteration (3.6a)-(3.6c) to (4.1), we obtain the following algorithm,
earlier named the alternating minimization algorithm, that generates a sequence of
iterates {x(t)}, {z(t)}, {p(t)} according to:

(4.3a) x(t) argmin {f(x) -(p(t), Ax)},
x

(4.3b) z(t) argmin {g(z)-(p(t), Bz)+ c( t)llAx t) + Bz b [[2/2},
z

(4.3c) p( + 1) p(t) + c( t)( b Ax( t) Bz( t)),

where each c(t) is some positive stepsize. (p(0) is arbitrarily chosen.)
Since Assumption B holds for this special case of (3.1), convergence of the above

algorithm follows from Proposition 2.
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PROPOSITION 3. The sequences {x(t)}, {z(t)}, {p(t)} generated by (4.3a)-(4.3c)
are well defined. If in addition { c(t)} satisfies

e<-c(t)<=4o/l[All-e, vt,

for some e (0, 2a/IIAII=], then the following hold:
(a) {x(t)}- x*.
(b) {Bz(t)}- b ax*.
(c) {p(t)}- an optimal Lagrange multiplier vector associated with the constraints

Ax+Bz= b.
(d) If either A(Of)-lAr or B(Og)-Br is strongly monotone, then the rate of

convergence of {x(t)}, {Bz(t)}, {p(t)} is at least linear.
(e) Ifthe convexfunction g(z) + []Bz[[ 2 has bounded level sets, then {z(t)} is bounded

and, for any of its limit points zoo, (x*, zoo) is an optimal solution of (4.1).
Proof Parts (a)-(d) follow directly from Proposition 2. To prove part (e), let z*

be an element of which, together with x*, forms an optimal solution of (4.1). Since
z(t) argminz {g(z)-(p(t+ 1), Bz)} for all [cf. (4.3b)-(4.3c)], we then have that

g(z(t))-(p(t+l),Bz(t))<-g(z*)-(p(t+l),Bz*), Vt.

Since {Bz(t)}- b- Ax*= Bz* and {p(t)} is bounded [cf. parts (b) and (c)], this yields

(4.4) limsup {g(z(t))} -< g(z*).

Hence g(z(t))+llBz(t)ll is bounded and, by hypothesis, (z(t)} is bounded. Since g
is closed, (4.4) implies that each limit point of {z(t)}, say zoo, satisfies g(zoo) <_- g(z*).
Since Bzoo= b-Ax* (cf. part (b)), then (x*, zoo) is feasible for (4.1) and its cost
f(x*)+ g(zoo) does not exceed f(x*)+ g(z*). This shows that (x*, z) is an optimal
solution of (4.1). [3

In practice, the threshold 4c/IIAII 2 is typically unknown, and some trial and error
may be required to select the sequence c(t). This is a drawback of the alternating
minimization algorithm.

Remark 1. Note that the hypothesis in Proposition 3(e) holds if B has full column
rank or if g has bounded level sets. In practice, the latter can always be enforced by
constraining z to be inside the ball {z ’ IIz[I-<_ p,} with x taken to be a very large
number. An example for which Proposition 3(d) applies is when f(x)= IIx-d112/2 for
some d " and A has full row rank. Straightforward calculation finds that
A(Of)-(Arp)=AArp+Ad and hence A(Of)-Ar is strongly monotone with a
modulus equal to the smallest eigenvalue of AAr.

Remark 2. In the special case where A =-I and f is the indicator function for
{0}, it can be seen that the alternating minimization algorithm reduces to the method
of multipliers [27], [29], [53] (also see [3], [4], [36], [52], [56]) for minimizing g(z)
subject to Bz b, i.e.,

z(t):argminz {g(z)-(p(t), Bz)+c(t)llb-Bzll/2}, p(t+ 1)=p(t)+c(t)(b-Bz(t)).

By Proposition 3 (and using the observation that the modulus of Of is "infinite"), if
{c(t)} is bounded away from zero, then both {Bz(t)} and {p(t)} converge.

Remark 3. In the special case where B =-I and g is the indicator function for
{0}, the alternating minimization algorithm can be seen to reduce to the dual gradient
method discussed in 1 for minimizing f(x) subject to Ax b, i.e.,

x(t) argmin {f(x) -(p(t), Ax)}, p(t+ 1):p(t)+c(t)(b-Ax(t)).
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By Proposition 3, if (c(t)} is bounded strictly between zero and 4a/llAll, then both
{x(t)} and {p(t)} converge. This method was first proposed by Uzawa [61] for the
more general case where f is strictly convex, but no explicit bound on the stepsizes
was given. Other discussions of this algorithm can be found in [3, 2.6] and in [15],
[31], [36], [52].

4.1 Minimization of a strongly convex function over the intersection of a finite
collection of closed convex sets. Consider the following problem.

minimize f(x)
(4.5)

subject to x

where f: n_> is a strongly convex differentiable function (with modulus, say, a)
and each i is a closed convex set in n. This is a well studied problem in optimization.
In particular, there has been proposed a number of algorithms for solving this problem
based on the splitting idea (see Lions and Temam [35] and Temam [59]). In this
section we show that the recent algorithm of Han and Lou [28] for solving this problem
is a special case of the alternating minimization algorithm; hence, it also uses the
splitting idea. Moreover, we will use Proposition 3 to improve the convergence results
given by Han and Lou.

We make the following assumption regarding (4.5).
Assumption D. Either (a) ri (1) " ri (Y)k) or (b) 1 c. c k and

all i’s are polyhedral sets.
Since g c. gk by Assumption D and f has bounded level sets (since f

is strongly convex), it follows that (4.5) has an optimal solution which, by the strict
convexity of f, is unique. We will denote this optimal solution by x*.

By introducing the auxiliary variables Zl, z2,..., Zk, we can transform (4.5) into
the following form:

minimize f(x) + g(z, ,Zk)
(4.6)

subject to x=zi, i=l,...,k,

where g: "k __> (_, 00] is the indicator function for . Y)k, i.e.,

g(z,. Zk)=E

The problem (4.6) is clearly a special case of (4.5) where f and g are as above, b is
the zero vector in "k, B is the negative of the kn kn identity matrix, and A is the
kn n matrix composed of kn n identity matrices stacked one on top of the next.
Moreover, sincef is strongly convex, part (a) of Assumption C holds. Since the function
(ZI,"" ",Zk)’-’>g(Zl,"" ",Zk)-’Zi ]lzi][ 2 has bounded level sets so that it attains its
minimum at some point, part (b) of Assumption C also holds. Finally, since dom (f)

and dom (g)= 1 ’’" k, Assumption D implies that part (c) of Assumption
C holds.

Motivated by the above observation, let us apply the alternating minimization
algorithm to the problem (4.6). This produces the following iteration:

(4.7a) x(t) argin {f(x)-., (pi(t), x)},
(4.7b) zi(t)=argmin{(pi(t),zi)+e(t)l]x(t)-zill2/2}, i=1,...,k,

Zii

(4.7c) pi(t+l)=pi(t)-k-C(t)(zi(t)--x(t)), i=1,’’ ",/,



130 PAUL TSENG

where Pi (i= 1,. ., k) is a Lagrange multiplier vector associated with the constraints
x zi and e(t) is some positive stepsize. (The initial multipliers pi(O) are chosen
arbitrarily.) Note that the iterations (4.7b)-(4.7c) are highly parallelizable, and the
same is true for iteration (4.7a) if f is separable.

Since Assumption C holds for this special case of (4.1), convergence of the iterates
generated by (4.7a)-(4.7c) follows from Proposition 3.

COROLLARY 1. The sequences {x(t)}, {z(t)}, {p(t)} generated by (4.7a)-(4.7c) are
well defined. If in addition { e(t) } satisfies

e<-_c(t)<-_4a/k-e, Vt,

for some e (0,2a/k], then the following hold:
(a) {x(t)} x*.
(b) {z(t)}- x*, for all i.

(c) {p(t)}- an optimal Lagrange multiplier vector associated with the constraints
x zi in (4.6), for all i.

To see the connection between the above algorithm and that of Han and Lou, let
f* denote the conjugate function of f [54], i.e., f*(y)=sup {(y, x)-f(x)} for all
y ". Since f is strongly convex, then f* is differentiable everywhere, so that (4.7a)
is equivalent to

(4.8a) x( t) Vf*( p( t))
Also (4.7b) can be written equivalently as

(4.8b) zi( t) P,(x( t) -p( t)/ e( t)), i= 1,..., k,

where P,(. denotes the orthogonal projection onto in the norm 1]. II. The iteration
(4.8a)-(4.8b), (4.7c) can be seen to be identical to that in the Han and Lou algorithm.
On the other hand, our results improve upon those obtained by Han and Lou since
their algorithm further restricts p(0) to be zero for all and e(t) to take on a fixed
value inside (0, 2a/k] for all t. In addition, Corollary 3 asserts convergence of the
iterates {x(t)}, {Zl(t)},’’’, {Zk(t)}, {p(t)} without requiring 1 c... c k to have a
nonempty interior (compare with [28, Thm. 4.9]). We remark that a different extension
of the Han and Lou algorithm which allows inexact minimization in (4.7a), (4.7b) was
recently proposed by Mouallif, Nguyen, and Strodiot [44].

5. Application to linear complementarity problems. Let M be an r x r positive
semidefinite (not necessarily symmetric) matrix, i.e., (p, Mp)>= 0 for all p. Let w be a
vector in . Consider the following problem associated with M and w:

(5.1) Find p* r satisfying Mp* + w>=O, p*>=O, (Mp* + w, p*) 0.

We assume that (5.1) has a solution. This problem, called the linear complementarity
problem (LCP for short), is a fundamental problem in optimization (see [2], [9], [37],
[45]).

One method for solving (5.1) is based on the notion of matrix splitting. In this
method, we fix a splitting (J, K) of M [47], i.e.,

(5.2) M=J+K.

At the tth iteration, we are given an iterate p(t)>-0 (p(O) is chosen arbitrarily); we
choose a relaxation parameter w(t)>O and then compute the next iterate p(t+ 1)
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satisfying the following linear complementarity condition

(5.3a) (w(t)I+K)p(t+l)-(w(t)I-J)p(t)+w>=O, p(t+l)->0,

(5.3b) ((w(t)I+K)p(t+l)-(to(t)I-J)p(t)+w,p(t+l))=O.

(Note that, in the absence of the nonnegativity constraints, the iteration (3.5a)-(3.5b)
reduces to the iteration (to(t)I + K)p(t + 1)= (w(t)I-J)p(t)-w, which is well known
in numerical analysis (see [47]).)

Convergence of the iterates p(t) generated by the matrix splitting iteration (5.3a)-
(5.3b) has been well studied (see [33], [37], [48]). However, convergence typically
requires that the solution is unique (in addition to other assumptions on the problem
and on the matrix splitting), which does not necessarily hold for the problem (5.1).
Below we apply the iteration (3.6a)-(3.6c) to the problem (5.1) to obtain a (new)
splitting (J, K) of M for which the iterates generated by (5.3a)-(5.3b) converge to a
solution of (5.1). To the best of our knowledge, this is the first matrix splitting algorithm
that is provably convergent on problems having possibly multiple solutions.

PROPOSITION 4. Let J and K be.matrices satisfying (5.2) and suppose that

(5.4a) J APA,
for some n n (n <-_ r) positive definite matrix P and some r x n matrix A, and

(5.4b) K CQC T,
for some m m (m <-- r) positive definite matrix Q and some r m matrix C. If 1/to (t)
is bounded strictly between zero and 2o-/IIAll = Vor all t, where cr is the smallest eigenvalue
of ((p-1)-+p-l)/2, then {p(t)} generated by (5.3a)-(5.3b) is well defined and con-
verges to a solution of (5.1). If, in addition, J is positive definite, then the rate of
convergence is at least linear.

Proof The basic idea of the proof is to use (5.4a)-(5.4b) to convert (5.1) into a

special case of (3.1). Then, we show that (3.6a)-(3.6c) applied to this special case is
identical to (5.3a)-(5.3b).

First, we introduce a slack variable s=Mp+w so that (5.1) can be written
equivalently as

Find p* and s* such that Mp*-s*=-w, s*-> 0, p*_>-0, (s*, p*)=0.

By using the observation that the set of conditions s _-> 0, p-_> 0, (s, p)= 0 is equivalent
to -p 06(s), where 6 is the indicator function for the nonnegative orthant in , we
obtain, upon using (5.4a)-(5.4b), that the above problem is equivalent to

Find p* and s* such that APArp*+CQCrp*-s*=-w, OO(s*)+p*.

By introducing the auxiliary variables x PArp and u QC Tp, we can write the above
problem as

Find p*, s*, x* and u* such that Ax*+ Cu*-s*=-w,
(.)

-p* O6(s*), Arp*=P-ix*, Crp*= Q-u*,
which in turn is equivalent to the following variational inequality problem:

Find (x*, u*, s*) such that Ax*+ Cu*-s*=-w, s*>=O, and

(5.6) (x-x*,P-x*)+(u-u*, Q-’z*)>-O,
for all (x, u, s) satisfying Ax + Cu s -w, s >= O.

Hence, (5.6) has a solution, and any solution of (5.1) is an optimal Lagrange multiplier
vector associated with the constraints Ax + Cu-s--w.
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By comparing (5.6) with (3.1), we see that (5.6) is a special case of (3.1) with A
as above and with B C- 1], b =-w, R(x)= P-ix, S(u, s)= Q-lu, f(x)= O, g(u, s)=
0, n, and Y x [0, )r. Moreover, since (5.6) has a solution and its constraint
set is polyhedral, parts (a) and (d) of Assumption B hold. Since P is positive definite,
then the operator x- P-ix is maximal strongly monotone (with modulus equal to the
smallest eigenvalue of ((p-1)T + P-)/2) and part (b) of Assumption B holds. Finally,
for each c>0, we have from the positive definite property of Q that (u, Q-lu)+ c]lCu-
sl12>0 for all (u,s)#O. This implies that, for each c>0, the operator (u,s)-
(Q-u, oB(s))+ c(CTCu CTs, -Cu + s) is maximal strongly monotone, so that it is
surjective (cf. [5, Corollary 2.4]) and part (c) of Assumption B holds.

Let us apply the iteration (3.6a)-(3.6c), with c(t)= 1/w(t), to this special case of
(3.1). This generates asequence of iterates {x(t)}, {u(t)}, {s(t)}, {p(t)} satisfying
p(t)>=O, s(t)>-O, and

(x--x(t),P-ax(t)--aTp(t))>--O, Vxn,
(u-u(t), Q-u(t)-CT(p(t)-(ax(t)+Cu(t)-s(t)-b)/w(t)))

+(s-s(t),p(t)-(Ax(t)+Cu(t)-s(t)-b)/w(t))>-O, Vum, Vs[O, oe) ,
p(t+ 1)=p(t)+(b-Ax(t)-Cu(t)+s(t))/w(t),

which can be seen as equivalent to

(5.7a) 0= P-Ix(t)-aTp(t),

(5.7b) O=Q-u(t)-CTp(t+l),

(5.7c) p(t+ 1)-->0, s(t)>--O, (p(t+ 1), s(t)) 0,

(5.7d) p( + 1) p( t) + b Ax( t) Cu( t) + s( t))/ oo( t).

Now the conditions (5.7a), (5.7b) are equivalent to, respectively,

x(t)=PATp(t), u(t)=QCTp(t+l),

which, when combined with (5.7c) and (5.7d), yield

(I + CQCr/ w( t))p( + 1) (I APATW( t))p( t) b w(t) s( t)/ w( t) >= O,

p(t+ 1)>-0, (p(t+ 1), s(t)) 0.

By (5.4a)-(5.4b), the above iteration is exactly (5.3a)-(5.3b). Moreover, Proposition
2(c) shows that {p(t)} is well defined and converges to a solution of (5.1). If in addition
J APAT is positive definite, then Proposition 2(d) shows that {p(t)} converges at
least linearly.

Notice that if J is symmetric positive semidefinite, then J can always be factored
as J APAT for some. positive definite diagonal matrix P and some matrix A with
orthonormal columns (see [1], [47]), so that (5.4a) holds automatically and, in
addition, it can be seen that r= 1/llJII and Ilall 1. If K is symmetric positive
semidefinite, then by the same argument (5.4b) holds automatically. In this case, the
iteration (5.3a)-(5.3b) can be carried out by minimizing a convex quadratic function
over the nonnegative orthant. If K is not symmetric but is, say, tridiagonal, then a
direct method such as that described in [8] may be used.

To illustrate some of the advantages of the above matrix splitting, suppose that
M is of the form

M DPDT + EQE T,
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L
D E

FIG. l(a). e matrix [D E] has a staircase strctre.

,’/./////.

M K
FIG. l(b). The matrix M decomposes into the sum of an upper block diagonal matrix J and a lower block

diagonal matrix K.

where P and Q are positive definite diagonal matrices and D and E are matrices of
appropriate dimension (such form arises in, for example, quadratic programs with
strictly convex separable costs and linear inequality constraints). Suppose that we
choose J=DPD7" and K =EQEr. Then, if the matrix [D E] has the staircase
structure shown in Fig. 1 (a), the matrices J and K would have, respectively, the upper
and lower block diagonal form shown in Fig. l(b). In this case the problem (5.3a)-(5.3b)
is significantly smaller in dimension than the original problem (5.1).

Appendix A. In this appendix we prove Proposition 1. Let p* be any solution of
(2.1). Then, by (2.2),
(A.la) x*(A’p*),
and there exists some z* o/g satisfying

(A.lb) z*r(B’p*),

(A.lc) Ax* + Bz*= b.

From (2.3a)-(2.3c) we also have that, for all t, there holds

(A.2a) x( t) @(A’p( t)),
(A.2b) z(t)r(B’p(t+ 1)).
Fix any integer t_->0 and, for convenience, let c=c(t). Since A’p*@-l(x*) and
A’p(t) -l(x(t)) [cf. (A.la) and (A.2a)], we have (also using Assumption A(b)) that

0 (A’p(t) A’p*, x(t) x*)-(A’p(t) A’p*, x(t) x*)
->- llx(t) x* 112-(p(t) -p*, Ax(t) Ax*)

c(ax(t) ax*, ax(t) Ax*)-(p(t) -p*, ax(t) ax*)

cllax(t) ax*ll + oll x(t) x*ll
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Let 0 -c[IAx(t) Ax*ll + llx(t) x*ll =. The above relation then implies

0 >= (-p(t) + c(Ax(t) + Bz(t) b) + p*, Ax(t) Ax*)

(A.3) c(Bz( t) Bz*, Ax( t)- Ax*)+ 0

(-fi( + 1), Ax(t) Ax*) c(B(t), A(t)) + 0,

where we let (t) x(t) x*, (t) z(t) z*, fi( + 1) p( + 1) -p*, and the equality
follows from (2.3c). Similarly, since z*F(B’p*) and z(t)F(B’p(t+l)) [cf. (A.lb)
and (A.2b)], we have from the monotone propey of F that

0 (B’p(t + 1) B’p*, z(t) z*)-(B’p(t + 1) B’p*, z(t) z*)

(A.4) -(p( + 1) -p*, Bz( t) Bz*)

(-fi(t + 1), Bz(t) Bz*>.
Summing (A.3)-(A.4) and using the fact Ax*+ Bz*= b (cf. (A.lc)), we obtain

0 (-fi( + 1), ax(t) + Bz(t) b) c(B(t), a(t)) + 0

<(t + 1), (t + 1) -(t)>/c c<B(t), a(t)> + 0,

where (t)=p(t)-p* and the equality follows from (2.3c). This, together with the
identities (cf. (2.3c))

2(fi(t + 1), fi(t + 1) -fi(t)) I[fi(t + 1)-fi( t)[[ 2 + II(t + 1)1[ 2- lift( t)ll =,
II(t + 1)-fi(t) ll2/c2 IlA(t)ll 2 + IlB(t)ll + 2(B(t), A(t)),

implies that

0 II(t + 1)1[- II(t)ll + c[[A(t)]2 + cllB(t)ll + 2c0,

so that, by the definition of c and 0, there holds

II(t)ll = [[(t + 1)ll 2- c( t)2 [)A(t)ll + 2c( t) I(t)[[ 2 + c(t)ll B(t)ll
[(t + 1)1]+ c(t)(2-c(t)liAIl)ll(t)ll+

Since the choice of and p* was arbitrary and, by (2.6), both 2/IIAII- c(t) and c(t)
are bounded away from e, we obtain that, for any solution p* of (2.1), there holds

(A.5) lip(t)-p*ll IIp(t + 1) -p*ll + 1 All {Ix( t)- x*l] + IBm(t) + Ax* bll , t,

Equation (A.5) shows that {p(t)} is bounded and0
Ax*- b <, so that

(A.6) {x( t)} x* strongly, {Bz( t)} b Ax* strongly.

This proves pas (a) and (b).
To prove part (c), note that since (cf. (A.2b))

z(t)z r(’p(t+ l)), vt,

and BFB’ is maximal monotone, we have from (A.6) and the limit property for maximal
monotone operators (e.g., [5, Prop. 2.5]) that, ifp is any weak limit point of {p(t)},
then

b- Ax* BF(B’p).

Similarly, we have from (A.2a), (A.6) and the maximal monotone propey of AA’
(cf. [19, Prop. 4.1] and the maximal strong monotone property of -1) that

Ax* A(A’p).
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Hence, bA(A’p)+BF(B’p) and p solves (2.1). Then, by using an argument
given in [57, proof of Thm. 1] (attributed to Martinet [39]), we obtain that this weak
limit point p is unique. For completeness we give the argument here. Suppose that
{p(t)} has two weak limit points, say p and p. Then, both p and p are solutions
of (2.1), so that each can play the role of p* in (A.5), and we obtain the existence of
the limits.

lim lip(t) -pll , <, k 1, 2.

By writing

lip(t) -pTII lip(t) -pll = + 2(p(t) -PT, PT-P)+ IIPT- PTII ,
we see that the limit of {(p(t)-p, p-p)} must also exist and

2 lim (p(t)-pl,p-p)= (/z2)2 (1 -liPT-P2

Since p] is a weak limit point of {p(t)}, this limit cannot be different from 0. Hence

(2)2-(,)2=

By an analogous argument with p]O andpreversed in role, we also obtain (]Z1)2- (1,/2) 2 )
0. This is a contradiction and hence p is unique.

Finally we prove part (d). Let p* be a solution of (2.1). (p* is unique since
AOA’+ BFB’ is strongly monotone.) From (A.la)-(A.lb) and (A.2a)-(A.2b) we have
that

Ax* A(A’p*), b-Ax* BF(B’p*),

Ax( t) Acb(A’p( t)), Bz(t) 6 BF(B’p(t+ 1)), Vt.

Fix any integer t->_ 0. Since 6 and r/ are the moduli of AA’ and BFB’, respectively,
the above relation implies that

(Ax(t)-Ax*, p(t)-p*)>-_ 8[[p(t)-p*[I,
(Bz( t) + Ax* b, p( + 1) -p*) -> r/[[p(t + 1) -p*ll =,

and hence, by the Cauchy-Schwarz inequality,

IlAx( t) Ax*l] >= 6]lp( t) -p*[I,

[IBz(t)/Ax*-bl[ 7 [[p(t / 1)-p*[I.

This together with (A.5) yields

lip(t) -p’l[ = [[p(t + 1) -p*ll + =[Ip(t) -p*ll 2 + =llp(t + 1) -p’l[ =,
so that (since either 8 or r/ is positive) Ilp(t)-p*ll converges to zero at least linearly
with a convergence ratio of (1- e82)/(1 + er/e). Since we also have from (A.5) that

lip(t)-p*ll = llAIlllx( t)- x’l] + Bz(t) + Ax* bll 2,
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so that both Ilx(t)-x*[I and [IBz(t)+Ax*-bll are upper bounded by some constant
times [[p( t) -p*ll, then part (d) follows. (Note that, in this case, {p(t)} converges in
the strong topology.) [3
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ON THE LINEAR QUADRATIC GAUSSIAN PROBLEM WITH
CORRELATED NOISE AND ITS RELATION TO MINIMUM

VARIANCE CONTROL*

R. H. KWONG

Abstrnet. The linear quadratic Gaussian (LQG) stochastic control problem with correlated dynamic
and observation noise and no information delay is studied. An explicit feedback solution is given for finite
as well as infinite time problems. These results are then applied to minimum variance control of single-input
single-output ARMAX systems. The LQG controller and the minimum variance controller obtained using
input-output methods are shown to be identical for any system delay, extending a result of [5].

Key words. LQG stochastic control, correlated noise, minimum variance control, ARMAX systems,
certainty equivalence
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1. Introduction. The linear quadratic Gaussian (LQG) problem has been exten-
sively discussed in the literature [2], [4], [6], [7], [14]. The standard formulation of
the problem assumes either that the dynamic and the observation noise processes are
uncorrelated, or that the control at time k is a function of the observations up to time
k-1. There does not seem to be an explicit solution published for the problem in
which the dynamic and observation noise processes were correlated, and that the
control at time k is allowed to depend on observations up to time k. This problem we
shall henceforth refer to as the general LQG problem. The only result previously
published known to this author is given in [4]. However, this reference treats the
special case in which the quadratic cost does not have any terms involving the state,
except for the terminal penalty. Furthermore, the system matrix is assumed to be
invertible, and the solution given is not explicitly in feedback form. The method of
introducing output feedback and a new dynamic noise process uncorrelated with the
observation noise is mentioned in [14]. However, no explicit solution is given.

The presence of this gap in the LQG theory is rather surprising in that one of the
standard problems in stochastic control, minimum variance control for ARMAX
systems, when the ARMAX system is described in the innovations form [6], [7], is a
problem of this type. There exists a large body of literature on minimum variance
control of ARMAX systems [2], [8], [9], [13], [17]. Many results for multivariable
systems, minimum and nonminimum phase systems, as well as systems with general
cost weightings have been developed. These results have been further extended to treat
self-tuning control problems [3], [10]. Many successful applications of this control
scheme have also been documented [2], [11]. However, most of these treatments use
an input-output polynomial matrix approach. The connection between the LQG
problem formulated in state space form and that formulated in input-output form
does not seem to have been a topic of specific concern in these papers, and has not
been explicitly considered. In fact, there appears to have been some doubt expressed
in the literature 19] as to whether or not linear regulator design based on the innovations
state space model for ARMAX systems will lead to the same optimal control law as
that obtained using an input-output polynomial approach. In [5], such an explicit
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connection between polynomial and state space formulations of minimum variance
control was explored. However, that result was not obtained using a control gain
derived from the solution of a Riccati equation, so that strictly speaking, it did not
fully map the connections between state space LQG theory and polynomial minimum
variance control. Moreover, the treatment is restricted to only the unit delay case.

In this paper, we solve the general LQG problem and explore extensions and
applications of these results. In 2, we formulate the stochastic control problem and
point out the complications introduced by the correlation between the dynamic and
observation noise. In 3, we solve the stochastic control problem over a finite time
interval, giving the optimal control law in feedback form. The result is given a certainty
equivalence interpretation using an augmented state. The structure of the optimal
control allows for easy extension to infinite time problems. In particular, the steady
state version of the finite time control law is shown to be optimal for the average cost
per unit time problem. These results are then applied to the minimum variance control
problem for scalar ARMAX systems in 4. We prove the "folk theorem" that the state
space LQG theory gives the identical control law as the usual polynomial approach,
for any delay d >= 1. As far as we know, this is the first complete proof of this folk
theorem in the general delay case, extending the results of [5]. Section 5 contains the
concluding remarks.

2. The general LQG problem. We begin by stating some well-known results from
LQG theory, [6], [7], mainly to establish notation.

Consider the linear stochastic system

(2.1a) Xk+l AkXk 47 BkUk 47 CkWk, Xk X0

(2.1b) y, HkXk 47 ek;

Wk is assumed to be zero mean normalized Gaussian white noise, i.e., Ewkwf I6kj,
where 6kj is the Kronecker delta function: 6k 1 if k =j, 0 otherwise, ek is assumed
to be zero mean Gaussian white noise with Eekef Rk6kj. Wk and ek are allowed to
be correlated with EekWf Gk6kj. The initial state Xo is a Gaussian random variable
independent of Wk and ek, with mean mo and covariance Zo. Rk is assumed to satisfy
Rk >=31, some 3>0. The control Uk is allowed to take the form Uk k(y) where
yk {Yko, Yko+l, ", Yk}. The objective of control is to find, in the class of admissible
control laws, the one that minimizes

(2.2) J E x + 2 + 2

k k

where O->0 and Ilxll denotes the Euclidean vector norm (xTx) 1/2, It is well-known
[6], [7], that the conditional means /k_l E(xk/yk-l) and k/k=E(Xk/yk) are
generated by the following Kalman filtering equations

(2.3a) k/ k/k-147 PkH(HkPkH’ + Rk)-lpk

(2.3b) +,/ Ak:k/k + BkUk + CkG2(HkPkHT +

(2.3c) ko/o- mo
(2.3d) Vk Yk Hkk/k-.
The innovations process ’k is known to be a white noise process [6], [7]. For notational
convenience, we write

(2.4) Ak HkPkH+ Rk
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and

(2.5) Kk (AkPkH[ +
The error covariance Pk E[(Xk--k/k-1)(Xk--k/k-1) T] satisfies the filtering Riccati
difference equation

(2.6a)

(2.6b) Pko Eo.
It is also well known [6], [7] that if admissible control laws are restricted to be of the
form uk 4k(yk-1), SO that there is a one-step information delay, the optimal control
law is given by

(2.7) Uk -(BSk+IBk d- FTFk)-I(BTSk+IAk + FTDk)k/k_l
where Sk satisfies the control Riccati difference equation

Sk A[Sk+IAk + D2Dk- L2FkLk
SN=Q

(2.8a)

(2.8b)

with

(2.9) Fk B[S+,B +FF
assumed to be invertible for all k (guaranteed, for example, if FFk >-6I for some
6 > 0) and

T(2.10) Lk F-’(BS+,A + Fk Dk).

The above result does not require any conditions on the product CkG[ and is one
standard formulation of the certainty equivalence principle. On the other hand, if Uk
is allowed to be of the form dk(y k) but with CkG[ =0, then the optimal control law
is given by

(2.11) Uk --Lkk/k.
This is the standard formulation of the certainty equivalence principle for the case of
no information delay [4], [14].

If the system matrices are constant, and the criterion is

N--1

(2.12) J lim
1
E DXk + FUk

N-oo N k=O

under the appropriate structural assumptions of stabilizability and detectability, the
steady-state versions of (2.7) and (2.11) are again optimal for the one-step observation
delay and no delay cases, respectively, [6], [7], [14].

However, in the general case, where CkG[ # 0 and Uk k(yk), the control law
(2.11) will not be optimal. This is illustrated by the following simple example, using
the criterion J.

The criterion is

Xk+l Uk + CWk ]C < 1

Yk Xk + Wk.

1 N-1

J,= lim--E E x.
Noo N k=O
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For the standard form of certainty equivalence control (2.11), the steady-state version
yields Uk 0, resulting in Ja c2. However, the optimal control law is in fact uk --Cyk,

resulting in xk+l =--CXk and Ja =0.
Let us look at the standard approach [6], [7], [14] to derive the optimal control

law in the partial observations case. It involves reformulating the partial observations
problem into a perfect observations problem using the optimal estimate as the new
state. Since there is no information delay, we expect that 2k/k should be involved. If
we write a state equation for /, from (2.3a, (2.3b) we get

(2.13) k+l/k+l akk/k + BkUk + CkGA-luk + Pk+IHff+ 1A+l-1/Yk+l

The noise process on the right-hand side of (2.13) is, however, not white. This is why
the standard equivalence control law is not directly applicable here.

3. Explicit feedback solution of the general LQG problem. Even though in (2.13)
we do not get a standard state space model with white noise input for the process :/,
it does suggest the approach to solving the problem. Consider the augmented state

: [/ ,]. The process = satisfies the equation

(3.1) +1= 0 0
:g+ u+ I ’+"

If we now define the matrices

G
P+,H+ --1

I

then : satisfies the standard state equation with white noise input V+l

(3.2) k+ Akk + BkUk + CkVk+.
Observe that is known given y g.

We can now follow [6], [7], [14] to transform the quadratic cost criterion in terms
of the observed state process and u as follows"

(3.3) J E N/NQN/N + Dkk/k + GUk[[ 2 +tr QPN/N + DkPk/kD
k ko k k

where Pk/g E(Xk--k/k)(Xk--k/k) T is related to Pk by

(3.4) Pk k Pk PkH A{ HkPk

Note that the last two terms of (3.3) are independent of Uk. Hence by defining
Ok [Dk 0], O [ ], we see that minimizing J is equivalent to minimizing ]

(3.5) Y + + FkUk 2

k k

The following result, sOlving the general LQG problem over a finite time interval, may
now be stated.
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THEOREM 1. The optimal control law for the general LQG problem in the class of
control laws of the form Uk- Chk(y k) is given by

Uk -(BSk+IBk + FFk)-I[(BSk+IAk + FDk)k/k
(3.6) r CkG(HkPkH+Rk)-Id- Bk Sk+ lk].

Equivalently, the optimal control law can also be written as

(3.7a) Uk --Lkk/k-1 LkPkH+F1BSk+ICkG)A Vk

O

(3.7b) Uk --Lkk/k FBSk+ CkGR1(Yk Hk/k)
where Fk and Lk are defined in (2.9) and (2.10), respectively.

Proo It follows from (3.2) and (3.5) and the standard LQG theory for perfect
state observations [6], [7], [14] that the optimal control law is given by

(3.8) Uk --(Bk Sk+lk + FFk) [gk+,k +Fk]k
where Sk satisfies the Riccati difference equation analogous to (2.8) with Ak, Bk, Dk,
Q replacing Ak, Bk, Dk, and Q, respectively. Partitioning Sk into

&= s2( s3(

it is readily seen, by a straightforward calculation, that S(k) is in fact just S of (2.8).
Since -rB&+A [B2S(+ )A B2S(+ )GG2A] and BS+-r-+F2F=
F, substitution into (3.8) gives (3.6). Using (2.3a) and the definitions of L, P, and
K, (3.6) can immediately be rewritten as (3.7a). To show (3.7b), we note the easily
verified relation

(Heg2+- ( H../
On substituting this equation into (3.6), (3.7b) follows.

Observe that (3.6) reduces to the standard certainty equivalence control law (2.11)
if CG2 0. Although (2.11) is not optimal for the general LQG problem, we will now
give an interpretation of (3.7b) as a ceainty equivalence control law for an augmented
system.

Since we know [6], [7], [14] that the standard ceainty equivalence principle
applies when there is no correlation between dynamic and observation noise, we first
transform dynamic noise so that it becomes uncorrelated with the observation noise.

Let e w- G2Re. Then the system equation (2.1) can be written in the form

(3.9) x+ Ax+Bu + CGR(y Hx) + Ce.
The process e is uncorrelated with e. We now ask the following question. The results
of Theorem 1 give the optimal control as a feedback law on a state estimate. Can we
find an appropriate state and its corresponding perfectly observed linear quadratic
optimal control problem, whose solution gives the same feedback law as Theorem 1,
but now on the perfectly observed state? The choice is suggested by the optimal
feedback law of (3.7b). Define the augmented state

Pk {X[
The right-hand side of (3.7b) can be interpreted as a feedback law on the optimal
estimate of pk since E(pk/yk)=[f/k yf]L This suggests that pk maybethe appropri-
ate state process.
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We can write the following equation for Pk.

--Hk+l I Yk+l 0 0 Yk
(3.10)

ek+l d

This is in the form

(3.11) Ek+lPk+I AkPk + BkUk + Ok

with obvious definitions for Ek+I, "k, /k, and 0g. Since E exists for all k, we can
also write (3.11) in state form as follows"

(3 12) Pk+ E-1 kPk + E- kUk +E Okk+l k+l

The above discussion suggests that we solve the optimal control problem, assuming
that Pk is perfectly observed, and connect the resulting feedback law to that given in
(3.7b). Define Dk [Dk 0] and [ ]. The cost criterion for the perfectly observed
problem becomes

J 2 p+Fu +p p
k=0

The associated control Riccati equation is given by

s\ =,i- -’ -’

(3.1) (E- d+, -’

where E-T =(E- T
k+l k+l)

Let

We will need the following lemma.
LEMMA 1. Partition

en=S where S is che solution to the original Riccati equation (2.8).
Proo First we observe that

H
Hence

0 0
Ak, DkE

On premultiplying by Er and post-multiplying by E in (3.13), we have
^T ^T "T ’’Tdk Ak Sk+,Ak --(Ak Sk+lk -]- Dk Fk)(Bk Sk+lk -- FFk)-1

(3.14)
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Using the structure of Ak, /k, and /k, we find that
,T,(3 15) Bk Sk+lJk -Jr- FFk ITll T

-k Ok+IBk + Fk Fk

(3.16) k Sk+l k Ok+lBk + F[Dk.

On substitution into (3.14), we find 1 satisfies exactly the same equation as Sk. The
lemma is proved.

We can now establish the precise connection between the solution of the perfectly
observed problem with state Pk and cost criterion Jp, and the optimal control law (3.7b)
of Theorem 1. The optimal control law for the system (3.12) with cost criterion Jp is
given by

u -([E-T +,E-I k + F[Fk)-1 k+lSk+lEk+,+, +, (E- -’ +
(3.7)

" (B &+,A + Ffb)p.--(B&+,+FfG)-’ "
Using Lemma 1 in (3.17), we find that

u -F;’{Bf&+,{(&- GOR’H)x + GOfR’y] + FfDx}
(3.8)

-Lx F’BS+GGR’(y Hx).

On comparing (3.18) with (3.7b), we see that two feedback laws are identical. Thus
the optimal control law (3.7b) for the general LQG problem can be interpreted as a
ceffainty equivalence control law with the augmented state p [xf yf] in (3.17)
replaced by / [f/ y]L

Next we turn to infinite time problems. The one we will be primarily interested
in is the average cost per unit time problem, although results for the discounted cost
problem can be obtained as well using similar techniques. We assume the system to
be time-invariant so that it is described by

(3.19a) x+ Ax + Bu + Cw
(3.19b) y Hx + e
with the cost criterion G given by (2.12). Admissible control laws u are of the form
6(y) such that Jo exists and that limN(1/N)EllxN[[2=O. For the rest of this
section, we assume FTF> O.

Define , A B(FTF)-IFTD
b D F(FTF)-IFTD, A CGTR-1H

d=C[I-GTR-1G]1/2.

It is known [7] that if (A, B) is stabilizable and (,/]) detectable, there exists a unique
positive semidefinite solution to the control algebraic Riccati equation (CARE)

(3.20) S ATSA + DTD LTFL
where

F= BTSB + FTF
L= F-I(BTSA + FTD).
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Similarly, if (/, () is stabilizable and (H, A) detectable, there exists a unique positive
semidefinite solution to the filter algebraic Riccati equation (FARE)

p=APAT +CCT-KAK T(3.21)
where

and

A HPHT nt R

K (APHT + CGr)A-.
Let Mk (LPkH r + F-BTSCGr)A- and M (LPHT + F-BrSCGT)A-. Then it is
also true that limk_oo Kk K and limk_, Mk M.

As one may expect, the solution to the average cost per unit time problem is given
by the steady-state version of (3.6) or (3.7).

THEOREM 2. Assume that (A, B) and (, ) are stabilizable, and that (H, A) and
(), ) are detectable. Then the optimal control law for the average cost per unit time
problem is given by

Uk (LXk/k-1 + Mr’k)

(3.22) --(L’k/k + F-BrscGTA- f’k)

where Xk/k-1, Xk/k, and f’k are generated by the steady-state Kalman filter
(3.23a) Xk+l/k AXk/k_ nt- BUk nt- Kf’k
(3.23b)

(3.23c) Xk/k k/k-1 + PHTA- k.

Proof The proof is similar to that in [7] for the one-step information delay case.
Owing to the similarity of the calculations, some details will be omitted.

First we show that the control law

(3.24) Uk --Lk/k-- Mkk
is admissible and optimizes J. Then we will show that the control law (3.22) is also
admissible and yields the same optimal cost. Let X’k/k- Xk- k/k-l" Under the control
law (3.24), we obtain the closed-loop system

(3.25) 2k+/k (A- BL)k/k_ + (Kk aMk)HYk/k_ + (Kk BMk)ek

X’k+,/k (A- KkH)Yk/k- + Cwk Kkek).(3.26)
Define the matrices

Kk BMk H]A- KkH
A- BL (K BM)H1AC

0 A-KH

0 Kk- BMk]Nk= C --Kk J
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W is the covariance of the process 0k [w[ e’] . Using the fact that limk_ IIAZ-
A ll-0, limk_ IIN - Nil =0, and A is asymptotically stable [7], we see that A; is
exponentially stable. Hence the process Bk [[/k-1 y[/_]r has a correlation matrix,(k) E that satisfies

(3.27) Z,(k+I)=AZ(k)A+NWN[.
By the time-varying Lyapunov lemma [1], lim Zn (k)= Zn exists and is bounded.
This implies that  112 112 is bounded for all k. Thus (3.24) is an admissible control
law. Denote this control law by u’. Let

J(u) e xSx + 2 IlOx + Pupil 2

k=0

where S is the unique positive semidefinite solution of CARE (3.20). Theorem 1 yields
that Ju(u) Ju(u’). Furthermore, since for any admissible control law u,

1
lim JN(U) Lv(u) e
NN

we see that u’ is indeed optimal.
We now examine the closed-loop system under the time-invariant control law

sT S(3.22), denoted by u* Let k [Xk/k-1 X--Xk/k-1] Then

(3.28) flk+ acflk + NOk.
Putting E(k)= Ek[, we have immediately that limkE(k) =E exists, and that

(3.29) AEA+NWN
Hence u* is also admissible. Taking limit on both sides of (3.27), we see that Ev E.
A straightforward calculation similar to that in [7] now gives

L(u*)=L(u’).
Hence the control law u*, given by (3.22), is also optimal, completing the proof.

The form of the optimal control is of course entirely expected given the results
of Theorem 1 and standard LQG theory. In the next section, we shall use Theorem 2
to prove the explicit connection between LQG theory and minimum variance control
for ARMAX systems with general delay.

4. Minimum variance control for SISO ARMAX systems. Consider the single-input
single-output (SISO) ARMAX system

a(z-)y z-eB(z-1)u + C(z-)w(4.1)
where

A(z-1) 1 + al z-1 +. + a,,z-"

B(z-1) bd + bd+iZ- +" + b,z-n+d

C(z-1) 1 + Cl Z-1 - --Jr- CnZ-n
and Wk is an independent and identically distributed zero-mean Gaussian sequence
with Ew2 cr2, z -1 is the backward shift, and d _-> 1 is the system delay. Assume that
the polynomials B(q) and C(q) have no roots in Iql<_-1. Then it is well known [14]
that the optimal control law in the class of control laws of the form Uk Ckk(y k) which

N-1 Ey is given byminimizes limN_o (1 / N) Y k=O

G(z-)
(4.2) Uk B(z-1)F(z-1) yk
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where the polynomials F(z-1) and G(z-1), of degrees d- 1 and n-1, respectively,
are determined by the equation

(4.3) C(q) A(q)F(q)+ qdG(q).

Furthermore, the closed-loop system is stable.
Let us reformulate the minimum variance control problem in the LQG framework.

It is well known [6], [7] that the ARMAX description can be represented in innovation
state space form as follows:

(4.4a) Xk+l

0 0 -a
1

0

0

0 1

y [0

Xk "-t’- Uk -;t-
O

0
(4.4b) 0

Observe that

c,, a,,] AXk + bUk +Wk CWk

C1 al

+ +

(4.5a) hA-l b O, j < d

(4.5b) hAd-l b bd.
The cost criterion

N-1 1 N-1
2_._ 2Jay-lim E Ys lim--E (hxs):+o-

’- N j=o N--, N j=o

N-1 2so that Jay is minimized if and only if Jo limN- (1/N) k=O E (hXk) is minimized.
The minimum variance control problem becomes that of LQG control with average

cost per unit time criterion for the system described by (4.4a), (4.4b). Although the
two approaches have been widely referred to as giving the same control law, an explicit
proof cannot be found in the literature for the general delay case. In this section, we
will prove this "folk theorem" using the general results of the previous section.

First, we observe that the minimum variance control problem is a singular control
problem in LQG terminology since there is no control weighting. This singular problem
can be converted to a nonsingular one as shown in [12], [18]. The control algebraic
Riccati equation is given by

(4.6) S ATSA ATSb(b TSb )-I b TSA q- h Th

and it has been shown by Silverman 18] that the unique positive semidefinite solution
in the minimum phase case is given by

d-1

(4.7) S E As h rhAJ.
j=0

Furthermore the closed-loop system matrix A-BL is stable. It is also well known [7],
15] that with C(q) stable, the unique positive semidefinite solution to the filter algebraic

Riccati equation

P APAT _jr_ 0.2CCT-(APh T + cr2c)(hPh T + o.2)-l(hPAT ..lt O.2cT)
is P 0. According to Theorem 2, the optimal control law is given by

(4.8) Uk -F-lb TS(A:k/k_I + Kf’k)
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where Xk/k-1 satisfies

(4.9a) Sk+l/k (A- ch):S/k_l nt- bUk + Cyk

(4.9b) k Yk- h,S/k-1
Using (4.5) and (4.7) in (4.8) and (4.9), we can solve for the optimal controller transfer
function from y to u to give

Uk=---a hAd-l(A-ch) zI- I--abhAd-1 (A_ch)

I---d bhAd-1 c + hAd-lc Yk.

To show that the state space LQG theory gives the same controller as the ARMAX
minimum variance controller amounts to showing that (4.2) and (4.10) represents the
same transfer function. Although (4.10) looks formidable, it in fact has a great deal
of structure. This structure enables us to prove the following theorem.

THEOREM 3. Assume that d >-1 and that the polynomials B(q) and C(q) have no
roots in Iql --< 1. Then the control law given in (4.10) minimizes Jay and is identical to the
minimum variance control law (4.2). Furthermore, the closed-loop system is stable.

Proof. Theorem 2 and the preceding calculations show that the control law (4.10)
minimizes Jav, and that the closed-loop system is stable. It remains to show the
equivalence of (4.2) and (4.10). Let

A=A-ch

_(1 )B I--a bhAd-1

Then the controller of (4.10) is

1
(4.11) Uk -d hAd-l{"(ZI--)-l+ I}Cyk"

By the matrix inversion lemma, the term inside the curly brackets can be simplified to
give

1
(4.12) Uk -d hAd-l(I--z-lfi)-lcyk"

Let

1
(4.13) H(z-1) ffa hAd-l(I-z-l)-lc,
i.e., H(z-1) is the controller transfer function. For the unit delay case (d 1), the
reader is referred to [5] or [16]. Here we concentrate on the case d > 1.

We make repeated use of the matrix inversion lemma in the following form: For
any invertible matrix Z and vectors c,/3, whenever the indicated inverse exists,

Z-loTz-1

(4.14) (Z+ cq3r)-I Z-1-
1 +flrz-la

We also make use of the following result, proved in [15]:

(4.15)
G(z-1)=zh(zI-A)-lAd-lc.
A(z-1)
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We begin by noting that since d > 1, hb 0. Hence

(4.16) (I z-l/)-1 z zI A + ch +1 AbhAa_
ba

Applying (4.14), with zI-A+ ch identified as Z, a as (1/ba)Ab, and/3 r as hAa-

readily verify that

baH(z-1) hAa-lz zI A+ ch +- AbhAa-1 c

(4.17)
zhAa- zi A + ch c

1 + hAa-(zI-A+ ch)-(Ab/ba)"
In the Appendix, the following two equations are proved"

(4.18)

(4.19)

hAd-(zI-A+ ch)-Ic=

1 +hAd-l(zI-A+ch)-1Ab
bcl

G(z-1)
zC(z -1

On using (4.3), we see that (4.19) becomes

1 B(Z-1) C(z-1) z-dG(z-1)
bu A(z-1) C(z-)

1 N(2-1)F(z-1)
b. C(z-’)

1 + hAd-(zI-A+ch)-1Ab
bet

Substituting (4.18) and (4.20) into (4.17), we find

baa(z-1)
bdH(Z-1)

B(z-’)F(z-1)

we

zC(z-1

(A.2) (ii) 1 + hAa-(zI A + ch) -1
Ab

bd
1 B(z-1 [C(z-1)-7--.-dG(z-1)]
ba A(z-1) C(Z-1)

(A.1) (i) hAa-(zI-A+ch)-lc

Appendix. The following equations will be proved"

5. Conclusions. We have given an explicit solution in feedback form to the LQG
problem with correlated dynamic and observation noise and no information delay.
Certainty equivalence in its standard form is shown not to hold, but is shown to hold
for an augmented system. The general results are applied to the minimum variance
control problem for SISO ARMAX systems and the equivalence of the two approaches
explicitly demonstrated. It is believed that these results fill an apparent gap in the
LQG theory. Using these results, further connections between state space and ARMAX
formulations for multivariable stochastic control problems, examined, for example, in
[17], can be explored. Such investigations will be reported in forthcoming papers.

which is the desired result.
Remark. The control law (4.10) is identical to (4.2) whether or not B(q) is stable.

However, if B(q) is not stable, closed-loop stability no longer holds. The case where
B(q) is not stable but where the closed-loop system is required to be stable requires
a somewhat different treatment using the stabilizing rather than optimizing solution
of the Riccati equation. These results and extensions to the multivariable case will be
reported elsewhere.
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Proof of (i). Applying matrix inversion as in (4.14) to (zI-A+ch)-1, we have

hAd-l(zI A+ch)-lc h(zI A)-IAa-lc -h(zI-A)-lAa-ch(zI-A)-I C
l+h(zI-A)-lc

(A.3) h(zi_A)-lAd-lc
l+h(zi_A)-lc

It is easily verified that

(A.4) l+h(zI-A)-c A(z-)
We finally obtain, on using (4.15), that

Z
-1 G(Z-1) A(z-)hAa-(zI-A+ch)-c
A(z-) C(z-)

--1 G(Z-1
C(z-’)

Proof of (ii). Applying matrix inversion as before, we have that

(A.5)

Ab
hAd- Zi A + ch

bd

h(zi_A)_Ad_
Ab h(zI-A)-Ad-ch(zI-A)-l(Ab/bd)
bd 1 + h(zI-A)-c

[1 z zn-]A(Aa-lb/be)
zna(z-’)

z-G(z-) Ab
zna(z_,)C(z_,)[1 z zn-’]

be
on using the structure of h(zI-A)- and (4.15). Now observe that

b, b,_ bd+l
11Ad_b 0 0

bd bd bd
(A.6)

be
1
Ab= 0

b be+
1 0 0(1.7) b-- be be

and

(A.S) [1 z z’-]A=[z z"- -(az’-+...+a.)].
Substituting (A.6)-(A.8) into (A.5), we obtain

ab --Ei=I aizn-l+(1/be) Ej=d+I big"+e-j
hAe zi A+ ch

be z’A(z-)
(A.9) z’IG(z-1) 1

bjz._j+zna(z-)C(z-) be
Hence

1 + hAe-l(zI- A + ch)
Ab

be
bjzn+d-Z’+(1/bd)Zj=d+l

zna(z-1)
z-’G(z-’) 1

bjzn_j+zna(z-1)C(2-’) be
1 B(z-’) 1 -dO(z-’)B(z-’)
be A(z-) be C(z-)J(z-1)

be A(z-) C(z-)
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NOTE ON THE CONVERGENCE OF SIMULATED ANNEALING
ALGORITHMS*

U. FAIGLE- AND W. KERN?

Abstract. Generalizing the results of Faigle and Schrader Inform. Process. Lett., 27 (1988), pp. 189-194]
a short inductive proof is given that shows that the stationary distributions of a simulated annealing algorithm
converge to a distribution, where nonoptimal elements are generated with probability zero, provided that
the "weak reversibility condition" of Hajek [Math. Oper. Res., 13 (1988), pp. 311-329] holds.

Key words, simulated annealing, Markov process, combinatorial optimization, convergence

AMS(MOS) subject classifications. 90C40, 68J05

1. Introduction. Simulated annealing was proposed by Metropolis et al. [Met53]
as a Monte Carlo method for the evaluation of state equations in statistical mechanics.
Its potential as a promising tool for approximately solving large-scale combinatorial
optimization problems was later pointed out in [Kir83] and [Cer85].

Essentially, the method proceeds as follows. In order to generate an element of
minimal weight in a set with some neighborhood structure, we iteratively choose a
random neighbor of the current element. Whether this new element is accepted as the
new current element depends on the outcome of a second probabilistic experiment,
where the discriminating probability usually is based on the weights of the two elements
under consideration and on a temperature parameter > 0. Guided by thermodynamical
analogies, we hope to generate an element of "lowest energy," i.e., of minimal weight,
as 0 (see, e.g., [Bur84], [Ros85], or [Go186]).

We should make the scope of our investigation very clear. Any practical
implementation of simulated annealing will, of course, try to include a feature that
permits us to always keep track of the best solution discovered during the search
procedure so far. From a theoretical point of view, it is obvious that such a feature
guarantees that we encounter a globally best solution with probability eventually
approaching one even in a pure random search (without any simulated annealing
mechanism) (see also [Ani87]). Simulated annealing is a good deal more subtle in that
it tries to steer the search procedure in the "right direction," i.e., it tries to eventually
only generate solutions that are close to optimal with high probability.

However little is presently known about how to implement a simulated annealing
algorithm so that the best results are achieved. Thus reports about practical success
with simulated annealing are also skeptical (see, e.g., [Job84]).

From a theoretical point of view, a simulated annealing algorithm can be modeled
as an inhomogeneous Markov process, whose transition probabilities depend on the
parameter t. In this framework, however, a rigorous analysis of the convergence
behavior appears to be quite involved (see, e.g., [Haj88], [Chi88], [Tsi89]).

On the other hand, it is not too hard to show that for a large class of accepting
probability functions, the stationary distributions of the homogeneous Markov proces-
ses associated with each fixed converge with 0 to a (generally unknown) limiting
distribution, which, in fact, is also the limiting distribution of the inhomogeneous
process if the temperature is lowered "slowly enough," where "slowly enough" roughly
means so slowly that during the search procedure an optimal solution is encountered

* Received by the editors March 22, 1989; accepted for publication (in revised form) April 15, 1990.
? Faculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, the

Netherlands.
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at all with probability one (see Theorem 2 of [Ani87]). Somewhat surprisingly, this
result is independent of the particular neighborhood structure.

With respect to the goal of simulated annealing, therefore, the question arises of
whether the limiting distribution has the desirable property that nonoptimal elements
only occur with probability zero. As it turns out, the affirmative answer to this question
very much depends on the neighborhood structure. Roughly speaking, it seems that
this structure should be in a sense "symmetric." Thus an affirmative answer is given
in [Lun86] for numerically symmetric neighborhods, while in [Fai88] and [Con88]
this condition is relaxed to combinatorially symmetric neighborhoods.

The purpose of this paper is to provide a short argument for an even more general
model of symmetry, namely, the "weak reversibility" of Hajek [Haj88] (see also
[Con89]), which stipulates only that an element be reachable from an element j
without exceeding weight c whenever j is reachable from without exceeding weight c.

An incidental remark may be in order. Experimental results indicate that an
appropriate neighborhood structure might be even more important for a practically
successful simulated annealing algorithm than the choice of the temperature levels
(see, e.g., [Fai88a], [Go188]). To make this more precise, however, is beyond the current
theoretical understanding of simulated annealing.

We discuss simulated annealing algorithms in terms of Markov processes in 2.
The proof of our main result is given in 3.

2. Simulated annealing and Markov processes. In this section, we give a short
description of simulated annealing algorithms in terms of Markov processes.

Let S { 1, 2, , n} be a finite set whose elements are weighted with real numbers
ci (iS). Furthermore, let A (aij) be a stochastic (n x n)-matrix, i.e., a->0 and

a0=l (i=1,...,n).
j=l

With A we associate the (directed) neighborhood graph G G(A), whose vertices are
the elements of S and whose edges are those pairs (i,j) of vertices satisfying

i=j or a>0.
We will assume that G is strongly connected or, equivalently, that the homogeneous
Markov process with transition matrix A is irreducible. In particular, there is a unique
stationary distribution of A, i.e., a probability distribution r (7rl, , r,)" on S
such that

Note that the rows of the matrix

H lim Ak

k-

are identical to 7r (provided the limit exists).
Consider a family of accepting probability functions, i.e., functions f "N x N-N

such that for every choice of c’ c c’1, , , there exists some to with the properties
(i) 0 <f,(c’, c) <= 1 if cj--’> C and <= to

c,) if c, > ’>(ii) f(c’ c)f(c c’)=f(ci c ci and < to
where the index > 0 is a temperature parameter.

Examples are provided by the standard exponential accepting probabilities

f cl c) exp {-(c cl)/ t},
or by the functions

ft(ci C)= ci

Cj
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Relative to A and f, we define the stochastic matrix P(t)=(po(t)) via

a,..j if ci >-- c,
Po (t) aof (ci, c) if e; < cj.,

1--Ympm(t) ifi=j.

Note that the matrices A and P(t) possess the same neighborhood graph G!
A simulated annealing algorithm relative to (A, f) is a random walk on G according

to a chosen annealing schedule tl >- t2 " tl >--’’" with

lim tl O,

that is, a discrete inhomogeneous Markov process whose transition probabilities in
the /th step are given by the matrix P(t).

It follows from Theorem 2 of [Ani87] that

r* lim r(t)
t0

exists, where r(t) is the stationary distribution of P(t), for a large class of accepting
probability functions, including the standard

f(x, y) exp {-(y x)/t}.
Moreover, r* is the limiting distribution for the simulated annealing algorithm if the
temperature is lowered "slowly enough" (see also [Haj88]).

In this note, we are not interested in the choice of annealing schedules, but
concentrate on the problem of whether

lim -(t) 0
t-0

if s S is not optimal, i.e., if s So= {s S" er --> cs for all r S}.
Our next example shows that such a strong convergence property cannot be

expected if we do not impose further conditions on the neighborhood structure A.
Example. Let S {1, 2, 3} and let the neighborhood matrix A (ao) be defined

by a12--a23--a31- 1. This yields G(A) as follows:

Relative to the cost function c (i 1, 2, 3), we have 2 S. Yet, it is easy to see that
the standard exponential accepting function yields the stationary probability"

1
"n2( t)

2 + e_l/t
and hence limt_o rz(t) 1/2 0.
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We will, therefore, assume that our neighborhood structure satisfies the "weak
reversibility condition" relative to the weights ci, which was introduced by Hajek in
[Haj88]. To be more precise, we will assume that the neighborhood graph G satisfies
the following condition relative to Cl," ", cn"

(WR) Each connected component of G(ci) is strongly connected.

Here G(ci) is the graph induced by G on the vertex set S(ci)= {j S: c < ci}. Also
recall that a directed graph is said to be strongly connected if every pair (u, v) of
vertices is connected by a directed path from u to v.

We can now state our main result.
THEOREM 1. If (WR) holds for G, then there exists a constant K and some to> 0

such that

7r(t)<Kft(s, Cr)Trs(t)

whenever <-_ to, cr > cs.
COROLLARY 2. Assume that (WR) holds for G and that lim,_of(cs, Cr)=0 for all

Cr > Cs. Then

lim cry(t) 0
t->O

for all s S\S.
To get an idea for the proof ofTheorem 1, let us consider the case ofthe exponential

accepting function

f(x, y) exp {-(y x)/t}.

Suppose we knew that the associated stationary distributions 7r(t) were, in a sense,
"generalized Maxwell-Boltzmann," i.e., of the form

7r,( t) Z( t) k. e -c,J t,
where Z(t) ( k, e-C/t) -1 is a normalizing factor and the k’s are constants depending
only on s. Then, of course, Theorem would follow immediately.

While we suspect that, under (WR), the stationary distributions are indeed "gen-
eralized Maxwell-Boltzmann," it turns out that Theorem can be derived without first
establishing a special form of 7r(t). It suffices to show that the probabilities in question
can be bounded from above by probabilities of the Maxwell-Boltzmann type. We will
prove this in the next section.

3. Proof of the main result. For the proof of the main result, we replace the matrix
A by a family {A(t)} of stochastic matrices satisfying the e-condition:

(EC) There exists an e >0 such that for each and matrix A(t)=(ao(t)),
aij(t) # 0 implies a(t) -> e

whenever i# j, and all A(t)’s have the same neighborhood graph.

For example, A(t):= A, for all t, gives rise to such a family.
With the notation as in the previous section, we can now formulate our main

results as follows.
THEORE 3. Let {A(t)} be a family of irreducible stochastic matrices satisfying the

conditions (EC) and (WR). Then there exists a constant K and some to> 0 such that

7rr( t) <- Kf,( c,, cr)r( t)

whenever <- to, Cr > c,.
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Proof The proof is by induction on

m ISl+l{c,: i S}[,
i.e., the size of the ground set plus the number of distinct objective function values.
For m 2, there is nothing to prove. Thus assume m_>-3 and the theorem holds for
values smaller than m. Now, either there exist two optimal solutions and j e S with
aij(t) > 0 (Case below) or not (Case ii below). In the first case we modify the chain
by "glueing" and j into a single new optimal solution. This reduces the size of the
ground set and hence our inductive assumption applies to the modified problem. In
the second case, we "shift" all optimal solutions to the "second-to-best" level of the
objective function value. (Note that such a "second-to-best" level must exist, since
otherwise, in view of Case ii, the neighborhood graph would be disconnected.) This
reduces the number of "level sets," i.e., the number of distinct weight function values,
and hence, again, the inductive assumption applies to the modified problem. In both
cases we show that the inductive assumption for the (smaller) modified problem implies
that the claim also holds for the original problem. We now describe the above arguments
in more detail.

Case i. There exist two distinct optimal elements i, j SO such that aij(t)>= e > O.
Because G is strongly connected, we have 7ri(t) > 0 and r(t) > 0 for all > 0. Thus

A(t)=
7rj(t)

77"i( t) + Trj( t)
is well defined.

This allows us to identify and j as follows. For each matrix A(t), we carry out
the following construction:

(a) multiply the ith row by A (t)
(b) multiply the jth row by 1 A (t)
(c) add the new jth row to the new ith row
(d) delete the jth row
(e) add the new jth column to the new ith column
(f) delete the jth column.

It is clear that the resulting (n-1) (n-1)-matrices (t) are stochastic and the
underlying neighborhood graph G arises by contracting the edge (i, j) in G. Hence
condition (WR) obviously holds for (t).

Next let us verify that the family (t) satisfies an e-condition (EC). This amounts
to showing that the multipliers A (t) and 1- A (t) can be bounded from below by some
term which is independent of t. First note that

7rj( t) >= Pij( t)Tri( t) a,( t)Tri( t) >= e’rri( t) > 0).
Thus

1 A(t):
r:( E E

3"/’i (t) + 7rj(t) 1 + e 2

Furthermore, since G satisfies (WR), we conclude that there exists a path from j to
in G, all of whose vertices are optimal. By multiplying the transition probabilities
along this path, we get

Ti( t) >= en-17rj( t) > 0).
Thus

Ti(t) E
n-1 En-1

7i(t)-1-7j(t l+e-l= 2
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Hence both A(t) and 1-A(t) can be bounded from below by en-1/2. From this it is
obvious that the family (t) satisfies an e-condition (EC) with g :- en/2.

Summarizing, we have shown that (t) satisfies all conditions of Theorem 1.
Hence, by induction, we conclude that the claim holds for (t), i.e., there exist a
constant K and some to > 0 such that

"r(t) <= Ift(Cs, Cr)’s(t)
holds for the stationary distribution -k of the modified chain, whenever < to and Cr > Cs.

On the other hand, however, it is obvious that the stationary distribution 77 of the
modified chain/3(t) must be related to 7r(t) via

i( t) Tri( t) + zrj( t),
"kk(t) ’k(t) for k i,j.

But this further implies that Theorem 1 also holds for the original chain with K-
K. 2. e -(n-l).

Case ii. For every two distinct i, j 5;, aij( t) -O.
The idea for settling this case consists in reducing the number of different values

assumed by the weights ci. Thus we define

6 := min { ci" S\S} min {c" j S}
and consider the weights i given by

[ei+6 ifiS,
Ci--

ci if S\S.
By induction, we know that the stationary distribution -k(t) of the associated matrix
P(t) satisfies

"kr (t) --<_/f s, r) (t) whenever Cr > s,
for a suitable constant/.

Now consider the vector #(t) with components
7"g (t) if S\S,

ri(t):
[.ft(ci, Ci-+-6)Tri(t ifiS.

We claim that (t)/3(t) #(t), i.e., up to normalizing, #(t) is the stationary distribution
of/3(t).

To verify the claim, first recall that

2 Pij( l)7"ri(l) ’rrj(l).
is

Using the fact that

fiij(t) =O=pi(t) if i,j SO j

and the multiplicative property

f(c, e + 6)f(, m) f(c, Cm) if S, m S\S,
we get the following"

For S,
fiii( t)(ri( t) [1--mSO fiim( t) ] ft( ci, Ci -- 8 )Tri( t)

[ft( i, i + 8 mso Pim t) ] i( t)
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For S, j arbitrary,

Thus
rio( t)r( t) Pi( t)Tr( t).

fiij(t)i(t) ’j(t).
iS

Writing z(t)= Y (t), we therefore conclude that
iS

(t)=z-l(t)(t)
is the (unique) stationary distribution of/3(t).

But this implies that the theorem holds for P(t). Indeed, if Cr > Cs, then we have

7rr( t) <= gft( Cr, Cs)Trs( t)
for s SO and

"rrr(t) -< Ift(cs, Cr)s(t): /ft(cr, Cs)Trs(t)
for sS.
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THE SINGULAR H CONTROL PROBLEM WITH
DYNAMIC MEASUREMENT FEEDBACK*

A. A. STOORVOGEL?

Abstract. This paper is concerned with the H problem with measurement feedback. The problem is
to find a dynamic feedback from the measured output to the control input such that the closed-loop system
has an H norm strictly less than some a priori given bound y and such that the closed-loop system is

internally stable. Necessary and sufficient conditions are given under which such a feedback exists. The
only assumption that must be made is that there are no invariant zeros on the imaginary axis for two
subsystems. Contrary to recent publications no assumptions are made on the direct feedthrough matrices
of the plant. It turns out that this problem can be reduced to an almost disturbance decoupling problem
with measurement feedback and internal stability, i.e., the problem in which we can make the H norm

arbitrarily small.

Key words, quadratic matrix inequality, Riccati equation, almost disturbance decoupling, measurement
feedback, internal stability

AMS(MOS) subject classifications. 93B27, 93B50, 93C05, 93C35, 93C45, 93C60

1. Introduction. After the original formulation of the H problem in [22] much
work has been done on the solution of this problem. Initially almost all the work was
done in a mixture of time-domain and frequency-domain techniques (see [1], [4], [5]).
In the last few years two new methods have evolved: the polynomial approach (see
[9]) and a time-domain approach (see [2], [8], [12], [13], [20]).

This paper handles the problem in the time domain. This has the advantage that
we directly obtain an upper bound on the necessary dynamic order of the controller,
namely, the dynamic order of the original plant. A similar result was obtained in [10]
and [11] using frequency domain techniques. Moreover, in our opinion, the results
are more intuitive.

In the above-mentioned literature it was assumed that there are no invariant zeros
on the imaginary axis and that the direct feedthrough matrices of the plant are
nonsingular. In literature two methods have been proposed to tackle the H problem
without these assumptions:

Apply a small perturbation on the output matrices such that these assumptions
are satisfied for the perturbed system. Then solve the H problem for the
perturbed system. If the perturbation satisfies some prerequisites then a control-
ler works for the original system if it works for the perturbed system. However,
we do not know a priori how large the perturbations are allowed to be. Hence
if for a certain perturbation no suitable controller exists, then we are not sure
whether or not a suitable controller exists for a smaller perturbation (see [19]).
Apply a transformation in the frequency domain:

G(s)G(s):=G
l+es]

(e > 0).

If we can find a suitable controller for the original system, then we can find a
controller for the transformed plant for e small enough. Vice versa, if for some
e there exists a suitable controller for the transformed system then the same
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? Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box
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controller is a suitable controller for the original system. This approach has the
same disadvantage as the previous one since it is not clear how small we should
choose e. Another problem is that we still must make the assumption that the
transfer matrix from control input to output is left invertible as a rational matrix
(see 15]).

Recently, in the case of state feedback, a method of handling the singularity of
the direct feedthrough matrix (see [18]) without the above-mentioned disadvantages
was proposed. In the present paper we shall develop a method of handling these
singularities in the case of measurement feedback. Our results reduce to the knOwn
results in [2] and [20] in case these singularities do not occur.

The necessary and sufficient conditions under which there exists an internally
stabilizing dynamic compensator which makes the H norm strictly less than some a
priori given bound 3’ are formulated in a way that differs from those found in recent
publications [2], [20]. In these papers the results are formulated in terms of two Riccati
equations. However in the case where there are singularities of the direct feedthrough
matrices, these Riccati equations do not exist. We have two quadratic matrix inequalities
that replace the role of these Riccati equations. The solution of each of these quadratic
matrix inequalities must satisfy rank conditions. Moreover, we have a condition which
couples these two matrix inequalities. The spectral radius of the product of the two
solutions of these matrix inequalities should be smaller than a certain a priori given
upper bound. In the regular case the first rank condition together with the quadratic
matrix inequality reduces to a Riccati equation and the second rank condition guaran-
tees that it is a stabilizing solution of the Riccati equation.

The proof of our main result only uses the result for the state feedback H control
problem. Our proof will use ideas used in [2] to solve the regular H problem with
measurement feedback but is independent of the results in [2] and is entirely self-
contained.

The outline of the paper is as follows. In 2 we formulate the problem and present
the main result. Moreover, we show that in the regular case and the state feedback
case this result reduces to the known results in [2] and [18], respectively. In 3 it is
shown that the conditions for the existence of a suitable compensator as given in our
main theorem are necessary. It is also shown that the problem of finding such a
compensator is equivalent to finding such a compensator for another system, i.e., it is
shown that any compensator which internally stabilizes this new system and makes
the closed-loop H norm less than 3’ has the same properties when applied to the
original system and vice versa. This new system has some desirable properties and
using these properties in 4, it is shown that for this new system we can even make
the H norm arbitrarily small. In 5 a method for finding the desired compensator is
discussed. We finish in 6 with some concluding remarks. The proofs of 3 are given
in Appendix B since they are rather technical. Appendix A introduces a number of
suitably chosen bases and some of the properties the system matrices have in these
new bases. These will be needed in Appendix B.

2. Problem formulation and main results. We consider the linear, time-invariant,
finite-dimensional system:

(2.1) ;: Cx+ Dw,
C2x + D2u,

where x n is the state, u " the control input, w 1 the unknown disturbance,



162 A.A. STOORVOGEL

y P the measured output, and z q the unknown output to be controlled. A, B,
E, C1, C2, D1, and D2 are matrices of appropriate dimensions. We would like to
minimize the effect of the disturbance w on the output z, using the measured output
y, by finding an appropriate control input u. More precisely, we seek a dynamic
compensator F described by the following equations:

(2.2) "
Kp+ Ly,

tu Mp+ Ny,

such that after applying the feedback u Fy in the system (2.1), the resulting closed-
loop system, whose transfer matrix is denoted by GF, is internally stable and has
minimal H norm, i.e., such that

(2.3) IIG II := sup

is minimized over all possible dynamic feedback laws F that make the closed-loop
system internally stable. Here [M] denotes the largest singular value of the matrix
M. Internally stable means that when w 0 then for every initial state of the system
and controller the state ofthe system and controller in the interconnection both converge
to zero as m. If the controller is given by (2.2) and the system is given by (2.1) this
is equivalent to requiring that the following matrix is asymptotically stable:

LC
Although this is our ultimate goal, in this paper we shall derive necessary and sucient
conditions under which we can find a dynamic feedback law which makes the resulting
H norm of the closed-loop system strictly less than some a priori given bound and
such that the resulting closed-loop system is internally stable.

A central role in our study of the problem above will be played by the quadratic
matrix inequality. For any > 0 and matrix P we define the following matrix:

Tp+PA+CC2+T-2pEETp PB+CD2(2.5) F(P) :=
BTp+DC2 DD2

If F(P) 0, we say P is a solution of the quadratic matrix inequality at T. We also
define a dual version of this quadratic matrix inequality. For any T > 0 and matrix

nxn we define the following matrix:

G(O):=fAQ+QAT +EE T +T-2QCC2o QC+ED(2.)
CQ+DET DD

If G(Q) 0, we say that Q is a solution of the dual quadratic matrix inequality at
In addition to these two matrices we define two polynomial matrices, whose role is
again completely dual:

(2.7) L(P, s):= [sI A- T2EETp -B],

[sI-A-T-2QCC2](2.8) M(Q, s) :=
-C

We note that Lr(P,.s) is the controllability pencil associated with the system:

(2.9) (A + T-2EE Tp)x + BU,
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while Mr(Q, s) is the observability pencil associated with the system:

2 (A + y-2QCfC2)x,
(2.10)

y -ClX.
We define the following two transfer matrices which again play a dual role:

(2.11) G(s) := C2(sI A)-B + D2,

(2.12) H(s) := C,(sI- A)-IE + D1.
In the formulation of our main result we also require the concept of invariant zero of
the system Z (A, B, C, D). These are all s %) such that

(2.13) rank(sI-A -2) <nrmrank (sI-A -2)C C

Here "normrank" denotes the rank of a matrix as a matrix with entries in the field of
rational functions. Moreover let %)+(%), %)-) denote all s %) such that Re s > 0 (Re s
0, Re s < 0). Finally, let p(M) denote the spectral radius of the matrix M. We are now
in the position to formulate our main result.

THEOREM 2.1. Consider the system (2.1). Assume that the systems (A, B, Ce, D)
and (A, E, C1, DI) have no invariant zeros in %)o. Then the following two statements
are equivalent:

(i) There exists a linear, time-invariant, finite-dimensional dynamic compensator F
of the form (2.2) such that by applying u Fy in (2.1) the resulting dosed-loop
system, with transfer matrix GF, is internally stable and has H norm less than
y, i.e., GII < %

(ii) There exist positive semidefinite solutions P, Q ofthe quadratic matrix inequalities
F(P) >- 0 and G,( Q) >= 0 satisfying p(PQ) < y2, such that the following rank
conditions are satisfied:

(1) rank F(P) normrank G,

(2) rank G(Q) normrank H,

(L(P,s))(3) rank
F(P)

n +normrank G Vs %)U %)+,

(4) rank (Mr(Q, s) G(Q)) n+normrankHVs %)U %)+.

Remarks.
(i) Note that since P >- 0 and Q _-> 0 the matrix PQ has only real and nonnegative

eigenvalues.
(ii) The construction of a dynamic compensator satisfying (i) can be done

according to the method as described in 5. It turns out that it is always possible to
find a compensator of the same dynamic order as the original plant.

(iii) By Corollary A5 we know that a solution P of the quadratic matrix inequality
Fv(P) >= 0 satisfying (1) and (3) is unique. By dualizing Corollary A5 it can also be
shown that a solution Q of the dual quadratic matrix inequality Gv(Q)=> 0 satisfying
(2) and (4) is unique. The existence of P and Q can be checked via a state-space
transformation and investigating a reduced order Riccati equation.

(iv) We shall prove this theorem only for the case 3’ 1. The general result can
then be easily obtained by scaling.

Before we prove this result we look more closely at the result for two special cases.
State feedback: C I, D 0. In this case we have y x, i.e., we know the state

of the system. The first matrix inequality Fv(P)=> 0 together with rank conditions (1)
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and (3) does not depend on C1 or D1 so we cannot expect a simplification there.
However Gv(Q) does get a special form:

(2.14) G(Q)=(AQ+QAT+EET+y-2QCC2Q QO)"Q

Using this special form it can be easily seen that G(Q)_-> 0 if and only if Q 0. For
the rank conditions it is interesting to investigate the normrank of H. We have

(2.15) normrank H normrank (sI- A)-E rank E.

It can be easily checked, by using (2.15), that Q =0 satisfies rank conditions (2) and
(4). The condition p(PQ)< y2 is trivially satisfied when Q=0. We find that in this
case condition (ii) of Theorem 2.1 becomes"

There exists a positive semidefinite solution P ofthe matrix inequality F P) >-_ 0 such
that the following two rank conditions are satisfied:
(1) rank F(P) normrank G,

rank (L(P, s)(2)
F(P) ]

n + normrank G Vs cU c+,

which is exactly the result obtained in [18].
Regular case: D surjective and D2 injective. In this case it can be shown, in the

same way as in 18], that F(P)>_-0 together with rank condition (1) is equivalent to
the condition

ATp + PA + CC2+ T-ZPEETp-(PB + CDz)(DfD)-I(BTp + DfC) =0.

The dual version of this proof can be applied to the dual matrix inequality G,(Q)>=0
together with rank condition (2). These conditions turn out to be equivalent to the
condition:

AQ + QAT .qt_ EE T + T-zQCfC:Q QC+ ED)(D1DI )-I( c, Q + D1E T) O.

The two remaining rank conditions (3) and (4) turn out to be equivalent with the
requirement that the following two matrices are asymptotically stable:

A + ]/-2EE Tp B(DfD2)-’(BTp + DC2),
A + T-2QCC2 (QC+ ED)(DD()-1C.

Together with the remaining condition p(PQ)< y, we thus re-obtain exactly the
conditions derived in [2] and [6].

3. Reduction of the original problem to an almost disturbance decoupling problem. In
this section the implication (i)(ii) in Theorem 2.1 will be proven. Moreover, in case
the conditions (ii) of Theorem 2.1 are satisfied, we shall show that the problem of
finding a suitable compensator F for the system (2.1) is equivalent to finding a suitable
compensator F for a new system which has some very nice structural properties. In
the next section the H problem for this new system will be tackled. In the remainder
of this paper we assume y--1. The general result can be easily obtained by scaling.
Define F(P), G(Q), L(P, s), and M(Q, s) to be equal to F(P), G(Q), LI(P, s), and
M Q, s), respectively.

LEMMA 3.1. Assume that (A, B, C2, D) and (A, E, C1, D) have no invariant
zeros on o. Ifthere exists a linear, time-invariant, finite-dimensional dynamic compensator
F such that the resulting closed-loop system is internally stable and has H norm less
than one, then the following two conditions are satisfied:
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(i) There exists a solution P >- 0 of the quadratic matrix inequality F(P) >- 0 satisfy-
ing the following two rank conditions:

(1) rank F(P)= normrank G,

(L(P,s))(2) rank
F(P)

=n+normrank G /s

(ii) There exists a solution Q >-0 of the dual quadratic matrix inequality G(Q)>-_ 0
satisfying the following two rank conditions:

(1) rank G(Q) normrank H,
(2) rank(M(Q,s) G(Q))= n+normrank H /s cU

Proof Since there exists an internally stabilizing feedback which makes the H
norm less than one for the problem with measurement feedback there certainly also
exists an internally stabilizing feedback which makes the Hoo norm less than one in
the full information case, i.e., the case where both x and w are known. This implies,
according to [18], that there exists a matrix P satisfying the conditions in (i). By
dualization it can be easily shown that there also exists a matrix Q satisfying the
conditions in (ii). lq

Assume there exist P and Q satisfying the conditions in parts (i) and (ii) of
Lemma 3.1. We make the following factorization of F(P):

(3 1) F(P)--(c2T’p(C2,P- Dp)
DpT ]

where C,p and Dp are matrices of suitable dimensions. This can be done since
F(P) => O. We define the following system:

)p-- (A+EETp)xp + Bup + Ewp,
(3.2) y (G +DP)x+ Dw,

Ze C2,pXp + Dpup.

LEMMA 3.2. Let P satisfy Lemma 3.1(i). Moreover let an arbitrary linear time-
invariant finite-dimensional compensator F be given, described by (2.2). Consider the
following two systems, where the system on the left is the interconnection of (2.1) and
(2.2) and the system on the right is the interconnection of (3.2) and (2.2):

_z w ze I_ we

(3.3) Up

Then the following statements are equivalent:
(i) The system on the left is internally stable and its transfer matrixfrom w to z has

H norm less than one.
(ii) The system on the right is internally stable and its transfer matrix from Wp to

Zp has H norm less than one.

Proof See appendix B for the proof. [3

If for the original system (2.1) there exists an internally stabilizing, linear, time-

invariant, finite-dimensional compensator such that the resulting closed-loop matrix
has H norm less than one then, by applying Lemma 3.2, we know that the same

compensator is internally stabilizing for the new system (3.2) and yields a closed-loop
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transfer matrix with Hoo norm less than one. Hence if we consider for this new system
the two quadratic matrix inequalities we know from Lemma 3.1 that there exist positive
semidefinite solutions to these inequalities satisfying a number of rank conditions. We
shall now formalize this in the following lemma. Define Ap := (A + EE rp) and C1,p :=
(C1 + DIE rp). Then for arbitrary X and Y in nn we define the following matrices"

r Czp+XEErX XB+Cf,,pDp]AX+XAp+C2,
T DDp(3.4) F(X) :=

BTX+DpC2,p
AeY+ YA+Er+ YC,eC eY YC,e+D(3 5 6( :=

C,eY+Dr DD
(.6 (x, s := [s a x -1,

[sI-Ap- YCpC2,p](3.7) M(Ks):=
C1,P

Moreover, we define two new transfer matrices:

(3.8) ,(s) := C2,e(sI-Ae)-B + De,
(3.9) /(s) :- C1,p(sI-ap)-lE + D.

LEMMA 3.3. Let P and Q satisfy part (i) and part (ii) in Lemma 3.1, respectively.
Assume (A, B, C2, D2) and (A, E, C, D1) have no invariant zeros on o. Then we
have the following two results"

(i) X := 0 is a solution of the quadratic matrix inequality F(X)>=0 and satisfies
the following two rank conditions"

(1) rank F(X) normrank G,

(2) rank F(X) ]
n+normrank G Vs cU

(ii) There exist a matrix Y satisfying the quadratic matrix inequality G( Y)>-O
together with the following two rank conditions"

(1) rank G(Y) normrank H,
(2) rank (]( Y, s) ((Y)) n + normrank/- ’s U +,
if and only if I- QP is invertible. Moreover, in that case Y := (1- QP)-Q is
the unique solution. This matrix Y is positive semidefinite if and only if

(3.10) p(PQ)<l.

Proof See Appendix B for the proof.
Proof of (i)(ii) in Theorem 2.1. The first part can be obtained directly from

Lemma 3.1. By Lemma 3.2 we know that also for the transformed system Ep there
exists a dynamic compensator which internally stabilizes the system and makes the
Hoo norm less than one. By applying Lemma 3.1 to this new system, this implies that
there exists a matrix Y>-0 satisfying Lemma 3.3(ii). Hence by Lemma 3.3 we have
(3.10) and therefore all the conditions in Theorem 2.1(ii) are satisfied.

In the remainder of this section we assume that the conditions of Theorem 2.1(ii)
are satisfied.

In order to prove the implication (ii) (i) in Theorem 2.1 we transform the system
(3.2) once again. This time, however, we use the dualized version of the original
transformation. By Lemma 3.3 we know Y= (I Qp)-lQ >= 0 satisfies ((Y) ->_ 0. We
factorize G( Y)"

(311) G(Y)=
D,o p,o D
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where Ee,o and De,o are matrices of suitable dimensions. We define the following
system:

’P,O AP,QxP,O+ BP,QtIP,O + Ep,QW,
(3.12) p,o" Yp,o C,pXp,o + Dp,oW,

2p,Q C2,pXp,Q + DpUp,Q,

where

(3.13)

(3.14)

Ap,o := Ap -t- YC,,pC2,p,
Bp,Q := B + YC,pDp.

By applying Lemma 3.3 to the system .,p,Q with the corresponding matrix inequalities
we note that Xp,o := 0 and Yp, := 0 satisfy the matrix inequalities and the corresponding
rank conditions for this new system. It can be shown that this implies that

rank
[
| SI-AP’O -BP’o|\ n+rank (C2,P Dp) /sc l,.J +(3.15)

C,p Dp !
and

By applying Lemma 3.2 and its dualized version the following corollary can be
derived.

COROLLARY 3.4. Let an arbitrary compensator F of the form (2.2) be given. The
following two statements are equivalent:

(i) The compensator F when applied to the system , described by (2.1), is internally
stabilizing and the resulting closed-loop transfer matrix has Ho norm less than one.

(ii) The compensator F when applied to the system p,o, described by (3.12), is

internally stabilizing and the resulting closed-loop transfer matrix has Ho norm less than
one.

In the next section we shall show how to solve the H problem for a system
satisfying the extra conditions (3.15) and (3.16). It turns out that for this new system
we can even make the Hoo norm arbitrarily small.

4. The solution of the almost disturbance decoupling problem. Assume that the
following system is given:

2= Ax+ Bu + Ew
(4.1) " y ClX+ Dlw,

Z C2x -t- D2u

such that the following two conditions are satisfied:

(4.2) (M-A-B) =n+rank(C2 D2) Vsct_J+
C2 D2

and

(4.3)
sI A E

n + rank Vs U
C1 D1 D1

From the previous section we know that if the conditions in part (ii) of Theorem 2.1
are satisfied then it is always possible to transform our system into a new system that
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satisfies the conditions (4.2) and (4.3). Moreover, if a compensator F given by (2.2)
internally stabilizes this new system and makes the H norm of the resulting closed-loop
transfer matrix smaller than one, then it does the same with the closed-loop system
associated with the original system. In fact, we shall prove a stronger result.

THEOREM 4.1. Assume system (4.1) is given satisfying (4.2) and (4.3). Then for
all e > 0 there exists a linear, time-invariant, finite-dimensional dynamic compensator F
such that the closed-loop system is internally stable and has H norm less than e.

Remark. We note that even if for this new system we can make the H norm
arbitrarily small, for the original system we are only sure that the H norm will be
less than one. It is very well possible that a compensator for the new system yields an

H norm of say 0.0001 while the same compensator makes the H norm of the original
plant only 0.9999.

Before we can prove this result we have to do some preparatory work. We first
have to introduce a number of subspaces from geometric control theory as follows.

DEFINITION 4.2. Assume we have a system

(4.4) E. f: Ax + Bu,
y C2x + D2u.

We define the strongly controllable subspace -(ci) as the smallest subspace ff of n
for which there exists a mapping G such that

(4.5) (A+GC2)3-c

(4.6) Im (B + GD2) c -.
We also define the subspace -g(Eei) as the smallest subspace ff of n for which there
exists a matrix G such that (4.5) and (4.6) are satisfied and, moreover, A+ GC2[ n/-
is asymptotically stable. It is well known that these subspaces are well defined in this
way. A system is called strongly controllable if its strongly controllable subspace is
equal to the whole state space.

We also define the dual versions of these subspaces as follows.
DEFINITION 4.3. Assume we have a system

=Ax +Ew,
(4.7) Edi

y ClX + D1 u.

We define the weakly unobservable subspace (.di as the largest subspace V of "for which there exists a mapping F such that

(4.8) (A + EF)Uc ,
(4.9) (C1 + D1F) //’= {0}.

We also define the subspace Cg(-di as the largest subspace V for which there exists
a mapping F such that (4.8) and (4.9) are satisfied and, moreover, A+EFIT/" is
asymptotically stable. It is well known that these subspaces are well defined in this
way. A system is called strongly observable if its weakly unobservable subspace is equal
to {0}.

In order to calculate these subspaces the following lemma will come in handy.
LEMMh 4.4. (Eci) equals the limit of the following sequence of subspaces:

-O(.ci) ".’-- O, ’-iq-l(.ci) ".-" {X E n ::]) E -i(.ci) U m such that
(4.10)

x A+ Bu andC+ D2u 0}.
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It is well known (see [16]) that 3-i(ei) (i= 1, 2,...) is a nondecreasing sequence of
subspaces that attains its limit in a finite number ofsteps. In the same way 7/’(ai) equals
the limit of the following sequence of subspaces"

CO(,di) := rn, i+l(,ai := {X e " ::lt m, such that
(4.11)

Ax +E V(Yd) and Cx + D1 t 0}.

Moreover, if G is a mapping such that (4.5) and (4.6) are satisfied for --- -() and
if F is a mapping such that (4.8) and (4.9) are satisfied for 7/’= 7/’(Ea), then we have
the following two equalities"

(4.12) -g()=[-(Y)+b(A+GC2)]fq(-(Y)+C im DIA+GC2)
(4.13) 7Cg(Y.d) Y’(d) f3 Tg(A + EF) + < A + EF V(d) f3 E ker D).

Here b A + GC) denotes the modal subspace of the matrix A + GC with respect to the
closed right halfplane and g(A+ EF) denotes the modal subspace of the matrix A + EF
with respect to the open left halfplane. Finally, (A+ EF T’(d) (q E ker D) denotes the
smallest A+EF invariant subspace containing 7/’(d)f-]EkerD1 and (-(a)+
C im D21A+ GC2) denotes the largest A+ GC invariant subspace contained in
-(:e) + C im D.

Proof. The proof is almost entirely well known except possibly (4.12) and (4.13)
in case the D-matrices are unequal to zero. This can be proven by first showing that
there exists a G satisfying (4.5) and (4.6) for which (4.12) holds and after that, showing
that the equality is independent of our particular choice of G satisfying (4.5) and (4.6).
The same can be done for (4.13). Details are left to the reader.

We can express the rank conditions (4.2) and (4.3) in terms of these subspaces
(see [3], [17]) as follows.

LEMMA 4.5. Let system (4.1) be given. The rank condition (4.2) is satisfied if and
only if
(4.14) ///’g (-ci) -t- "("ci) n.
The rank condition (4.3) is satisfied if and only if
(4.15) T’(Y.a,) f’l -g(Za,) {0}.

Here c is given by (4.4) and a is given by (4.7).
Using this we can derive the following lemma.
LEMMA 4.6. Let system (4.1) be given satisfying (4.2) and (4.3). For all e > 0 there

exist mappings F and G such that A + BF and A + GC are asymptotically stable and,
moreover,

(4.16) II( C2 qt.. D2F)(sI A- BF)-llloo < 8

and

(4.17) II(sI-A-GC,)(E + GO1)11o < e.

Proof By Definition 4.3 we know there exists a mapping F such that

(4.18) (A + BF) 7#g() c

(4.19) C2 + D2F)g() {0},

and moreover, A+ B/3I Vg()is asymptotically stable. Define_ the canonical pr.ojection
1-I’"-+ "/Vg(). By (4.19) there exists a mapping C such that C2+D2F= CII.
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Moreover, by (4.18) there exists a mapping such that 1-I(A+BI6)=II. Finally,
define B := lib and the system:

A+ /u,
p+Du.

It can be easily shown by induction using the algorithm (4.10) that -(Zy)=()
for i=0, 1,.... Hence we have

(Xs) n(x)=

This implies that the system (4.20) is strongly controllable.
Define Fo such that ( + D2Fo)Dz 0 and define M such that ker D2 im M. It

can be easily checked that (E) (A+ BFo, BM, C + D2Fo, 0). Hence by Theorem
3.36 of {21] we know there exist an F such that

(4.21) II(e +

and such that A + BFo+ BMF is asymptotically stable.
Define F := + (Fo + M#)H; then

(4.23) n(A + F) (A + Fo+ BMF)n.

It can be easily shown that this implies that A + BF is asymptotically stable. Moreover,
we have

(4.24) C2 + D2F) e

for all > 0. Using (4.24), we find for all s i (use that le’i 1)"

II(C+ D:F)(sI-(A+ BF))-lll (C:+ D:F) e((A+BF)-sI)t dt

o

II(c=+ D2F) eA+F)tlll

This implies (4.16). Therefore F satisfies all the requirements of the lemma. The
existence of a G such that A+ GC is asymptotically stable and such that (4.17) is
satisfied can be obtained by dualization.

We can now prove Theorem 4.1.

Proof of eorem 4.1. Let e > 0. We first choose a mapping F such that

(4.25) I](C+D2)(sI-A-B)-II]<e/3I]][-
and such that A + BF is asymptotically stable. This can be done according to Lemma
4.6. Next choose a mapping G such that

(4.26) ll(sI- A- GC)-( + GD)ll< min {e/31[D2Fll
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and such that A+ GC1 is asymptotically stable. Again Lemma 4.6 guarantees the
existence of such a G. We apply the following dynamic feedback compensator to the
system (4.1):

{u Ap + Bu + G( ClP Y),
(4.27) Ev," Fp.

The closed-loop system is given by (where e := x-p):

(4.28) Ncl"
0 A + GCI E + GD

It is clear that this is an internally stabilizing feedback. We now calculate the transfer
matrix from w to z of this system"

C2 + D2F)(sI A BF)-E

C2 + D2F)(sI A BF)-1BF(sI A GC1)-I(E + GO1)

D(sI-A- 6Cl)-1( + D1).

Using (4.25) and (4.26) it can easily be shown that this closed-loop transfer matrix
has H norm less than e. U

We are now able to complete the proof of Theorem 2.1.
Proof of the implication (ii)(i) of eorem 2.1. Since we can transform the

original system into a system satisfying (4.2) and (4.3) we know by Lemma 4.1 that
we can find an internally stabilizing dynamic compensator for this new system which
is such that the closed-loop transfer matrix has H norm less than one. By applying
Corollary 3.4 we know that this compensator F satisfies the requirements in Theorem
2.1(i).

5. The design of an admissible compensator. In this section we shall give a method
to calculate a dynamic compensator F such that the closed-loop system is internally
stable and, moreover, the closed-loop transfer matrix has H norm less than one. We
shall derive this F step by step, using the following conceptual algorithm.

(i) Calculate P and Q satisfying part (ii) of Theorem 2.1. This can, for instance,
be done using Lemma A4. If they do not exist or if p(PQ) 1, then there
does not exist a dynamic feedback satisfying part (i) of Theorem 2.1 and
we stop.

(ii) Perform the factorizations (3.1) and (3.11). We can now construct the system
Ee,o as given by (3.12).

We now start solving the almost disturbance decoupling problem for the system (3.12)
we obtained in step (ii). As in 4 we shall rename our variables and assume that we
have a system in the form (4.1). We set e 1. We have to construct matrices F and G
such that (4.25) and (4.26) are satisfied and, moreover, such that A + BF and A + GC
are asymptotically stable. We shall only discuss the construction of F. The construction
of G can be obtained by dualization.

(iii) Construct g(i) by using Lemma 4.4.
(iv) Construct an F such that (4.18) and (4.19) are satisfied and, moreover, such

that A + B[ g(E) is asymptotically stable.
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(v) Define the canonical projection H" "-* Yt"/T’g(E) and the mappings A,
B, and C satisfying"

(1) rt(a+ F)= An,
(2) B := riB,
(3) C+DF CII.

Construct the system as given by (4.20).
(vi) Construct Fo such that (+D2Fo)rD2=O and M such that im/M=

B ker D2. Define the following matrices"
(1) A:=A+BFo,
(2) B := BM,
(3) C := C + D2Fo,

and the system

2 Ax + Bu,
(5.) ,.

z=Cx.

In this way we obtained a strongly controllable system (5.1), for which we have to
find a static feedback F such that the closed-loop system is internally stable and such
that the closed-loop impulse response satisfies the 1 norm bound e/311EII -. We shall
use a method for this which was given in [21].

(vii) We construct a new basis for the state space. We shall construct it by
induction. Choose xl e ker C im B and v such that xl Bye. If x does
not exist go to item (viii). Assume {xl,..., xi} and {v,. z vi} are g,iven.
Denote by 5ei the linear span of {x,..., xi}. If {Axi+im B)fqker C
and im/} (’1 ker owi, then goto ste.p (viii). Otherwise, if (fi.x,2+im
ker d i, then choose v such that Axi + By ker and ,xi + By : bi. Set
Xi+ ,X -[" V and Vi+ V. (If (x -[- im/) f3 ker ( 5i, then choose v
such that /}v ker ( and /v 5f. Set xi+ v and vi+ v. Set i:= i+ 1
and repeat this paragraph again.

(viii) Define a*(ker ()= 5i. Define a linear mapping F such that Fx= v, j=
1,. ., and extend it to the whole state space. In [21] it has been shown
that Aa*(ker )+im/= -(-ht)---n. Therefore it is easily seen that we
can extend {x,..., xi} to a basis of " which can be written as

AvBv,
v2, av, av2,

v, Av v, a vj,
where Az +/}F and for those k 1, , j for which r >_- 1 we have

rk--1AFVk, AF BVk ker C.
(ix) We define the following sequence of vectors. For i= 1,. .,j we define:

xi,(n) := I+-Av I)

xi,(n) := I+-A Avxi(n)
n

Xi,r+l(rl) :"- I+- Av AFXir,(n).
n
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Since Xi,k(n)-Av-lvi as n-o for i= 1,. .,j and k= 1,..., ri+l it can
be easily seen that for n sufficiently large the vectors {Xi,k(n), i= 1," ",j;
k 1,"" ", ri + 1} are linearly independent and hence form a basis of Yt
again Let N be such that for all n > N these vectors indeed form a basis

(x) For all n > N define a linear mapping Fn by

F.x,,(n) := -nv,

PnXi, ri+ gl := n ri+ Vi"

This determines F, u.niquely. Define F, := F + F,. It is shown in [21] that
the spectrum of + BF, is the set {-n}. Moreover, we have

lim e(A+’ll, O.

Choose n such that the impulse response satisfies the required 1 bound
/3IIEII -. This Fn is internally stabilizing and satisfies the 1 bound. Now
we can construct the F we were looking for:

(xi) Define F= F+ (Fo + MFn)II. This F is internally stabilizing and is such that
(4.25) is satisfied.

We construct G by dualizing the construction of F and the required dynamic com-
pensator is finally given by (4.27).

6. Conclusion. In this paper we have given a complete treatment ofthe Hproblem
with measurement feedback without restrictions on the direct feedthrough matrices.
It remains however an open problem how we can treat invariant zeros on the imaginary
axis. Other open problems are the minimally required dynamic order of the controller
and the behaviour of the feedbacks and closed-loop system if we make the bound T
tighter. The latter problem has been investigated previously. It is possible that the
infimum can only be attained by a nonproper controller (see [4]). But using the ideas
of this paper it is perhaps possible to characterize whether or not this problem arises.

Finally, it would be interesting to characterize all solutions. In our opinion it is,
however, in general not possible to obtain a characterization similar to the one obtained
in [2]. This is due to the fact that the so-called central controller can be nonproper.

In our opinion this paper gives support to our claim that the approach to solve
the H problem in the time-domain is a much more intuitive and appealing approach
than the other methods used in recent papers.

Appendix A. A preliminary system transformation. In this section we shall choose
bases in input, output, and state space that will give us much more insight into the
structure of our problem. Although these decompositions are not necessary in the
formulation of the main steps of the proof of Theorem 2.1, the details of the proof
are very much concerned with these decompositions. It will be shown that the matrices
defining our systems in these bases have a very particular structure. For details we
refer to 18]. We shall display this structure by writing down the matrices with respect
to these suitably chosen bases for the input, state, and output spaces.

Our basic tool is the strongly controllable subspace. This subspace has already
been defined in Definition 4.2.
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We shall give one property of the strongly controllable subspace at this point
which will come in handy in the sequel (see [7], [16]).

LEMMA A1. Consider the system (4.4). The system is strongly controllable if and
only if

(A1) (M-A -B)C2 O2

has rank n + rank (C2 D2) for all s cg.
We can now define the bases for the system (2.1) which will be used in the sequel.

It is also possible to define a dual version of this decomposition but we will only need
this one. First choose a basis of the control input space ’. Decompose 1 ?/2
such that 2=ker D2 and -//1 arbitrary. Choose a basis ul, u2,..., u,, of m such
that ua, u2," ", u is a basis of and u+,. ., u is a basis of .

Next choose an orthonormal basis z, z2," ", Zp f the output space P such that
z,..., z is a basis of im D2 and z+,..., Zp is a basis of (im D). Because this is
an ohonormal basis this basis transformation does not change the norm I[z]].

Finally, we choose a decomposition of the state space "=23 such
that 2 (Eci C im D, 23 (Eci) and W arbitrary. We choose a corre-
sponding basis x, x,..., x, such that xa,..., x is a basis of W, X+l,’-’, x is a
basis of W2 and x+,..., x, is a basis of W3.

With respect to these bases the maps B, C, and D have the following form:

(A2) B=(B B), C= d]’ 0

where is inveible. Next, we define a linear mapping Fo" by

(A3) Fo := and hence C+DFo

We have the following propeies of this decomposition which are proven in [18].
LEMMA A2. Let Fo be given by (A3). en we have

(i) (A + BFo)(() C; im D) (),
(ii) im B (N),
(iii) () C; im D ker d.
By applying this lemma we find that the matrices A + BFo, B, C+ DFo and Da

with respect to these bases have the following form:

(A4)
A+BFo= A2, A2z l,

A31 A32 A33/] \B31 B32/

C+DFo=( 0 0 0) D2=(2 ).C21 0 C23

We decompose the matrices 1 and E correspondingly:

(A5) C C,l C12 C13), E E2

E3
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These matrices turn out to have some nice structural properties, which have been
shown in 18].

LEMMA A3. We have the following properties:
(i) C23 is injective,
(ii) the system

(A6)

is strongly controllable,
(iii) we have

A32 A33/’ B32]’

(A7) normrank G rank (C23 0)0 D2

where G is the transfer matrix defined by G(s) := C2(sI-A)-IB + D2.

We need the following results from 18] which connects the conditions of Theorem
2.1 to the matrices as defined in [A4].

LEMMA A4. Assume p enn is symmetric and F(P)>=O. Then we have the
following:

(i) P-()= 0, i.e., in our decomposition P can be written as

(A8) P= 0 0

0 0

(A9)

(ii) If P has the form (A8), then

R(P1) := P1AI +AP+ C1C21 + PI(EIE(- Bll(Iflz)-’BI)P1
-(PIA13 -]- C2 C23)( C3C23)-1(A13P1T _]_ C3C21 0,

Moreover, R(P1) =0 if and only if rank F(P) normrank G.
(iii) If R P1) O, then we have

(L(n,s)rank\ F(P)

if and only if
^T,Z(P1) := All + EErp_ BII(D2 D2)-1BP a,3( Cf3C23)-1(Ar13P1 --{- C2C21

is an asymptotically stable matrix. Moreover, in that case also the matrix

All- Bll(lf2)-lB1Pl-A13(C3Cz3)-(Ar3P1 + C2 C21)

is an asymptotically stable matrix.
COROLLARY A5. If there exists a matrix P>= 0 such that F(P)>-0 and moreover:

(i) rank F(P) normrank G,

(ii) rank
F(P) ]

n+normrank (3 Vs co c/,

then this matrix is uniquely defined by the above inequality and the corresponding two
rank conditions.

Proof By Lemma A4 a solution P must be of the form (A8) where P is a solution
of the algebraic Riccati equation R(P1) =0 such that Z(P1) is asymptotically stable.
Denote the Hamiltonian matrix corresponding to this algebraic Riccati equation by
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H; then we have

I

Since a Hamiltonian matrix has the property that
is an eigenvalue of H, we know that an n-dimensional invariant subspace IV of H
such that H[W is asymptotically stable must be unique. This implies that P1 is unique
and hence also P is unique.

Appendix B. Proofs concerning the system transformations. In order to prove
Lemma 3.2 we must first do some preparatory work. We first recall the following lemma
from [2] which we shall use in the sequel.

LEMMA B1. Suppose we have the following interconnection of two systems E and
E2, both described by some state-space representation:

(B1)

Z //3

Assume E1 is internally stable and its transfer matrix Lfrom (w) to () satisfies L-L= I
where L- (s) := Lr(_s). Moreover, assume that if we decompose L:

(B2) L=:
n21 L22]

compatible with the sizes of w, u, z, and y, we have L H and lims_. L22(s) 0. Then
the following two statements are equivalent:

(i) The closed-loop system (B 1) is internally stable and its closed-loop transfer matrix
has Hoo norm less than one.

(ii) The system -2 is internally stable and its transfer matrix has Ho norm less than
one.

Proof. This is a well-known result although.written down here in a different way.
Note that if the closed-loop system (B1) is internally stable, then 2 is stabilizable and
detectable. This can be shown either by writing down the closed-loop differential
equation or by noting that an unstable uncontrollable mode in 2 cannot be controlled
by y and hence is still unstable and uncontrollable in the closed-loop system and the
same for an unstable unobservable mode. The result in this form can then be obtained
by using the work in [14].

We shall now assume that we have chosen the bases described in Appendix A.
Let P satisfy the conditions of Lemma 3.1(i). Hence we know P has the form (A8).
It is easily shown that it is sufficient to prove the lemma for one specific choice of C2,p
and Dp. We define the following matrices:

(B3) C2 p :-- ( /2(/f/2)-’B1T1p’ q- Cll C12 C13
\ C23(C3C23)-1 T T(A13P + C23 C21 0 C23/



THE SINGULAR Hoo CONTROL PROBLEM 177

(B4) De: (=D2).
0

By writing down F(P) in terms of the chosen bases and by using the fact that P1
satisfies the algebraic Riccati equation R(P1) =0 where R(P1) is defined by (A9), it
can be checked after some effort that these matrices indeed satisfy (3.1). We define
the following matrices:

(B5) ^TA := All- A13( C3C23)-l(AP, q- C3C2,)- Bll(D2 D2)-’BP1,

(B6) TC, :- -(D2 )-’BIP1,

(B7) d2 :--- C21 C23 C3 C23)-I(A P, + C27 C21 ),

(B8) ll := B,l);’,

(B9) J12 :-" A13(C3C23)-lc3-PCl(I-C23(C3C23)-lc3),

where ? denotes the Moore-Penrose inverse. We now define the following system"

(B10)

We have the following properties of the system Eu.
LEMMA B2. The system Eu is internally stable. Let U denote the transfer matrix of

yEufrom (w) to (z). We have U-U=I where U-(s):= uT(--S). If we decompose U:

Ull U12’(Bll) U:=
O21 U22/

compatible with the sizes ofu, w, Yc, and Zu then we have U H and lims_ U22(s) 0.

Proof The fact that Eu is internally stable and that U H follows directly
from the fact that , and/+ E1E(P1 are asymptotically stable by Lemma A4(iii). The
fact that lims_, Uz2(S)= 0 can be checked trivially. It can be easily checked using
Lemma A4(ii) that P1 is the controllability gramian of 5;u. Moreover, we have

I (0 0)
+

Er Pl=0"

This can be checked by simply writing out and using the fact that

ker P1 ker (I C23(Cff3C23) -1 Cff3)C21

The result that U--- U I then follows by applying Theorem 5.1 of [5]. 13

Proof of Lemma 3.2. We have our special choice of C2,p and Dp given by (B3)
and (B4). As we have already noted, taking this special choice for Cp and Dp is not
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essential. We shall first compare the following two systems:

(B13)

Z W

/flu

The system on the left is the same as the system on the left in (3.3), and the system
on the right is described by the system (B10) interconnected with the system on the
right in (3.3). We decompose the state of E, x into xl, x2, and x3 according to the
choice of bases described in Appendix A and decompose the state of Zp into X,p,
X2,p, X3,P of corresponding sizes. (Note that E and Ep have the same state space ".)
Writing out all the differential equations using the decompositions of the matrices
given in (A3)-(AS) we find

tg--;;1,Ip tZ -i-/1E 1Tp1 0 OBKMttXu-X1,ptt 0

* A + BNC Xp + E + BND
LC1 p LD

W,

Xu --;;1,P)z (* C2 + D2NC DM) + D2NDIw.

The denotes matrices which are unimportant for this argument. The system on the
right is internally stable if and only if the system described by the above set of equations
is internally stable. If we also derive the system equations for the system on the left
in (B13) we immediately see that, since .+ EE(P is asymptotically stable, the system
on the left is internally stable if and only if the system on the right is internally stable.
Moreover, if we take zero initial conditions and both systems have the same input w,
then we have z zc, i.e., the input-output behaviour of both systems are equivalent.
Hence the system on the left has H norm less than one if and only if the system on
the right has H norm less than one.

By Lemma B2 we may apply Lemma B1 to the system on the right in (B13) and
hence we find that the closed-loop system is internally stable and has H norm less
than one if and only if the dashed system is internally stable and has H norm less
than one.

Since the dashed system is exactly the system on the right in (3.3) and the system
on the left in (B13) is exactly equal to the system on the left in (3.3), we have completed
the proof. [3
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We will now prove Lemma 3.3. In fact, we will prove the dual version of this
lemma since this is much more convenient to us. We first factorize G(Q):

(B14) G(Q) := (E D).
D(

2 C2 and B( := B + QCD2 and the system:Define A( := A + QCT

o Ax+ Bouo + Eow
(B15) Eo" Yo= Cxo + Dow

ZQ C2XQ + D2UQ.

By using the well-known facts that F stabilizes Z if and only if Fr stabilizes Zr and
GII GII, we can derive the following dualized version of Lemma 3.2 for this

dual system as follows.
LEMMA B3. Let Q satisfy Lemma 3.1(ii). Moreover, let an arbitrary linear time-

invariantfinite-dimensional compensator F be given, described by (2.2). Let the following
two systems be given where the system on the left is the intereonnection of (2.1) and (2.2)
and the system on the right is the interconnection of (B15) and (2.2).

(B16) yQ

Then the following statements are equivalent:
(i) The system on the left is internally stable and its transfer matrix has H norm

less than one.
(ii) The system on the right is internally stable and its transfer matrix has Ho norm

less than one.
We now investigate how the matrices appearing in the matrix inequality and the

rank conditions look like for this new system

(B17)

(B18)

(B19)

(B20)

Moreover, we define two new transfer matrices:

(B21) d(s) := C2(si-Ao)-’Bo + D2,

(B22) /-it (s):= Cl(sI-ao)-IEo + Do.

Using these definitions we have the following result.
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LEMMA B4. Let Q satisfy Lemma 3.1(ii). Then Y-O is the unique solution of the
quadratic matrix inequality G(Y) >- 0 satisfying the following rank conditions"

(1) rank t(Y) normrank ,
(2) rank (//( Y, s) (Y)) n + normrank/ Vs RLI
Proof. It is trivial to check that ((0)_->0. Moreover, since (0)-G(Q) and

M(0, s) M(Q, s) it remains to show that normrank H -normrank H. We have

(sI- Aonormrank H normrank
C

sI AQ
normrank

-C
normrank (M(Q, s)

EQ) n

DoE DoDS/ n

O(Q))-n

normrank H.

Y is unique by Corollary A5. This is exactly what we had to prove. [3

LEMMA B5. There exists a solution X of the matrix inequality F(X)>= 0 satisfying
the following two rank conditions:

(1) rank F(X) normrank G,

(2) rank(r(X’;))/(X n + normrank G Vs o(_j c+,

if and only if I- PQ is invertible. Moreover, in that case the solution is unique and is
given by X (I- pQ)-lp. We have X >= 0 if and only if
(B23) p(PQ)<l.

Proof. We first make a transformation on fi(X)"

(B24) F,r(X) := ( Io (I + XQ)F) (X) ( l )I Fo(I+ QX)

=( C+XMX XB )(B25)
ArX + Xfi+ C T

BTx DfD
where

(B26) := A + BFo+ Q( C2+ D2Fo) r C2+ DzFo),

(B27) C2 :- C+ D2Fo,

(B28) M:=(A+BFo)Q+Q(Aw +FfBT)+EE w+QQ,
and Fo as defined in (A3). We also transform the second matrix appearing in the rank
conditions:

W(X, s):= I (I + XQ)Ff (X) ] Fo(I + QX)
0 I

sI-A-MX -B t,Tx +X,+ (J +XMX XB
BTx DfD2
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We have the following equality"

(B29)

(B30)

normrank ( normrank
sI Ao

C2 D2

-BQ
=normrank ( QCI f) ( sI D2 ) n

((B31) normrank
sI- A

n normrank G.
C2

Therefore the conditions that X->_ 0 has to satisfy can be reformulated as"

(i) Ftr(X) 0,
(ii) rank Ftr(X) normrank G,
(iii) rank W(X, s)=normrank G+n Vs t.J +.

Moreover, we note that T(A, B, Ce, De) T(A, B, Ce, De). This can be shown by using
the fact that the new system is obtained by a state feedback and an output injection
(note that B B + Q(Ce + DeFo) TDe) and it is well known that the strongly controllable
subspace is invariant under feedback and output injection. This can easily be shown
using the algorithm (4.10). We now choose the bases from Appendix A. By Lemma
A4(i) we know that if X exists then it will have the form

(B32) X 0

0

for some positive semidefinite matrix X1. Note that there is small difference since M
is not necessarily positive semidefinite, but it can be easily seen from the proof in 18]
that this difference is not important. We use this decomposition for X and the
corresponding decompositions for P and Q:

(B33) P 0 O 021 022 023
0 Q31 Q3e Q33

Together with the decompositions for the other matrices as given in (A4)-(A5) we can
decompose F,.(X) correspondingly:

X111 A- IX, A- GeT1 C2, + X1M11X, 0 X1,3 + 62 623 X,B,, 0

0 0 0 0 0

AXI+CC21 0 CC23 0 0
TBXi 0 0 D2 D 0

0 0 0 0 0

where

(B34)

(B35)

(B36)

"11 := All+ 011C1 C21 t_ 013cT23c21,

13 :-- A13 + 0,1 c2T C23 -t- Q13c2T3c23,

M,1 := AllQ1, + A13Q + Q,1AI + Q13A[3 + E1E[

+ Qll c2T1(c21011 + C23Q13) + Q13C3(C21 011 + C23Q13).
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The rank condition rank Ftr(X)--normrank G is, according to Lemma A3(iii),
equivalent with the condition that the rank of the above matrix is equal to the rank
of the submatrix

(B37)
C Ce3 0

o

Therefore the Schur complement with respect to this submatrix should be zero This
implies that if we define

/(X1):= X,A,1 + AX1 +CC2, -t- X,(M1, BI,(D2 De)-’B)X,

--(X1A13 -- C2T1 C23)( c2T3c23)-’(ATX+ CC),

then X should satisfy R(X1) 0. Moreover, ifwe decompose W(X, s) correspondingly,
then we can show by using elementary row and column operations that for any matrix
X in the form (B32), where X1 satisfies/(X) 0, that for all s , W(X, s) has the
same rank as the following matrix:

(B38)

/ o o o o
* sI-Ae2 -A23 0 -B2

* -A32 si-A33 0

0 0 0 0 0

0 0 0 0 0
0 0 I 0 0

0 0 0 I 0

0 0 0 0 0

where

(B39) Z(X,) := A,, + M1,X1- BI,(D2 De)- 1X1-A13(C3C23)-1(A3Xl-- cT23c21)

The matrix

(B40)
sI A22 -Ae3 -B22}-A32 sI-A33

0 I 32
has full row rank for all s cg by Lemma A3(ii) and Lemma A1. Hence the rank of
the matrix (B38) is n + normrank G for all s / U o if and only if the matrix (X1)
is asymptotically stable. Using this we can now reformulate the conditions that X => 0
must satisfy:

(i) /(X,) 0,
(ii) (X) is asymptotically stable.

That is, X should be the positive semidefinite stabilizing solution of the algebraic
Riccati equation /(X1)=0. Denote the Hamiltonian corresponding to this ARE by
Hnew. We know that P is the stabilizing solution of the algebraic Riccati equation
R(P) =0 as given by (A9). Denote the Hamiltonian corresponding to this algebraic
Riccati equation by Ho,d. Then it can be checked that

(B41) Ho,d (0 I
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Since P1 is the stabilizing solution of the Riccati equation corresponding to the
Hamiltonian Hold we know that the modal subspace of Hold corresponding to the open
left halfplane is given by

(B42) g(Ho,d) Im
P1

Combining (B41) and (B42), we find

(B43) g(Hew) Im
0 --Q11)(ipII) im (I-QllP1).p1

Therefore we know that there exists a stabilizing solution to the algebraic Riccati
equation R(X) =0 if and only if I-QllP1 is invertible and in that case the solution
is given by X P(I- QlP1)-l. This implies that X P(I- QP)- (I- PQ)-P. The
requirement X >_- 0 is satisfied if and only if p (PQ) < 1, which can be checked straight-
forwardly. This completes the proof.
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ASYMPTOTICALLY STABILIZING FEEDBACK CONTROLS AND THE
NONLINEAR REGULATOR PROBLEM*

HENRY HERMES?

Abstract. Continuous asymptotically stabilizing feedback controls are constructed for two-dimensional,
and certain three-dimensional, small time locally controllable affine systems. The Lie products which
determine controllability induce a dilation; it suffices to work with the approximating homogeneous system
associated with this dilation. A cost functional is then constructed which is such that the associated
Hamilton-Jacobi-Bellman equation is homogeneous, forcing the solution (which is a Lyapunov function
for the optimally controlled system) to be homogeneous and thereby determining its basic form. The process
may be viewed as a generalization of the linear regulator construction.

Key words, stabilization, controllability, nonlinear control, nonlinear regulator, H61der continuous
feedback

AMS(MOS) subject classification. 93D15

Introduction. Our goal is to develop a method to establish the existence, and
exhibit the construction, of continuous asymptotically stabilizing feedback controls
for n-dimensional, real analytic, affine control systems of the form

(1) =X(x)+uV(x), x(0)=0.

Our methods use high-order homogeneous approximations and the nonlinear analogue
of the classical linear regulator problem.

Brockett [1] gave the following three necessary conditions for the existence of a
C feedback control x - u(x) which makes the solution x(t) 0 of (1) locally asymptoti-
cally stable.
(B1) The linearized system should have no uncontrollable modes associated with

eigenvalues whose real part is positive.
(B2) For each y in a nbd of zero there exists an open-loop control Uy(t) such

that the corresponding solution of (1) initiating from y tends to zero as - .(B3) The map ")/:nx[l-"n defined by y(X, u)=X(x)+uY(x) must be onto a
nbd of zero.

Prior to Brockett’s paper, Sontag and Sussmann [2] showed that certain nonlinear
systems could have rest solutions made asymptotically stable by continuous, but not
C1, feedback control.

Kawski [3] showed that condition (B1) is not necessary for the existence of a Co

asymptotically stabilizing feedback control for a two-dimensional system of the form
(1). Indeed, he showed that the zero solution of the system 1 u, 2--X2--X31 could
be made locally asymptotically stable via feedback of the form u(x)=
(4E/3)x1/3- X K x31- x2).

System (1) is said to be small time locally controllable (at zero), denoted STLC,
if for any tl > 0 the set of points attainable at time tl by solutions initiating from zero,
corresponding to all admissible open-loop controls t- u(t), contains a full nbd of
zero. By reversing time, clearly if (1) is STLC, then the system =-X(x)+u(Y)(x)

* Received by the editors August 7, 1989; accepted for publication (in revised form) January 31, 1990.
? Department of Mathematics, Box 426, University of Colorado, Boulder, Colorado 80309-0426. This

research was supported by National Science Foundation grant DMS-8721917.
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is such that all points in some nbd of zero can be steered to zero in arbitrarily small
time. Sufficient conditions for STLC (see [4]-[6]), when satisfied for system (1), also
imply STLC of the reversed time system. Indeed, in the real analytic case, Sussmann
has shown STLC of system (1) and the reversed time system are equivalent. Hence
STLC of system (1) is sufficient for property (B2). We shall assume STLC throughout,
although it is by no means necessary for (B2).

An outline of a proof of the necessity of condition (B3) via fixed point theory is
given in [1]; a proof in the continuous category, based on index theory, is given in
[7]. It follows that (B3) is therefore a necessary condition for the existence of a
continuous, i.e., C, asymptotically stabilizing feedback control. For dimension n 2,
STLC implies (B3).

Kawski’s main result in [3] is the following theorem.
THEOREM 1 (Kawski [3]). If the two-dimensional, real analytic system (1) is STLC,

then there exists a continuous feedback control which makes the zero solution locally
asymptotically stable.

His method is via the construction of a Lyapunov function V having trajectory
derivative "" negative semidefinite along solutions of the controlled system and such
that (essentially) LaSalle’s theorem applies on the set where 0. The methods are
limited to dimension n 2. Our first task here is to illustrate the ideas involved in the
nonlinear regulator method by using these to prove Theorem 1. The resulting construc-
tion of a feedback control and Lyapunov function V (see Lemma 2) is such that when
applied to the example 2 U, 22 X2 X31 gives the trajectory derivative I2(x) negative
definite. The proof of Lemma 2 contains the main ideas of the nonlinear regulator
approach and of this paper.

Many examples and results for two-dimensional systems, some related to the
above and others for systems which are not STLC, can be found in [8]. The use of
center manifold theory for establishing smooth asymptotically stabilizing feedback
controls for two-dimensional systems can be found in [9].

In dimension n _-> 3 much less is known. The system 21 u, 22 xl, 23----Xl is
STLC but clearly does not satisfy condition (B3). Specifically, the point (0, 0, e), e 0,
is not in the range of the map y, hence this system does not admit a continuous
asymptotically stabilizing feedback control. In 2 we utilize the nonlinear regulator
method to show the (surprising) result that the seemingly more difficult to control
system 21 u, 22 xl, 23 x3-x does admit a continuous, asymptotically stabilizing,
feedback control.

1. Homogeneity and the nonlinear regulator. The constructions that make the linear
regular problem tractable, e.g., the Riccati equation, etc., result from homogeneity
properties of the linear system and quadratic cost functional involved. We will elaborate
on this comment shortly, but first introduce the more general notions of homogeneity.
A dilation 8’ n will be a map of the form trx =(erlxl, "’’, ernxn) where
x (Xl, , x,) are given local coordinates, 1 rl --<" -< r, are integers, and e > 0.
If all ri 1 we write 81 and refer to this as the standard dilation. A function h" N" - N1
is homogeneous of degree s with respect to 8r if h(Srx)=e’h(x). Functions
homogeneous of degree s will be denoted by Hs with Ho denoting constant functions
and H, {0} if s < 0. If h H, g Hq, it follows that Oh/Oxj H_r while the product
hg H+q. A vector field X on Nn is homogeneous of degree s with respect to 8r if
Xh Hq_, whenever h Hq. Thus if in local coordinates X(x) j=l a(x)O/Ox, X is
homogeneous of degree s means a Hr_. This has (sadly) become standard usage
but the reader should be warned that a vector field X(x)=Y= aj(x)O/Oxj, which is
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homogeneous of degree rn with respect to 61 in the classical sense (i.e., ai(ex)--
e"ai(x)), now becomes homogeneous of degree (1- rn) in the present sense.

1.1. The linear regulator. The well-known "pole placement" theorems show that
a controllable linear system on R

(2) 2 Ax + Bu, u [Rk

can have its zero solution made globally asymptotically stable via linear feedback
u*(x) Kx. This was first established by Kalman 10] in his study of the linear regulator
problem. Specifically, consider the controllable system (2) with cost functional (to be
minimized)

C(u) (u’Ru + x’Wx) dt, R, W positive, definite, symmetric.

Then for any x(0) x Nn there is a solution q(t, x) with q(t, x) - 0 as -* oe and
the "cost, or value, from x’’ denoted V(x) is defined and continuous on Rn (see [11,
p. 198]). Following Kalman [10] for pN form

(3) H(x, p, u)=p’Ax+p’Bu+u’Ru+x’Wx.

Minimize H(x, p, u) with respect to u. Since there are no bounds on the control values,
this requires Hu(x, p, u) 2Ru + B’p 0 or

u*(x,p)=(1/2)R-IB’p.

Next, let H*(x, p) H(x, p, u*(x, p)) and the value function V must satisfy the Hamil-
ton-Jacobi-Bellman (HJB) equation

(4) H*(x, Vx(x))=O, V(O)=O, V(x)>O ifx0.

Now the homogeneity of the problem comes into play. Consider
(x, , x,, V, Pl, , P,) as local coordinates for the first jet bundle JI(N", N). With
any dilation 6rX=(erlx, er"X,,) and integer m> rn associate the dual dilation
r*p=(em--rlp,’’’, em--r"pn and dilation y on jl(,, 1) defined by y(x, V, p)=
(6rX, eV, 6r*p). If H*(x,p) is homogeneous of degree m with respect to y2, i.e.,
H*(6rx, 62"p)= e’H*(x, p), we expect a solution V of the HJB equation which is
homogeneous of degree m.

In the linear problem, letting 6r be the standard dilation 61 and m 2 (so r. is
also the standard dilation) it follows that H*(x, p) is homogeneous of degree two and
we should seek a solution of (4) of the form

(5) V(x) x’Ex,

where, without loss of generality, E may be assumed to be symmetric. Substitution of
this V into (4) yields 2x’EAx-x’EBR-1B’Ex + x’Wx =0 or that E should satisfy the
"stationary Riccati equation"

(6) A’E + EA- EBR-1B’E W.

Given positive-definite matrices R, W, (6) determines a unique positive-definite sym-
metric matrix E. The solution of (4) is V(x)= x’Ex and the optimal feedback control
(which provides global asymptotic stability of (2)) is

(7) u*(x) __l -1BtR Vx(x) -R-1B’Ex.

The well-known results above were repeated since they form an example and a guide
for the nonlinear regulator problem which follows.
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1.2. The nonlinear regulator. For the linear regulator, a positive-definite
homogeneous (of degree two) form with respect to the standard dilation was known
to have the representation V(x)= x’Ex with E a positive-definite matrix. The next
lemma gives elementary conditions which tell when forms V(x), which are
homogeneous of even degree with respect to an arbitrary dilation, are positive definite.
We denote by a (a1,"" ", a,,) a multi-index with all O nonnegative rationals and
let Ixl -Ixl, IXnl o. Then Ixl is homogeneous of degree m with respect to 6:x
(er’x er"xn) if and only if n oir m.i=1

LZMMA 1. Let 6x= (er’x, er"x,) be a given dilation and V(x)= Clx[
with the sum taken over a finite set of multi-indices a (a,..., a11) which satisfy

i= airi m, m an even integer. Thus V is homogeneous of degree m with respect to 6.
Call a multi-index a mixed if more than one oi is nonzero and assume the nonmixed
multi-indices a (m/rl, O, , 0), , a (0, , m/rn) all appear in the sum
defining V and have corresponding coefficients Ca, Ei > 0, i--1,"" ", n. If

<1

with the sum taken over all mixed a in the sum defining V, then V is positive definite
on n.

Proof. Let E denote (El,"" ", E) and define

FF {x ": EIIxI[ m/r / E2IxI "/r= /’’’ 4- E111x11] m/r. 1}.
Then F is a closed hypersurface which "encloses" the origin. For xeF, [xll-<
(1/E1)r,/m, Ix,[ <= (1/ E11)#m and hence [xi[-0 as Ei increases. We write V(x)=
Yi=I Eilxil "/’+y C,Jx] with the latter sum taken over mixed a occurring in the
original sum defining V. Thus if

we see V(x) > 0 on F. Since V Hm, i.e., v(6rx)= emV(x), this implies V is positive
definite on ". [3

Example 1.1. Let n=2, rx=(exl, e3x), m=4, and V(x)= 16x4+Cx1x2+x/3.
Then VH4, E1=16, E:=I, and the only mixed a=(1,1). Thus if
IC1(1/16)/4(1/1)3/4< 1, or IC1<2, V is positive definite.

Example 1.2 (the lemma is not sharp). Take n 2, x (exl, exe), m 2, and
2V(x)=xl+Cxlx+x. Then E=Ee 1; the only mixed a=(1,1), and the lemma

gives V positive definite if [C1(1/1)/(1/1)/<1 or ICI<I. Clearly, IC1<2 suffices.

Proof of Theorem 1. Since the two-dimensional system (1) was assumed STLC,
Y(O)O and we can choose local coordinates so that Y(O)=/Oxl. If, in these
coordinates X(x) al(x)O/Oxl + a(x)O/Ox, choose feedback u(x)= -a(x)+ Ix(x)
so (renaming Ix as u) with no loss of generality we may assume system (1) has the form

l=u, 2=a2(x), aa(0)=0;

i.e., X(x) a2(x)O/Oxe, Y O/Ox From 12], STLC at zero implies there is an integer
k such that the Lie product (adky, X)(0)= (0, oka(O)/OXl) 0 and that the smallest
such k must be odd. This means that a(x)=xq(x)+p(x) where q(0)= Co0 and
Op(O)/Ox 0, j 0,. , k. Thus a canonical form for a two-dimensional STLC system
of the form (1) may be taken as

(9) 21 u, 22 xlq(x) + p(x)

with k odd and p, q, as above.
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With system (9) associate the dilation 6x(exl, ekX2) and expand q, p in
homogeneous polynomials relative to this dilation, i.e., from the form of p, q

q(x) Co + qj(x), qj I-t,
j=l

p(x) C,x2 + Z pj(x), p e I-I.
j=k+l

We write (9) as

(10)

where

2 Cox -’1" ClX2 "q;" R(x),

R(x)= 2 xklqj(x) + Z pj(x)
j=l j=k+l

and thus the vector field R(x)O/Ox2 is a sum of vector fields homogeneous of degree
_-<-1 with respect to 6. We shall call

(11) 21 U, "2 CoX -It- C1x2, Co O,

the approximating system.
The proof will proceed by showing the following lemma.
LEMMA 2. There exists a continuousfeedback control u* H1 for the approximating

system (11) such that

(a) Solutions to (11) with u u*(x) are unique.
(b) The zero solution of (11) with u u*(x) is globally asymptotically stable.
(c) There is a positive-definite Lyapunov function V Hk+l such that its trajectory

derivative (Z(x) along solutions of (11), with u u*(x), is negative definite.
The vector field u*(x)O/Oxl +(Cox + ClXz)O/Ox2 is then homogeneous of degree

zero with respect to 3 while the "remainder" vector field R(x)O/Ox2 is a sum of vector
fields homogeneous of degrees less than or equal to -1. The conclusion of the proof
of Theorem 1 then follows from Theorem 2.

THEOREM 2 [1.3, Thm. 1]. Let W be a continuous vector field on R" with W(O)= 0
which is homogeneous ofdegree m with respect to a dilation 6x (er’xl, ", er"x,) and
such that solutions to initial value problemsfor W(x) are unique. Let Z be a continuous
sum of vector fields homogeneous of degree less than or equal to (m- 1). If the zero
solution of 2 W(x) is locally asymptotically stable, then the same is true for the zero
solution of 2 W(x) + Z(x).

Proof of Lemma 2. Throughout, the dilation is 6x=(exl, ekx2), k odd and
determined by the Lie products which showed STLC. With system (11) consider the
optimization problem of reaching the origin while minimizing the cost functional

C(u)= [eu+l(s)+h-+l(X(S)) ds], e>O

with h+/c+l n/+l positive definite and free to be chosen later. Following the linear
regulator approach, define

H(x, p, u) plu+ Cop.xl + Clx2+ eu’+l + h+

Since the values of u are unconstrained, minimizing H with respect to u yields

(12) _( Pl )l/ku*(x,p)=
e(k+l)
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Define

(13)

where

H*(x, p) H(x, p, u*(x, p)) -Tpk+’/k + Copxf + ClP2X2 -1
t- h+l(X),

(14) Y= k+l e(k+l)
>0.

k+lNote that if we define the dual dilation to 6 as tre*p--(ek+l-rlpl, -r2p2)--
(ekpl, ep2), then with yr,(x, V, lk)= (6rx, eV, 6r*p) as a dilation on JI(R2, R1) we have
H*(x, p) homogeneous of degree (k+ 1) with respect to

The HJB equation is

(15) 0= H*(x, Vx(x))=-’vV(k+l)/k+CoXlVx+ClX2Vxz+h+,rx, k+l(X)

The interpretation of this equation is that a solution V is such that V(x) is the optimal
cost to reach the origin starting from x. Since the integrand in the cost functional is
positive definite, we seek a positive-definite solution V of (15). Since (11) is STLC we
know (e.g., [14]) that (15) has acontinuous positive-definite viscosity solution. The
homogeneity of H*(x, p) with respect to yr implies we should seek a solution V H+I
with respect to 6r. For this two-dimensional case the Brockett necessary condition
(B3) is automatically satisfied and we shall show that (11) has a C 1, positive-definite
solution V H+I. Specifically, since h+l e H+I has been left free, we actually show
that there exists a C 1, positive-definite V H+I such that

v(+’/(x) + Cox v(x) + C,x vx(x)(16) T--XI
is negative definite. From (12), this will yield

(17) u*(x)=-
e(k+l)

as the desired continuous feedback control.
Since we expect V Hk+I and V C1, choose the form of V as

k+l(18) V(x)-/lX -t-j2X1X2-t-2j3x(2k+I)/k,jI,2>O.
v.kv.1/k k-lx/kNote that terms such as 1 -2 Xl are in Hk+l but were omitted since they would

not yield a C function V. From Lemma 1, V is positive definite if

(19) Its21 < (l)l/(k+l)(3)k/(k+l)"
Substituting V, as given in (18), into (16) and calling g(x) the result yields

g(x) -T[(k + 1),xk + 2X2](k+l)/k + Co2xk+ll

k
j3Xklx/k + CllXlX2 "It- C1

k -1
t-- 1

k
3x(2k+l)/k"

Our goal is to choose ill, f12, fig, and e > 0; hence T > 0, so that (19) is satisfied and
g H+I is negative definite.

Make the local coordinate change (which preserves homogeneity)
k

y=xl, y2=2(k+l)xl +x
and inverts as

xl=yl, x= (y-(k+ 1)fllyk), fl-0.
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With a slight abuse of notation by again using g for the resulting function, and adding
and subtracting y+l, we obtain

g(y) --ykl+-- "yy(2k+)/k +(1 + C02 Cl(k + 1)/l)Ylk+l + ClyY:z

--C k 3 (y2- (k+ 1)ly) y

+Cl(k+l) [() ](k+l)/k1)3 y )

Again, g(6y) A k+g(y). Define

k+l )/kr {y. + 1}.

Then F is a closed curve which encircles the origin. Since g Hk+ if we can choose
3, , f13, and y > 0 to make g negative on F, it follows that g will be negative definite.
But on F, [Yll 1 and yl l/y; hence Y2 0 as or equivalently as e 0.
(Intuitively, e 0 means we weight the cost of control less.) Thus for y F and e > 0
sufficiently small, terms in g(y) having a factor Y2 are insignificant and we omit these.
For this case

g(y)-l+f(3)yk+ [y l l.

It suffices to show that we can choose 31, 3, 3 to satisfy (19) and so that f()< 1
or F(3) =f(3) 1 < 0 where

To see that this can always be done, first choose fl 1; next choose 3 so that
3Co> 0 (recall Co0 in (11)) and 3l suciently large so that C(k+ 1)/(Co3) < 1.
From (21) it is then clear that for 3 > 0 and suciently large, F(3)< 0. Finally, by
increasing 33 if necessary (i.e., assure 3/4> [1) we can satisfy (19).

With the choices as above, V(x) as given by (18) is positive definite while with
u=u*(x) as given by (17), the trajectory derivative of V along solutions of (11) is
(x) g(x) which is negative definite.

Finally, we show that we have uniqueness of solutions of (11) even though u*(x)
is only continuous. With u=u*(x) (11) becomes 2=-(Vl(X)/(k+l)e) l/k,
Coxk+ClX and the only diculties can occur on the curve A={x" Vl(X) =0}. But
on A, the vector field is

Co3
x

Ox:

and our choice of, was such that (1-((k+ 1)3C/Co)) 0 while also Co 0.
Since a normal to A is (k(k+ 1)3x, 3), it follows that for x0 the vector field
defined by the right side of (11) is transverse to A. By Theorem 14.1 of [15], this means
that solutions of (11) are unique.

The control u* constructed in Lemma 2 provides global asymptotic stability for
the zero solution of the approximating system (11) and, by Theorem 2, local asymptotic
stability for the zero solution of the original system having (11) as its approximation.
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Example 1.3. For the Kawski example :/1 u, 92 x2- Xl we have k 3, Co -1,
C1-- 1. To construct V, first choose/31-- 1; next, since Co < 0, we want B2 < 0 and such
that -4//32 < 1. Choose/32 =-32 in which case (with/33 still free), from (21), F(/3)=
28 (7/12)fl3. Thus/33 > 36 suffices to make F(/3) < 0 while use of Lemma 2.1, or (19),
requires/333/4> [/32[ 32, or/33 > 101.6. Thus, for example,

2V(x) Xl 32xlx2 + 200x/3
is positive definite and for e > 0 sufficiently small,

1 ) 1/3U*(X) 2el/3 (2xl--32x2)

is an asymptotically stabilizing feedback control for which the trajectory derivative
12(x) is negative definite.

Example 1.4 (linear regulator or k 1). With k 1, Co C 1 in (11) we have
the linear system 91 u, 92 xl + x2, or 9 Ax + bu, A (o o), b (lo). To construct an
asymptotically stabilizing feedback control choose/31-- 1; then in (21) we want/32> 0
and such that 2//32 < 1 or/32 > 2. Choose/32 4 which gives F(/3)= 2-/33/2 or f13 > 4
makes F(/3)<0. From (19) we need 2</3/2/33/2 or fl3>4. Choose /33=8, hence

2V(x)=xl+4xlx2+Sx is positive definite and u*(x)=-(1/2e)(2xl+4x2) is an
asymptotically stabilizing feedback control for e > 0 sufficiently small. Here (referring
to the cost functionals for the linear regulator) R e while V(x) x’Ex with E (1 ).
We are assured that for e > 0 sufficiently small

(22) (A’E+EA)-()(Ebb’E)=-W, W positive definite

since the trajectory derivative now is 12(x)= g(x)=-x’Wx. Computing in (22) yields

and for, say, e 3, we do obtain that W ( 4) is positive definite.

2. A three-dimensional example. Theorem 1, and the construction of an asymptoti-
cally stabilizing feedback control for a two-dimensional system of the form (1) which
is STLC, is a consequence of the ability to characterize canonical (nilpotent)
approximating systems, i.e., (11), for such systems. For n >-3, such canonical approxi-
mations have not yet been classified; hence, we deal with the specific following example.

Example 2.1. For n 3 consider the system of the form (1) having

0 o o
(23) X(x) X (CX3--X31) Y-

OX2 - OX OX

As remarked in the Introduction, if c 0, this system does not satisfy condition (B3)
and hence does not admit a continuous asymptotically stabilizing feedback control.
However, if c 0 (we shall assume c > 0 which is the interesting case), condition (B3)
is satisfied and we shall construct a continuous asymptotically stabilizing control.

Let 9Ol {(ad,,X, Y): v 0, 1, }, 9OJ denote the set of all Lie products if i-tuples
of elements of 9Ol with i<=j, and 9OJ(0) denote the elements of 9O evaluated at
zero. Then dim span 1(0) 2 dim span { Y(0), IX, Y](0)]}; dim span 92(0)= 2 while
(ad Y, X)(0) 3(0) is independent of span 9O2(0); i.e., dim span 9O3(0) 3. The system
(23) is, in the terminology of [4] and [5], an odd system since dimension span 9O(0)
increases only for odd integers jand is STLC for any value of c. The dilation associated
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with a three-dimensional system of the form (1) having dim span 5e(0)=2, dim-
span 52(0) 2, dim span 5e3(0) 3 is 6rx (exl, eX2, e3X3). Our construction will show,
by Theorem 2, local asymptotic stability of the zero solution of any system of the form
(1) having system (23), with c s 0, as its (nilpotent) approximating system relative to

With system (23), consider the optimization problem of minimizing C(u)=
0 [eu4(s)+h4(x(s))] ds, e>0, h-H4 and positive definite. Then, with the ter-
minology as in the proof of lemma 2,

with

H(x, p, u) =plu+p2x + cp3x-px3 -F eu4-F h-(x),

H* x, p ")/p 41/ -jr- p2x -t- cp x p x + h +4 x

y >0.

The HJB equation is H*(x, Vx(x))=0, with data V(0)=0, V positive definite. We
expect V H4. Thus we try

(24) V(x) EIX’ 3
t- lXlx3 -3I-/2XlX + E2x -i-/3x2x -3

t- E3x/3
and require E, E2, E3 > 0. Lemma 1 shows that V is positive definite if

(25) I11 ()1/4() 3/4

12, () 1/4,E3]( 3/4

131 () 1/4() 3/4

< 1.

The HJB "inequality," i.e., the analogue of (16), which we wish to have negative
definite is

(26) --V/13(X) + X Vx2(X + CX gxa(X X gX3(X ).

Substituting from (24) into (26) gives

g(x) y(4E,x+x+2X3)4/3 +3 2 2
,x,x2 + 4E2x,x+ (3 + c2)XlX3

+ c3x2x3 + ()cE3x/3 2x 3xx2 () 31/3
31

Change coordinates to

y Xl Y2 X2, Y3 4Ex+lX+ 2x3,

which inves as

x=y, x2=Y2, x3= (ya-4Ey-Y),

where we assume 2 0. Again, abusing notation by retaining the symbol g after the
variable change, and from symmetry considerations choosing 3 2 # 0, we obtain

2 2+3lYY2 (2+4c)yy2+2(C + 1)yY3+ cy2Y3

+ E3 (Y3 4Ely] y)1/3 C
(Y3 4Ely y) y
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Our goal is to show that/31,/2, E, E2, E3 can be chosen so that V is positive definite
and the homogeneous function g H4 is negative definite. Let

(i) E2 16, fll > 0, 4cE +2+ 4E1 > 0 and define

F= {y" (4cE + fl2+4E1)y+ cflly+ yy/3= 1}.

It is here that c 0 plays a basic role! The choice (i) ensures F is an ellipsoid enclosing
the origin. From the homogeneity of g, if we can show g is negative on F, then g will
be negative definite. For yF, ]y3l <= (1/ y)3/4, ]y21<-(1/fllc) 1/4, lyl_-<
1/(4cE1 + f12 + 4E1) 1/4.

For e > 0 sufficiently small, y > 0 can be made sufficiently large so that terms in
g(y) having a factor Y3 become negligible. Thus we have g < 0 on F if we can choose
ill, f12, El, E3 such that for y F,

2 2__f(y) (4E2-131- Cfll)Yly3 + 3/31YlY2 (/32 + 4c)y31Y2

(27) ()(2) 1/3 [(22) ]-I- E (4Ely + flly3) 1/3 (4Ey31+ flly32) + y3 < 1.

We do this by showing that the constants can be chosen so that the inequality holds
where any line Y2--ayl, o real, intersects F. Such a line intersects F in two points;
however, from the homogeneity of f, the values of f at these points are the same.
Abusing notation, let f(a) denote the value of f at the points where the line Y2--ayl

intersects F, and yl(a) denote the Yl coordinate of such an intersection. Then yl(ce)- 0
as a c and the line xl 0, or a , must be handled separately. Here lY21 (1/CjI) 1/4,
Yl =0 and (27) requires

() (2) 4/3

)4/3 (CI) ()(2)4/3

cE3 (/31 E3 /311/3 < 1.

Choose
(ii) /3/3 ()(’/3/E3) > 0. This choice ensures/31 > 0 and that lim_.f(a) 1/2< 1

independently of future choices of/32, E3. Furthermore, by continuity off, there exists
an M > 0 such that f(a)< 1 for Itel > M; hence, we need only concern ourselves with

Ice =< M. From (27),

f(a) / (4E2-/31- c/31) ce + 3fllce2- (/32 + 4c)ce

(28)

+ (4+.t),/3
c
(4+t)+ y().

Choose E1 1 and/2 --(4 "ql- 3) < 0 which satisfies (i). Next, noting (ii), choose E > 0
large enough to make/31 < min {3/cM, 4/M, 1}. Then for Icel-< M, (4E + ce/3)1/ > 0,
[(e/fl2)(4E1 + a3/3)+ 1]>0 and hence by increasing E further, if necessary, we can
assure the coefficient of y4(c) is negative in (28), i.e., f(a)-< 0 if }a] <= M, and also that
(25) holds, i.e., V is positive definite. Then if u*(x)=-(V,(x)/4e) 1/ is the control
used in system (23), the trajectory derivative of V along solutions of (23) is f’(x) g(x)
which is negative definite and x- 0 is a globally asymptotically stable solution.

3. Concluding remarks. Our eventual goal is to show that if system (1) is STLC
and satisfies additional necessary conditions, it does admit a continuous locally
asymptotically stabilizing feedback control. We would also like to construct such a
control. The basic approach here, shown feasible for n 2, and for special cases when
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n=3, is based on the following ideas. For the general system (1), let 9
{(ad X, Y)" v 0, .} and 9j denote the set of all Lie products of i-tuples of elements
from 91 having i<=j. Let L(5el) denote the Lie algebra of vector fields generated by
owl; L(oWl)(0) the elements of L(5el) evaluated at zero and assume dim L(Sel)(0)= n
which is a necessary condition for STLC. For ease of discussion, also assume the
system is "odd," i.e., dim span 5eJ+l(0) dim span 5e(0) for odd j. This is a sufficient
condition for STLC [4] and determines a dilation x (erlxl, ", er"xn) where ri 1
for 1 _-< =< nl dim span 91(0), ri 2 for nl + 1 _-< -< n2 dim span 52(0), etc. Note that
"odd" implies that all r are odd. Let k rn i.e., k is the smallest integer such that
dim span 5ek(0) n. We can choose local coordinates x=(xl,’’’, x,), (see [6]) so
that Y O/Oxl and X(x) X(x) + X-l(x) +. , where X is homogeneous of degree
j with respect to ;r. The approximating system then is X(x) + uY. First use some
feedback (as in the proof of Theorem 1) to eliminate the first component of X; i.e.,
we may assume X(x)---_i=2 ai(x)O/Oxi, ai(0)=0, i= 2,..., n. The choice of cost
functional of the form

C(u) [euk+l(S) + h +k+l (x(s))] ds, e>0,

with h+k+l positive definite and homogeneous of degree (k+ 1), forces the optimal
control u*(x, p) to be such that H*(x, p) H(x, p, u*(x, p)) is homogeneous of degree
(k+ 1) with respect to the dilation yr,(x, V,p)= (3rx, eV, 6r*p). Then STLC implies
that the associated HJB "inequality," e.g., see (16), -y(Vx,(x)) (k+l)/k +Yj=2 a(x) Vxj <=
0, with equality only for x 0, does have a continuous viscosity solution V which is
positive definite and homogeneous of degree (k + 1) with respect to 6. The problem
is to find additional necessary conditions for system (1), which, if satisfied, are sufficient
to ensure that this solution is C 1. The homogeneity of V is such that the vector field
W(x)=X(x)+u*(x, V(x))Y is homogeneous to degree zero. This means the
approximating system is "good" in the sense that asymptotic stability of its zero solution
implies, by Theorem 2, local asymptotic stability of the zero solution of the original
system with control u(x)= u*(x, Vx(x)).

Initially, the hope was that STLC and the necessary condition (B3) would be
sufficient for the existence of a continuous asymptotically stabilizing feedback control
for system (1). In a recent paper Coron [16] has given a necessary condition which is
stronger than (B3) (i.e., it implies (B3) but the converse is not true); however, STLC
and the Coron condition are not sufficient for the existence of a continuous asymptoti-
cally stabilizing feedback control even in the case when X is homogeneous of degree
zero with respect to an "odd" dilation (see [17]).
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RAPID BOUNDARY STABILIZATION OF THE WAVE EQUATION*

VILMOS KOMORNIK?

Abstract. The boundary stabilization of the wave equation in bounded domains is studied. It is shown
that a particular choice of the feedback leads to fast energy decay. Explicit decay rate estimates are obtained.

Key words, wave equation, boundary feedback
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1. Introduction. The decay of the local energy of solutions of the wave equation
in exterior domains has been thoroughly investigated since the early 1960’s; cf. Lax
et al. [18], Lax and Phillips [19], Morawetz et al. [22] and their bibliography. The
study of the analogous problem in bounded domains with an "energy absorbing"
boundary began in the mid-1970s; cf. Quinn and Russell [23], Rauch and Taylor [24],
Slemrod [27]. For the latter problem exponential energy decay was first proved by
Chen [3] by adapting the multiplier techniques developed earlier for the exterior
problem.

The research has been continued along two, somewhat opposite, lines"
Finding large classes of feedbacks giving exponential decay;
Finding special feedbacks giving fast energy decay.

In the first direction the most general results up to now have been proved by Bardos
et al., [1]. In a large, natural class of feedbacks the authors have characterized those
giving exponential decay. We remark that their method does not provide explicit decay
rate estimates.

In the present paper we are interested in the second problem. We are going to
show that a suitable special choice of the feedback leads to rapid, in some sense
optimal energy decay. Moreover, strong explicit decay rate estimates will be obtained.

We turn to the formulation of our results. Let f be a bounded domain in
(n _-> 1) with a boundary F of class C2; let us denote by u the outward unit normal to
F. Fix a point xn arbitrarily and set

(1.1) m(x) x-x (x [") and R sup {Im(x)l" x }.
Let F+ and F_ be two disjoint open subsets of F such that

(1.2) m.9=>0 onF+, m.9_<-0 onF_, and F+UF_=F
(. denotes the scalar product of E").

Fix two nonnegative functions K, L L(F+) and consider the following system"

(1.3) u"-Au=0 infix(0,
(1.4) u 0 on F_ (0, oo),
(1.5) O,,u + Ku’ + Lu 0 on F+ x (0, ),
(1.6) u(0)=u and u’(0)=u onlY.

(Here and in the following 0 denotes the normal derivative and the time derivative;
the Laplacian Ais taken in the space variables.) This system is well posed in the

* Received by the editors August 3, 1989; accepted for publication (in revised form) December 26,
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Mfizeum Krt. 6-8, Hungary.
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following sense: if we put

(1.7) V={vH’(f)[v=O on r_},

for every initial data (u, u) Vx L(a) the system (1.3)-(1.6) has a unique solution
satisfying

(1.8) u e C([O, 00); V) ’) cl([0, oo); L2(12)).
Furthermore, the system is dissipative: the energy of the solutions, defined by

E=E(t)=E(u,u’,t)
(1.9)

1
,( ]Vu dx +- Lu(t) dr,:=_ t) (t)l

2 n

is decreasing in [0, oo).
The purpose of this paper is to show that much stronger results hold if we choose

the functions K and L appropriately. The main result concerns the case n > 1.
THEOREM 1. Fix a positive function k L(F+) such that

k>-l/R and klm I<=1 on F+

n-1
(1.11) K=(m. u)k and L=(m. u)k2.

2

(a) For n 2, 3 the solutions of (1.3)-(1.6) satisfy the following estimates"

(1.12) E(t)<=el-(t/4R)E(O) Vt>=4R if n=2,
(1.13) E(t)<=e’-(t/2R)E(O) Vt>=2R if n=3.

(b) Let n > 3 and assume that

(1.14) F+ f-) F_ .
Then the solutions of (1.3)-(1.6) satisfy estimates (1.13).

The simplest choice of a function k satisfying (1.10) is the constant function 1/R.
In the (much simpler) case n stronger results hold.
THEOREM 2. Assume that n and choose

(1.15) K=I and L=0.

Let us denote by 112[ the length of the interval 12. Then the solutions of (1.3)-(1.6) have
the following properties:

(1.16) E(t)=0 Vt>_-112[ ifF_=,

(1.17) E(t)=0 Vt=>21121 ifF_.

Theorem 1 improves various earlier results proved by Chen [3], [4], Lagnese [14],
[15], Quinn and Russell [23], Rauch and Taylor [24], Russell [26], Slemrod [27],
Triggiani [28], Zuazua [29], [30] and Komornik and Zuazua [12], [13]; cf. also Lions
[20]. Our proof will refine a method introduced in [12] and [13]; we will also use
several ideas of Grisvard [5], Haraux [6], Lagnese [15], Zuazua [30], and Komornik
[7]. Our results were announced in [11].

Several remarks are in order.
Remark 1.1. The geometrical hypothesis (1.14) is satisfied if 12 is star-shaped with

respect to x or more generally, if 12 121\2, where 121,122 are star-shaped domains

(1.10)

and put
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with respect to x and fi2 C -1" It seems reasonable (but it has not yet been proved)
that estimates (1.13) remain valid for n> 3 without hypothesis (1.14) (see Lemmas 2.2
and 4.1 below).

Remark 1.2. Theorem 1 remains valid for every bounded convex domain f, even
if its boundary is not of class C2, provided that F_ (i.e., x ).

Remark 1.3. If n 2 and F_ , then the proof given below shows that, in fact,
estimates (1.12) remain valid by replacing 4R by 4R(e+ 1)/(c+2), where c is the least
positive constant satisfying

(1.18) Iv Lv2 dF<=c lsalvl2 dx lv V.

Remark 1.4. The role of the factor (m. ,) in the feedback was first observed in
[12] and [13], where feedbacks of the form Ou + k(m. ,)u’ 0 were applied. The more
general form (1.5) with L 0 was introduced by Zuazua [29], [30] to make the feedback
more robust. In Theorem 1 the special choice (1.10), (1.11) ofthe coefficients is essential.

Remark 1.5. According to a general principle due to Russell [26], for a system
invariant with respect to time reversal, uniform exponential stabilizability implies exact
controllability. In particular, estimates (1.13) yield the following exact controllability
result:

Let T> 2R. Then for every initial data (u, ul) V L2(I)) there exists a function
v L2(0, ; Lz(F+)) such that v(t) =0 for all t> T and such that the solution of (1.3),
(1.4), (1.6), and

(1.19) ou v on F+ (0, c)

satisfies u (t) 0 for all > T.
In other words, the "control" v drives the system to rest in time T.
At the same time, estimates (1.13) yield another exact controllability result (under

the same condition T> 2R but with different function spaces) concerning the system
(1.3), (1.4), (1.6), and

(1.20) u=v on F+(0,).

These results were first obtained (for every n => 1) by Lions [20], [21], applying a
direct approach, the Hilbert Uniqueness Method (HUM). (Two different, constructive
versions of his proofs were later given in [7]-[10].)

If 12 is an n-dimensional ball or cube of centre x (or, more generally, if f is
contained in a ball of centre x and contains at least one diameter of this ball), then
in the above exact controllability theorems the number 2R cannot be replaced by any
smaller constant. In this sense estimates (1.13) are optimal.

On the other hand, in general the constant 2R is not optimal; let us denote by To
the least constant such that the above systems are exactly controllable whenever T> To.
The constant To is the same for both systems; cf. [1], where To was determined
geometrically. It is an open question whether estimates (1.13) remain valid if we replace
2R by To.

Remark 1.6. The proof of Theorem 1, given below, may easily be generalized 17]
for more general partitions (F+, F_) of the boundary by using, as in [14], [15], more
general vector fields instead of re(x). The results are, however, less explicit.

The method may also be adapted, following [13] or [16], respectively, for some
nonlinear systems and for other, not necessarily hyperbolic systems.

The plan of this paper is the following. In the next section we discuss briefly the
interpretation and the well-posedness ofthe system 1.3)-(1.6) and establish two related
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basic identities. Using these identities, in 3 we prove Theorem 1 in the case n > 3 and
obtain some weaker results if n <-3. Finally, the proofs of Theorems 1 and 2 are
completed for n <- 3 in 4.

2. Well-posedness and some identities. The results of this section hold for any
nonnegative functions K, L L(F/) in (1.5); the special choice (1.10), (1.11) will not
be needed here.

Assume first that system (1.3)-(1.6) has a sufficiently smooth solution. Then for
every [0, oo) we have u(t), u’(t) V, and, multiplying (1.5) by an arbitrary function
v V, integrating on F/, and applying Green’s formula, we find

This leads to the interpretation of (1.3)-(1.6) in the operational form

(2.2) (u, u’)’+A(u, u’)=0 in (0, oo),

(2.3) (u, u’)(0)= (u, u’),

where A is a linear operator in V x L2(-) defined by

D(A)={(u,z)e Vx VIAueL2(12),
(2.4)

ffa(Au)v+Vu" Vvdx+ f, (Kz+Lu)vdF=O,!ve V},
and

(2.5) A(u,z)=(-z,-Au).

(We refer to, e.g., Lagnese [16] for the explanation of this interpretation in similar
problems.)

The form (1.9) of the energy suggests to consider in V the euclidean norm defined
by

(2.6) I[vll/= f Iv/)[2-+ v2 dx q- f LI)2 dF, v e V;

it is equivalent to the norm induced by H(I)).
We claim that A+ I is a maximal monotone operator in the Hilbert space V x

L2(). The monotonicity follows easily from (2.5), (2.6), (2.1), and from K, L>=0
given (u, z)e D(A) arbitrarily, we have

((a + I)(u, z), (u, Z)) VXL2(’)

(U --,, U)V’I-(Z-- AU, Z)L2()

=IaV(u-z)’Vu+(u-z)u+(z-Au)zdx+Iv L(u-z)udF
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For the maximal monotonicity of A + I it is sufficient to show that A + 2I is surjective
(cf., e.g., Br6zis [2]). Given (v,f) V L2()) arbitrarily, consider the equation

faVu" Vw+4uwdx+I, (2K+L)uwdF

(2.7)
(2v +f)w dx + Kvw dF Vw V.

Y

Applying the Lax-Milgram theorem, we find that (2.7) has a unique solution u V.
Applying (2.7) with w @(), we obtain also that Au =4u-2v-f L2(f). Therefore,
(2.7) may also be written in the form

;u" w+(Au)wdx+Iv (K(2u-v)+Lu)wdF=O.

Putting z 2u-v, we obtain (u, z) D(A). Finally, we have

(a + 2I)(u, z) (:--z + 2u, -Au + 2z) (v,f).

Now we apply the Hille-Yosida theory in the form given in, e.g., Br6zis [2]. It
follows that, for every initial data (u, ul)e Vx L2()), system (1.3)-(1.6) has a unique
solution such that

(2.8) (u, u’)e C([0, oo); V x L(Y)).
Furthermore, e-’ll(u u’)(t)llv()decreases as t-+m; in particular, from (1.9) and
(2.6), it follows that

(2.9) 2E(t)<-e2’ll(u, U’)ll]/L2a) Vt>--0.

Moreover,

(2.10) D(A) is dense in V L(f)
and for every initial data (u, u) D(A) the solution of (1.3)-(1.6) has the following
stronger regularity properties:

(2.11) (u, u’) C([0, oe); D(A))CI C([0, oo); V L2(f)).
Let us note that (1.3) and (2.11) imply that

(2.12) Au C([0, co); LZ(f));

however, we do not have

(2.13) u e C([0, oo); Hz(Y))
in general.

Let us now assume that the geometrical condition (1.14) is satisfied. Then we have
D(A) c H2(-) g with continuous imbedding: this may be proved in the same way
as an analogous result in Lagnese [16, Chap. 3, 4.2.1.]. In this case we deduce from
(2.11 that

(2.14) u C([0, co); H2(12)) VI C([0, o); V) f-I C2([0, ee)i L-(12)).
It is well known (cf., e.g., [21]) that the relation D(A)c H2(I))x V also holds if

f is convex and F_ , without any regularity assumption on its boundary. Therefore,
the regularity properties (2.14) hold in this case, too.

In the rest of this section we will consider only solutions of (1.3)-(1.6) satisfying
(2.14). All the calculations below will be justified by this regularity.
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Remark 2.1. More precisely, the proof of Lemma 2.2 below will use (2.14). For
the other calculations the regularity properties (2.11), (2.12) will be sufficient.

LEMMA 2.1. Let u be a solution of (1.3)-(1.6) satisfying (2.14). Then

(2.15) E(S)-E(T)= K(u’)2 dr dt

whenever 0 <- S < T < oo.
Proof Multiplying (1.3) by u’, integrating by parts on 12 (S, T), and applying

(1.4) and (1.5), we obtain

0 u Au) dx dt

.’a.. dr dt + (/.,/,)2 + IV ul= dx
s s

K(/,/’)2 dF dt/ (u’)2+ lTul2 dX’qt- L.2 dF
S + S

and the lemma follows from (1.9).
Let us recall the following identity, essentially due to F. Rellich [25].
LMMA 2.2. If V H2(), then

(2.16) f 2(Av)m" Vv+(2-n)lVvl dx= f 2(O.v)m" Vv-(m. P)lVI2 dF.
do

Proo$ We apply Green’s formula as follows:

2 f (av)m. Vv
d

dx

i 2(Ov)m" Vv-(m"

Using Lemma 2.2 we finally establish our basic identity.
LEMMA 2.3. Let u be a solution of (1.3)-(1.6) satisfying (2.14). en

2 E(t) dt- (m. P)(OvU)2 dF dt
S

+ u’(2m. Vu+(n-1)u)
s

f I, (m" P){(u’)2--IVul2}
S

+{Lua-(Ku’+ Lu)(2m. Vu+(n-1)u)} dF dt

whenever 0 S < T .
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Proof Following [12], [19], or [20], we multiply (1.3) by 2m. Vu+(n-1)u and
integrate by parts:

0= (2m. Vu+(n-1)u)(u"-Au) dxdt

(1- n) uOudF dr+ u’(2m. 7u+(n-1)udx
s

+ -2(m. Vu)Au-m. V(U’)2

+ n 1 )(IV ul2 (u’)2) dx at

(1-n)uOu-(m. v)(u’) dF dt

+ u’(m. u+(n- 1)u) dx
s

+ -2(m. Vu)&u+(u’)2+(n--1)Vul2 dxdt.

Applying Lemma 2.2 shows that

12 (2m vu+(n )) dx(U’)2+ [Vu dxdt+ u’
s

(m. v)((u’)2-lVul2)+o,u(2m Vu+(n-1)u) dr dt.

If we use (1.4), (1.5) and (1.9) then (2.17) follows.

3. Proof of Theorem I if condition (1.14) is satisfied. Our proof is based on (2.17).
(We recall that this identity was proved under hypothesis (1.14).) We begin by estimating
its different terms. The special choice (1.10), (1.11) of the functions K, L will play a
crucial role. In Lemmas 3.1-3.3 below we consider an arbitrary solution of (1.3)-(1.6),
where (u, u) D(A). We remark that these lemmas are valid for all n 1.

LEMMA 3.1. We have

(3.1) au’(2m’Vu+(n-1)u)& 2RE VtO

where E is the expression in (1.9).
Proof We proceed as in [7]. First we apply the divergence theorem as follows:

a(2m"

Vu+(n-1)u)a &

a ((2m. Vu)+(n-1)u+(2n-2)m V(u) dx

Using (1.1) and (1.2), the last expression is majorized by

4RalVudx+(2n-2)r (m. p)u dF.
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By this estimate, (3.1) now follows from the Cauchy-Schwarz inequality and
(1.9)-(1.11)"

u’(2m V u + n 1)u) dx

1
L2(])(m+- 112m. Vu+(n-1)ul[ 2

<-R {Ia(u’)2/lvu’2 dx/ Ir Lu2 dF}
2RE.

To estimate the right-hand side of (2.17) we generalize a method used in [13] for
the case L 0.

LEMMA 3.2. The integral on the right-hand side of (2.17) is majorized by

2RK(u’)2+3-nLu2 dF.
2

Proof Using (1.11) the function under the integral sign takes the following form:

n 1
k2u2(m" /y) (l,t)2 [V u 12 -[

2
(3.2)

ku’+ ku (2m. Vu+(n-1)u)
2

Applying the Cauchy-Schwarz inequality and using (1.10) we have

ku’ + k u 2m Vu
2

[m]2 ku’+ k2u q-]Vu
2_

(i,/t)2 nt_
(n1)___ k2rt2q_(n_l)ktltl,q_[Vtl]2.

Since m. v >= 0 on F+ by (1.2); hence (3.2) is majorized by

(m. p) 2(u’)2q
2

(n-l)2 (n-1
2 )2)k2u2}

=(m. /.’) {2(U’)2 q 3- n n 1 k2u2".
2 2 J

Using (1.10) and (1.11) again, (3.2) is majorized by

2RK (u’)2 + 3,,,- n Lu2.
2

LEMMA 3.3. We have

(3.3) 2 j.r
s

E(t) dt+
2

Lu2 dF dt<-_4RE(S)

whenever 0 <-_ S < T < c.
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that
Proof Estimating the last two integrals of (2.17) by Lemmas 3.1 and 3.2 we find

2 E(t) dt- (m. v)(Ou dFdt._

<-2R(E(S)+ E(T))+ 2RK(u’)2+ Lu2 dF dt.
2

Applying Lemma 2.1 we conclude that

2 E(t) dr- (m. v)(ou dV at

(3.4)
Lu dF dr.4(s+ -Since m. v 0 on F_ by (1.2), the lemma follows. [q

Now assume that n 2. Then the second term in (3.3) is nonnegative because
L->0 on F+, and L=0 if n 1 (cf. (1.11)). Hence,

rE(t) dt<=2RE(S), 0-<S<T<.

Letting T- o we conclude that

(3.5) E(t) dt<-2RE(S) ’S[0,0o) if n#2.

Now we apply a usual Gronwall-type argument as in, for example, [6] or [15].
Writing (3.5) in the form

d e./ E(t) dt _-<0 Vs>-_0,
ds

we conclude that

esize E(t) dt < E(t) dt

Since E(t) is decreasing and nonnegative (cf. Lemma 2.1 and (1.9)), the integral on
the left-hand side is minorized by 2RE(s +2R). On the other hand, the integral on
the right-hand side is majorized by 2RE(0) (cf. 3.5)). Hence

2RE/ZR)E(s+2R)<=2RE(O) /s>=O,

which is equivalent to (1.13).
Now assume that n 2. Then the second term in (3.3) is not necessarily greater

than or equal to zero, but it is always minorized by -isr E(t) dt (cf. (1.9)). This leads
to the estimate

(3.6) E(t) dt<-4RE(S) k/S[O,c)
s

instead of (3.5) and, replacing 2R by 4R everywhere in the above reasoning, we obtain
estimates (3.12).

If F_ # , then by (1.18) the second term of (3.3) is minorized also by -(c/(c+
T1)) s E (t). This leads to the stronger estimates mentioned in Remark 1.3.
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We have thus shown that if the geometrical condition (1.14) is satisfied and if
(u, ul)D(A), then the solution of (1.3)-(1.6) satisfies (1.12) if n=2, and (1.13) if
n # 2. In fact these estimates remain valid under the weaker condition (u, ul)
V X L2(-) on the initial data: this result follows easily by a standard density argument,
based on (2.9) and (2.10).

In particular, Theorem 1 is completely proved for n > 3. El

4. Proof of the theorems for n-<_3. Let us first consider the cases n 2, 3. We are
going to show that in these cases the estimates (3.12), respectively, (3.13), remain valid
even if (1.14) is not satisfied. Again, it is sufficient to consider initial data (u, u 1)
belonging to D(A). The difficulty is that now the solutions do not satisfy (2.17) in
general.

On the other hand, let us observe that in the proof of estimates (3.12) and (3.13)
in 3 we used only the inequality part "-<" of (2.17). (See also [12] and [13] on the
same issue.) Hence for the proof of Theorem it is sufficient to establish the following
inequality, replacing (2.16).

LEMMA 4.1. Assume that n <- 3 and let (u, z) D(A). Then

(4.1)

2(Au)m. Vu+(2-n)lVu[2 dx

<= 2(O,,u)m. Vu-(m. u)lVu[2 dF.
F

Inequality (4.1) has been proved by Grisvard [5] in the special case K L 0. It
is shown in 13] that his proof may be easily adapted for the more general case K => 0,
L 0. In fact the same arguments may be used for the proof in the present case K >- 0,
L >-0. We omit the details.

Finally we turn to the proof of Theorem 2. Now f is a bounded open interval;
let us denote it by (a, b).

Consider first the case F_ . The solution of (1.3)-(1.6) may be computed by
the method of D’Alembert. Putting

(4.2) U(s) u(r) dr, s [a, b]

and then extending u, U to E by

(4.3) u(x)=u(b) and U’(x)= U’(b) if x> b,

(4.4) u(x)=u(a) and U(x)= U(a) if x<a,

we obtain

(4.5) 2u(x, t) u(x + t) + u(x t) + U(x + t) U(x t).

If > b- a, then from (4.2)-(4.5) we conclude that

2u(x, t) u(b)+ u(a)+ U’(b)- U’(a),

independently of and x. Hence (1.16) follows.
Now consider the case F_ . Since F+ , there are two possibilities: either

F_= {a} or F_= {b}. We may assume by symmetry that F_= {a}. If we define u and
U on E by (4.2), (4.3), and

(4.6) u(x)=-u(2a-x) and U’(x)=U’(2a-x) ifx<a,
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the solution of (1.3)-(1.6) is given again by (4.5). In particular, for t>2(b-a) we
conclude from (4.2), (4.3), (4.5), and (4.6) that

u(x,t)=O Vx[a,b], Vt>2(b-a).

Hence (1.17) follows.

Acknowledgments. The author is grateful to P. Fabrie, A. Haraux, J. Lagnese, and
D. L. Russell for fruitful discussions.

REFERENCES

[1] C. BARDOS, G. LEBEAU, AND J. RAUCH, Contrle et stabilisation dans les problOms hyperboliques, in
J.-L. Lions, Contrlabilitd- exacte et stabilisation de systmes distribud-s, Vol. 1, Contrlabilitd- exacte,
Masson, Paris, 1988, pp. 492-537.

[2] H. BRZIS, Analyse fonctionnelle: thd-orie et applications, Masson, Paris, 1983.
[3] G. CHEN, Energy decay estimates and exact boundary value controllability for the wave equation in a

bounded domain, J. Math. Pures Appl., 58 (1979), pp. 249-274.
[4] ., A note on the boundary stabilization’of the wave equation, SIAM J. Control Optim., 19 (1981),

pp. 106-113.
[5] P. GRISVARD, Contrlabilitd- exacte des solutions de l’d-quation des ondes en prd-sence de singularitd-s, J.

Math. Pures Appl., 68 (1989), pp. 215-259.
[6] A. HARAUX, Semi-groupes lind.aires et d-quations d’d-volution lind-aires pd-riodiques, preprint 78011,

Laboratoire d’Analyse Num6rique, Universit6 Pierre et Marie Curie, Paris.
[7] V. KOMORNIK, Contrlabilitd- exacte en un temps minimal, C. R. Acad. Sci. Paris S6r Math., 304

(1987), pp. 223-225.
[8] ,Exact controllability in short timefor the wave equation, Ann. Inst. H. Poincar6 Anal. Nonlin6aire,

6 (1989), pp. 153-164.
[9] , Une md-thode gd-nd-rale pour la contrlabilitd- exacte en temps minimal, C. R. Acad. Sci. Paris S6r

I. Math., 307 (1987), 397-401.
[10] , A new method of exact controllability in short time and applications, Ann. Fac. Sci. Toulouse, to

appear.
[11] , Stabilisation frontire rapide de l’d-quation des ondes, C. R. Acad. Sci. Paris S6r. Math., 309

(1989), pp. 483-486.
[12] V. KOMORNIK AND E. ZUAZUA, Stabilisation frontibre de l’d-quation des ondes: une md-thode directe,

C. R. Acad. Sci. Paris S6r Math., 305 (1987), pp. 605-608.
[13] ., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69

(1990), pp. 33-54.
[14] J. LAGNESE, Decay of solutions of wave equations in a bounded region with boundary dissipation, J.

Differential Equations, 50 (1983), pp. 163-182.
15] ., Note on boundary stabilization ofwave equations, SIAM J. Control Optim., 26 (1988), pp. 1250-

1256.
[16] ., Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics 10, Society for

Industrial and Applied Mathematics, Philadelphia, PA, 1989.
[17] I. LASIECKA AND R. TRIGGIANI, Uniform exponential decay in a bounded region with L2(0 T; L2())-

feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), pp. 340-390.
[18] P. D. LAX, C. S. MORAWETZ, AND R. S. PHILLIPS, Exponential decay ofsolutions of the wave equation

in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math., 16 (1963), pp. 477-486.
[19] P. D. LAX AND R. S. PHILLIPS, Scattering Theory, Academic Press, New York, 1967.
[20] J.-L. LIONS, Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev.,

30 (1988), pp. 1-68.
[21] , Contrlabilitd- exacte et stabilisation de systb.mes distribud-s, Vol. 1, Contrlabilitd- exacte, Masson,

Paris, 1988.
[22] C. S. MORAWETZ, J. V. RALSTON, AND W. A. STRAUSS, Decay ofsolution of the wave equation outside

nontrapping obstacles, Comm. Pure Appl. Math., 30 (1977), pp. 447-508.
[23] J. P. QUINN AND D. L. RUSSELL, Asymptotic stability and energy decay rates for solutions of hyperbolic

equations with boundary damping, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), pp. 97-127.
[24] J. RAUCH AND M. E. TAYLOR, Exponential decay of solutions to hyperbolic equations in bounded

domains, Indiana Univ. Math. J., 24 (1974), pp. 79-86.



208 VILMOS KOMORNIK

[25] F. RELLICH, Darstellung der Eigenwerte yon Au+ Au =0 durch ein Randintegral, Math. Z. 18 (1940),
pp. 635-636.

[26] D. L. RUSSELL, Controllability and stabilizability theory for linear partial differential equations. Recent
progress and open questions, SIAM Rev., 20 (1978), pp. 639-739.

[27] M. SLEMROD, Stabilization ofboundary control systems, J. Differential Equations, 22 (1976), pp. 402-415.
[28] R. TRIGGIANI, Wave equation on a bounded domain with boundary dissipation: an operator approach,

J. Math. Anal. Appl., 137 (1989), pp. 438-461.
[29] E. ZUAZUA, Some remarks on the boundary stabilizability ofthe wave equation, in Control of Boundaries

and Stabilization, J. Simon, ed., Lecture Notes in Control and Inform. Sci., 125, Springer-Verlag,
Berlin, New York, 1989.

[30] ., Robustesse dufeedback de stabilisation par contrMefrontire, C. R. Acad. Sci. Paris S6r Math.,
307 (1988), pp. 587-591.



SlAM J. CONTROL AND OPTIMIZATION
Vol. 29, No. 1, pp. 209-221, January 1991

(C) 1991 Society for Industrial and Applied Mathematics

012

ON MINIMUM ENERGY PROBLEMS*

G. DA PRATO’, A. J. PRITCHARD$, AND J. ZABCZYK

Abstract. A stochastic system described by a semilinear equation with a small noise is considered.
Under suitable hypotheses, the rate functionals for the family of distributions associated to the solution and
the exit time and exit place of the solution are computed.
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1. Introduction. The paper is concerned with several deterministic optimization
questions which arise in the theory of small noise distributed systems.

Let us assume that a stochastic system is described by a semilinear equation

(1.1) dX (AX + F(X))dt +x/ dW, X(O) a H, e > O,

where A and F are, respectively, linear and nonlinear parts of the drift term and W
is a Wiener process with incremental covariance Q on a Hilbert space H.

The optimization problems considered in this paper are motivated by the problem
of finding the rate functionals for the family of distributions (X:(.)), e>0. They
are also related to the problem of calculating (for a given domain) the exit time and
exit place of the processes X(.), e>0, (see [4], [5], [11], [12], [14], [15]). Here and
in the sequel the distribution of a random variable : is denoted as (:).

If ET(a," is the rate functional for the family of measures (XX’(T)), e > 0,
then also of importance is the functional E(a, b) infT>oE-(a, b), a, b H, which is
sometimes called the quasipotential ([4], [5]). For an appropriate choice of the initial
condition, E is the rate functional for the invariant distributions (,) of the
process X.

Assume that a is a stable equilibrium point for the deterministic system
Az + F(z), and let @ be a set contained in H which is open with respect to the strong
topology and contains the point a. Define- inf{t :>0; X(t)O}

then lim+o In e(-) is called the exit rate.
Now let ya,+(. be a solution to the following controlled equation"

f ay + F(y) + Q1/Zch, y(O) a

in which 4’ stands for a square integrable function from [0, +[ into H.
Under fairly general conditions, (see [14]), we have

Er(a, b) =inf 14,<s)ll ds; ya"(T)=b

and see [5], [12], and [14],

1.2) lim In e r inf E(a, b).
e$O
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The set of all those points where the infimum in (1.2) is attained is the exit set, and
this also has an important probabilistic interpretation (see [4], [5], [13]).

The present paper is concerned with the problem of finding or estimating E- and
Eoo and is also concerned with the problem of minimizing Eoo over the boundary of a
given set D. We will refer to them as the minimum energy problem and the exit problem,
respectively. We show that in certain important cases explicit solutions are possible.

The paper is divided into three parts. The first part is devoted to the minimum
energy problem for linear systems. Here we gather partially known results. Basic
formulae and estimates are given in Theorem 2.2. The next section starts from an upper
estimate for the energy Eoo which, however, is only valid locally. The main result of
the paper is formulated in Theorem 3.7 which gives explicit formulae for Eoo for the
so called gradient systems. The first part of the theorem is an extension of a result by
Friedlin [5] which also allows for a much larger class of drift terms. The second part
is concerned with systems of second order in time, which are not discussed in [5]. All
the basic steps of the proof are the same as those for the related results in finite
dimensional spaces (see [4]); they require more sophisticated control theoretic and
analytical developments. The final part presents a complete solution of the exit problem
when the dynamics are linear.

This paper is a shortened version of the report [3], to which we will refer for
additional details.

2. Minimum energy problem for linear systems. Consider a linear control system

(2.1) y=Ay+Bu, y(O)=a6H

on a Hilbert space H. The operator A generates a C0-semigroup of linear operators
S(t), => 0 and B is a bounded linear operator from a Hilbert space U into H. We will
always assume u(. L2[0, T; U] for arbitrary T> 0.

The mild solution of (2.1) is given by

(2.2) y(t) S(t)a + S(t- s)Bu(s) ds, >- 0.

Let us fix T> 0 and consider the following linear operator Lr acting from L[0, T; U]
into H:

(2.3)

Thus

L.u S( T- s)Bu(s) ds.

y( T) S( T)a + LT-u.
Recall that if L is a bounded linear operator between Hilbert spaces H1, H2, then the
value of its pseudoinverse operator L-1 at a point y Im L H2 is characterized as
the unique vector x H such that

Lx y, (x z, x) 0 for all z H, Lz y.

Equivalently x L-y is the element with the smallest norm satisfying Lx y.
It is clear that there exists a control u(. L2[0, T; U] transferring a to b in time

T if and only if b S(T)a Im Lr, and it is clear that the control which achieves this
and minimizes the functional u-* J Ilu(s)ll 2 ds--called the energy functional--is

(2.4) u Lr’(b S( T)a).
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Let us recall that the system (2.1) is null controllable in time T>0 if an arbitrary
state b H can be transferred to 0 in time T. Moreover, the set T of all states which
can be reached from 0 in time T>0 with controls u(.) L2[0, T; HI is called the
reachable space in time T. If T is the whole space then the system is said to be
exactly controllable in time T. Finally a semigroup S(t) is said to be stable if, for some
positive constants M and ca we have ]]S(t)]]-< Me-)’ (see [1], [2]).

Define the linear operator

Rt S(r)BB*S*(r) dr, >= O.

We have the following proposition (see Ill, [2]).
PROPOSITION 2.1. (i) The function Rt, >-0, is the unique solution of the equation

d
(2.5) -7:(Rtx, x)=2(RA*x,x)+]]B*x]] 2, xD(A*), t>_0; Ro=L
at"’-

(ii) IfA generates a stable semigroup then limt_+o Rt-- R exists and is the unique
solution of the equation

(2.6) 2(Ra*x, x)+ [[B*x[]2--O, X D(A*).

The following theorem gives general results for the functionals Er(a, b), the
minimal energy of transferring a to b in time T, and E(a, b), a, b H, T> O. In its
formulation we will use the convection that if an element x is not in the domain of
an unbounded operator C we set Cx][ +00.

THEOREM 2.2. (i) For arbitrary T> 0 and a, b H:

ET(a, b) IJR2)-’(S(T)a b)l .
(ii) If S(t) is stable and the system (2.1) is null controllable in time To > 0, then

E(0, b)= ]](U’/2)-’bll 2 b H.

Moreover, there exists C > 0, such that

(2.7) ]I(R’/2)-’b]I2<- ET(O, b)<= CJI(R’/2)-’bl] 2, b H, T>= To.

Proof The proof of (i) can be found, for instance, in [1]. To prove (ii) let us
remark that the null controllability in time To is equivalent to the fact that for a constant

C > 0 and all x H,

fo 1/2x 2 , 2B*S*(r)x dr R To >= C, S To)x

But

f (k+l)T

=0 dkT

and for a constant C2 > 0,

IIB*S*(r)xll dr

llB*S*(r)xll dr <- Cllxl , xeH.
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Consequently, for some constants M > 0, to > 0, C3 > 0,

IoI[el/2xl[- [[B*S*(F)Xl] dr+ C Y [Is*(To)xll
k=l

IIB*S*(r)xII dr+C -rolS*(ro)xll
o k=o

+-- (-e-o) -’ lB*S*(r)xll dr
C

1/2Hence Im el/c lm Rro Since the operator (e1/- /
ro R is closed and thus bounded

it follows that (2.14) holds. Now limr,Rr R so (2.13) must hold as well.
We now consider two special cases. Assume that A’D(A)c H H is a negative

definite operator on a Hilbert space H and that C’H H is a bounded operator. The
operators A and ,

= A C

define Co-semigroups on H and = D(-A)I/x H. The semigroups define mild
solutions of the following Cauchy problems

(2.8) 2 Ax, x(O) H
(.9) 2 ax + c, x(0) e D(-a) /, (0) H.

The controlled version of (2.8)-(2.9) are

(.0) =ay+u, y(O)=xg
(.) 2 ay + c+ u, y(0) O(-a)/), (0) v e H.

We have the following theorem.
TOM 2.3. (i) Assume that the operatorA is negative definite, then the reachable

see rfor che syscem (2.10) is, for all T> O, exactly D((-A) /) and

(0, b) 2(-a)’/bl, b H.

(ii) If in addition the operator C is negative definite, bounded and (-C)/ commutes
with (-A)/ then the system (2.11) is exactly controllable and

Proo For the details of the proof see [3]. The proof that (2.11) is exactly
controllable is similar to the one given for the one dimensional wave equation in [2],
although, of course, a more general spectral decomposition is required.

This result does not generalize to arbitrary semigroups; however for analytic
semigroups the first part of (i) can be generalized. To do this we must introduce the
real interpolation space D(1/2, 2). We recall that D(1/2, 2) is the set of all x in H
such that there exists a function y(.) W’(0, ; H)L(O, ; D(A)) such that
y(0) x (see [7]).

THEOREM 2.4. Suppose that A generates an analytic semigroup on H, then the
reachable set for system (2.10) does not depend on time and is equal to D(1/2, 2).
Moreover the energy norm ((0,.))/ is equivalent to the norm of D(1/2,2).

Proo Let T> 0, u(. L[0, T; H]; then the solution of (2.10) is given by

;oy()= s(-s)u(s) s
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and we have (see [8]) that y(.) W1’2(0, oo; H)f’IL2(0, ; D(A)). Hence y(T)
Da(1/2, 2).

Conversely let x Da(1/2, 2); then we want to show that there exists a control
u(.)L2[0, T; H] such that y(T)=x. Now since xDa(1/2,2) there exists z(.)
W/2(0, ; H)f’l L2(0, c; D(A)) such that z(0)= x. Choose a C real function d)("
such that 4(0) 0, 4)(T) 1 and set

( t) dp( t)z( T- t), u( t) ( t) A( t); [0, T]

Then u(- )Le[0, T; H], (t) y(t) and :(T) y(T) x as required.
We now consider

y( t) S( t)x + S( s)u(s) ds

and first suppose that x DA 1 / 2, 2). Then there exists z(.
W1,2(0, oo; H)(q L2(, oo; D(A)) such that z(0)--x. Let h be a real valued C function
such that h(0) 1, h(T) 0 and set y(,t) h(t)z(t), then y(0) x, y(T) 0 and p(.
Ay(. L2[0, T; HI. Thus it suffices to choose u(t) p(t) Ay(t). For x H we first
choose u(t) 0 in [0, T/2]; thus y(T/2) DA(1/2, 2). Now by the previous argument we
can find a control u(.)L2[T/2, T; HI such that y(T) =0.

3. Minimum energy problems for nonlinear systems. Results like Theorems 2.2, 2.4
for linear systems do not have immediate generalizations to nonlinear ones. However
local results can be obtained via linearization as we shall show in Theorem 3.1. This
theorem will also play a role in proving Theorem 3.7, which is an extension of Theorem
2.3 and is the most important result of the paper.

Denote by V the space Im Lr Im R2 associated with the control system (2.1),
equipped with the norm 11. I]-:

Ilxll-II(R=)-’xl[- IIZ’xll.
It follows immediately from the control theoretic interpretation that if <-s,

V, c V and Ilxll,-<-Ilxll, x vt.
Let us assume that for all T> 0 sufficiently small, F: VT- U and for all r > 0, there
exists Nr, T > 0 such that

(3.1) IIF(a)-F(b)llu<--N,Tlla-bllT provided IlallT<--r, IlbllT<--r.
Consider the following equation:

(3.2) 3) (Ay + BF(y))+ Bu, y(0) 0,

which has the following mild form:

io(3.3) y(t)= S(t-r)BF(y(r)) dr+ S(t-r)Bu(r) dr.

TEOREM 3.1. If 2Nr,r/-< 1 and Ilbll<-r((-2N,,/-)/2N,-,/-)then
Er(0, b) _-< (llb[l + rNr,wV/-)2.

We will need the following result, also of independent interest.
PROPOSITION 3.2. A mild solution y(.) of (2.1) with initial condition 0 is

VT-Continuous on [0, T].
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Proof Fix 0 s =< T, then

y(s)- y(t) S(s- r)Bu(r) dr- S(t- r)Bu(r) dr

S(s- r)B{u(r)- u(r-(s- t))If_,.(r)} dr.

Thus, from the definition of the norms in and

(3.4) [ly(s) y(t)ll2lly(s)y(t)[ 2 for , ]u(r)-u(r-(s-t))I,_,.,l(r)] dr

u(r)- u(r-(x- t))ll = dr+ I[u(r)ll z dr.
--t

But the right-hand side of (3.4) tends to 0 as s- 0 and so the result follows.
Proof The equation (3.2) can be written as

where F(y) denotes the function F(y(s)) s [0, T]. If there exists a control u(. that
transfer zero to b in time T, then

(3.4) x LrF(y)+ Lru.
Set

(3.5) u L?l(b- LrF(y)).

We will now show that the following equation

(3.6) y(t)=L,F(y)+L,L?(b-LrF(y)) t[0, T]

has a Vr-continuous solution. Note that then necessarily

(r) F(y) + x F() x

and the transferring control is given by (4.6).
For z Z C[0, T; Vr] define (z) by

O(z)(t) ,v() + ,?(x-F(z)).
It follows from Theorem 4.1 that : Z Z. Note

O(0)(t) ,?lx [0,

and hence

sup L,L’ b T-- U

So II(0)ll/--< IlbllT- Let w, z Z, then

(w)()- (z)() L,[V(w) V(z)] + ,’([F(z) F(w)])

and hence

(w)- (z)llz IIL.(F(w)- F(z))llz -IIL.L’(L[F(z)- F(w)])llz

2 IIF(w(s)) f(z(s))[l ds
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If w IIz r, z llz r, then

II(w)- (z)llz <--2Nr, T IIw(s)-z(s)ll ds) <_- 2N,4TII w- 11.

To show that the iterates z (0), n 1, 2, .., are convergent it is enough to prove
that IIz I1 r, for n 1, 2,.... Set k 2Nr,r, then

6(o) IIz 6(o)- 6-1(0) Ilz + 6-’(0) 6-=(o) IIz +... + 6=(o)- 6 (0) IIz
(k- + + k)l[6(0)ll Ilbll .1-k

So by the induction argument if

2N,
(1 2N,)

xb r,

then 116(o)llz r for all n 1, 2,.... The sequence {z,} is thus convergent in Z to
a solution y(. of the equation (3.6). Now

Ilu(s)[I = ds Ilb- gF(u)ll <= Ilbllr+ IlF(y(s))ll g ds

IlbllT + Nr,r IlY(s)II ds N IlbllT + rNr,T.
This complete the proof.

Remark 3.3. With a similar proof to the one above we can show that there exists
a unique solution of equation (3.2) on the interval [0, T] for any control satisfying

1-2Nr,
2Nr,T< 1 and sup IIL,ulIT <,

,r 2N,r
Also, nonzero initial states can be taken into account.

COROLLARY 3.4. Assume that for a given T> 0 the transformation F satisfies (3.1)
with Nr,TO as rO. enfor arbitrary e >0 there exists >0 such that g IlbllT < , then
Er(O, b) e.

Proo The result follows immediately from Theorem 3.1.
We will show that Theorem 2.3 can be extended to nonlinear systems of the form

(3.7) Ay U’(y) + u, y(O) ao H

(3.8) Ay U’(y) + u, y(O) ao D(-A)’/:, (0) bo H.

We will make the following assumptions

(i) A is a negative definite operator on the Hilbert space H.
(ii) U is a functional from V= D((-A) 1/2) into R+ of class C 1, U(0)=0,

OU(O) =0.
(iii) ere exists a mapping U" V H, Lipschitz on bounded sets such that

DU(x; h) (U’(x), h), for all x, h

where DU(x; h) denotes the value ofthe Frdchet derivatives at x in the direction
h.

(iv) is a positive constant.

Example 3.5. Let A=(d/dxa), D(A)= W(0, L) Wa(0, L). For any positive
integer k, we shall denote by wk(o, L) the Sobolev space consisting of all the real
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functions on [0, T] which have square integrable derivatives of any order less or equal
to k. Moreover, we set W(0, L)={u WI(0, L); u(0)-u(L)=0}. Then V=
D(-A) 1/2= W(O, L). Define

U(x) ck(x(s)) ds, x V,

where 4 is a real valued function of class C 1. It is easy to see that

U’(x)(s) 6’(x(s)), s [0, L], x V.

The assumptions (ii) and (iii) are satisfied in this case.
Example 3.6. The functional U(x)= II(-a)’/Zxll2, x w obviously satisfies the

condition (ii) and DU(x; h)= 2((-A) 1/2x, (-A) 1/2h), x, h V. But U’(x) is defined
only for x D(A), so (iii) does not hold.

The minimal energy required to transfer ao to al for the system (3.7) and from
[] to [[] for the system (3.8) will be denoted by ET(ao, al) and ET([o], [b,]),
respectively. Also E(.,. infT>oET(’," ).

We denote by za( ), Z[](" the solutions of the uncontrolled systems

(3.9) Az- U’(z), z(O) a H

(3.10) Az U’(z) fl,, z(O) a D(-A)1/2, ,(0) b H.

THEOREM 3.7. Assume that the assumptions (i)-(iv) hold.
(1) If a f: D(-a) 1/2 then E(0, a)=+.
(2) If aD(-A) 1/2 and (-a)l/2z(t)->O as to in H, then

(3.11) E(0, a)= ]](-a)l/Zall+ZU(a).
(3) If [] Yf and zg(t) 0 as - in Yf, then

(3.12) E O’ -13[ll(-A)’/-all2+2g(a)+llbll]"

Proof The proof is based on the following identities. For the system (3.7), with
y(O)D(-A) 1/2

(3.13) [lu(s)ll 2 ds=- Ilu(s)+2Ay(s)-2U’(y(s))[[ 2 ds

+ (-A)’/=y( T)[[ + 2 U(y(T)) -II(-m)/=y(0) 2

2 U(y(0))].

For the system (3.8), with y(0) D(-A)1/2, p(O) H,

l for llo(3.14) Ilu(s)ll ds=- [lu(s)-2(s)l[ as

//3 (-A)1/2y(T) Ila / 2 U(y(T)) + ll.9( T)ll =
-II(-A)l/2y(0)112-2U(y(o))- I1(0)

To show that (3.13) holds let us use the fact that the mild solution of (3.7) is in fact
a strong solution. Elementary calculations give

lfo
r

(3.15) \/(1, 2)\i(o, T, Ilu(s)ll 2 ds)=- Ilu(s)+Zay(s)-ZU’(y(s))ll 2 ds)

-2 ((s), Ay(s)- U’(y(s))) as
o
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(3.16)

and

It remains to show that
r

(.f(s), U’(y(s))) U(y( T))- U(y(O))ds

(3.17) -2 ()(s), Ay(s)) ds I(-A)’/y( Y)ll =- (-A)’/y(0) -0

In fact the identities (3.16) and (3.17) are true for arbitrary functions y(.) from
W1"2(0, T; H)1"] L2(0, T; D(A)). To see this consider a sequence {yn(" )} of functions
from C1(0, T; D(A)) converging to y both in W’2(0, T; H) and in L2(0, T; D(A))
topologies. Such a sequence exists since the domain D(A) is dense in H. For each n
and all [0, T]

d
U(y,( t)) DU(y,( t); ))n(t)) (U’(y,(t)), y,( t))

dt

and

d d
II(-A)/y,(t)ll=(Ay(t), y,(t))= 2(Aye(t), .9(t)).

dt

So the identities (3.16) and (3.17) hold for each yn, n 1,2,.... However, we can
pass to the limit in the above identities and therefore (3.16) and (3.17) hold for general

To prove (3.14) note that the functional U is defined on all state space and is of
class C 1. Thus if the control u(. is smooth and initial condition is in the domain of
the generator then

Ilu(s)ll ds-- Ilu(s)-2.(s)+2.(s)ll 2 as

1lot--- Ilu(s)-2(s)ll 2 ds+2 (f(s)-Ay(s)+ U’(y(s)), ) ds

and consequently (3.14) holds in this case. The general case is obtained by a standard
approximation argument.

Note that if (t)=Az(t)-U’(z(t)),t[O, T], then for y( t) z( T- t) we have

j( t) + Ay( t) U’(y( t)) O, y(O) z(T), y(T) z(O), (0, T).

Moreover, the function y(. is a solution of (3.7) when u( t) -2Ay( t) + 2U’(y(t)),
e [0, T], and for this control the first term on the right-hand side of (3.13) vanishes.

Hence u(. )e L2[0, T; HI and

Ew(O, a)>= II(-A)’/2oII2+2U(o)
(3.18)

Ew(z"(T), a)--II(-m)’/2all2+2U(a)-ll(-A)l/2z"(Y)ll2-2U(z"(y)).

But

Er+,(O, a) <= E,(O, za( T)) + Er(za( T), a).

Since (-a) ’/2z" T) -> 0 as T-+ oo it follows from Theorem 3.1 but E(0, z"(T)) -+ 0
as T->oo. Thus

lim ET(Z"(T), a)= I](-A)’/2al[2+2U(a)
rc
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and

inf ET(O, a)<= II(-A)/all:+2U(a)
T>0

and so formula (3.11) holds. Formula (3.12) can be proved in a similar way.
Remark 3.8. Assume that Q is a linear positive definite operator that commutes

with A (more precisely with the spectral measure associated with A) and consider the
following system:

1 1Uf’ Q-lAy 5Q- (y) -1/2Q.9 + u

y(O) x D(-A)1/2, y(0) V H.

Then the formula (3.12) can be generalized to the following

(3.19) E
0

II(-A)l/all+ U(a)+(Ob,

with basically the same proof.
Remark 3.9. Let be a separable Banach space containing H such that the

inclusion operator i: Y(- is radonifying. This means that if is a Hilbert space then
is Hilbert-Schmidt. Then there exists an invariant measure on for the process

lur _1dX Ydt dY-- Q-AX +Q- (x) QY) dt + dW

and up to a multiplicative constant is of the form

e-(/)(,)p[dxI
where/x is a Gaussian invariant measure for the linear system

dX= Ydt dY=(Q-AX QY) dt+dW.

The measure is cylindrical on with mean vector o and covariance operator

(3.20) R=[ Q-1 0 10 Q-’

The representation (3.20) is valid provided we introduce a new but equivalent inner
product (.,.) on Y(

(Jail [a]} =((_Q_,A)I/Za, (_Q_,A)I/2)+(b, b2).
bl b2

The proof of this result follows from [15].

4. The exit problem. For details of the stochastic exit problem see [5], [12]. Here
we discuss its deterministic analogue. To fix ideas we concentrate on the system (3.7)
and assume that the conditions of Theorem 3.7 are satisfied. In addition let be a
Banach space containing D(-A)/ and such that the inclusion operator i: 3- is
randonifying, which means that the image i(7) of the cylindrical Gaussian measure
N(0, I) has an extension to a r-additive measure on Borel subsets of .

Example 4.1 (Compare [5]). Let

d 2

D(A) W(O, L)(-] We(O, L).
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Then

D(-A)’/e W(0, L).

If E C[0, L], then the inclusion i" Wo(0, L)-* $ is radonifying (see [6]).
Let @ be a bounded open set in $ containing 0. For arbitrary e > 0 define

(0@) {x e g, distances (x, 0@) < e}(4.1)

and let

r[ inf(E(O, b); b (0@) fq @},
+r inf{E(0, b); b e (0@) fq @c},

where @ and @c denote, respectively, the closure and the complement of @.

= inf{E(0, b); b e 0@}.

If

r-= lim r, r+= lim r+
e$0

then r-_-< , r+-< and we expect that in fact r-= r+= . The numbers r-, r+, and
will be called, respectively, the lower, the upper exit rates, and the exit rate.

The following problems are of interest for both deterministic and stochastic
systems.

PROBLEM 4.2. Under what conditions r-= r+= ?
PROBLEM 4.3. Assume that r-= r+= . Calculate and describe as explicitly as

possible the set

(4.2) ={b e0@); E(0, b)= }

which will be called the exit set.
For linear systems some answers to the above questions are available assuming

that g--H(see [12]); here we consider a different situation and give rather specific
answers to both the problems. Namely we consider the problem

inf [[Au 2
u

where A is a closed operator on H= L2(F) with the domain D(A)c C()= E, C()
being the space of continuous functions on F c R and @ is a bounded neighborhood
of 0 in E. If u D(A), we set Ilau II-- /. We will assume also that"

(i) The operator G A-1 is an integral operator with a continuous kernel g(., )"

Gv(x) f. g(x, y)v(y) dy, xF, vH.

(ii) The set @ is of the following form:

@ {u E; -b(x) < u(x) < a(x), x F}

where a(. and b(. are positive functions on F.
The following result holds.

THEOREM 4.4. Assume (i) and (ii) hold. Then r-= r+= and

(4.3) = inf (a(x) ^ b(x) g2(x, y) dy
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Let Fo be the set of all x F for which the infimum in (4.3) is attained. If Fo is nonempty
then

= (vx)(.)" v(.)=
a(x) ^ b(x)

g(x,.), x Fo

Proof Let us fix x e F and a positive number c; first we will solve the problem"
inf{I Aull; (x)_-> c, E} (if u D(A), IIAII +o), which is equivalent to

(4.4) inf Ilvl[ 2-- inf 11 11
Gv(x)c Gv(x)=c

where Gv(x)= (g(x,.). v)H. The proof of the following lemma is straightforward.
LEMMA 4.5. Let H be a Hilbert space, v H and c> 0, then for the problem

inf{llull, (u, v)= c} the infimum is attained at u c llvll and is equal to cll
Therefore the problem (4.4) has a unique solution vX( cg(x, )(Iv g2(x, Y) dY) -1

and the minimum value is c211vx( )11-2. The statement ofthe theorem now follows easily.
:Example 4.6. Let Al=(d2/dx2),D(A1) W(O, 1)71 W2(0, 1), g= Co(0, 1) the

space of continuous functions vanishing at 0 and 1, U’= 0 and

@ {z g;; Iz(x)l < a, x [0,1]}.

PROPOSITION 4.7. For the above example r-= r+= 4a2 and the exit set consists

of exactly two functions +/-

(a/2)t if [0,1/2]
S(t)=

(a/2)(1-t) ift[1/2,1].

Proof The proof follows from Theorem 4.4 and elementary calculations.
:Example 4.8. Here we take A2 =-A where A is the same as in Example 4.6.

Note that then D(-A2)/= D(A) and

II(-A)’/zll= Ldx (X) dx.

The set is the same as that in Example 4.6.
Poosio 4.9. For the above example r-= r+= 48a and the exit set consists

of exactly two functions +/- ?

at(3 4t2) if [0, 1/2]
(t)

a(1-t)(3-4(1-t)2) ift[1/2,1].
Remark 4.10. It is clear that a similar result is true for the operator An (-1) 1"

We could also start from the operator A (dZ/dx2) on L2(0, 1; Re of square integrable
vector functions, g C(0, 1; Re) and the set @ could be of more general character

@ {z; z(s) T(s), s [0, 1]}

where T is a multifunction with values in Re. Some additional subtleties arise here.
Remark 4.11. It would be interesting to consider in detail the case A A on

L2(F), F bounded in Rn, D(A1) W(F) W2(F) and A, (-1)m+A Under well-
known conditions, D(Am)c c(F) and the exit problem, as formulated in Problems 1
and 2 can be posed correctly. Some related comments can be found in [5].
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PSEUDODIFFERENTIAL PERTURBATIONS AND STABILIZATION OF
DISTRIBUTED PARAMETER SYSTEMS: DIRICHLET FEEDBACK

CONTROL PROBLEMS*

MICHAEL PEDERSENt

Abstract. The stabilization problems for parabolic and hyperbolic partial differential equations with
Dirichlet boundary condition are considered. The systems are stabilized by a boundary feedback in

(1) The operator equation,
(2) The boundary condition,
(3) Both the operator equation and the boundary condition;

the existence of feedback semigroups in these cases is also proved. The main tool in the investigation is a

pseudodifferential transformation that transforms the domains of the feedback semigroup generators into
classical operator domains, where a direct resolvent analysis can be employed. The transformation turns
out to be a shortcut to some of the stabilization results of Lasiecka and Triggiani in J. Differential Equations,
47 (1983), pp. 245-272], [SIAMJ. Control Optirn., 21(1983), pp. 766-802], and [Appl. Math. Optim., 8(1981),
pp. 1-37], and it illuminates to some extent how a change of boundary condition influences the systems.

Key words, partial differential equations, stabilization, pseudodifferential operators, boundary feedback
control

AMS(MOS) subject classifications. 35J05, 93D25

Orientation. This paper is concerned with boundary feedback stabilization prob-
lems for parabolic and hyperbolic evolution equations associated with elliptic differen-
tial operators. Boundary feedback systems have been studied intensively during the
last 10 years by Lasiecka and Triggiani and others; we refer here only to [7]-[9].
Lasiecka and Triggiani employ a semigroup-based method, related to work ofWashburn
15] and Balakrishnan 1 ]. This semigroup-integral representation method is based on

the theory of fractional power spaces and second-order operators are considered.
Lasiecka and Triggiani prove the existence of a feedback semigroup on negative order
fractional power spaces strictly larger than L2(f), and then the semigroup is restricted
to L2(12).

We describe here a pseudodifferential operator approach that allows us to work
directly in L2()), and we construct in a direct way the resolvent of the 2m-order
operator of the evolution equation we consider. The explicit resolvent construction is
then used to derive stabilization results for the boundary feedback semigroup of the
problem, and to improve some of the estimates given in [7]-[9].

Another advantage is the application of the pseudodifferential point of view to
characterize various types of feedback systems appearing in the literature. Some of the
first results on the stabilization of feedback systems are due to Nambu 11 and Triggiani
[13], where the systems are stabilized by a suitable manipulation (control) in the
operator equation. Such manipulations are included in what we denote perturbations
ofthefirst kind. Another possibility, usually considered more complicated than manipu-
lating with the operator equation, is the manipulation with the boundary condition.
Stabilization of a system by the changes of the boundary condition is treated in [7]-[9].
It is this kind of manipulation of the boundary condition that is usually understood
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as a boundary control, or as a boundary feedback for systems where the control is a
feedback of the state. We denote this kind of control a perturbation of the second kind.
For both types of perturbations it is most realistic to assume that the feedback controls
are of finite rank.

One of the main results of this paper is that we can, in general, transform a
perturbation of the second kind into the more simple and well-understood perturbation
of the first kind, where a "classical" approach can be taken for obtaining stabilization
results. It turns out that the transformation can be regarded as a generalized change
of coordinates in the space Hm(’),), a feature that is also of interest in the case of
optimal control of systems. But the optimal problem is not elaborated on in this paper.

For the sake of generality, we also introduce a combination of the perturbations.
Here we manipulate both the operator equation and the boundary condition and call
this a perturbation of the third kind. For such systems it is possible to construct a system
operator that is variational (i.e., associated with a suitable semibounded sesquilinear
form), and calculations on this operator demonstrate the linking of "interior terms"
and "boundary terms." The stabilization procedure suggested for such systems with
mixed feedbacks is perhaps not optimal with respect to dimensionality, but it is simple,
and the theory elucidates the nature of the boundary feedback systems.

The pseudodifferential approach thus allows us to obtain stabilization results in
a unified setting for all three kinds of perturbations. Moreover, we treat parabolic as
well as hyperbolic problems. In all cases we conclude that it is possible to construct
finite rank feedback mechanisms that give exponential decrease of the LZ-norm of the
state. For perturbations of the first and second kind this is achieved by the pole-
assignment theorem, while for perturbations of the third kind positivity arguments are
used.

The results on perturbations of the first and second kind are contained in 5 of
this paper, while 6 deals with the perturbations of the third kind. Section 1 is an
introduction to the notation used throughout the paper; 2 introduces the specific
form of the perturbations considered. Section 3 and 4 deal with some results of
pseudodifferential calculus, most importantly the transformation techniques employed.

1. Introduction and notation. We consider stabilization ofparabolic and hyperbolic
differential equations of the form

Otu+Au=O inf for t>0,

(1.1) yu=O onF for t>0,

U=Uo inf for t=0,

and

0 2,u+Au=O inf for t,

(1.2)
yu=0 onF for

U=Uo inf at t=0,

0,u ul in f at 0.

Here A is a formally self-adjoint, uniformly strongly elliptic differential operator of
order 2m, of the form

(1.3) A= Z Dao(x)D’,
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with C(f)-coefficients a,t on a bounded, open domain [l c En, n _-> 2, with smooth
boundary 0f F. 3’ is the Dirichlet trace operator

(1.4)

where

(1.5) yju ulv.

(n is the normal, directed inward.)
We denote similarly

(1.6) v { Yj}m_-<<zm

the Neumann trace operator, and we define the Cauchy-data pu as

(1.7) pu { yu, vu }.

Moreover, we use the multi-index notation

(1.8) D D,,..., D,,, D=

The Dirichlet realization A of A is the operator that acts as does A in L2(), and with
domain

(1.9) D(A) {u Hzm()]yu =0} H2() H(),

where H() is the Sobolev space of La()-functions with L2()-derivatives up to
order s. It is well known that Av is an unbounded, self-adjoint operator in L2(), and
since the embedding H() H’() is compact for s> t, the resolvent R(A, A) of

A is a compact operator in LZ() for all A outside the spectrum of A, sp(A). Hence
A has a sequence of real eigenvalues A Az. converging to infinity. We see that
1.1 and (1.2) are the time-dependent evolution problems associated with A, generaliz-

ing the heat equation, respectively, the wave equation. When A > 0, all solutions u(t, x)
of (1.1) are exponentially decreasing for , and all solutions of (1.2) are bounded;
we will call this the stable case. However, if some eigenvalues are negative, there are
solutions both of (1.1) and (1.2) that grow in an exponential manner as . It is
therefore of interest to investigate how we can change the systems to obtain the stable
case, and that is the aim of this paper.

2. Perturbations of the boundary value problems. By a perturbation of the first kind
of the system (1.1) we will understand a system of the form

O,u+Au+Gu=O in for t>0,

(2.1) yu=O onF for t>0,

U=Uo in at t=0.

Here the interior operator A is replaced by A+ G where G has finite rank and is of
the special form G KT, where

(i) T is a trace operator that maps functions on into functions on F, in the
form of a column vector.

(ii) K is a Poisson operator that maps functions on F into functions on , of the
form of a row vector.
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An operator G of this special form is denoted as a singular Green operator. This kind
of operator is carefully explained, as well as the trace and Poisson operators, in Grubb
[5]. They are all operators entering in the "Boutet de Monvel-calculus" (cf. Boutet de
Monvel [2]).

Stabilization of the a priori unstable system (1.1) by a perturbation of the first
kind has been studied, e.g., in Nambu [11] and Triggiani [14], and it is shown there
that it is possible to choose G of finite rank, such that (2.1) is stable.

By a perturbation of the second kind of the system (1.1) we will understand a
system of the form

O,u+Au=O inf for t>0,
(2.2) yu= T’u on F for t>0,

u Uo in f at 0,
where the boundary operator 7’ is replaced by 3’-T’, T’ being a trace operator of
finite rank.

Both (2.1) and (2.2) are so-called boundaryfeedback systems, and we will especially
be interested in the case where T’ is of the special form

N

(2.3) T’u= 2 (u[wj)g
j=l

(here (. I’) is the usual L2(f) inner product, w C((), gj C(F)m,j 1, 2,. ., N).
For applications, the w can be thought of as sensor functions and the gj as

boundary actuators.
T’ defined in (2.3) is called a finite-dimensionalfeedback operator, and in contrast

to y it is of a nonlocal nature. (One of the major differences between the perturbations
(2.1) and (2.2) is that in (2.1) the boundary condition is local, whereas in (2.2) it is
nonlocal.)

Boundary feedback systems have been studied in a number of papers by Lasiecka
and Triggiani (see, e.g., Lasiecka and Triggiani [7]-[9]). One of the main results is
that, under suitable hypotheses, it is possible to choose the functions w and g appearing
in (2.3), such that the system is stable. Lasiecka and Triggiani took a semigroup
approach to investigate the system (2.2), using developments ofthe semigroup approach
presented in Washburn [15] and Balakrishnan [1]. (The basic idea of a semigroup
model is presented in Fattorini [4], where ordinary differential equations are con-
sidered.)

By a perturbation of the third kind of the system (1.1) we will understand a system
of the form

O,u+Au+Gu=O inf for t>0,
(2.4) yu T’u on F for > 0,

U=Uo inf at t=0,
where the operators G and T’ are of the types considered above.

We define perturbations of the system (1.2) in an analogous way.
In the following we present a pseudodifferential operator method to investigate

the systems above. This gives us in an easy way many of the results of Lasiecka and
Triggiani [7]-[9], as well as similar results for the hyperbolic problem

O,u+Au=O inf for t,
yu=T’u onF for tR,

(2.5) U=Uo inf at t=0,
0,u=ul inf at t=0

(a perturbation of the second kind of (1.2)).
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Here we would like to point out that there now exists a quite general theory that
includes all the above perturbations when they have "smooth coefficients," namely,
the theory ofpseudodifferential boundaryproblems. For these, the solvability of parabolic
problems such as (2.2) (and far more general cases) has been discussed in great detail
in Grubb [5]. However, in the work that follows, we use only some basic results of
the pseudodifferential point of view. But the techniques were crucial to obtain the
simplicity of the proofs, and the theory was very helpful for the understanding of the
underlying problems.

One of our main results is that we can, in general, transform a perturbation of
the second kind into a perturbation of the first kind, whenever the boundary condition
is normal, in the sense described in Grubb [5]. This includes all "classical" normal
boundary conditions, as well as the feedback boundary condition yu- T’u--0, with
T’ given by (2.3). In this case, however, a special transformation of the systems (2.2)
and (2.5) proves to be very useful. It turns out that the transformation can be regarded
as a generalized change of coordinates, and the resulting transformed system operator
A+ G is merely a finite-dimensional, A-bounded perturbation of A. In this case,
stabilization theory for perturbations of the first kind is straightforward, as we can
apply the well-known "pole assignment theorem" due to Wonham (see Wonham [16]).

3. Normal operator realizations. Assume that Tu 0 is a normal boundary condition
in the sense of Grubb [5], i.e., the highest order normal derivatives enter with a
surjective coefficient matrix. We will then define a normal realization of the operator
A in (1.3) the following way. Let Ar be the operator that acts as does A in L2(f),
with domain

(3.1) D(AT) {u H2’(f) Tu 0}.

Then the realization AT of A is called a normal realization.
It is shown in Grubb 5, Lemma 1.6.8], that normal realizations have dense domains

in L2(f). According to Grubb, there exists an operator A, (see (4.4)) that is a
homeomorphism in H() for any s-> 0, such that A defines a bijection

(3.2) A: D(AT)- D(Av) H2rn(a) ("l H(f),

where A is the Dirichlet realization from 1.
Moreover, we have Lemma 3.1.
LEMMA 3.1. Let T’ be given by (2.3) and define

(3.3) T: y- T’.

Then Tu 0 is a normal boundary condition, and the operator realization AT ofA is a
closed, densely defined operator in L2(12).

Proof We only have to show that A is closed. Let (un) be a sequence in D(AT)
converging to u L2(f), and assume that (Aun) converges to v L2(-). We must show
that u D(A) with Au v. Since Un- U in L2(I)), we have that Aun
(space of distributions on f), so that v= Au L2(’).) and un- u in the space {v
Lz()IAvEL2()}. Now yu,->yu in HO<=k<m H-1/Z-k(F) (see Lions and Magenes
[10]) and since

N

u, E (Un Wj)gi
j=l

where (Un[Wj)-->(UIwj), j: I,2, N,
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we see that yu, - ’jN=I (b/I wj)gj, SO ")/b/ equals Yj, (u wj)g. as an element of
I]o<m H/2-(F) Now, since g. C(F)

_
Ho<m Hm-’-/2(F), J 1, 2,..., N,

we have that yu 0k<m H2m-k-1/2(F) But then by the regularity of the Dirichlet
problem for A, Au L2() and yu [I0<m H2m--l/e(F) imply that u H2m().
Altogether, U G H2m(.) with yu-sQ (u]ws)gs=O, so uD(AT). [q

4. The pseudodifferential transformations. Consider for l= 1,2 the parabolic,
respectively, hyperbolic perturbation of the second kind

(4.1) Otu + Aru O, u D(Ar),
with T 3/- T’, T’ given by (2.3).

Using (3.2) this can be transformed into- D(A,/),(4.2) 0tA v+ArA- v=0, v

where v Au. Acting with A from the left in (4.2) we find

(4.3) 0 tv + AArA- v O, v D(A,).
It is shown in Lemma 1.6.8 of Grubb [5] that A and A- can be chosen in the following
form:

(4.4) A 1 Ko T’, A-1 1 KoQo T’,

where Ko is a certain standard type of Poisson operator, chosen such that KoT’ has
small norm, a Qo is a certain pseudodifferential operator, that is bijective and elliptic
in Ho<em H-(f), s _-> 0. Then

(4.5) AArA-’ (1 Ko T’)Ar(1 KoQo r’) Ar + G,

where

(4.6) G Ko T’ATKoQo T’ ATKoQo T’ Ko T’Ar,
is a singular Green operator of finite rank.

Hence (4.3) is a perturbation of the first kind.
We have thus obtained Proposition 4.1.
PROPOSITION 4.1. For any trace operator T’ of the form (2.3) there exist operators

A and A-1 of the form (4.4) such that (4.1) can be replaced by (4.3), with v=Au, the
operators described by (4.5)-(4.6). [3

However there is also a special variant adapted particularly to the Dirichlet problem
that is more convenient for the stabilization problem.

Assume, for the moment, that 0 is not an eigenvalue of Av. (In the case where 0
is an eigenvalue, we replace A by A + 6 for a small constant 6, carry out the constructions
for this, and remove 6 afterwards; see the explanation after Remark 5.3.) Let Kv be
the Poisson operator that solves the Dirichlet problem for A, i.e., Kv maps q into the
solution u of

(4.7) Au=O in f, yu=q on F.

Since KvT’ has finite rank, the bounded operator KvT’ is a Fredholm operator with
index 0 in Le(f), and it maps Hem(f) into Hem(o).

Since

(4.8) y(1-KvT’)u= yu- T’u= Tu,

we have that

(4.9) ( K,T’)D(A)
_
D(A,),
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and moreover, if u D(Ar) and v (1 K,T’)u, then

(4.10) Av A(1 gr’)u Au.

Now we assume that T’ can be chosen such that 1-KT’ is a bijection in H2"()
(this will be done later; see 5). Then 1- KT’ maps D(Ar) bijectively onto D(A),
and hence defines a homeomorphism:

(4.11) 1- KT’: D(AT)-; D(A)
We have then established the useful factorization

(4.12) A=A,(-K,T’),
in a precise sense. (See also Remark 1.1 in [8].)

Now proceeding as above, the problems

(4.13) 0’,U + ATu O, u D(AT), 1=1,2

transform into

(4.14) O,v + (1 KT’)Av O, v D(A), 1, 2,

where v (1 KT’)u.
Thus we have transformed the perturbation of the second kind (4.13) into a

perturbation of the first kind (4.14), and we are able to calculate the system operator
in an easy way.

We have thus obtained Theorem 4.2.
THEOREM 4.2. Assume that 0_ sp(A,). The boundary feedback systems

O,u + Au O in fort>O,

(4.15) yu=T’u on F fort>O,

U Uo in at O,

and

(4.16)

0 ,u + Au O in 1) for N,

yu T’u on F for N,

U Uo in at O,

Otu Ul in at O,

(4.15’)

with T’ given by (2.3), transform into the systems

O,v+Av-KvT’Av=O in f fort>O,

yv O on F fort>O,

V Vo in FZ fort=O,

and

(4.16’)

02 v + Av KT’Av O in f for N,

yv=0 on F for N,

V Vo in f fort=O,

O,v vl in f for O.
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Since

N

(4.17) KrT’Av , (Av] wj)Krgj,
j-----1

for v H2m(f), KT’A has finite rank, and we see that

(4.18) A A- KT’A,
can be regarded as a finite-dimensional perturbation of A.

We obviously have (11" II. is the H(12)-norm):

(4.19) gT’avllo <- cllavllo<= cllavllo / Ilvllo
for v D(Ar), so KrT’A is A-bounded. Since Av is the infinitesimal generator of an
analytic semigroup on L2(f), so is/, from the perturbation result in Proposition 1
of Zabczyk 17].

We have thus obtained Theorem 4.3.
THEOREM 4.3. The realization Av of the operator

(4.20) A A- KT’A,
with domain

(4.21) D(/,) H2m() f-I H’(12) (=D(A,)),
is the infinitesimal generator of an analytic semigroup e-a’, >= 0 on L2(f), giving the
solution to (4.15’) as

(4.22) v(t, x) e-a’vo(x), x , >= O,

when Vo L2(f). The solution to the original system (4.15) is then

(4.23) u(t,x)=(1-KvT’)-e-;W(1-KvT’)uo(x), xf, t>-_O

when Uo L2(O). A similar result holds of course for the realization (A+ G)v of the
operator discussed in (4.3)-(4.6).

Remark 4.4. Both problems (0, + Ar)u--0 and (0, + Av)u =0 are special cases of
the general parabolic pseudodifferential boundary value problems treated in [5]. It is
shown in Theorem 4.1.1 of [5] that the solution operator is an analytic semigroup.

5. An application of the pseudodifferential transformation to stabilization. We will
now show how the transformation from 4 can be used as a shortcut to some of the
results of Lasiecka and Triggiani [7]-[9], which have been a great motivation to us.

The assumed instability of the systems (1.1) and (1.2) is caused by the negative
eigenvalues in the pure point spectrum sp (Av) of Ar, and we will show that we can
choose a finite-dimensional feedback boundary condition

(5.1) yu- T’u,
where T’ is defined by

N

(5.2) T’u= E (ulwj)gj
j=l

(see (2.4)), such that the systems

O,u + Au O inf

(5.3) yu T’u in F

for t>0,

for t>0,

u Uo in ft for O,
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and

Ou+Au=O inf for t,

yu=T’u onF for t,

U=Uo inf at t=0,

0,u=u inf at t=0,

are stable systems (in the sense described in 1). We will apply the pseudodifferential
transformation to the perturbations of the second kind (5.3) and (5.4) and then apply
Wonham’s "pole assignment theorem" (Wonham [16]) on the resulting perturbations
of the first kind. This, combined with a resolvent analysis, gives us the desired results.

Let the eigenvalues of A be arranged in a nondecreasing sequence

(5.5) AIA2"" "AK-I0<AK ’’’,

each eigenvalue repeated according to multiplicity, and let {%}i= be a corresponding
set of orthonormalized eigenfunctions of A. Now define P, and P as the orthogonal
projections of L2(-) on the orthogonal subspaces X, respectively X, defined by

(5.6) X span {%}<__<, X, span {%}__>.
Remark 5.1. The results in Lasiecka and Triggiani [7]-[9] are formulated as if

nonself-adjoint realizations are treated as well, but on the other hand, the treatment
is based heavily on the orthogonal projections on the eigenspaces X, and X,. Orthogon-
ality of eigenspaces in general requires at least that A is normal, i.e., AvA* A*vAv,
but we know of no Dirichlet realization A satisfying this without being self-
adjoint.

Since Xu and X. fqD(A) are invariant subspaces for At, we can define the
restrictions

(5.7) au=arlx,,,
Then Au is a bounded operator on Xu and A. is an unbounded operator with domain
D(A,) X,, f? D(Ar). Note that P, and p commute with A on D(A). Now writing
f= Puf, L Pf for f L2(f), we have that when u D(A-) ((see 3.1) and (4.11)),
then v (1 KvT’)u D(Av) satisfies

(5.8) Av=Au, vuX,, v,D(A.).

(Note that v, D(A.) despite the fact that u, does not necessarily belong to D(A,).)
Instead of working with the integral representation of the solution operator for

the unperturbed problem as in Lasiecka and Triggiani [8], we attack the resolvents
directly and in this way avoid negative fractional power domains.

We use the factorization

(5.9) A A,( KT’)
in the discussion of the resolvent equation

(5.10) (AT- A)u =f, f L2().
First we consider the case where we are allowed to decouple the feedback by assuming
that

(5.11) pw.i=O j=l,2,...,N

(i.e., the w. are in X,; the "unstable" eigenspace).



STABILIZATION OF DISTRIBUTED PARAMETER SYSTEMS 231

Then we write (5.10) in projected and factorized form

and we compute, for u D(Ar)"

PA(1 K/r’)(u + u)- P,(u + u) APu(1 Kr’)(u + u)-

Au APKT’u h,
PA, 1 KT’ u, + u, PA u, + U Arp,. (1 K,T’ u, + u,

A(U PK,T’u,) ,U.

Since u-PKT’u, v belongs to D(A), the factorization (5.12) is legimate, and
(5.12) reduces to

(5.13) Au A,PKT’u, Au, f,,

(5.14) a(u, p,KrT’u,) Au. f,

(see also (5.42)), where we observe that (5.13) is a finite-dimensional resolvent equation
for the matrix operator

(5.15) au=au-a,PuKT’.

At this point we can use the same arguments as Lasiecka and Triggiani [8] to get a
good choice of T’. We give the full details in the most straightforward case, and refer
to Lasiecka and Triggiani for partial information on other cases.

PROPOSITION 5.2. Assume that the Neumann traces { V%}<=<K are linearly indepen-
dent, so that

(5.16) dim (,X,)=dim (X,) (=K-1),

and let {C}l_<_.i< be an arbitrarily given set ofK- 1 distinct, real numbers.
Then there exists a number N and a set

(5.17) {w, g},<=<=u,
where w. X and g C(F)m, such that with

N

j=l

the eigenvalues of the matrix operator A,, defined by

(5.19) Auv (A, A,PuK,T’)v for v Xu,

are precisely the set {c} <=.
The number N can be taken as the largest multiplicity of the unstable eigenvalues

{}<=.<. In particular, N 1 when the eigenvalues are simple.
Proof. Assume first that all of the eigenvalues {,}__<< are simple and take N 1.

Consider T’ of the form

(5.20) r’u=(u[w)g.
In the basis {q}l_-<<: of Xu, the matrix A has the form

h 0 0

(5.21)
0 ,2

-P(g)W’,

0
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where P(g) is the column vector

(5.22) P(g) Az(K.glo)
AK-I(Kg qK-1)

and W is the transpose of the column vector W given by

(5.23) W=

Consider now the control matrix of the pair (A,, W)"

[W A,.,W AK-:ZW],,

(5.24)

(<,lw) A,(,lw)
(,1 w) A(,I w)

((’iOK-I W) AK--I((’i0K--11w)
The determinant of the control matrix is calculated to be

(5.:$) II (%lw) II
I<=j<K

by reduction to a Vandermonde determinant. Since the eigenvalues are assumed to be
simple, we can choose w Xu, satisfying (%lw) 0 for j 1, 2, , K 1, such that
the determinant is different from 0. This implies that the pair (A,, W) is controllable,
so by the pole assignment theorem (Wonham [16]) there exists a matrix

Pl

(5.26) /3 P2
pjC, j=l,2,...,K-1,

PK --1

for which the matrix A,-_f’W’ has the set {c}<: as eigenvalues. Now we will
choose g C(F) such that P P(g), i.e., such that

(5.27) ,b(/,C,g 1%)=p,
for j= 1,2,...,K-1.

From the formula (A10) in the Appendix we have that

-1
(5.28) (K,gl ) =-. (gl

Here Ml is (since A is elliptic) an invertible rn rn matrix of differential operators
H2m-k-1/2 Hm+k+l/2(F) and (. [’)v is theover F, that maps I],,_<_k<:, (F) onto I-[o__<k<,,

LZ(F) inner product.
Since the set

(5.29)
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is linearly independent, so also is the set

(5.30) {o.v, o.
Hence it is possible to choose g C([’)m, satisfying

(5.31) (gls4’*u%) =-pj, j 1, 2,..., K- 1,

and this choice of g gives us the components of the desired P(g), in view of (5.28).
This ends the proof in the case of simple eigenvalues.

Now assume that one or more of the eigenvalues {A}I_<_<K have multiplicity larger
than 1, and let us take o- to be the largest occurring multiplicity. Take N--r and
consider T’ of the form

T’u E (u wj)gj.(5.32)
j=l

In this case A,- A,.,P,.,K,T’ can be written

hi 0 0

(5.33) O. .:
0 h -1

where P({g}<=i<=,) is the (K 1) cr matrix

P({gi},<=i<-,)

A(Krg ,) Al(Keg2 2)

(5.34) Ae(K’1[2) Ae(K’2[2)

and W is the (K 1) x matrix

(,l Wl) (11 W2)

(5.35)

A2(Kr.g p2

(11 w)

Considering the form of the control matrix

(5.36) [W, A,W, A-2W,],
we see that if wl, w2, "’’, w are chosen in Xu such that

(5.37) rank W o-,

then the rank of the control matrix (5.36) is K 1 (because a regular (K 1) (K 1)
submatrix can be extracted, after suitable row-column operations). Then according to
Wonham’s theorem, there exists a complex matrix

Pll P12 po" \
(5.38) /3 P.2, P.22 p2.o" /

PK-I,1 PK-I,2 PK-,,]
such that the eigenvalues of the matrix Au-/3W’ are {C}=<<K.
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To obtain P, P({gi}l_-<i_-<(,) we use that, as in (5.28),

-1 10"(5.39) (Kg, ) f (g,

In view of (5.16) we can choose gi C(F)m, i-- 1, 2,. ., r, satisfying

(5.40) (gilsd*t,,qgj)v=-pj,, j=l,2,...,g-1, i=1,2,. .,or,

and this choice of {gi}l<=i<=cr provides us with the desired P({gi}<=i<=,).
Remark 5.3. For the application of the Wonham theorem here, it is important

that the range of P,Kr fills out all of X, this is reformulated as the question of whether
the Neumann traces of the Dirichlet eigenfunctions in X, are linearly independent.
In that case the results are easy to formulate and allow N to be very low; otherwise,
the results become increasingly complicated and require (in general) higher N, the
more linear dependence there is. Lasiecka and Triggiani have in [8] an upper and
lower bound on the number N of feedback terms necessary in (5.18), once the number
of linearly independent Neumann traces are given, but the discussion of the size of
dim (,X,) for differential operators on general domains in N" in the literature is far
from complete, as far as we know.

Let us now dispose of the temporary assumption 0 sp (At) from 4. Everything
done thus far can be done without changes with the translated operator Ar- 3, 6 > 0,
so that if 0sp (At), we take a >0 such that 0sp (Av-6). Then after determining
the new realization AT- 6 that moves the eigenvalues A-6, 12-6,. , A:_- 8, and
leaves ,- 6,j >-K unaffected, we just add 3 to Ar- . Then the moved eigenvalues
will be increased with 6, and so will the unaffected eigenvalues; i.e., they will return
to be the eigenvalues of A.

Let us now choose the set {c}__<;<: occurring in Proposition 5.2 such that

c. >- : (>0),j 1, 2,. , K 1. With T’ chosen according to the theorem, the operator
P,(1- KT’) is injective, hence bijective, on X,, and since w X, 1- KT’ is the
identity on X,. Then, as promised in 4, 1- KT’ is bijective from Hm(f) to H2m(l))
(KrT’ has C-range) and maps D(A) onto D(Ar). This justifies the factorization
(4.12). Define R(A, Au) as the resolvent of A in X,, for all , {c./}___;<: and let
R(,, A.) be the resolvent of A in X,, defined for all , {}_>_.

We can then write the solution to (5.13) as

(5.41) u R(A, Au)fu, A {c.}=<2<:.
We see that if u D(Ar), then v=(1-K,T’)u belongs to D(A), hence v D(A).
Since

(5.42) v, P,(1 K,r’)u P,(1 K,T’)(u, +

u PK,T’u,,
we see that u-PK,T’u, D(A), so (5.14) is justified and can be written as

(5.43) (A-,)(u-PKT’u,)=f+,PKT’u,.

For all A {&};>__ K we have

(5.44) u,- PK,T’u, R(,, A,,)(f + ,PK,T’u,).

Inserting (5.41), we find for all , ({C;}__<4<K U

(5.45) U PKT’R(,, A,)f, + R(,, &)(A + ,PKT’R(,,
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so that

(5.46)

U --Uuq-U

R(A, A.)f. + pKvT’R(A, A.K + R(A, A)

+ AR(A, As)P,KT’R(A, Au)f,

(1 + PKvT’+ AR(A, A)PKvT’)R(A, A,)f, + R(A, A)fi.

We have now obtained Proposition 5.4.
PROPOSITION 5.4. e resolvent R(A, AT) solving (5.13)-(5.14) can be written in

(5.47) R(A, AT)f=(R R 2)|fu//\
,1

\ fs]"
where

(5.48)
R12=R(A,A.),

so R(A, AT) is well defined for all h outside the spectrum of AT, and maps L2(fl) into

H2m ([).
Let us then prove Proposition 5.5.
PROPOSITION 5.5. Assume that the prescribed eigenvalues {Cj}j<K ofA, are chosen

such that c A, j 1,’--, K- 1. ere is then a constant Mr > O, independent of A,
such that the resolvent R (A, At) satisfies the inequality

Mr(5.49) [IR(A,
dist (A, I)

as an operator in L2(). Here I [AK, [, which in this case equals the closed convex
hull of the spectrum of AT.

Proo A is a self-adjoint, positive operator on X, D(A), satisfying

II(es- a)u Ioll u IIo I((n- )u u)l
I((A Re )u ]u)- Im u I11
(((A, Re

f IIm A lllullg if Re A AK
((&K -Re &)+(Im&))/llull if Re A NAK

dist (A, IK)IlUlI;
hence,

(5.50) IIe(, A,)]] c, dist (A, IK) -1.

R(A, Au) is a (K- 1)x (K- 1) matrix of the form

(5.51) R(A, ,) det (u A )-lP(A, ,),
where p(A, A,) is a polynomial in A (this follows easily from the inversion formula
for matrices), and

(5.52) det(Au-A)=const.. (A-c).
Ij<K

the form
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Therefore [[R(A, fi,u)[l, is o(IA-cl-’)in a neighbourhood of each ck {cj},__<j<:.
For ]A T - c we write

(5.53)

and we see that R(A, ,) is O(]A]-1) for IAI, since (l--A-’u) -1 can be expressed
by a Neumann series in A-’, for A]> IIl,. We can then conclude that

(5.54) ]IR(A, )[I L,L M(dist (h, sp (u)))-1,
where M is a constant independent of h.

Obviously, sp (A,)c I, and since sp (A,) is bounded, ]AR(AAu)[[L2,2 is O(1)
for [h[ ; moreover, PKT’ is a bounded operator, and the decomposition ff, +fi
is bounded and A-independent. Then, from the form of R(A, A) (5.47)-(5.48), we
find that

M’ 1
IlR(h, A)II:, < +

dist (A, sp (,))2 dist (A, IK)2

M
dist (A, I )2,

where M’ and M- are positive constants. [3

Using Lemma 3.1, Proposition 5.2, and Proposition 5.5 we find Theorem 5.6.
THEOREM 5.6. Assume that
(1) The Neumann traces { uqj}l__<j<K of the Dirichlet eigenfunctions qj are linearly

independent (but see also Remark 5.3);
(2) The largest occurring multiplicity of the Dirichlet eigenvalues {Ai} <--J< : ofA is

N. Then there exists a finite-dimensional boundary condition

N

(5.57) T’u= Y (u]wj)gj.
j--1

wj X,, gj C(F)m, j 1, 2, , N, such that the realization AT- of A, with domain

(5.58) D(AT-)={u6HZm(D)ITu--yu-T’u=O},
is the infinitesimal generator of an analytic semigroup e-a’t, >-0 on L2(-), giving the
solution to the Dirichlet boundary feedback parabolic system (5.3) as

(5.59) u(t, X) e -ArTuO(x), X f, >= O,

when Uo6 L2(1), and such that the solution (5.59) satisfies the damping estimate

(5.60) Ilu(t," )llo<--Me-’lluollo, t-->0, M>0,

where h: is the first positive Dirichlet eigenvalue of A. Moreover, the operators

(5.61) cos (A2t) and sin (A2t),
are well defined, and we can write the solution to the hyperbolic problem (5.4) as

(5.62) u(t, x)=cos (A2t)Uo+ Afl/ sin (A:t)u(x),
x 12, , when Uo, u L:().

Remark 7. We see that in the "decoupled" case where wj X,, j 1, , K 1,
the estimate (5.60) holds. When P.wj 0, the damping coefficient h: must be substituted

(5.56) yu= T’u on F
where
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by A/- e, as we shall see later. Lasiecka and Triggiani did not mention the sharper
estimate (5.60) for the decoupled case. Moreover, one of the slightly mysterious facts
about the perturbation of the second kind is that the operator AT can never be
self-adjoint. This is a consequence of Proposition 1.7.11 in Grubb [5]. What is shown
there is, more precisely, that AT cannot even be weakly semibounded, i.e., cannot even
satisfy

(5.63) Re e’(Au u) >- -cllull 2 for u D(AT)

some c and 0, when T’# 0. It may be of interest to observe that Neumann problems
behave differently as follows.

If AT is the realization defined by a Neumann feedback boundary condition
u+ Syu T’u, then (5.63) holds for general S and T’ (for the conditions in Theorem
1.7.13 of [5] are void in the Neumann case). Let us also recall from [5, 1.7] that
weak semiboundedness (5.63) assures m-boundedness

(5.64) I(aul v)l<--Cllullllvll for uD(AT),

for normal pseudoditterential boundary problems.
Since in the Dirichlet case, the realization AT is never semibounded, the semigroup

e-aTt, >= 0 is never a contraction semigroup, hence the constant M in (5.60) is always
greater than 1. This has also been noted by Lasiecka and Triggiani, who considered
the translated Laplacian in [8].

Remark 5.8. Comparison of (5.59) and (4.23) show that for the semigroups we have

(5.65) e -AT’-- (1 KvT’) -1 e-’(1 KvT’).
This justifies the term "generalized change of coordinates" from 2.

Now it is straightforward to extend the theory to include more general cases where

Psw.i O. The operator T’ considered above can be written

N

(5.66) T’u= E (ulP,w)gj,
j=l

so if we let the wj be arbitrary and define the operator T" as

N

(5.67) T"u , (u ]Psw)g,
j=l

we see that the decoupled case considered above corresponds to the case where T"= 0.
The operator T1, defined by

(5.68) TlU yu- T’u- T"u,

defines a normal boundary condition Tlu =0 (in the sense of Grubb [5]), just as T
did, hence the operator realization AT of A, with domain

(5.69) D(AT,)-- {U H2m(")[ Tlu =0},

is a densely defined, closed operator in L2(f). Here T1 can be regarded as a perturbation
of the trace operator T y- T’.

Let KT be the Poisson solution operator defined by u KTrp, where u is the
solution of

(5.70) Au=O in f, Tu=q on F.

We assume in the following that T (i.e., the sets {Puw}l__<<( and {gj}l_-<.<:) is chosen
such that the conclusions of Theorem 5.6 are valid, and then we study Aw,.
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Here we use that AT is chosen to be bijective from D(AT) to L2(), which implies
that KT is well defined. Observe also the estimate

IIKTT"Ul]o E (ulPxwj)KTgj
0j--1

(5.71)
N

-< Ilullo 2 IlPswjllollKTgjllo,
j=l

where IIKgllo depends only on the sets {P,wj},<__j<K and
LEMMA 5.9. Assume that the sets {Pwj}I<=j<K and {gj}<=j<K are chosen such that

the conclusions of Theorem 5.6 are valid. Then there exists a constant r > O, such that
for Pswj [[o < rl, j 1, 2,.’., N the operator

(5.72) 1-KTT"
is a homeomorphism in L2(-) and in H2m(-), and, in particular, defines a bijeetion

(5.73) 1- KTT": D(AT,)-:> D(AT).

Moreover, when u D(AT1) and v=(1-KTT")u, then Au Av, in fact we have the
factorization

(5.74) AT, AT(1 KTT").

Proof Let r, > 0 be chosen such that for Pwj Iio < r,, j a, 2,..., N, we have
[[KrT"[[ ,<=. This is possible by (5.71). Now 1-KTT" is a bounded operator in
L2(f) and is inverted by a Neumann series

(5.75) (1- KTT")-’ E (KTT") n,
m=0

converging in the operator norm in L2(). Thus 1-KTT" is a homeomorphism of
L(f) onto itself.

Since KT has range in H2"(Ft), we see that 1 KTT" is likewise a homeomorphism
of H2m(f), onto itself, and, since

(5.76) T(1-KTT")u= Tu-T"u= TlU,

u D(AT,) if and only if v (1 KTT")u D(AT), so 1 KTT" defines a bijection of
D(AT,) onto D(AT). The last observation follows from the fact that AK-=0.

We will now study the resolvent R(A, AT,) of AT,, and we start out with the equation

(5.77)
(A- A)u =f in f,

Tu =0 on F.

Using (5.73) with v=(1-KTT")u we get

(A-A)(V+KTT"u)=f in f,
(5.78)

Tv=O on F,

so that

(5.79)
(A- A)v =f+ AKTT"u in

Tv=O on F,
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i.e., if A is in the resolvent set of At,

v R(A, AT)(f+ AKTT"u)

Tv=O on F.

For u this gives

(5.81) u- KTT"u v R(A, AT)(f+ AKTT"u),

so that

(5.82) (1 -(1 + AR(A, AT))KTT")u R(A, Ar)f

Let us denote, for e > 0, 0 < 0 < zr/2 the obtuse sector (disjoint from IK)

z=(hK--e)+re r>=O,-z---O<w <--+ O
2 2

From the estimate (5.49) we see that AR(A, AT) is bounded on W,,,,,o, and hence for
any e > 0, any 0 E ]0, 7r/2[, there exists by (5.71) a constant r > 0 such that for wj L2(f),
satisfying Pwj 11o < r_-< rl, j 1, 2,..., N, we have

(5.83) I1(1 + AR(A, AT))KTT"II

for all h W,,,,,o.
With the w, j 1, 2, , N, chosen in this way, the resolvent R(A, AT,) of AT, is

a well-defined, bounded operator in L2(f) for h WK,,0 given by (see (5.73))

(5.84)
R(A, AT,) (1 -(1 + AR(A, AT))KTT")-IR(A, AT)

E ((1 + AR(A, AT))KTT")mR(A, AT),
m=O

and satisfying the estimate

Cl(5.85) R(x, A,)II ,--

Here cl > 0 is a constant, independent of A.
Altogether, we have obtained Theorem 5.10.
THEOREM 5.10. Let e >0 be given, and assume that the sets {Puw}I_-<<K and

{g}l<_-j<K are chosen such that the conclusions of Theorem 5.6 are valid. The finite-
dimensional Dirichlet boundary feedback

N

(5.86) yu T’u + T"u Z (ulw)gj
j=l

defines a realization AT, of A, with domain

(5.87) D(AT,) {U H2m(a)] rlu --0},

where T1 is the trace operator defined by

(5.88) T= T- T’- T",
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and there exists a constant r>0, such thatfor arbitrary choices of Pswj, with ]]Pswjl]o < r,

AT-1 is the infinitesimal generator ofan analytic semigroup e-at1 ’, >= 0, on L2(12), giving
the solution to the Dirichlet boundary feedback control system

O,u + Au 0 in 12 for > 0,
N

(5.89) Tu= (ulwj)g on F for t>0,
j=l

u Uo in 1 at O,

as

(5.90) u(t, x) e-AT1 tNO(X), >= O, x 12, Uo L2(f),

where the solution (5.90) satisfies
(5.91) [[u(t,. )ll0<_-M e-("-’lluollo, t>_-o.

Here : is the first positive Dirichlet eigenvalue of A, and M’ is a constant greater than
zero.

We will now use the factorization (5.74) in the investigation of the hyperbolic
problem for At1.

The boundary value problem

(5.92) Ou + Awl U O, U D(AT’,)
transforms by (5.74) into

(5.93) (1-KTT")-Ov+ATv=O, vD(A)

where v (1 KT-T")u.
Acting with (1- KT-T") from the left in (5.93) we find

(5.94) Ov+(1-KvT")Arv=O, v D(Ar).

Moreover, if we now impose on the w to satisfy Pw D(A*r), j 1, 2,..., N, then
for v D(Ar)"

N

IIKTT"ATVIIo Y (ATvIPw)Krg
j=l 0

j=l 0

N

-<-Ilvllo E [Ia*PwllollKTgllo.
j=l

This shows that KrT"Ar acts as an L2-bounded operator on D(AT), when Pwje
D(A),j=I,2,. .,N.

Therefore, (5.94) (and with it (5.92) in a related sense) is simply a bounded
perturbation of

(5.95)

t9 ,v+Av=O inf for teN,

Tv=O onF for tN,

V=Vo in12 at t=0,

0 v V in 12 at 0,
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treated in Theorem 5.6. Since the spectrum of Ar is assumed to be contained in [+,
we find from standard bounded perturbation theory (see, e.g., Sova [12] and Fattorini
[3]) that the operators

(5.96) cos ((A.r K-T"Ar)t),

(5.97) sin ((A- KT"A)t)

are well-defined, bounded, bounded operators in L2() for Psw.iD(A*), j=
1, 2,. , N, and . From Theorem 1.6.11 of Grubb [5] we find that

(5.98) D(A*) {u n2m() ixMl*yu =0}

where i is the "reflection" of the index set, replacing {k}o<_k< by {2m k- 1}0-<_k<m,
and Ml is the m m matrix differential operator, appearing in Green’s formula ((A4)
in the Appendix) for A, it is invertible since A is elliptic. We see from Example 1.6.12.
of Grubb [5] that the action of the realization A* is of the form A + G, for a certain
singular Green operator G of finite rank, whereas the domain D(A*r) is simply
characterized as

(5.99) D(A*) D(Av) n2"() ffl n’().

We have thus obtained Theorem 5.11.
THEOREM 5.11. Let the set {wj, gj}l_-<N be chosen according to Theorem 5.10, and

assumefurthermore that Psw.i,j 1, 2, N, are chosen in D(Av) H2’() H().
Then the operators

(5.100) C(t) cos ((Ar-KT"A)t)

and

(5.101) S(t) (A- KT"Ar)-1/ sin ((At- KrT"Ar)/2t)
on L(I)), are well defined for , giving the solution to the system

Ov + (1 KTT")Av 0

N

yv= E (vlPuw)g
(5.102)

j=l

/) I)0

OtV 1

as

(5.103) v(t, x)= C(t)Vo(X)+ S(t)v(x),

e solution to the original system

02tu+Au=O
N

Z w g

(5.104) =
R=R0

is then by (5.74)

(5.o5)

in 12 for 6 ,
on F for N,

in f art=O,

in f at O,

in for ,
on F for ,
in f at O,

in f at O,

u( t, x) (1 KrT")-1 C(t)(1 KrT")Uo(X)

+(1 KrT")-’ S( t)(1 KrT")Ul(X), x a,

Vo, v L2().

6 , Uo, Ul E L2().
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6. Stabilization by perturbations of the third kind. To get a complete picture, we
shall now also discuss briefly how we can stabilize the systems (1.1) and (1.2) by
changing both the boundary condition and the system operator. The stabilized systems
will then take the form

(6.1)

respectively,

(6.2)

Otu+Au+Gu=O inl2 for t>=0,

"),u=T’u onF for t=>0,

U=Uo inf at t=0,

Otu+Au+Gu=O inl2 for t,

yu T’u on F for 6 ,
u Uo in O at 0,

0,u=u inO at t=0,

and we say that the systems (6.1) and (6.2) are associated with the realization B
(A + G)T, where

(6.3) Bu=(a+G)u,

defined on

(6.4) D(B) {u H2’())I Tu =0},

with

(6.5) T:y-T’.

We will now determine operators G and T’, such that (6.1) and (6.2) are stable systems
of feedback type. Here, we can, in fact, make B a self-adjoint generator of an analytic
contraction semigroup. Here we will point out that the following construction is riot
very "economical," as we typically use a larse number of feedback terms, but the
construction clarifies to a great extent the interaction between the system operator
equation and the boundary equation.

As in the preceding paragraph, let {qj}j>= be an orthonormalized set of eigenfunc-
tions for A, enumerated according to the ordering of the eigenvalues (5.5), but now
define the boundary feedback operator T’ as

K-1

(6.6) T’u= E (ul%)h,
j=l

where K-1 is the number of negative eigenvalues of A, repeated according to
multiplicity, and

(6.7) h C(F)’, j 1, 2,-.., K- 1,

are chosen linearly independent, with no other conditions on them. Moreover, define
the operator G as

(6.8) G=K’,+G’,

where , is the Neumann trace operator (1.6) and

(6.9) K’= T’*1, G’= T’*(Se- c)y.



STABILIZATION OF DISTRIBUTED PARAMETER SYSTEMS 243

Here c is a positive constant to be determined later, o is the upper right corner in
the coefficient matrix (A3) in Green’s formula (see the Appendix), whereas O is the
coefficient matrix appearing in the boundary term in the "halfways" Green formula
for a convenient sesquilinear form a(u, v) associated with A (see (A6)).

Let a(u, v) be a symmetric sesquilinear form on Hm(’).) associated with A, of the
form (A5), and recall that, by the Grding inequality, a(u, v) is H’(O)-coercive. It
is well known how Ar is the variational operator associated with the triple (a, H’(O),
L2(I))) (see, e.g., Grubb [5, 1.7]). Let us define the sesquilinear form a(u, v) on
H" (1)) by

(6.10) a,(u, v)=a(u, v)+c(T’ul/v),..
Let U be the closed subspace of H"()

(6.11) U-{uH"()l,u- T’u},

and observe that U is dense in L2(-), since T y-T’ defines a normal boundary
condition Tu 0 (so that already D(A) is dense in L2(); cf. Lemma 3.1). Let B be
the operator associated with the triple (a, U, L2(I))), defined as follows:

D(B1)--{uE UIZlfEL2(O) so that a(u, v)=(flv) for all v U},
(6.12)

Bu =f.
We will show that B B, where B is the realization defined in (6.3)-(6.5).

LEMMA 6.1.

(6.13) B B1.

Proof For uD(B), v U we have in view of (6.4), (6.9), (6.11), and formula
(A6) of the Appendix"

(au

au u +u
(au T’*(- c)yu T’*M’vulv)
((a/ )u v).

This shows that u D(B) with Bu (A + G)u, so it follows that D(B) = D(B1) with

Bu Bu there.
For 1E M we define the subspace W of H’(fl) by

(6.14) W span {%}.i=< (H"(fl) -closure).

Note that for u W:, yu and T’u are zero, so W: U.
LEMMA 6.2. There exists a linearly independent set offunctions {v./}__<<: in U\ WI,

such that

(6.15) U-span {v}<: 4- Wn.

Proof According to Lemma 1.6.8 of Grubb [5] (see our 3) we can write U of
the form

(6.16) U A-1H’()

where A and A- are bounded operators in H(I)), for all s->0.
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Choose a linearly independent set {Zj}l<_j< K in Hg’(f) such that the matrix

(6.17) C ((Z (A-l)* (j)i,j)l$i,j<K
is regular, and define

(6.18) vj A-lz, j=l,2,...,K-l;

this is clearly a linearly independent set in U.
Moreover, for 1 -<j < K

K--1

k=l

(6.19)
K-1

2 (zl(A-1)*)h 0
k=l

since C is regular, so none of the v lie in H().
Since

D2 2(6.20) v : =c

the set {yv}< is linearly independent, so (2 %v)=0 implies that %=0,
j 1, 2, , K- 1. Then also

span {V}l=< W {0}.

Since W U and span {V}lj< U, the inclusion

(6.21) span {v},< 4 W U

is evident.

To show the inclusion the other way, let u e U and inve (6.20) to get

(6.22) 2 (le)h= (1) v ec.
j=l j=l k=l

K-1The last term equals = yv, where

K--1

(6.23) 2 (u e), k , 2,. , .
j=l

If we define

K-1

(6.24) w u-
j=l

then by (6.22),
K-1

(6.25) yw yu Z [3jyv O,
j=l

hence (since u and the vj lie in U)
K-1

(6.26) 0=w= E (wl)h.
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But the set {hs}l__<s</ is linearly independent, so (6.26) implies that

(wl%)=0 j=l,2,...,K-1.(6.27)

Then, from (6.24)
K-1

(6.28) u Y /3sv + w span {vs}l<__s<: 4- WK.
j=l

Since ff,o (i.e., the L2(12)-closure) has a LZ-complement ff’:)+/- of dimension K 1,
we can obtain (by a small perturbation, if necessary) that the v are chosen outside
ff,o. More precisely, the following construction can be used:

Let v =% + as, where the a are chosen such that

(1) v ff.o. This is achieved if a Iio 1/2, since % 1[o 1 and %_t_ W/.
(2) C ((zi (A-)*%)i,s)__<i,s<: is regular, when zi Avi. Since (z (A-l)*%)

(o + a I%) 6o + (ai I%), this is achieved by choosing max aj Iio so small that the
norm of the matrix ((ail %) ,,s), <--,.s is -< y.

(3) z H’(f). Since C(12) is dense in L2(I)) we can, for a given e > 0 choose
zsC(f) such that IIz-m%llo-<. Then a=A-(z.-a%, with norm Ilallo<_-
IIA-II ,. If e is then adjusted so that (1) and (2) hold, we have a solution
with the required property. Then we have a decomposition of u U as

(6.29) u v + w

where v span {vs}<__j</, v :j 1, 2, , K 1, and w W:, and the projections

(6.30) u -* v, u - w

are then continuous in L2(I)) so we have an inequality

(6.31 v Iio / w Iio <-- c u Iio
with a constant C > 0.

LEMMA 6.3. a(u, v) is m-coercive on U, i.e., (since a is symmetric on Hm(f)),

(6.32) Re a(u, u) a(u, u)>- Collull- kllullo
for u U, with constants Co > 0 and k R.

Proof Recall that the L2-norm and the H’-norm are equivalent on a finite-
dimensional space, so that we have positive constants C’ and C", such that

(6.33) c’llvllo -< Ilvll--< c"llvllo.
Let u U and write u v + w as in (6.29). Then

Re a(u, u)= a(u, u)= a(w, w)+2 Re a(v, w)+ a(v, v).

For any e > 0 we can find constants C1, C2 > 0, such that

2[a(v, w)l<- zC, llwll.llvl[

(6.34) -<,=llwll 2 / Ilvll 2

Here we have used (6.31) for v, together with (6.33).
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Since a(u, v) is H’(f)-coercive, we find, using (6.31) for w,

a(w, w) c311wll- c4llwll
(6.35)

2C3 w =m c u IIo,
with constants C3, C4, Cs > 0.

Moreover, since

(6.36) a(v,

with C6, C7, C8 > 0, we have that

(6.37, a(u,u)>(c3_e2)llwllZ (C )m- +c+c8 lullS.

Then, for all e’> 0:

(6.38) Ilwll=llu-vll lull -211vii Ilull +11112

- c’’= Ilvll

Choosing 0< e< C and O< e’< 1 and inserting the result of (6.38) in (6.37), we
finally obtain (6.32).

LEMMA 6.4. B B.
Proof Since for u U

(6.39) a(u,u)=a(u,u)+c(T’ulyu)v=a(u,u)+c(T’ulT’u)va(u,u),

a is m-coercive on U. Then B is the variational operator associated with the triple
(al, U, Le(O)), and since a(u, v) is symmetric on U, B= B. (see, e.g., Grubb [5],

1.7.)
Now we note that the boundary value problem

Au + Gu : f L:(),
(6.40)

Tu O

is elliptic, since the Dirichlet problem for A

Au:A f(a,
(6.41)

yu 0

is elliptic and G has the form (6.8)-(6.9) where T’* and T’ obviously are integral
operators with C-kernels, hence of order -. (Problem (6.40) and (6.41) have the
same principal symbols.) We can then use Theorem 1.6.11 and Example 1.6.12 of
Grubb [5] to show that B B*. It is shown there that when

(6.42) ,:(A+G)

is an elliptic realization of a formally self-adjoint operator A, with

(6.43) G= K’+ G’, T= y- T’
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then B B* if

(6.44)

Using that K’=-T’*sl (see (6.9)) and that s= ow-ow* (see Lemma A1 of the
appendix), we compute

(6.45)

and

-(6g/1*)-1K’* (Ml*)-’M’* T’= T’

G’* + T’*sCy T’*(*- c)y + T’*(9*- ow)y

(6.46) T’*(,_- c) y

hence B B*, according to (6.44).
We now have Theorem 6.5.
THEOREM 6.5.

(6.47) B-- B

Proof B
_

B1 implies that B*
_

B*. But B B* and B1 B*.
We have hereby shown that the realization

(6.48) B=(A+G)7-

is the variational operator associated with the triple (al, U, L2(12)).
THEOREM 6.6. Assume that the operators G and T are chosen such that the operator

B= (A+ G)r is the variational operator associated with the triple (al, U, L2(f)), and
let < 1 be given. There exists a constant c > 0 such that the sesquilinear form

(6.49) al(u, v)=a(u, v)+c(T’ulyv)v

satisfies, for all u U

(6.50) a(u, u) Ilu o.

Proof We write u U as u v + w as in (6.29). Then

al(u,u)
2

a(v+w, v+w)+c(T’(v+w)ly(v+w))v
(+wl+w)

a(v+ w, v+ w)+ c(r’(v+ w)[ r’(v+ w))
(+wl+w

a(w, w)+2 Re a(v, w)+a(v, v)/cllT’vll o

Ilwllo+2 Re (vlw)+ Ilvllo=

Now since

(6.51)
a(w, w)>- C, wll c=llwllo
a(w, w)>- ,i,: wllo

C, Cz>0,
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we have, for all e > 0

2[a(v, w)[_-< 2[Iwll2 /.c ilvl[2

(6.52)

with constants C3, C4 > 0o
Moreover, for all e’ > 0

(6.53)

a(w, w)+ IIwIIG + Ilvllo

G2(l_ 1 Cll) C<= a(w, w)/

21(v w)l 211 v Iloll wllo

so we find that

(6.54)

where we also used that la(v, v)l<= Cs[[vll<= C-,6111)11, C5, C6>0 (of. (6.33)).
Then, in particular,

(6.55)

al(u, u)
1- e 2 1 C4

(6.56)

with a positive constant C7.
Hence

Ilull2 (1+ e’2)llw[12o+ 1+ Ilvll

T’ is injective from span {V;}I<__j<K to span {hj}x<__.j<K, so we have that
2T’vllo >- GIIvllo,

(6.57)

where

a,(u, u)>llwll+llvll
ilullo2 llwllo2+011vllo2

/x 1 + e ’2, 0 1 +--55"

Considering the function

(6.58)
aAKS +f(s)=, s=>O,
is + O
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which is nonincreasing for s- when A:aO-tx <=0, we see that

(6.59)
al(u’ >=-- A:,

if

cO
(6.60) >-A.

Then if we choose c in the definition of al such that

(6.61) c->
C7( 1 + e ’2)

then

C4+
C7e

C6-+
C7’

(6.62) a(u, u) >= C A:
l+e ’2

With e and e’ chosen such that

l_e2 ( C_{_ C2

l+e ’2

and c chosen such that (6.61) holds, we see that

(6.63) a(u, u) >- Ilull
as claimed. [q

We now have Theorem 6.7.
TrEOREM 6.7. With the hypotheses of Theorem 6.6 we have that, given any < 1,

there exists a constant e > 0 such that the self-adjoint operator realization

(6.64) B (a+ G)- (see (6.3)-(6.5))

has its s_peetrum in the halfline [srA:, [, and is the infinitesimal generator ofan analytic
semigroup e-B, >-O, on L2(f), giving the solutions to the parabolic system

O,u + Au + Gu O in f fort>O,

(6.65) yu T’u on F for > O,

U Uo in f at O,

as

(6.66)

The solution satisfies

(6.67)

Moreover, the operators

(6.68)

u( t, x) e-B’Uo(X), x , >- O, Uo L2(f).

Ilu(t, ")110

C(t) cos (B/t),
S(t)= B-1/e sin (B/2t)
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are well defined for , giving the solution to the hyperbolic problem

O2, u + Au + Gu O in for ,
(6.69)

yu T’u on F for ,
U Uo in at O,

O,u ul in at O,

as

(6.70) u(t, X) C(t)Uo(X) + S(t)u(x), x , ,
when Uo, ul L2().

Remark 6.8. In the light of Proposition 1.7.11 of Grubb [5], it is of interest to
note that the realization constructed above is weakly semibounded and m-bounded
(cf. Remark 5.7) because we have compensated for the nonlocalness in the boundary
condition by nonlocal terms in the system operator equation, satisfying

(6.71) K’* -41" T’.

Example 6.9. Let us. calculate the operator G in the case where A--A. Since

(6.72)

we have that

K-1

T’u= Y (ul%)h;,
j=

(6.73)
K-1

j=l

hence

(6.74)
Gu T’*4l uu T’*( c) yu

K-1

j=l

Now the terms in the Green formula (see (A4) of the appendix) are particularly simple
since

(6.76)

Then (6.74) reduces to

K-1

(6.77) au 2 i,u + cu h).%.
j=l

Appendix. Green’s formulas. Using the notation given in (1.5)-(1.8) we have, for
the formally self-adjoint operator A (1.3)

(A1) (Au Iv)-(u lAy) (spu
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where is a skew-triangular 2m 2m matrix of differential operators over the boundary
F, of the form

(A2)

S Sm-’ S2m
lower order 0-- s s 0

s o o o

the S being differential operators on F of order 2m-k (see, e.g., Grubb [5], 1.3).
We usually write s in m m blocks as

{ )(13) s
\so 0

and we have the following version of the Green formula:

(A4) (Au Iv)- (u lay)= (’u +u
for u, v H2m(f). The coefficient matrices i here are uniquely determined from A.

Now consider a symmetric sesquilinear form with a, C(), az az, for all

(A5) a(u, v)= 2 (a,Oul D"v)

associated with A. For such a form we have a "halfways" Green formula, for u He()
and v Hm(O)

(A6) (Au Jr)- a(u, v) (’pu +
where the operator is of the same type as oo in (A3). Since o*= _o when A
is formally self-adjoint, we have Lemma A1.

LEMMA A1.

(A7) oo
_..

Proo For u, v g2m() we have

(A. Iv) (.,

a(, v)+(’*
so that

Comparing (AS) with (A4) gives us (A7).
Now let Kr be the Poisson solution operator to the Dirichlet problem for A, i.e.,

Kr maps 0 into u, where

(A9) Au=O inO, u=0 onF.

We can then specify the action of Kr the following way.
PROPOSITION A2. e Poisson solution operator K to the Dirichlet problem for A

satisfies

-1 sO.(A10) (K01%) =-- (01 ’%)1-, j_-> 1.
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Proof Just insert u Krq and v q (the eigenfunctions of At) in (A4), and use
that yv 0. Moreover, A ] since A is self-adjoint. [3
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VIABILITY PROBLEMS FOR NONAUTONOMOUS
DIFFERENTIAL INCLUSIONS*

PETER TALLOS?

Abstract. In this paper the existence of viable solutions to nonautonomous differential inclusions is
proved. The set-valued map on the right-hand side is assumed to be integrably bounded, measurable in t,
and upper semicontinuous in x with nonempty convex, compact values. The cases of convex and nonconvex
viability domains and also the time-dependent case are considered. An example for control systems is also
given.

Key words, nonautonomous differential inclusions, measurable right-hand side, tangent cones, viable
trajectories

AMS(MOS) subject classifications. 49A50, 34A60

1. Introduction. In this paper we investigate the existence of viable solutions to
nonautonomous differential inclusions. More precisely, consider a finite-dimensional
space X and let K be a nonempty closed subset of X: Let F be a set-valued map
defined on R K with nonempty convex compact values in X. If Xo is given in K, we
look for a solution to the differential inclusion

(1) x’(t) 6 F(t,x(t)), x(O)-xo,

which is viable, i.e.,

(2) x(t) K for every >_- 0.

Existence theorems for viable solutions to autonomous differential inclusions were
proven by Haddad [10] (see also the book of Aubin and Cellina [2]). Moreover, the
time-dependent viability theorem states that if for some T> 0 the map F is bounded
and upper semicontinuous on [0, T] K and the tangential condition

F( t, x) (’l TK (x)

holds true for every (t, x) [0, T] K, then for every xo in K there exists a viable
solution defined on [0, T] (see [2, Thm. 4.41]). Here Tr(x) denotes the Bouligand
contingent cone to K at x.

However, most of the classical existence theorems for differential inclusions (see,
for instance, Filippov [7], Zaremba [16]) have been extended to the case of non-
autonomous inclusions, when the set-valued map on the right-hand side is only
measurable with respect to (Himmelberg and Van Vleck [11], Olech [12], Plis [13]).
Such differential inclusions are provided, for example, by "linearization" of an
autonomous inclusion along a trajectory (see Frankowska [8], [9] for variational
inclusions). It is a natural question to ask whether the time-dependent viability theorem
remains true when only measurability in is assumed for F and the boundedness
assumption is replaced by integrably boundedness.
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In 2 we give some preliminary facts, and in 3 we provide an affirmative answer
for convex viability domains. The proof is constructive and it appears as a refined
version of Haddad’s proof [10] (see also [2, Thm. 4.2.3]). The construction is based
on the Systematic use of the measurable selection theorem (see [2], [5]). A similar
result was obtained by Deimling [6] by using a Scorza-Dragoni-type theorem of
Rzeuchowski [14] and reducing the problem to the autonomous case. In 4 we deal
with the nonconvex case and prove the existence of viable solutions under a stronger
tangential condition. In particular, we use the Clarke tangent cone, since this cone is
always convex, even if K is not. We define a sequence of upper semicontinuous
approximations of F and use the time-dependent viability theorem. By passing to the
limit, we get a viable solution of the original problem. Finally, in 5 we consider
time-dependent viability domains and an example for control systems is given.

2. Preliminaries. First we formulate the definition of integrably boundedness. The
set-valued map F is said to be integrably bounded, if there exists a locally L function
l, i.e., a measurable function with l LI[0, T] for every T>0 such that for almost
every in R and for every x in K

F(t, x)c/(t)(1

is valid, where B is the closed unit ball in X.
As is well known, if F is integrably bounded, by a change of and a retraction

in x, we may assume without loss of generality that for a T> 0

(3) Ivl_-<l
for every v F(t, x) and (t, x) [0, T] K.

The following two propositions will be used for proving the convergence of the
sequence of approximate solutions. For the proofs we refer, for instance, to Olech 12].
LMM 1. Suppose that F is integrably bounded and we are given two sequences

y L[0, T] and x,, C[0, T] with

lim d(y,(t), F(t, x,(t)))=0 a.e.,

where y, y weakly in L, x, - x uniformly on [0, T] and d denotes the distancefunction.
Then

y(t) f) clco 1 F(t,x,(t))
m---=l

almost everywhere in [0, T].
LMM 2. Consider the set-valued map F and the sequence x, in Lemma 1 and

assume in addition that F is upper semicontinuous in x with convex compact values. Then

f"l cl co I..J F(t, x,(t)) F(t, x(t))
m=l

for each in [0, T].
In the next sections we will use the concepts of the Bouligand contingent cone,

the intermediate cone and the Clarke tangent cone. Recall that the Bouligand contingent
cone to K at x is defined by

T x { v X" lim inf
l }hO+ - dr. x + hv 0

where d/< denotes the distance function from the set K.
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The intermediate cone, introduced by Ursescu [15], is defined by

Ir x { v X" lim
1 }h-,O+ - dr x + hv 0

The same concept was used by Frankowska in [8] for solving optimization problems
for differential inclusions.

The Clarke tangent cone is defined by

CK(X { v X" lim
l }y-, x,h-,O+ - d (y + hv 0

This cone is always convex.
Obviously, Cr(x)c Ii((x)c Tr(x), and moreover, they coincide if K is convex.

For details concerning various concepts of tangent cones and their properties we refer
to Aubin and Ekeland [3] and Frankowska [8].

We will need the following simple proposition.
LEMMA 3. Let y K be fixed and define

1
Ah(y sup dr(y+ hv),

IK (y )CI B -where B is the closed unit ball in X. Then

lim Ah (y) 0.
hO+

Proof. Let e > 0 be given. Since Ir (y) 1B is compact we can find points v, , Vm
in Ir (y) ffl B such that

Ir(y)f-IBc U vi+-Bi=1

On the other hand, for every i= 1,. ., m there exists a 6 > 0 such that

1 e- dr (y + hvi % --2
if h < 6i. Put 6 min {61,"" ", 6,}. Now take any v in Ir f’)B. Then there exists a j
with v e v + (e/2)B. If h < 6, by the Lipschitz continuity of dr, we get

1
dr (y + hv) <

1- - dr(y+ hv / v v < ,
consequently Ah(y % . [-’]

3. Convex viability domains. In this section we prove the existence of viable
solutions in the case of convex viability domains. For the construction we need the
measurable selection theorem (see, for instance, Aubin and Cellina [2, p. 90]) and the
convexity of K allows us to make use of the mean value theorem (see [2, p. 21]).

THEOREM 1. Let K be closed, convex and suppose that F is integrably bounded,
measurable in t, and upper semicontinuous in x with nonempty convex compact values.
Assume that the tangential condition

(4) F(t,x) fq Tr(x)

holds true for almost every in R and for every x in K. Then for every xo K and for
every T> 0 there exists a viable solution to (1) defined on [0, T].
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_Proof Let Xo K be given and choose a T> 0 arbitrarily. Then, in view of (3),
every trajectory for F through Xo on [0, T], if any exist, obviously lies in Xo+ TB,
where B denotes the closed unit ball in X. On the other hand, K fq (Xo+ TB) is a
compact subset of X and, since the contingent cone depends only on the local shape
of K around x, for each 0 < p < T and x K (q (Xo + pB), we clearly have that TK (x)
TKCO,o+TB)(X). Hence, without loss of generality we may assume that K is compact.

Since K is convex, we have that TK(y)= IK(y) for each y K. Fix an integer n;
then, in view of Lemma 3, for every y in K there exists 0 < h3, < 1/n such that

1
(5) Ahy(y) < 3nT"
Since TK(y) is closed, we can find a measurable selection fy( t) F( t, y) fq TK(y) on
[0, T]. Consider the sets

{ /’/3’}U(y)= x e X: dK(x + h3,f3,(t)) < dK(y+ h3,f3,(t))+----nT a.e.

By the Lipschitz continuity of di, U(y) is open and y U(y) for every y K, hence,
there is a 0 < 63, < 1/n with y + 63,B c U(y). Since K is compact, we can select finitely
many points Yi,’’’,Ym in K such that

(6) K (yi + 6iB),
i=1

where 6 ---6y Introduce the notation hi hyi, fi Li for i= 1,..., m. Put ho(n)=
min {hi,. , hm}, then 0< ho(n) < 1/n.

Now we construct the approximate solution xn on the interval [0, T]. Set to 0
and xn(to)= Xo. In view of (6), we can find an index 1 <-i<= rn with Xo Yi + 6iB. Thus,
we get

hi
dK Xo + hif (t) < dK (Yi at- hif (t)) +

3nT

Consider the following set-valued map on [0, T]:

{ _4nhi}Zi(t) K f’] z X" z-xo- h,f(t)l <= dK(xo+ hif(t))+2---

Then Zi is obviously measurable and admits nonempty closed values. Thus, by the
measurable selection theorem, we can take a measurable selection zi of Zi with zi(t) K
for almost every in [0, T].

Set tl hi, Vo(t) 1/hi(zi(t) Xo) and define x, on the interval to, tl] by

X.(t) Xo+ Vo(S) as.
to

Since K is convex, we obtain

Xn(tl)=; zi(t) dt K

by the mean value theorem.
The construction can be proceeded by induction. Suppose we have constructed

x, on the subinterval [0, tk] and x,(tk) K. In view of (6), we can find an index 1 =<j -< rn
such that x, (t) yj + 6j B, thus

(7) dK(x,(tk)+hjf(t))<dK(yj+hjf(t))+
hj
3nT
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for almost every t. Introduce the following set-valued map on [0, T]:

Z(t) K f’] {z - X" lz-xn(tk)- hjfj(t)’ <= dtc(Xn(tk)+ hif(t))+3--T}.
Then Z is clearly measurable with nonempty closed values. Take a measurable selection
zj of Z; then zj(t) K for almost every in [0, T].

Set tk+l tk + h, Vk (t) 1 / hj (z (t) xn (tk)) and define xn on the interval tk, tk/l]
by

x,( t) x,( tg) + Vk(S) ds.
tk

The convexity of K implies that

1 [ tk+hj
z(t) dt K(8) x,(t+,) ,

by the mean value theorem. Therefore the construction can be continued.
Since t+- t ho(n) 0 for each k, we reach the point T within finitely many

steps. Hence, the approximate solution x can be defined on the whole interval [0, T]
and we obtain a paition 0 to"" tp T of [0, T] or every n.

Now we prove the convergence of approximate solutions. We deduce from the
above construction that each x, is absolutely continuous and for almost every
Its, t+] we have

1
x(t)-(t)l= (zj(t)--xn(tk)--(t)))

1 1

h
d(x,(tk)+ h(t))+3nT

for a suitable index 1 j m. In view of the definition of, we get

(9) x(t) F(t, y)+ d(x(t)+ h(t))+ B.

For every 0 k p- 1 denote by i the corresponding index for which x(t)
y+ B. Let us introduce the following functions on [0, T]:

1 ift[t,t+],
e(t)

0 otherwise.
Then (9) can be written in the following form:

(10) x(t) F(t,x(t)+ a(t))+ q(t)B

almost everywhere in [0, T], where

a(t) E yie(t) x(t)
k=0

and

p--1 1
q(t)- ek(t) dlc(X(tk)+ hfi(t))+

k--O 3nT
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Making use of (5) and (7), we get

+ h,f(t)) dt +--an

<: A,(yi)+ (tk+l-- tk)-t-<--
3n n

Therefore, taking a subsequence, we may assume that qn - 0 almost everywhere in
[0, T].

On the other hand, for every n, xn is absolutely continuous, xn(O)= Xo, and for
almost every c [0, T]

(11) [x’,(t)[ _--< 1 +
3nT

by (9). Thus, by the Dunford-Pettis criterion we can select a subsequence, again
denoted by xn, which converges uniformly on [0, T] to an absolutely continuous
function x, moreover x’,- x’ weakly in LI[0, T]. Furthermore, an-0 uniformly on
[0, T]. Indeed, since 6i < 1/n for each i, by (11) we have

p--1

[an(t)l: Yi. ek(t)-xn(t)
k=0

p-1 p-1

<-- lyi-x(t) e(t)+ x(t) e(t)-x(t)
k =0 k =0

-+- 1+
n n 3

Using Lemmas 1 and 2, we deduce from (10) that

x’(t)6 clco F(t,x,(t)+a(t))=F(t,x(t))
m:l

almost everywhere in [0, T]. Hence, in view of (8), we get that x is a viable solution
to () on [0, T].

Remark. A similar result was proven by Deimling in [6]. The proof is based on
the reduction of the problem to the autonomous case by using a Scorza-Dragoni type
theorem of e2uchowski [14].

4. Nonconvex viability domains. In this section we prove the existence of viable
trajectories when K is closed, but not necessarily convex. The following method will
be used. For every h > 0 we define an approximation F of the set-valued map F,
which enjoys more regularity than F, then we apply Haddad’s theorem for F. Passing
to the limit h 0 we get a viable solution of the original inclusion. However, we need
a stronger tangential condition in this case, namely, we use the Clarke tangent cone.
TogM 2. Let K be nonempty closed and suppose that F is integrably bounded,

measurable in t, and upper semicontinuous in x with nonempty convex compact values.
We posit the tangential condition

(12) F( t, x) C (x)

for almost every in R and every x in K. en for every Xo K and T > 0 there exists a
viable solution to (1) defined on [0, T].
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Proof Let x0 K and T> 0 be given. For every h > 0 define Fh by the Aumann-
integral

1 I t-t-h

Fh(t, X)=- F(s, x) ds,

where (t, x) [0, T] x K. Then for all h > 0, for almost every [0, T] and for all x K
we have

(13) Fh(t, x) C(x) .
Indeed, take a measurable selection f of the measurable closed-valued map s-
F(s, x)f’l C(x). Since C:(x) is convex, we get

1 j.
t+h

h
f(s) dse Fh(t,x) CK(x)

by the mean value theorem.
We show that Fh is upper semicontinuous on [0, T] K for each fixed h > 0. Let

(t, x) [0, T] K and e > 0 be given. Take an arbitrary 3’ > 0 and define

r/(s, x, 3’)=sup { sup d(u, F(s, x))" Ix-y] <--3"}.ueF(s,y)

Then r/is measurable in s (see [5, Thm. Ill.9, Lemma 111.39]) and by (3), r/(s, x, 3’) _-< 2
for almost every s [0, T] and for every x K and 3’ > 0. Moreover, r/(s, x, 3’) 0 if
3’ 0, by the upper semicontinuity of F. Hence, by Lebesgue’s dominated convergence
theorem

1 t+h

lim rl(s, x, 3") ds O.
/ 0 -’

Choose a 0 < < eh/4 such that

1 f’+h(14)
h

rt(s, x, ,) ds <-
2

is valid.
Now take an (r, y) [0, T] K such that It- rl < ,,lx-yl<, and pick we Fh(r, y).

In view of the definition of Fh, we can find a measurable selection g(s) F(s, y) with

1 I r+h

w=- g(s) ds.

Consider the following set-valued map:

(s) F(s, x) (’1 {u X: lu g(s)l <- rl(s, x, 8)1.

Then is obviously measurable with nonempty closed values. Let f be a measurable
selection of and set

1 f
t+h

v -t= f(s) ds.
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Then vFh(t,x), and by (14) we have

1 t+h r+h

f(s) ds- g(s) ds

1

e 1 ["
_-+

Ig(s)l ds
1 Itt+h 1

If(s) g(x)l dx +-
E

n(s,x, 6) ds+-.
4

r+h

t+h
Ig(s)l as

Thus, Fh is upper semicontinuous on [0, T] x K.
Since for every h > 0, F is a bounded map with nonempty convex compact values,

furthermore the tangential condition (13) is valid, we can apply the time-dependent
viability theorem (see [1, Thm. 4.4.1]). Hence, for every Xo K and T> 0 there exists
a viable trajectory x for F, through x0 defined on [0, T]. This means that

x’(t) F(t, xh(t)) a.e. in [0, T],

x(0)=x0,

Xh(t) 6K for every tin[0, T].

By the boundedness assumption (3), there exists a subsequence denoted by x, x
that converges uniformly on [0, T] to an absolutely continuous function x with h, -* 0
and x’, -* x’ weakly in L[0, T].

Since the set-valued map t-* F(t,x(t)) can be assumed to be measurable (see
[14]), it follows that the map -* q( t, x( t), 3’) is also measurable for every y>0 (see
[5, Chap. 3]). On the other hand, 7(t, x(t), y)-*O almost everywhere, if 3,-*0+.

Let 6, be any sequence converging decreasingly to zero. We show that

1 f t+hn
(15) lim rl(s, x(s), 6,) ds =0

almost everywhere in [0, T]. Indeed, it is clear that there is a set H c [0, T] of measure
T such that for every H

1 f
t+h

hli’m+ r/(s, x(s), 6.) ds rl( t, x( t),

for each n. In fact, H is a countable intersection of sets of measure T. Take a point
H and let e > 0 be given. Then we can find an no with 7(t, x(t), 6,o)< e/2, and an

n such that

1 f t+hn e

h. Jt (s,x(s), 6,0 ds< rl(t,x(t), 6")+-2
for n _--> n. Hence, if n _>-max {no, nl} we have

hzllt+hnt l’lnlltt4-hnrl(s,x(s), 6.) ds<-_ rl(s,x(s), 6.o) ds

E
<n(t, x(t), ,oo)+< ,

because 7 is increasing with respect to 6.
Pick a point s t, + h,] and introduce the notation

[x,(t) x(s)[-<_ Ix,(t) x(t)[ + h, 6,.
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We may assume (by taking a subsequence if necessary) that 6, converges decreasingly
to zero. Moreover, we have

(16)

1 I t+hn

X;(t)-nn

f t+hn

h.

F(s, x.(t)) as

ftt+hnF(s, x(s)) as+ rl(s, x(s), 6.) ds B.

Making use of (15), (16) and the Lebesgue-point equality

1 f t+hn
(17) !irn F(s, x(s)) ds= F(t, x(t))

(see [4]), we get

(18) d(x(t), F(t, X(t))) 0

almost everywhere in [0, T]. Thus, by Lemmas 1 and 2, relation (18) and the obvious
x(t) K show that x is a viable solution to (1) defined on [0, T]. [3

5. The time-dependent case. If the viability domain K depends on we can prove
the existence of viable trajectories by standard arguments. We express the tangential
condition in terms of the graphical derivative of the set-valued map K (see Aubin and
Ekeland [3]).

Let K be a set-valued map defined on the interval [0, T] with nonempty values
in X. Recall that the graphical derivative of K at (t, x) graph K is defined as the
set-valued map DK t, x), whose graph is CgraphK( X). More precisely v DK t, x)( u)
if and only if (u, v) CgraphK( t, X). Several properties of this derivative, including chain
rule and inverse function theorem, can be found in [3] and [1].

Now consider a set-valued map F defined on graph K with nonempty convex
compact values in X, and let Xo be a given point in K (0). A solution to the differential
inclusion problem

(19) x’( t) F( t, x( t)), x(0) Xo

is said to be viable if

(20) x(t) 6 K (t)

for every [0, T].
THEOREM 3. Let the graph ofK be closed and suppose that F is integrably bounded,

measurable in t, and upper semicontinuous in x with nonempty convex compact values.
Assume that the tangential condition

(21) F(t, x) (’l DK(t, x)(1)

holds true for almost every [0, T] and every x in K (t). Then for every Xo in K (0)
there exists a viable solution to (19) defined on [0, T].

Proof By using the usual transformation of the state space with a trivial
modification, it can easily be seen that all assumptions of Theorem 2 are satisfied.
Moreover, the tangential condition (21) reduces to (12), hence, the statement of the
theorem follows from Theorem 2. [3
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Remark. The concept of the graphical derivative of a set-valued map clearly
depends on what tangent cone is chosen. Therefore, if the graph of K is convex and
closed, the above theorem can be reformulated in terms of the contingent derivative of
K, i.e., by replacing the Clarke tangent cone with the Bouligand contingent cone.

As an illustration of the above theorem consider the following example. Let X
and Y be finite-dimensional spaces. Let K be a set-valued map defined on the interval
[0, T] with nonempty values in X, and let Xo K(0) be given. Consider the control
differential equation

(22) x’(t) =/(t, x(t), u(t)), x(0) Xo,

where the control set U c y is compact, the controls are the measurable functions u
with u(t) U almost everywhere in [0, T], and f: graph K U-X is integrably
bounded, measurable in t, and continuous in (x, u).

The problem can be expressed in the following way. Does there exist a control u
such that the control system (22) has a viable trajectory, i.e., a solution x such that
x(t) K(t) for every [0, T]? We solve this problem by rewriting the differential
equation (22) as a differential inclusion and applying Theorem 3. As is well known,
by Filippov’s implicit function lemma (see [5, p. 85]), the differential equation (22)
and the corresponding differential inclusion have the same set of trajectories.

We will use the following assumption:

(23) f(t, x, U) c X is convex

for almost every [0, T] and every x K (t). This condition is satisfied, for instance,
iff is affine with respect to u and U is convex.

Let us introduce the feedback map C defined by

C(t,x)--{u6 U: f(t,x, u)6DK(t,x)(1)}

for every (t, x) graph K.
THEOREM 4. Let the graph ofK be closed and suppose that the feedback map

(24) C(t,x)

for every t, x) graph K. Then, under the above assumptions, for every Xo K (0) there
exist a control u and a viable trajectory x of (22) that are related by

(25) u(t) e C( t, x(t))

almost everywhere in [0, T].
Proof Introduce the following set-valued map on graph K:

F( t, x)= {f( t, x, u): u U}.

Then F clearly satisfies all assumptions of Theorem 3. Moreover, by (24), the tangential
condition (21) is also fulfilled. Thus, there exists a viable trajectory x for F through
Xo. By Filippov’s implicit function lemma, we can find a control u such that

x’(t) ---f(t, x(t), u(t))

almost everywhere in [0, T]. This means that x is a solution to (22). Since obviously
x’(t) DK(t,x(t))(1), we have that (25) is also satisfied. [3

A detailed discussion of the above problem for autonomous equations and time-
independent viability domains can be found in [1] and [2].

Acknowledgments. The author is greatly indebted to J.-P. Aubin and H. Frank-
owska for helpful discussions. The author also thanks the referees for critical comments
to the earlier versions of the paper.
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE CONTROL*

M. GEVERS?, G. C. GOODWIN$, AND V. WERTZ"

Abstract. This paper establishes global boundedness for a continuous-time stochastic adaptive control

algorithm. It is shown that, with probability one, the system inputs and outputs satisfy a sample mean square
boundedness property. The algorithm and method of analysis are not directly analogous to the discrete-time
case, since special features are necessary to handle the continuous-time problem.

Key words, global"boundedness, stochastic adaptive control

1. Introduction. It is now well known that global boundedness can be established
for discrete-time stochastic adaptive control algorithms---see, for example, 1]-[3].

However, to date there has been no corresponding result for continuous-time
systems. Preliminary work in this direction appears in [4]-[8]. However, the available
adaptive control results rely upon unproven and data dependent conjectures, e.g., the
normalized regression vector, (qo/ r), is assumed to be uniformly bounded. Inspection
of the details of the algorithms indicates that this is most likely not true. A further
restriction in the work reported in [5] and [6] is that the relative degree of the system
is taken to be zero, i.e., there is a direct feedthrough term between input and output.
This leads to questions about the validity of the resulting control law as the closed-loop
system contains an algebraic loop.

This paper presents a new algorithm for continuous-time stochastic adaptive
control in the ideal case (no unmodelled dynamics) together with a proof of global
boundedness. The main feature of the algorithm is a new normalization technique that
guarantees that the normalized regression vector (q q/r) is bounded. Also, the proof
of boundedness of the system states has several novel features including a special
technique for handling strictly proper systems.

The paper was inspired by an earlier paper [9] which explored the link between
discrete- and continuous-time deterministic adaptive control theory. The current paper
does this for the stochastic case.

Novel aspects of our analysis are the following: We first establish existence and
uniqueness for the solutions of the nonlinear stochastic differential equation for the
parameter estimation algorithm. We then establish properties ofthe parameter estimator
that hold irrespective of the control law. Finally, we establish a continuous-time key
technical lemma that is analogous to that given for continuous-time deterministic
systems in [9].

These preliminary results can be combined with a wide class of certainty
equivalence control laws to establish global boundedness of all internal variables of
the resultant algorithm. We illustrate by using an adaptive pole assignment algorithm
as in [10] and [11] for deterministic continuous time systems.

The results are believed to be of importance, in their own right, insofar as they
formally establish the boundedness of all system states and parameters for a continuous-
time stochastic adaptive control algorithm. However, they also give further insight into
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the discrete-time theory, since they show what happens in the case of rapid sampling
as shown in [18]. We have also recently [22] built on the results established here to
establish global boundedness for a stochastic model reference adaptive control
algorithm which is the continuous-time counterpart of the discrete-time stochastic
adaptive minimum variance control results given in [1].

2. The model. In previous papers dealing with continuous-time stochastic adaptive
control, an integral operator model has been used (see for example, [4]-[8]). Here,
however, we adopt the more conventional continuous-time state space innovations
representation, i.e.,
(2.1) dx Ax dt + Bu dt + K dto

(2.2) dy, Cxt dt + dwt
where wt is a Wiener process with incremental covariance (r

2 dt, x, is a state vector of
dimension n, ut is a scalar control input, and dy, is the scalar output of the system.
The matrices A, B, K, C contain unknown but fixed parameters. We will denote by
ot the increasing o’-fields generated by {ws, 0 <-_ s <_- t} and the unknown initial conditions
Xo, and we will assume that [[Xo[[ 2 is bounded. This model is the basis of stochastic
control in the nonadaptive literature [12], [15]. It has also been proposed for the
adaptive case [7]. Notice that y, is the integral of the output.

Without loss of generality, we assume that the above model is in observer form
where

-a,,_ 1 bn-1 kn-1

(2.3) A=
-a,-2 "" B= K=1
-ao 0 go o

(2.4) C=[1 0 0].

For the purpose of adaptive control it is convenient to reexpress this model in
fractional form [9]. We therefore reparametrize the system as follows. Let

(2.5) E (/9) pn + en_lpn-1 +... + eo
(2.6) Gr [g,-1, ", go] with gi ei- ai’, O, , n 1

and

--en_ 1.
Oo

(2.7) E "’1
eo 0 0

where the coefficients are arbitrary subject to E (p) having all its zeros in the open left
half plane and K # G.

Then, (2.1), (2.2) can be rewritten as

(2.8) dxt Ext dt + But dt + (K G) do, + G dyt

(2.9) dyt Cx, dt + dot.

Using superposition, (2.8), (2.9) can also be expressed as

Edp dt + G dtt(2.10) dc
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(2.11 ddp F_,dp dt + But dt

(2.12) dcb3 E493t dt + (K G) dw,

(2.13) dy, C[6 dt + 6 dt + 6 dt]+ dw,.

Since y, is a scalar, we have that C(sI-E)-B B(sI-EY)-Ic etc. Hence
(2.10) to (2.13) can be rewritten as

(2.14) d6=E% dt+Cdyt

(2.15) d7 Er7 dt+Cru, dt

(2.16) d6?=% dt+C d,

(e.17) ay,=[G%+n%7+(K-G)%7] at+a,.

In (2.14)-(2.16) we choose =0, =0, and such that

(.18) (-G)%Z= CXo.
Equation (2.17) is in the form of a linear regression, i.e.,

dy, 0 dt + dw,(2.19)

where

(2.20)

(2.21) 0 [, n\ (/<- o)] [o, , F].
Note that b, does not depend on the unknown system parameters since E is

known. Thus, (2.14)-(2.16) simply represent a state space form of the usual regression
vector as in [2] and [9]. To make the comparison with the regression vector formulations
more complete, we might note that with p a__ (d/dt) we have, with some abuse of
notation and ignoring initial conditions,

(2.22) (4’) r P 1

and similarly for b,y, b’. In the following, however, we will use the rigorous state
space formulation as outlined earlier.

3. Pseudolinear regression estimation algorithm. The model (2.14)-(2.17) is not
quite in a form that is suitable for parameter estimation. This is because the component
4’ depends on the unmeasured noise source w,. Thus, as in the discrete case [1]-[3],
[13], we define the predicted output by a pseudoregression in which dw, is replaced
by the prediction error. Thus we define

(3.1) d2f, qrt #, dt
where 0, is some bounded o%,- measurable function. Later in this section we will define
0, as an estimate of 0 using a stochastic differential equation driven by the data y,,
u,. Also, in (3.1) we have

(3.2) q,, [(q,,), (7), ()]
(3.3)

(3.4)
dbYt E rYt dt + C r

dO/ E 70/ dt + C rut dt

(3.5)

(3.6)
dO E 7"0 dt + C 7" de,

de, dy, d, dy, , dt.
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It is assumed that o= 0 and that 0o is o-measurable. With this choice of initial
conditions, OY 4y and ’ 4’ for t=> 0.

The effect of using pseudoregressions can be further clarified as follows. We define

(3.7) rh= cO-Oft.
We then obtain

(3.8) de,- dw, "qt dt.

Note that r/t is the "deterministic part" of the prediction error. Now let

(3.9)

Then from (3.5), (3.7), (2.16) we have

(3.10) dyt E Ty dt + C rqt dt, with 70

Noting that

(3.11) 4’=b=O and q,=b=O,

then

(3.12) (K G)Tyt -(bt- Or)r0.
In particular,

(3.13) (K-G)Tyo -Cxo.
Note that yo cannot be made zero if Xo is unknown, but we will assume that Yo]l is
bounded; this is consistent with our assumption on Xo and (3.13).

Denoting

(3.14) t a- t O

we then have from (3.12), (3.10) that

(3.15a)

where

(3.15b) dyt (A- KC) ry dt + Cr(-d/rt t) dt.

We thus see that r/t is related to -Oft by the following transfer function equation

(3.16) D(p)rlt

where D(p) is the characteristic polynomial of the optimal Kalman filter for the system,
i.e.,

(3.17) D(p)=p"+(k,_l+a,,_)p"-l+ (ko+ao)=det(pI-A+KC)

and where E(p) is as in (2.5).
As is standard in pseudoregression algorithms [3], we require that sufficient prior

knowledge is available to choose the observer polynomial E(p) so as to satisfy the
following assumption.

Assumption 1. D(p) is strictly Hurwitz and the filter E(p) is chosen such that
(1) Re o’(E(p))<--a <0, i= 1,.-., n where o’i(E are the roots of E.
(2) DIE is input strictly passive, i.e., there exists e > 0 and K > 0 such that

i0(3.18) VT>0, y.u, dr > e u d- KllYoll

where yt is the output of the filter D!E driven by ut.
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We will later need the following technical result on input strictly passive systems.
LEMMA 3.1. Let H(s) be input strictly passive with impulse response h, and let

y--h,u. Let rt > 0 be monotonically nondecreasing. Then there exists e > 0 such that for
all T > 0 and all ut

fO IO1"2 2T
ytut

dt >= e dt-.(3.19)
u, Kllyo[

rt rt ro
Proof The proof follows immediately from (3.18) on using the result in Appendix

A. [3

Motivated by the discrete-time algorithm given in 1 ], we next define the estimation
algorithm as

(3.20) dO __t (dy, dr o", dt)
rt

where

(3.21) rt A--- sup p+ qrqdr+co; Co>0
0’rt

and Co is any positive deterministic number. Note that Ot is obtained by an Ito integral
which makes sense locally since (q,/r,) is -measurable and continuous.

The definition of rt given above is not quite the analogue of that used in discrete
time. We will discuss the reason for the difference later.

Noting that dO =0 and using the definition of et and , given in (3.6), (3.8), we
observe from (3.14) and (3.20) that Ot is the solution of the following stochastic
differential equation

(3.22) dO @t +, dt dw.
rt rt

In the following we will require that fit be bounded. We guarantee this by
introducing a projection scheme as described below. We first introduce the following
assumption.

Assumption 2. There exists a known parameter value 0 and a positive number
R such that the true value 0 lies inside a where

llo-o ll R }.
Let R be another positive number larger than Ra. We then modify the parameter

estimator to ensure that t-011 R2 for all t. We do this by using the following
projection scheme.

Parameter estimator with projection. Let r be a time for which the solution of
(3.20) is such that [0- 0[I Re. Denote the corresponding value of by _. At time
r, the estimate is then defined as

R 3.23 (d,_-
For t, (3.20) is then integrated with initial condition , defined by (3.23). This
makes 0 right continuous at the projection times.

4. A general dss f feebe etml ls. We consider a general class of control
laws in state feedback form:

(4.1) Ut-- --[In-I,’’’,/o]’-[P,,-,,""", Po]ty +Y*.
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This is equivalent to the feedback law

(4.2) Q(p)u, -P(p)y, + E(p)y*

where

(4.3) O(P)= E(p)+ L(p); L(p)= l,,_,p"-’ +...+/o; P(P)=P,,-,P"-’ +" "+Po.

Note that the control law transfer function is -P/Q, which is strictly proper. Also, yt*
denotes a bounded reference signal. For the moment, we make no assumptions about
L, P stabilizing the system or whether the control law depends on the estimated
parameters 0. To allow for the latter possibility, we express the control law as:

(4.4) u, -[ l_,, , lo]6 -[/3,_,,...,/3o]qy + Yt*.
For the mornent, the only restriction we place on the above general control law is that
l_l, , lo,/3,_1,"’,/30 by Lipschitz functions of .

From the model (2.1), (2.2), the general controller (4.4), the definition of G
((3.2)-(3.5)), and the definition of the errors ((3.6)-(3.8)), we can write:

(4.5) dt Attt dt + BI( "Or dt + dwt) + B2y* dt

where

(4.6a) At

0

In--1
0

--en_

0

(4.6b) B(=[10...010...0]

(4.6c) 7- [0...010...0]B2

where B( has l’s in the first and (2n+ 1)st positions and B2 has 1 in the (n+ 1)st
position.

A key point about (4.5) is that At is a Lipschitz function of fit provided the gen.eral
control law (4.2) is chosen in which ’,-1,""", ’o, fin-l,’’’,/0 are Lipschitz in 0.

5. General properties of the estimation algorithm with feedback. We first address
the question of existence and uniqueness 14] of the solution of the full set of equations
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describing the system and estimation algorithm. Combining (3.14), (3.22), and (4.5),
the full set of equations is

(5.1a) dO, At(gt)Ot B, oTtg, B, ht_,OT~Odz dt+Bdo,+Bydt

(5.b) dO,
r,(O.) r,(6.) ff dr dt +

r, .)
do,

where A,(ff,) A,(,) and h, is the impulse response of the strictly proper paa of the
transfer function E/D in (3.16).

We then have the following result.
LEMMA 5.1. e composite set of (5.1) has a unique solution with continuous sample

paths almost surely up to the random time T of the first explosion. (at is, T is the first
time that either a component of or 0 becomes infinite or T .)

Proof We first note from (4.6a) that A,(O,) is Lipschitz in O, due to the assumed
form of the dependence of l_,,..., l, fin-,’’’,fi0 on . This implies that the
coefficient vectors multiplying dt and do, in (5.1) are locally Lipschitz with respect to
the supremum norm on sample paths--see Appendix B (that is, given a compact set
in the space of ,, 0,, the functions are Lipschitz with constant depending on the
choice of the set).

The result then follows from Theorems (14.18) and (14.20) of [20].
Note that Lemma 5.1 does not use the projection of the parameter estimates as

described at the end of 3. When this additional facet of the algorithm is included,
we can strengthen Lemma 5.1 as follows.

LEMMA 5.2. With the addition of the projection scheme (3.23) to (5.1b), then
remains in 2 for all and the composite set of equations (5.1) has a unique solution
almost surely with samplepaths ,, 0,) which are continuous except at the projection times.

Proof Up to the time of the first projection, 0, is bounded and thus (5.1a) is a
linear time varying equation with bounded coefficients and hence , cannot become
unbounded in a finite time. Hence the first projection occurs strictly before the explosion
time T of Lemma 5.1 (unless both T and the first projection time are infinite).

After projection, we can apply Lemma 5.1 again and repeat the same argument.
Hence due to the linearity of (5.1b) for given ., 0, exists, is unique and is bounded
by the projection. Then (5.1a) is a linear equation with bounded coefficients, and hence, exists almost surely for all t.

Lemma 5.2 provides the basic existence and uniqueness result necessary to establish
the following result giving propeies of the parameter estimator. This result does not
depend on a priori boundedness of the system states. Note, however, that we have
already established that if, and ,/r, are bounded.

THZORZM 5.1. For the general class offeedback control laws described in 4 and
under Assumptions 1 and 2, thefollowing properties holdfor the model ((2.1), (2.2)) and
the estimator (3.20)-(3.21) with the projection scheme (3.23):

(5.2) (i) lim sup d N K < a.s.

where K is a random variable (realisation dependent).
(5.3) (ii) For allfinite , lim, supor I-11 =o a..

(iii) ere exists a finite random time t beyond which no further
parameter projections occur.
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Proof. (a) Starting from (3.22) and using Ito’s rule (see, e.g., [15]), we have that,
between projections"

d(ffft) 2ffr Ot (tit at + dtot)+ 0-2
q’t I1=

2 dt
rt rt

(5.4)
2
t , = IIq,,ll =2 (-ffttrh- erl2) dt- 2e-- dt + 2ff- dto 4c- o" 2 dt

r r r r

for some e > 0.
Note that from (3.23) and using Assumption 2, at the times of projection we have

gt 2 _ll = (R R1)2.
Defining set fqtrlt- erl 2t where e is as in Assumption 1, integrating (5.4) and

accounting for projections yields

(5.5)
r rx rx

r] dA-N,,(R2-R1)2

where N,,, is the number of times that projections occur between times s and t. Consider
now the integral

We have, using (3.21),

(5.6) f0’11112 Io" drx 1 1 1 1
dA <

r rA ro rt ro Co

(This operation makes makes sense due to Bonnet’s and Du Bois-Reymond’s formulae
[21] which allow the integral to be considered as a Riemann integral.) We now define, as the solution of the Ito integral

o.2 2K[[3,o[[ 2

(5.7) d, -2if’r6’ dw,, ao=--+--+ gor0"o.
rt Co ro

This integral makes sense thanks to (5.6) and Lemma 5.2. Since Co, ro, 3’0, and 0o are
oo-measurable, (, o) is a martingale. Moreover it follows from (5.5) and (5.6) that, satisfies

,_--> gE+2 --dA+2e --dA+---
ra ra Co

+ N,,o[R2 R1]2

2 2K 3,o11_=11112r ro

and is positive in view of Lemma 3.1 and (5.6). Thus (W, o,) is a positive martingale
and hence

(5.9) lim t < oo a.s.
t--

Using (5.9) and noting (5.6) and Lemma 3.1, we conclude that (5.2) holds for some
finite random variable K1.
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This establishes (i). Also, since R2> R1, then from (5.8), (5.9) N,,o is bounded
almost surely. Hence (iii) follows.

(b) Now let _-> tR. Then from (3.22) we can write, using IIx + yll 2 <= 211xll 2 + 211y[I,
dT"

2

<= 2 T rl2 dr+2 dto
r r

The last inequality is obtained by applying the Schwartz inequality. We consider the
two terms of the right-hand side of (5.10) separately.

Consider a realization for which (i) holds. Thus, given e > 0, A > 0 there exists a
to(A, e) such that for all _-> to

Vt>to and 0<T<A(5.11)
1 e

r =4A

Since (llll=/r) 1 by our definition (3.21) of r, it follows that

(5.13) lim sup 2T r/2dr=0.
t->cx 0 T<=A rr

Since (i) holds almost surely, so does (5.13). The result then follows using part (a) of
Lemma C.1 (Appendix C) for the second term on the right-hand side of (5.10).

To make use of the result in Theorem 5.1, we will need the following continuous-
time Kronecker lemma. Since we have been unable to find a proof in the literature for
this continuous-time version, we supply one in Appendix D. It parallels the discrete-time
proof given in [2].

LEMMA 5.3 (Continuous-time Kronecker Lemma). Assume that
(A.1) S, o x dr converges to S < as .
(A.2) b, > 0 is monotone nondecreasing and limt b, .

en

lim
1

b,x, dr O.

Proo For the proof see Appendix D.
We now prove a continuous time equivalent of the discrete-time key technical

lemma given in [1], [2].
LMMa 5.4. Consider a realisation produced by the model (2.1)-(2.2). Suppose the

estimator is such that

o 2

(5.14) lim sup d K <

and the controller is such that the following growth condition is satisfied:
r, K2 f(.1) -C+ dJo

and hence

(5.12) 2T 2 r/2 dr<-- 8,2 [l to and V Te[0, A]
,t r 2



CONTINUOUS-TIME STOCHASTIC ADAPTIVE CONTROL 273

where rt, tit are as defined before and C, K2 are finite positive constants. Then

rt(5.16) (i) lim sup < K3<
t-- 7

lim
1 I,, 2(5.17) (ii)

,- -; r/ d" 0.

Proof (i) From (5.15) and the nonnegativity of r/ and r it follows that

rt fo 2

-<--_ C +K rl__z r dr.
r

The result then follows from the Bellman-Gronwall lemma (see e.g., [17]) using (5.14)"
(ii) Suppose first that limt_ r --0(3. Then, by the Kronecker Lemma 5.3:

lira
1 I’ 2(5 18) dr=0.

t r o
Hence, using (5.16) and (5.18)

-0 rlffo(5.19) liml
t

d lim- dr O.
t r

Alternatively, if limt rt K4 < for some K4, then

2 2

, " dr N lim , d
r

lim K4 --f’ d 0
t o r

using (5.2). The last inequality follows from the monotonicity of r.
Comment 5.1. A key feature of our estimator is our choice of r, (see (3.21)). It

guarantees that ([]tl[2/rt)l for all t, and this is crucial in establishing (5.2). In [5],
[6] the equivalent term to rt is defined as rt od and, as a consequence, all
the convergence proofs require the assumption that ([[ t [12/rt) is almost surely bounded.
This assumption is rather unrealistic given that t contains signals driven by white noise.

Comment 5.2. Comparing the propeffies of our estimator with those proved for
the continuous-time deterministic algorithms in [9], we observe that we have not proved

te uniform boundedness of (t/r/) or of something like 0; neither have we proved
0 L. The uniform boundedness of (t/r/2) is not needed in the subsequent analysis
((t/r/2) L uffices). As for , it does not exist in our stochastic framework, but the
conditions on 0 in [9] are replaced by the weaker condition of (5.3).

Comment 5.3. The remaining step in the development is to verify the growth
condition (5.15). This will require us to impose additional constraints on the general
feedback law described in 4. In paicular, we will choose the feedback so as to
stabilize the (frozen) estimated model.

6. Boundedness of the system states. Finally we show that, provided the feedback
control law is appropriately chosen as a function of , then the adaptive law stabilizes
the system in the sense that all system states and the input are mean square bounded
almost surely.

The proofs given below depend upon the fact that the ceffainty equivalence control
law stabilize the frozen estimated model. This is true of a wide class of algorithms.
However, to be specific, we will illustrate the analysis procedure by considering adaptive
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pole assignment In this algorithm the polynomials and/3 defining the control law
are computed from the estimated/](0) and/(,) as follows.

Let

and define (cf. (2.6), (2.21))

a ei- fig; O, n 1

A( p" + a._,p’-’ +. + ao
+ +

L-,p"-’ + +io.
Then, for a given possibly time varying A* of degree 2n, solve the following

equation for Q and P:

(6.1) (+/3/ A* with Re Ai(A*) < -fl < 0, 1," ", 2n

where Ai(A*) are the eigenvalues of the polynomial A*. Finally compute

L(p)=Q(p)-E(p).

(6.2)

Equation (6.1) can also be written

M() qn-l^
Po

The polynomial A* is a design polynomial available to the user. The only restriction
we require on the polynomial A*(t) is seen in the following assumption.

Assumption 3. For all t, the polynomial A*(t) is continuous and bounded, has a
uniform stability margin (i.e., Re Ai(A*(t))_-<-/3<0, i=l,...,2n), and limt_
supo__<=a Ila*(t+ T)-a*(t)ll =0 for some A>0, where a* is the vector of coefficients
of A*.

As in 4, we also require that L, P be Lipschitz functions of 0 for all time. We
note that the projection facility (3.23) ensures that 0 c2 for all time. Then, the Lipschitz
condition is guaranteed provided all models corresponding to c2 are uniformly
stabilizably. This assumption appears in all contemporary treatments of indirect adap-
tive control (see, for example, [2], [10], [19]). We remark that this assumption can be
eliminated in the case of direct adaptive control of stably invertible systems. However,
this is only achieved at the expense of a much more complex stability proof (see [9],
[22]) which necessarily builds on the result presented here. For the case of indirect
adaptive pole assignment we introduce the following additional assumption.

Assumption 4. Assumption 2 is satisfied and there exists a known positive constant
e such that for all 0t intO2,

det M(Or) >-_ e.

Subject to Assumption 4, the projection scheme ensures that det M(0,)=> e for all
t. In view of (6.2) this will ensure that L, P are Lipschitz functions of 0 as required.
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We next establish that, for the above adaptive control law, the homogeneous part
of (4.5) is exponentially stable.

LEMMA 6.1. Consider the differential equation

d.. O, A,O,

with A, given by (4.6a). Assume that the i, i, i are estimated using the parameter
estimator of 3 including the projection scheme (3.23) and that Assumptions 1-4 hold.
Then (6.1) is exponentially stable almost surely.

Proof We have shown in Theorem 5.1 that there exists a random time tR beyond
which no further projections occur. Thus, for t> tR t is sample continuous from
Lemma 5.2. Therefore ., /, " are sample continuous and, by Assumption 4, ( and
/5 are sample continuous Agiven that i and/3i can be written as the solution of the
linear system (6.2) or M(0)= a*, where the elements of M are either zero or i, /.
For the same reason, At is uniformly bounded. The eigenvalues of At are the roots of
E(s) and the 2n roots of *; therefore, by Assumptions 1 and 3 Re Ai(At)<=-6 < 0,

1, , 3 n, for all t, where 6 - min (a,/3). Finally,

M( Ot)[C’t-+-T t]--[M( t+T) M( t)]t+T at*+T- a,*.

Therefore, by the triangle inequality,

c,/ T ,ll-<-II M-’(t) II{ M( 0,/)- M(

Hence, using (5.3) and Assumption 3 it follows that

(6.3) lim sup [[At+T-AtII=O a.s. for some A > 0.
0<TA

The result then follows from Lemma 3 of [10].
We now establish the main result of this paper.
THEOREM 6.1. Consider the system ((2.1), (2.2)), with theparameter vector 0 satisfy-

ing Assumption 2, the parameter estimator of 3 with projection, an observer polynomial
E satisfying Assumption 1, and an adaptive pole assignment control law oftheform (4.2),
(6.1) satisfying Assumptions 3 and 4. Then, for arbitrary finite initial conditions and an
arbitrary, piecewise continuous, uniformly bounded reference input y*, thefollowing results
hold:

(i) lim sup
t--->o ? dr<c a.s.

(ii) lira sup
1

,--> - u.d’r< a.s.

(iii) lim sup
1

’ o Cxl2 dr< a.s.

Proof (i) We first establish (5.15), i.e., that there exist finite random variables C
and K such that"

rt-<_ C +m q-
t-

aoSo

Now by definition

(6.4) rt
a__ sup II011=+ [lll = dr+co.
0-t
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From (4.5)

Io Io0t-’-6( t, 0)00+ b(t, ’)Blr/T d’+ d,b(t, 7")B2y* dr+ qb(t, ’)B1 dto

(6.)

where 01 is the sum of the first three terms, 02) is the last term and 4(t, z) denotes
the state transition matrix for (4.5). Because & is exponentially stable by Lemma 6.1
and y* is uniformly bounded, it follows using the Cauchy-Schwartz inequality that
there exist finite constants K1 and K2 such that

(6.6)

for all t. Also, by Lemma C.2

o1)[12 K, + K r/2 dr

(6.7)

as t->.
Similarly, using a continuous-time version of the proof of Lemma B.3.3 in [2], it

follows that there exist finite constants K3 and K4 such that

(6.8) I]t(1)]]2 dT <= K3 + K4 ’i 2r dr

for all t. Finally, by Lemma C.2,

;o’(6.9) irn sup 7
2 dr <_- K < oo

Combining (6.6) to (6.9) we obtain

(6.10)

aoSo

co
o_-<_-<t

_-<-max sup I111, sup I10,11 + 114,.11d,+ c
o1 l7t

<-- K6 +T "172 dr a.s.

Thus, we have established (5.15) so that, by Lemma 5.4, there exists a finite Ks
such that

(6.11) rt <-- K8 a.s.

It follows from the definition of r, that

(6.12) lim sup
1 J-f, 7 II0112 at < a.s.,

which establishes pa (i) of the theorem.
(ii) Since ut t6t + Y’t, where is a vector whose components are {fii} and {/]}

(see (4.4) and the definition of t) it follows from (6.10) and the boundedness of {fii}
and { li} that

(6.13) lim sup, ud< a.s.

which establishes part (ii) of the theorem.
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(iii) From (2.9), (2.19), (3.7), and (3.8) we have

(6.14) Cx ff.lTt t 1_ Tit.

Therefore, since 0t is bounded, limt. sup (1/t) o Ti2t dr O, (Lemma 5.4) and
limt_ sup (1/t) o [lll d < almost surely (see (6.12)), it follows that

(6.15) lim sup [Cx,] dt < a.s.

which establishes part (iii) of the theorem.
Comment 6.1. Note that Cxt is the "deterministic part" of the output. Thus, (6.15)

establishes that this part of the output is sample mean square bounded. This is all that
can be said about the output since it contains a Wiener process.

Comment 6.2. The proof of Theorem 6.1 relies on the now standard argument on
robustness of bounded solutions of exponentially stable linear time varying, systems.

7. Conclusions. This paper has analyzed a class of continuous-time stochastic
adaptive control algorithms and has shown that, under suitable conditions, they will
almost surely ensure global boundedness of all the internal variables, in a sample mean
square sense. Previous results in the same direction relied upon an assumption on the
normalized regression vector which, in fact, meant that the noise driving the system
was wide band but bounded. Moreover, the systems described in previous works were
of relative degree zero.

The results described in this paper are thus believed to constitute the first complete
and rigorous analysis of a realistic continuous time stochastic adaptive control
algorithm.

The main result is a boundedness result that states that the deterministic part of
the output remains almost surely bounded in the sample mean square sense. No tracking
property is achieved, but the analysis described here has recently been extended to a
model reference control algorithm yielding a result on the asymptotic tracking error
[22], which is analogous to the discrete-time tracking error result established in [1].

Appendix A.
LEMMA A.1. Let r, be a nondecreasing function with ro> O. Then

(A.1) fd.>-_-K; K >O, VT->_0
0

implies

rf,
d.__> VT>0.(A.2)

r, ro
Proof. Let p,=(1/r,), ’>-0, and denote Ft=ofd+K. Then, by integration by

parts:

f,p, d’r pTFr + F do, poK.

The first term is nonnegative because pr > 0 and Fr-> 0. The second term is also
nonnegative because F>-0, for all ’->0 by (A.1), and dp<-O since p is non-
increasing. U]

Appendix B.
LEMMA B.1. The coefficient vectors in (5.1) are locally Lipschitz with respect to the

supremum norm on the sample paths dTt, Ot.
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Proof We consider (5.1a), (5.1b) separately. Equation (5.1a) has the form:

(B.) d@,=fl(t, ., ,.) dt+B dw,+By*, dt

where

(B.2) fl(t, ft., .)-- At(t)Ot-B, ddTt t-B, ht_.d/T.d7

We then have, by the triangle inequality,

Ilf,(t, ?, O!)--fl(t, /., .)11
lAt()0-At()0] + II-B,(O) + B,()TI
+-B ht_[(O’)r’,--()rg dr

(B.3)
]IAt()-At()II Max (llOll, IlOll)
+ Max (IlA,(g)II, IlA,(g)ll)llO-11 + 118111 16l-Oll Max (1 11, 11)

+ Bll Max (11I. )11I- 11 + }Bl Ih,-. d,

Sup I1-11 Sup Max (11 111
Ot Ot

<n.4) + Sup Max <llOlll, IlOll) Sup II-
Ort Ort

where the last line follows since A(0) is Lipschitz in 0 and since I Ih,-.I d < by
the exponential stability of (N-D)/D. In (B.4), the notation K indicates that the
Lipschitz constant depends on the maximum values of 0, in the compact set defining
the local conditions.

For (5.1b) the proof is similar on noting that, by the Cauchy-Schwaz inequality,

rt rt

and that

IO[Otl<_l and IOL,Ot-,l<=l by definition ofrt
rt rt

(C.1)

Appendix C.
LEMMA C.1 ("In-flight Lemma"). Let S 0 h(r) do. Assume that

(i) h (’) is f measurable for " <- s, and
(ii) o IIh()ll = d_-< g < o a,s.

where K is fro-measurable.
Then

(c.2)
(a) given A > O,

lim_, SUpO__<_<A IISt+- S, II=O a.s.
(b) IIS, = converges to a finite limit a.s.
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Proof (a) Take any toe [0, A) and partition the positive real line in intervals of
length A: 0, to, t0+A, to+2A,’’’. Define

(C.3) Lj(to) sup IlSto+_,),+-S,o+<_,),ll2; j= 1,2,’’’
T[0,A]

and let

(C.4) T(to) arg ( sup
T[0,A]

Also define

(c.5) IIh(,)ll d;
j=l dto+(j--1)A

Then, by assumption (i), we have

n= 1,2,....

dto+ A

Jn(to) a.s.

Therefore, using, assumption (ii), Jn(to) is a nonnegative martingale, and hence
converges almost surely to a finite limit [16]. Hence, since the sum of the last two
terms in (C.5) decreases monotonically, Lj(to) converges to zero almost surely. Now
recalling (C.3), since Lj(to) goes to zero (almost surely) for any to, we conclude that
(a) holds.

(b) By the Ito rule [13]

(C.6) IIs, ll= IlSsll+2Ss h(r) dto,+0-2 Ih()ll dr.

Now define

(C.7) x, s, 2 + go-2
0-2 h (7-)112 d7-.

We note that X, is positive and ,-measurable for =< s. Substituting (C.6) into (C.7)

(c.8)

x, Ss 2 + 2S h (r) dto. + 0-2 h (7-)112 dr + go-2 0-2 h (7-)112 dT-

X, + 2S, h(r) door.

Taking conditional expectations yields

(C.9) E[x,I&]-x.

Therefore, using (C.1) in (C.7), X, is a nonnegative martingale and hence converges
16] to a finite limit almost surely. This limit is a random variable. The last term in

(C.7) is monotone nondecreasing and bounded, thus it converges also. Thus
converges also to a finite random variable.
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LEMMA C.2. Let S A_ o t( t, ’)a dto where qb( t, ’) is the state transition matrix of
an exponentially stable system and a is uniformly bounded. Then, there existfinite random
variables K1 and K2, such that

(C.10) (i) lim sup [ISt[I 2 < K a.s.
t---

(C.11) (ii) limsup-_ IISII d<g

that

aoSo

Proof (i) S, Ss +ts b(t, ’)adto. Hence using the Ito rule we have

$2 $2 + 2Ss dp( t, ’)a, dto, + b(t, r)a dr.

Let , denote the increasing -fields generated by {w,0s t}. Then

E{SI}=S+2 (t,r)adr.

We note that, by the assumption on and a, there exists a constant K < such

Let Xt be defined by

7-

th( T, r)2a2 dr < K for all T.
o

X, A. S2t + o.2K 0.2 (( t, ’)a2 dr.

Clearly Xt _-> 0 for all and

E[XtI]=S+0.K-0. 4(s, ’)ad"

Xs.
It follows that (X, t) is a positive martingale so that there exists a finite random
variable X such that

Xt X a.s.

as - . Hence

lim sup S-<X a.s.
t-

(ii) This part follows as in part (i).

Appendix D.
CONTINUOUS TIME KRONECKER LEMMA. Assume that

(D.1)

(D.2)

Then

St x d" converges to S < as -> c

bt >- 0 is monotone nondecreasing and lim bt .
t-->

lim
1 Iott--oO

b,x dr O.
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Proof (1) We first establish that, under the same assumptions:

lim Yt 0, where Yt
1 fot,-

(S-S) db.

By (D.1), for any e>O, =It(e) s.t. Vr=>t(e), ]S,-SI<e. Therefore

where

1
IS- S] db+-<----. C(t(e))+ e 1-

bt b(t(e))]b,
b(t(e)) b(t(e))
<1, lim=0

bt t-,o bt
and C(t(e)) is a constant. Therefore by (D.2), limt_ lytl-< e with e arbitrarily small,
and hence limt_ yt 0.

(2) Integrating by parts,

1
b,x, dr

1 1

b- [b,S]o- S db

St- S, db, (using So O)

(s,-s) db,.

Using (D.1) and part (1) of the proof establishes the result. V1
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A CHARACTERIZATION OF ALL SOLUTIONS TO THE FOUR BLOCK
GENERAL DISTANCE PROBLEM*

K. CLOVER?, D. J. N. LIMEBEER:, J. C. DOYLE, E. M. KASENALLY$,
AND M. G. SAFONOV

Abstract. All solutions to the four block general distance problem which arises in H optimal control
are characterized. The procedure is to embed the original problem in an all-pass matrix which is constructed.
It is then shown that part of this all-pass matrix acts as a generator of all solutions..Special attention is
given to the characterization of all optimal solutions by invoking a new descriptor characterization of all-pass
transfer functions. As an application, necessary and sufficient conditions are found for the existence of an
H optimal controller. Following that, a descriptor representation of all solutions is derived.

Key words. H-optimal control, four block problem, Parrott’s theorem, general distance problems,
indefinite Riccati equations, indefinite factorization, linear quadratic differential games, Nehari’s theorem

AMS(MOS) subject classifications.

1. Introduction. The four block general distance problem has its genesis in certain
recent work on H optimal control [7], [10], [14], [15], [43]. In typical H design
situations, a nominal plant model is known, and the design engineer has the task of
selecting various frequency-dependent weights. The plant model and weights are then
combined into a single matrix

(1.1) P(s)--
Pal PJ

(s)

and we seek to characterize all internally stabilizing controllers which satisfy
IIF(P, K)II--< . Rather than tackling this (nonlinear) problem directly, it can be
converted into another problem which is linear in a free parameter. That is, find all
those Q e H+ such that

(1.2) [[(Tll + T12QT21)(s)II 3/

in which T11(s), T2(s), and T21(s) may always be chosen stable with T12(s) and Tz(S)
parts of inner matrices [10], [14], [15], [43], [46]. We change nothing by rewriting
(1.2) as

(1.3) T11+[TxT’2]
0 Q T21

(S) Y’ Q3L

in which T+/-(s) and _(s) are chosen to make [T+/- T12](s) and [’ Tl]-(s) inner. This,
too, is always possible [2], [10], [16], [43]. Finally, by invoking the norm preserving
property of inner matrices, we see that (1.3) is equivalent to the characterization of
all Q +’P such that

R21 R22 + Q
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where

(1.5)
R21 R22

(s)
Y12

In this paper we will study the four block general distance problem given in (1.4)
because of its intrinsic interest, and also due to its applicability to H control.

Historical accounts of the development of solutions to this problem are contained
in [11], [14] and [43]. Briefly, Doyle et al. [10], originally suggested a solution to the
four block problem (1.4) based on the work of Davis et al. [9]. Other approaches
included work on Hankel plus Toplitz operators in Jonckheere and Juang, [26] and
on band extension problems in Dym and Gohberg [12]. These approaches certainly
provide a theoretical solution, but when implemented on a computer, suffer from
serious degree inflation problems. In an attempt to understand these inflation
phenomena in the context of H control, detailed cancellation analyses were carried
out in [30], [31], [32], and [23] for cases of increasing complexity, and a controller
with degree no greater than that of P(s) in (1.1) was shown to exist. The outcome of
this work also showed that solutions with deg (Q)=<deg (R) exist to (1.4). These
observations lead to the expectation that the original algorithm could be greatly
improved and progress was made in [3] where just three Riccati equations of modest
degree were required. The purpose of this paper is to present a new solution to the
four block general distance problem requiring just two Riccati equations and also
treating the optimal cases.

As indicated above, the solutions to the four block general distance problem can
give representation formulae for all solutions to the H control problem (1.2). One
such formula is given in 5 where the optimal cases are treated in detail. This solution
requires two Riccati equations to be solved or, more precisely, (for certain optimal
cases) for the appropriate stable invariant subspaces of two Hamiltonian matrices to
be calculated. Solution formulae based on two Riccati equations were presented without
proof in [20] for the suboptimal case and subsequently derivations for a limited class
of plants were given in [11] using techniques similar to the state feedback results of
Khargonekar, Petersen, and Rotea [28]. Formulae for certain optimal cases were given
in [33], [35], and [45] using a descriptor representation and giving relations to
interpolation. Many alternative and, in several cases, totally independent derivations
of these results are now available using a variety of techniques. A solution based on
J-spectral factorization theory is given in [22], while the related approach based on
the notion of conjugation is employed in [29]. Hung has derived a formula in terms
of two Riccati equations which deals with certain optimal situations [24], while Verma
and Romig have a closed formula for one block problems [48]. An interesting by-
product of this activity has been the discovery of a number of new interconnections.
In [28], Khargonekar et al. note a connection between Y control and game theory.
The interplay between indefinite factorization and game theory, probably first noticed
by Banker [4], has been rediscovered in the more general setting of 2t control [20],
[22], [40]. The connection between risk sensitive optimal control [49] and game theory,
originally discovered by Jacobson in the perfect information case [25], has also received
renewed interest in the wider setting of control [5], [20] and entropy minimization
[21], [38]. Results on the finite horon, time-varying case are given in [34] and [47],
and finally, a solution applicable to distributed systems may be found in [13] and is
due to Foias and Tannenbaum.

Section 2 contains a summary ofthe notation we will use. In 3 we derive necessary
and sufficient conditions for the existence of a suboptimal solution to the four block
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problem, and give a representation formula for all solutions. We treat the optimal case
in detail in 4. Section 5 deals with the application to control theory. We derive
necessary and sufficient conditions for the existence of a solution, and then give a
formula for all solutions. By setting up the analysis in a descriptor framework, we are
able to give a simple and complete treatment of all the optimal cases. In the event that
Pl1(o3) 0 and P22(x3) 0, the controller formulae become cumbersome to write down.
To obviate this difficulty, we employ the loop shifting transformations introduced in
[45] to reduce the general case to a problem in which Pl1(O)=0 and P22(c)=0. We
summarize the key findings of this work in the conclusions ( 6).

2. Notation and Preliminaries. The aim of this short section is to summarize the
notation we intend to use; most of it is standard.

2.1. Notation., +, C real, nonnegative, and complex numbers,
(s) field of rational functions in s with real coefficients,
C/, C_ open right (respectively, left) half plane,
:P" set of p x rn matrices with elements in :(=, C, (s) etc.),
A (A) spectrum of a square matrix A,
Amax(A) eigenvalue of A with largest modulus,
A’ complex conjugate transpose ofA Cpm (transpose if A EP’),
A# generalized inverse,
A* Moore-Penrose inverse,
A => 0, A > 0 A is positive semidefinite (respectively, positive definite),
A =<0, A < 0 A is negative semidefinite (respectively, negative definite),
’) space of p x m matrices with entries that are bounded on the

jw-axis (including the point at ),
II" 11 -norm of matrices in ,
+’P" subspace of; p x rn matrices which are analytic and bounded

in C+,
L’pm subspace of; p x rn matrices which are analytic and bounded

in C_,
I1" II. Hankel norm,
9P same as (P") except elements are taken from [(Pm)(s),
Y’P" same as +’(P’) except elements are taken from (pxm)(s),
L’p" same as x’(pxm) except elements are taken from
G-(s) G(-g)’, the para-Hermitian conjugate of G(s),
#(a) Ilall= the spectral norm of A,
Re s real part of s,
Y(2(-) sets of functions f(s) which are analytic in C/(C_) such that

p (A) spectral radius.

Associated with a transfer function matrix G(s)E(s)pxm of McMillan degree
_-<n is a state-space realization

(2.1) G(s) .D+ C(sI-A)-IB
where A e C"", B Cnxm, C Cpn, and D Cpm. We will use the alternative notation
G(s) (A, B, C, D) or

(2.2) G(s)= D
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for realizations of G(s). Generalized state-space models or descriptor system models
[37] give rise to transfer functions via G(s)--D+ C(sE-A)-IB (A, B, C, D, E).

In the above notation, we have G-(s) (-A’, C’,-B’, D’) and in the case that
D is nonsingular, we have G-l(s) (A-BD-IC, BD-1, -D-IC, D-). The system
zeros of G(s) are given by {A(A-BD-C)}_{McMillan zeros of G(s)}; these sets
are equal if the realization is minimal. If G-(s)= G-(s), then G(s) is all-pass. G(s)
is called stable if all its poles are in C_.

We will talk about basis changes T in the state-space of G(s); we will take this
to mean G(s) (A, B, C, D) G(s) s__ TAT_, TB, CT-1, D). For descriptor system
models, basis changes are given by

G(s) (A, B, C, D, E) te.v G(s) UAV, UB, CV, D, UEV).
We shall also make use of linear fractional transformations which are defined by

(2.3) Fl H, HJ
where U is of dimension x m if H has dimension m x I.

3. Constructioa of aa all-pass embedding. In this section we derive necessary and
sucient conditions for the existence of a Q(s) such that

(3.1)
e21 R22+ Q22J

< 1

for given Ri(s) ’P’%, and necessary conditions for the existence of Q22(s) e
such that

(3.2)
R, R+Q:J

1"

For simplicity, we will assume that

(3.3) ([RI(), R2()]) < 1

and

(3.4) #
R21(oo

If ([Rll(jto),g(jto)])<l and 6([g(jto),gl(jto)])<l for some to, but not at
to oe, then a bilinear transformation of the half plane into the half plane can give an
equivalent problem satisfying (3.3) and (3.4). If however ([Rll(jto), R2(jto)])= 1 for
all to or ([Rl(jto), R(jto)])= 1 for all to, then significant modifications in detail
need to be performed and so this case is not treated here in the interests of brevity
and clarity.

Necessity of the conditions will be derived by assuming such a Q.(s) exists and
finding an all-pass dilation of (3.2) to the following special structure, which is used
to preserve the integrity of the first row and column of (3.1) and (3.2):

ml ma m3 m4

p Rx R2 R13 0

(3.5) Eaa(s)= P2 gl E E3 E24
P3 R31 Ea:z E33 E34
P4 0 E4 E43 E44

where Eij Rij + Qij, i,j 2, 3, 4, Q(s) +"pixn R(s) rx’PiXrr. With the all-
pass dilation constructed in a particular way (Lemma 3.1), so that R13 R31 E9_4, E4
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being full rank in C_ (i.e., R13 and R31 are minimum phase), it turns out that (3.2)
implies that (Proposition 3.2)

(3.6)

where

Rll R12 R13 1(3.7) Ra := R21 R22 R23
R31 R32 R33

and Ra does not depend on Q22. Similarly, it will be shown in Proposition 3.3 that
(3.1) implies that

(3.8) IIRll.<l.
The sufficiency of (3.8) is derived in 3.2 via a state-space construction along the

lines of Glover 17], 18]. Finally, all solutions are derived from this particular solution
of (3.1).

3.1. Necessary conditions. We now construct the all-pass dilation of (3.2).
LEMMA 3.1. Suppose there exists Q22(s)G /+oo such that (3.2) holds with Rij

satisfying (3.3) and (3.4). Then there exists an all-pass dilation in the form (3.5) where

(3.9) EaaEa=EaEaa=I,

(3.10) m3 Pl, m4 < P2, P3 ml, P4 m2,

(3.11) R13 YL, rank R13 Pl /Re s < 0,

(3.12) R31 YgL, rank R31 rnl /Re s < 0,

(3.13) E23 :---[R21 E22][R11 R12]-(R 1-31)

(3.14)

(3.15)

(3.16)

R12]E32:=-(Rf?)-[R-1 R"1 Ea.]

rankE24=m4 VRes>0,

yielding

(3.20) E23 R2 R, + E22R "2 R -3 -1.

rank E42 P4 V Re s > 0,

IE33 E341 := IN31 E321[Rl e2--1] [(R-31) -(R-)E2a(EI24)](3.17)
E43 E44J 0 E42_IERl2 E22 0 (E/24)

whereE124E24 I, with E124 analytic in Re s > 0.

Proof. First let R3 and R-I be stable minimum phase spectral factors satisfying

(3.18) glag3 I-RIRI-R12R-2>=O /s=jw,

(3.19) RIR31 I- ggl-gg21 >- 0 Vs =jw

where the nonnegativity follows from (3.2). Furthermore, (3.3) implies rank Rl3(Oo) Pl
and (3.4) implies rank R31(oo)= ml, hence R13 and R31 are square with Rl-31 and R;
analytic in Re s < 0. Relations (3.2) and (3.9) also imply that

[11 12l Ill"-I "l] [131I’3 R13J3 l0<--I-
R2 E223[R2 E2 E23Rl I-R2R-E22E2.J
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The second row of (3.5) may now be completed as follows:

.E24E"4 :-- ! RelRI E22E2- E23E2" 0.(3.21)

Similarly,

E32 -(Rfl)-I(RIR2-1 R2-E22),
(3.22)

E-2E42 :-- I R-(2R12- Ef2E22 E3E23 >- O.

It is then simply verified that (3.17) completes the dilation.
Now let us examine the partially agumented system

Rll R12 R13
(3.23) Ea := R21 E22 E23

R31 E32 E33

in more detail. First, note that since E is all-pass by Lemma 3.1, that

(3.24) IIEolI_-< 1.

Also by (3.17) and (3.9)

Eaa=-[R31 Ea2][Rll g12](gl-31)

-(R3-l)[I R-IRll- glg21 -glaIR12- RIE2][Rll

(3.25) g3-11) g -1(g l-al + ga-l gl gl [Re21
Hence,

Rll R12](3.26) Ea T1
R21 E22

T_+ T

where

(3.27)

(3.28)

(3.29)

I I 1T1 0 I
(R3--11 R 11 (R;11)-Rfl

I 0 -R-I(R-31)-]T2= 0 I -R2(R-)-

T3 0 0 0

(3.30)
Relation (3.26) implies that

(3.31) Ea-- T1
R21

Now define R23 R32 and R33 such

Rll R12 R13 1R, := R21 R22 R23
R31 R32 R33

(3.32)

{ jR11(constant) + T1
R21

Note that T1, T2, and T3 are analytic in Re s > 0.

R22]

R12]-(R 1-31)-

R121 [R-I ]

anticausal
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That is,

(3.33) E, R, + TaQ22T5 + T6
where T4--TI[0 I]’; Ts=[0 I]T2; (TnQ22Ts+ T6)eYt+ since T4, Ts, T6, Q22 are
analytic in Re (s)>0 and IIEolI _-< a implies that (TaQ22Ts+ T6) has no poles on the
imaginary axis. Hence (3.24), (3.33) and Nehari’s theorem give that IIRII. a.

The impoant observation here is that R can be constructed without explicit
knowledge of Q22. Moreover, RI, R2, R13, R21, R22, R31 uniquely determine R
The following proposition has thus been established.

PROPOSITION 3.2. If there exists Q22 E such that (3.2) holds with Ri2 satisfying
(3.3) and (3.8), then

(3.34) IIR,, R1211 1,

N1,(3"35)
R2

and

(3.36)

where R,, is given in (3.32).
For the case of strict inequality in (3.1), all the above inequalities can be made

strict and this is now proven.

PROPOSITION 3.3. If there exists Q22 tY(+ such that (3.1) holds with Ri satisfying
(3.3) and (3.4), then

(3.37) IIR,1 R,II<I,

<1,(3.38)

and

(3.39) IIRSII. <1
where Ra is given in (3.32). l-1

Proof. Formulae (3.37) and (3.38) are immediate consequences of (3.1) and also
imply that R13, R31 may be chosen with inverses in Yt. Note that in the expression
for E, given in (3.33), Ra, T4, T5, and T3 are all independent of Q22. Furthermore,
for A YtY(, define

(3.40) E,,(A) := Raq- T4(Q22q- A) Ts+ T6.
Then 11Eo(A)]] =< 1 for all A such that

Rll e1211(3.41) IIAII< 1- R2, E22 "Since the construction of Lemma 3.1 will still work, we will now suppose that RS 1
and construct a contradiction. For all A satisfying (3.41), we have

(3.42) E(&) V(s)= U(-s)

where V and U are the Laplace transforms of the corresponding Schmidt vectors for
the Hankel operator corresponding to RS [14], [36]. Note that U, V Yt2. Hence
(E,(A)-E,(0)) V(s)=0 TaATsV(s)=O for all A satis.fying (3.41). Thus

(3.43) TsV(s)=O.
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Now consider the last block row of (3.42)

JR31 E32 E33]V(s)--[O 0 I]U(-s)

and substitute for E33 as

E33 (R31RI-I h-

yielding

R31[I 0-R-(2(Rl-al)-]V(s)+Eae[O I-Re(R1-31)]V(s)=[O 0 I]U(-s).

The second term is EaeT5 V(s) =0 by (3.43). Hence

(3.44) [I 0 -g(g-al)-]V(s) g-ll[0 0 I]U(-s).

The left-hand side of (3.44) is in Yge where the right-hand side is in - and hence
both must be zero. This together with (3.28) and (3.43) gives that Te V(s) 0 which,
when substituted into (3.42) using (3.26), gives

U(-s) T3 V(s)

but U(-s) and T3 V(s) ?e so that both must be zero contradicting U being
the Laplace transform of a Schmidt vector.

3.2. State-space construction and sufficient conditions. We will first construct a
state,-space description of Ra given in (3.32). The terms R13 and R3 come from standard
spectral factorization problems and it is a routine exercise to find out the realization
of Ra.

LEMMA 3.4. Let

R21 R2eJ
be such that (3.2) holds for some Q22 G and have the state-space realization

s__ C1 D11 D12(3.45)
R2 R22

C2 D21 0

where Re Ai(A)> 0 for all i. Then Ra given by (3.32) has a state-space realization of the
form

A B1 Be B3

(3.46) R & C1 Dll D12 Din
C2 D21 * ,
C3 D31

where

(3.47)

(3.48)

(3.49)

(3.50)

D13D’ I- DieD’13 11 D12D120

DID31 I- DDll- DIDel > 0,

B3--(XC-[B B2][DI1 D12]’) (D-31)
C3=(DI)’(BY-[DI DI][C C]’).

X X’>- 0 is the unique solution to the algebraic Riccati equation

(3.51) -XA’-AX+[B1 B2][B1 B2]’+B3B’3=O



THE FOUR BLOCK GENERAL DISTANCE PROBLEM 291

such that Re hi(A- B3Dl-31CI) >-_ 0 for all i. Y Y’>- 0 is the unique solution to the
algebraic Riccati equation

(3.52) -YA-A’Y+[C’I C][C’I C’]’+C’3C3 =0

such that Re Ai(A- B1D C3) => 0 for all i.

Proof The construction of B and D13 to form R13 and C3 and D31 to form R31
uses standard techniques for calculating spectral factors using Riccati equations [1],
[50].

The realization of Ra clearly matches RI, R12, R13, R21, R22, and R31. It remains
to verify that R23 R32 and R33 given in (3.32) match the given realization. This is a
routine state-space manipulation and uses the following realizations:

(R-)-[R,
-A’ + C’3(DI)’B

R-I] (D-)’B
C;(Dd)’[DI D,]-[C C]](Dd)’[DI D,]

and the dual

R
(R’3)-

Dll (D13),B B
D2 LBJ

Equations (3.50) and (3.52) then give that

[ ]C(D-)’ 1D1 (D_3),
D2

(3.53)

(Rf))-[R, C1] (sI_A)_I=_C3(sI_A)_1+{terms in analytic in Re (s) > 0}R]]
C2

and (3.49) and (3.51) imply that

(3.54)

(sI-A)-I[B1 B2]/Rlq|r 1
(R-3)-=-(sI-A)-B3+{terms in analytic in Re (s) > 0}.

L JR21

The definition of Ra in (3.32) together with (3.53) and (3.54) then give the result. [3

We now immediately have the following corollaries of Propositions 3.2 and 3.3,
on noting that X and Y are the Gramians for R and hence IIRolI,- (xY) [14], [6].

COROLLARY 3.5. Let

Rll R12] E ?fftL
R21 R22

satisfy (3.3) and (3.4) with the state-space realization of (3.45). Then
(i) If there exists Q22E Y(+ satisfying (3.2), then p(XY)<-_ 1.
(ii) If there exists Q22 ?+ satisfying (3.1), then p(XY) < 1. [3

Now that we have an explicit state-space realization of R and a condition on
the Gramians we can attempt a state-space constrution of an all-pass embedding along
the lines of (3.3) (without assuming knowledge of a candidate Q22). This construction
can be carried out along the lines of Glover [17], [18] and will then give a sufficiency
proof. We will consider the case R H < 1 in this section with the R, H 1 considered
in 4.
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First, consider the unitary dilation of the D-matrix. Such a dilation can be
constructed in the form

(3.55) De

ml m2 m3 pl m4 =< P2
Pl DI D2 D13 0

/92 D2a D22 D23 D24
P3 ma D31 D32 D33 D34
m2>=P4 0 D42 D43 0

In (3.55) D24"] is chosen to be an orthonormal basis for the nullspace of [DI D]D34
(which has dimension P2 since rank J3--m, and also implies that D4 exists).
Similarly, [D42 D43]’ is an orthonormal basis for the nullspace of [D12 J13] and

D-2 exists. The remaining terms are then uniquely given by

(356)
D32 D33 D24 D34J 0 D42 D43J"

Now suppose that we can find a realization of Eaa--Raa q-Qa,, in the form

IA e] IRa 0](3.57) Raa C 0 0

(3.58) Qa
Ce

Re,(A)<0 Vi

where

(3.59) Be BI B2 B 0],

(3.60) C’e C C C’3 0],

(3.61) /e [0 /2 ]3 J4],

(3.62) ’e=[0 (7 ],
and

(3.63) Ea s-- 0 /e
Ce Ce De

In order to construct A, Be, and Ce such that Ea is all-pass, we will write the all-pass
lemma equations of Glover [16, Thm. 5.1] with postulated solutions to the Lyapunov
equations as follows:

(3.64) Xe I YZ-1

where

(3.65) Z=I-XY,

(3.66) Ye-XI-[-YZ zxZt]
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(The form of Xe and Ye essentially comes from Glover [16, Lemma 8.2] but this need
not concern us.) With this value for Xe, A, Be, Ce can be constructed to satisfy the
conditions of 16, Thm. 5.1], viz. De unitary and

(3.67) Xe+Xe
0 ’ + Je [B’e /’e]=0,

(3.68) De[Be B’e]+[Ce Ce]Xe=O.

Postmutiplying (3.68) by the invertible matrix [ -zY] yields the equivalent expressions

(3.69) Ce CeX- DeBPe
and

Since Z is nonsingular

(3.70)

and (3.68) holds.

-DeB’e Y+ DeB’eZ-Jf- Ce ---O.

/e (Z-1)’( YBe- CeDe)

Now let E be the left-hand side of (3.67); then [I 0]E[I 0]’=0 by (3.51) and
[I O]YeEYe[! 0]’=0 by (3.52). A will be chosen to make [I 0]E[0 !]’=0 as

(3.71) = -a’-JenPe
(Z-1)’{-(I YX)A’-( YB CteDe)nte}

(3.72) (Z-1)’{-A’- YAX + CreDenCe}.

With this value of A we obtain [I 0]E 0 and hence

and thus E 0. Therefore, with these values of , /e, and e, Ea satisfies (3.67) and
(3.68) and is henceall-pass. Furthermore, YZ-1>- 0 since p(XY)< 1 by Corollary 3.5
and hence Re Ai(A)<0 (by Wonham [52, Lemma 12.2, p. 227]) since ftYZ-I+
Z’-1 Y’- Je/te 0 and^ (,/}e,,) is clearly stabilizable. Therefore Qa + and it
remains to show that Be and Ce have the zero terms given in (3.61) and (3.62). From
(3.70) and (3.50)

Z’Be[I 0 00]’=YBI-[C1 C C’3] DI =0.

DI
Similarly, (3.69) and (3.49) give that

[! 0 00]Ce--C1X-[D,1 D12 D,3 B =0.

B
Therefore we have verified that Qa, given by (3.58), (3.72), (3.69), and (3.70) satisfy
(3.61) and (3.62) and, for all unitary De, gives an all-pass Ea with Oaa +cx. Note
that once the form of D and Xe have been specified, all the other terms are uniquely
determined and the required zero structure on Qa has been ensured by fixing the form
of the first row and column of Raa to be as in (3.5). All solutions can also be generated
from this Qaa as will now be stated in the main result of this section.
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THEOREM 3.6. Let Ris rL’pixr for i, j 1, 2 have the realization

with Re Ai(A) > 0 for all i, and

A B B2 1R] s_. C1 Dll D12
R22J

C2 D21 *

0"[Dll D12 < 1, [DI DI < 1.

(a) Then there exists Q :g( such that

<1(3.73)
R21 R22+Q

if and only if (3.37), (3.38) and IIRIIH < 1, or equivalently if and only if (3.37), (3.38)
and p(XY) < 1 where X, Y >= 0 are as defined in Lemma 3.4.

(b) If the conditions ofpart (a) are satisfied, then each Q6 Y( satisfying (3.73)
is given by

(3.74) Q=FI
Q42

for some and IldPII < 1, where

[022 Q24q & C2(3.75)
042 Q44J 4

B2 B4 1D22 D24
D42 0

with Do, De given by (3.55). The remaining matrices are given by

(3.76) I21ICIID21D22D231IBI(4 0 D42 D43
B(

D12 0

(3.77) [/2 4]=(Z-1)’{Y[B2 0]-[C C C]} D22 D4
032 D34

(3.78) Z I XY, , (Z-1)’{-A’- YAX + C’eDeB’e}.

(c) If Ris satisfies (3.34) and (3.35) and p(XY) < 1, then every solution Q :
such that

R21 R22 + Q

is given by (3.74) for some + with II ll < 1.

Proof Part (a) follows from Propositions 3.2 and 3.3, Corollary 3.5, and the
construction preceding the theorem statement. Part (b) follows in a similar way to that
given in Glover 17], 18] as follows. First, recall that Ea is all-pass where

Rll R12 R13 0

Eaa(S) R21 E22 E23 Q24

[Ro31E32E33034Q42 Q43 Q44
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and hence,

<1F Ea,
0 R21 R22+ Q

satisfies
R21 R2+ Q

if a, < 1 19], [42] where

O Fl Q42 Q44J’

That Q is in follows from a small gain argument since Qo and
with IIQ44olI 1. Hence all such Q satisfy (3.73).

To show that all such Q can be expressed as in (3.74) we first show that Q2,
Q2 e. The A-matrix of Q2 is given by-D;C4 -’-ee (---- D;2D3;)

-’-(-D2D4);

since De is unitary, D2O43 -O2(O); hence,

O3
I

eDte (O)’ by (3.70)

I

=(Z-1)’(YBD- C) (DII)

(Z-1)’(YX- I)C(DII) by (3.49)

-ci(f)’.

Hence A-2D24=-(A’-C(D?)’B;) and Q2eL since ReA(A-
B3DIIC1) <0 are the zeros of R13 which, by construction, has no zeros in Re s > 0.
See (3.51 ).

)’ ’Z’A similar argument gives that B4D C2 -(Z- (A- BID] C3) and hence
Q2 e L. Suppose that Q satisfies (3.73) and define such that (3.74) holds, that
is,

:= Q(Q Q22)Q (I Q44)-1

and

-(I + Q44)-

and clearly exists as a proper rational function in . Fuhermore I111 < 1 since

< 1 Q,,() 0F,(..
0

(see [30]). Suppose that has a coprime factorization over L as UV-1 with
U, V . Since U, V is coprime and Q44 is stable, U, (V-Q44 U) is also coprime,
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and a coprime factorization of = U(V-Q44U)-1. Since Y(+ the winding
number of det (V-Qa4U)(jto) around the origin must be zero. However, det (V-
Q44 U)(j(.o det V(jto) det (I Q44(I)) (jo)) and hence the winding number of det V(jto)
is zero, since that of det (I- Q44(I))(jto) is zero (because Q44II < 1) hence ;+.

(c) The major difference between this case and part (b) is that R1-31 R- need not
be in Y(L and Qz-, Q-2 need not be in Y(+; however, R13 R3 Q24, and 042 will
still be full rank in the appropriate halfplanes and only rank deficient at a finite
number of points on s =jto. The proofthat (3.74) with I111-< 1 gives a class of solutions
for Q is the same as in part (b) except that we now need to prove that [[Q4411 < 1.
Suppose ]IQ4411 1. Since Eaa is all-pass if t(Q44(jtoo))--1 for some too then
rank Q4z(jtoo) Qa3(jtoo)] < p4 m3 pl, i.e., Q42 Q43] has an imaginary axis zero.
Now

and

[042 B2 B3Q43] s--

C4 D42 D43

[D42 D4] -B I
-B; 0

from (3.76)

,+[/2 /3][B2 B3]’=-A by(3.71)

and hence the zeros of [Q42 Q43] can only appear at Ai(-A’). But Re Ai(-A’)< 0.
Thus rank[Q42(jto)Q43(jto)]=p4 ma=pl for all to, giving IIQ411< 1.

To prove that (3.74) with [tll-< 1 gives all solutions we first need that

implies when R3, R3, Q4, Q42 are only full rank for almost all s =jm. This
is simply proved by noting that if #((jmo))> 1 then #((s))> 1 for all s in some
neighbourhood of jmo, and hence we can find such that #((jm))> 1 and R,
R3, 4, and 42 all have full rank at j; a contradiction is then easily established.

Finally, defining and as in (b) with UV- we obtain that det V(jm) 0
for all w since Iloll  1, det (I-Q44)(jw)O for all w since Q44011 < 1, and hence

= U(V-Q44U)-1 and det (V-Q44U)=det (V) det (I-- Q44) 0 for all w implies
that and the result follows as in (b).

Remark. Theorem 3.6 gives a complete solution to the problem when p(XY) < 1,
the case when p(XY) 1 is substantially more involved and is given in 4. The solution
of

R R+Q

for the minimum possible will require an iterative search on with the problem
scaled to at each step (e.g., scale Do -D, B -/B, C -/C). A value
of 7 will be achievable if the algebraic Riccati equations for X(7) and Y() have
solutions with o(X()Y())N1. The optimal value of can occur when
p(X() Y())= 1 or when 7 is the largest value such that the Hamiltonians for X()
or Y(7) have imaginary axis eigenvalues. In this way the optimal value of 7 can be
calculated to any desired accuracy and a problem with o(XY)= 1 normally results.
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4. Descriptor all-pass systems and the sufficient conditions. In this section we
propose to lift the assumption that < 1 and treat the case when R 1.
Before starting the general analysis, we consider a simple example which illustrates
an important feature of the four block problem at optimality. Consider

(4.1> inf+ ]l[r11q 0

in which r11, r22 G L. It is immediate that there are two cases which require separate
consideration. These are

(4.2a) (1) 11r2211 <
(4.2b) (2) [Ir=211llrlll[
In the first case, any q(s) for which r22+ qll r ,ll will be an optimal solution;
a continuum of such solutions exist. In the second case, however, the (unique) optimal
Nehari extension of r(s) is the only solution. This example shows that there may or
may not be a reduction in the size of the solution set at optimality. In the one block
case, the size of the solution set always decreases at optimality [16].

In the general case there are also two forms of optimality. To see this we temporarily
suppose that Q(s) in (3.2) is allowed to range over. Under these conditions we have

inf
R R12(4.3)

O R21 R22+ Q
max

R21
by Parrott’s theorem [39], [41, Thm. 1.2]; a paicularly nice treatment of Parrott’s
theorem is given in Young [53]. The point is that in ceain cases

(4.4)
o R R+Q

and the requirement that Q be an element of rather than just makes no
difference to the achievable norm. This Parrott type of optimality has already been
covered by Theorem 3.6. The alternative form of optimality is treated below.

4.1. All tl slfis te general ese. The purpose of this section is to treat
sumciency in the case that R2 1. We will take Lemma 3.4 as our staing point
and then show that an all-pass embedding may still be constructed along the lines of
Theorem 3.6. The key dimculty in the case of R2[ 1 is that Z in (3.65) is singular.
Our approach to this problem will be to construct the all-pass embedding in a descriptor
framework. We begin with an all-pass lemma for descriptor systems of the form (4.5)
and (4.6) below. Apa from dealing with the standard case of a possibly singular
we need to cater to the case of det (s-A) 0; (sE- A) singular for all values of s.

THEOREM 4.1. Consider the descriptor system of equations

(4.5) sx(s) x(s)+ u(s),

(4.6 y Cx(s + Du(s),

and suppose that there exists a matrix T such that

(4.7) r+ r’’+’=0,

(4.a r= r’’.
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(a) If T is nonsingular and

(4.9) CT LB’

for some L, (4.5) and (4.6) define a unique tranfer function given by

(4.10) G(s) D+ C(sE-A)#B

in which (.)# denotes a generalized inverse (which is defined in (4.16) below).
(b) If T is nonsingular and

(i) DD’= I,

(ii) CT+ DB’ O,

(4.11)

(4.12)

then

(4.13) GG-= L

(c) IfET>=O and (sE -A, B) isstabilizable (i.e.,x’(sE -A) =O,x’E # O,x’B =0=:>
(s + ) < 0), then all the finite eigenvalues of sE A satisfy (s + ) < O.

Proof In the proof of part (a), we use (4.7) and (4.8) to establish that (B)
(sE-A). This allows (4.5) to be solved for x(s) given any u(s). Following that,
(4.9) is used to prove that W(sE-A)c W(C) which establishes the existence of the
unique transfer function (4.10).

Suppose sE- A has Smith diagonalization

(4.14) sE a N(s)F(s)M(s)

in which N(s) and M(s) are unimodular polynomial matrices and

(4.15) F(s)= [ Fl(s)O ]"
We define

(4.16) (sE-A)#:=M-(s)[F-l(s)O 0]N-(s)’0
To show that (4.5) has a solution for x(s) given any u(s), we note that (4.7) and (4.8)
give

(4.17) (sE A) T+ T’(-sE’- A’) BB’

and hence from (4.14)

(4.18)
FMT(N)- + N- T’M-F- N-1BB’(N-)-
=:>[0 I]N-B=O.

It is clear from (4.18) that (B) (sE-A) and thus that (4.5) has a solution for
all u(s). A simple verification shows that x(s) solves (4.5) if and only if

x(s)= M-’(s) F-I N-I(s)Bu(s)+ w(s)
0 I

(4.19)

=(sE-A)#Bu(s)+M-’(s)
I

w(s)
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for some w(s). Next, we note that (4.17) gives

T’)-(sE A)+ (-sE’- A) T-1 (T’)-BB’T-
(4.20) =ff(M-)-I(T’)-INF+F-N-T-1M-I=(M-)-I(T’)-IBB’T-1M-1

==>B’T-’M-’[OI] =0.

Thus

y(s) Cx(s) + Du(s)

=Du(s)+C(sE-A)#Bu(s)+CM-I[OI] w(s)

={D+C(sE-A)#B}u(s)+LB’T-’M-’[OI] w(s)

=G(s)u(s)

by (4.9) and (4.20).
(b) Equations (4.12), (4.14), and (4.16) imply that

C(sE A)#(sE A) -DB’T-’M-’

(4.21)

Thus

(4.22)

=-DB’T-I by (4.20)

C by (4.12).

I-GG-= I-DD’-C(sE-A)#BD’-DB’(-sE-A’)#C’
-C(sE-A)#((sE-A)T+ T’(-sE’-A’))

x (-sE -A’)#C’ by (4.10) and (4.17)

0 by (4.11), (4.12), and (4.21).

(c) Let A be a finite eigenvalue of (sE-A). Then there exists a corresponding
eigenvector x such that (i) x’E #0 and x’(AE-A)=O, x’(4.7)x=:)(A +.)x’ETx=
-x’BB’x<=O. If x’B#O, then A +<0 since ET>-O. If x’B=O, then A +<0 by the
stabilizability assumption. [3

Proceeding as before, we postulate matrices T and E which are associated with
equations (4.7) and (4.8), and which satisfy (4.12)

where X, Y, and Z are defined in (3.51), (3.52), and (3.65). Equations (3.67) and (3.68)
become

(4.25) De[B’ ’eOl + Ce eo31-X Z
l
-I

L Y

and

(4.24) ,o I Y
+

Z’ Y 0 ,o -I- JeO [B’e /’e0]=0
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respectively. Evaluating the first column of (4.25) and comparing with (3.69) gives

(4.26) e0 e CeX- DeB’e.
In the same way, the second column of (4.25) together with (3.70) yields

(4.27) Beo-- YBe- CeDe---Z Be

for any unitary De. Beo therefore retains the critical zero (1, 1) entry. The (1, 1) partition
of (4.24) is zero by (3.51). From the (2, 1) partition of (4.24) we obtain

(4.28) /o -Z’A’- eoB’e--- -A’- YAX + C’eOeB’e Z’.
It is now easy to check thatthefemaining equations in (4.24) are also satisfied.

We also note that (Z’, Ao, Beo) is stabilizable since if x’Z’ # O, x’[sZ’- o, e0]
OX’[sZ’+ Z’A’] =0s+ g < 0 since Re (A(A)) > 0. We can now prove the sufficiency
of the condition in Corollary 3.5(i).

THEORZM 4.2. Given that the conditions of Corollary 3.5(i) are satisfied, then

(a) Qaa(S): De+eo(sZ’-o)#eo,
(b) Raa + Qaa is all-pass.

Hence the conditions are both necessary and sucient.
Proo Equations (4.24) and (4.25) give that Theorem 4.1 can be applied to show

that Raa + Qoo is well defined and all-pass. Since Ro W, Qaa has no poles on
s =j or at infinity. All the finite poles will be at eigenvalues of (sZ’-o) which are
in the open left halfplane by Theorem 4.1(c) snce (Z, Ao, o) is stabilizable and
from the (2, 2)-block of (4.24) and Z’Y Y- YXY 0 since p(XY) 1. The suciency
of the condition follows from (a) and (b) by using the (2, 2) entry of Qoo(s).

4.2. Characterization of all solutions. Theorem 4.2 gives a solution in the case
[1Ra n 1 in descriptor form. All solutions can be generated from Qoa (s) but the more
detailed structure is required. To keep the notation simple the simplifying assumption

D DJ

will be made for this section. Model matching problems arising from H control can
in fact always be reduced to this case (see [45]). The main difference in the approach
in 3 is that all solutions to the problem with R rather than R are determined. We
wish to write any solution

as

QOJ=QQ 634
for I111 < 1, H. We need to show that such a exists for all suitable (ij, and
this is not immediately clear since

r 7
/241 and [642 643]
k
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are not invertible. The following technical lemma will be used to check the existence
of a given any

032 033
LEMMA 4.3. Suppose that

ml m2

P(s) =P’ [Pll P12| () R X Rxml
P2 P21 P22-]

in which p, >= m2, m, >= P2 and P22(o0) 0. Suppose also that P2 has a left inverse Pt2
and P2 has a right inverse P . Then if there exists a rational matrix R with
rank R p- m2 for almost all s such that

(4.29) (i) R[X-P P2]=0,

and if there exists a rational matrix S with rank (S) m -pz for almost all s such
that

(4.30) (ii) IX- P] S 0,

then there exists a rational matrix such that Ft(P, ) X. More particularly,

(I +P22)-(4.31)

where

(4.32) xI P,2(X- P,,)P,.

Proof The idea of the proof is to establish that (i) and (ii) guarantee the existence
of a solution to the equation X P, P2P2. We then set (I- Pz@)- and
solve for @.

It follows from (i) that (X-P,)W(R). Since dim Y(Pa2)=m2>=dimW(R), it
follows from (i) that (X- P) W(R)= Y (P2) and therefore that the equation P,2Z=
(X-P) has a solution Z--P2(X-P,). In the same way we have (X-P)
(P). Since Z-(X-P,)-, we have Z-Y(P) and consequently qtP2=Z
has a solution =pI2(X-P1,)P,. It follows from P2()=0 and q=

(I- P22(I)) -1 that (I + aItP22)-lxI is a proper rational matrix. [3

The detailed structure of Q..(s) will now be examined when

In this case we may choose

(4.33) De

0 0 I 0

0 0

I 0

and substituting (4.33) into (4.26)-(4.28) yields

_B1(4.34) d’eo --[0 set2 XC
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(4.35)

(4.36)

/e0 [0 YB YB3- C -C],

,’o A’ YAX+ C3BI+CB3.

Since (3.51) and (3.52) have an appropriate dual relationship to each other, their
solutions may be transformed to the balanced form

(4.37)

by an appropriate change of basis in the state space of R(s); k is the multiplicity of
the unit singular value of FR. This balancing induces the following partitioning on

Be and Ce in (3.59) and (3.60).

IBell--I Nil B12 B13 01(4.38)
Be2J LB2a B22 B23 0

el 11 12 13(4.39)
Cte2 C C2 C

Furthermore if rank B22 < k, then an additional unitary change of basis on the
k states can give B22 [/z2], with B221 full rank.

Substitution into (3.49) and (3.50) gives

(4.40)
B3 [_ Ca

(4.41)
C3 Bel

Finally, (3.51) and (3.52) become

(4.42)

--[All 0] 1 [Bll B12
A2J 0 It: 0 It: L AI2 A;2J

+
B2a B2 }XCI

CI

Bll
B2I ],BI XCI

B2 C t21

(4.43)

-A2 AJ 0 I 0 I A21 A22
+

Cl C2 ]YBa
B21

Cl -7’C2 YB11 O.
C:2 B21

The (2, 2) blocks of (4.42) and (4.43) establish the following equation:

(4.44) B22B-2 C2C22

and consequently that there exists a matrix U such that

(4.45) UB,: C22, U:= C2:(B.2) C.)B2:.
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It now follows that a descriptor representation for Qaa(s) is given by

21 --All- YAllX + C’13Bl1’ q- C1B13 -C12UB22 X

22 -B22B2 -B22B2 J x2
(4.46)

Ul

YB12 -Z’C’11 -C2 u2+
B22 0 -B22U’J u3

U4

Y2 C12fi[ UB’2 x 0 0 0 I u2(4.47) +
Y3 [-BI" 0 x2 I 0 0 0 //3

Y4 [-B2 -B2 0 I 0 0 4

on substituting (4.37) to (4.41) into (4.34)-(4.36). The (2, 1) block of (4.46) gives

(4.48)
0 -B22B2x B22B2x2+ B22u2- B22U’

:=> B.2x2 (B22)t(-B22B2x1 + B22u2- C2u4).

Substituting (4.48) into (4.46) and (4.47) gives the state-space realization,

(4.49)

Q22 Q23 Q24 1Q32 Q33 Q34 (s)
Q42 Q43 Q44

C12X UB2
11

22B22)B12-(I-B*

(2’)-1( ’B12 C2U
U 0

0 0

I B2*2B22 0

-!
-(2’)-1C2(I C22C’22)/

-B*z2C2 J

where

(2’)-’(-A1 Allr + C’ -+- C’13Bll llB13-J-C12C22(B22)B2).

Suppose that 01 and 0 are orthogonal bases for (B2) and (C22), respectively,
and that 02 and 04 are chosen to make [02 01] and [04 03] orthogonal. If we

omultiply the last row of (4.49) by [ol] and the last column by [04 (R)3], we obtain

(4.50)

Q22 Q23 Q24 0

Q32 Q33 Q34 0

042043044 0

0 0 0 -I1

If B2 has a singular value decomposition

then [(R)2 (R)1]=[Y1 Y2] and (B2)*= U2F-IY.
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C12’Z UB2
s__ / -BI’

(,’)-l( B12- C2 U) -C1 -(.,’)-1C204 0

U 0 l4 0

0 0 0 0

o o o o
o o 0 -in which

(4.51) rank (Be:z) rank (C22) -<- k.

Equation (4.50) has an interesting structure in that it shows how the effective dimension
of the free parameter is reduced by /. We will examine this point a little further and
obtain a constraining equation on the free parameter @ which is reminicent of [16,
eq. (8.69)]. Following that, we will prove that

(4.52)

A (2’)-’(B12-C2U) -(,")-1C2041
captures all solutions in the optimal case corresponding to IIFII 1.

Let us write the left-hand side of (4.50) as

Yl Q Q4 0 u

(4.53) Y: 042 044 0 U2

Y3 0 0 It U3

and allow this to induce the following partitioning on the free contraction

(4.54) [u]//3 L@I)21 O22J Y3

Since U --Y3 we may eliminate this variable in (4.54) to obtain

(4.55)
/2-- ((I)ll +@12(I--@22)-1@21)Y2 ifdet (I-@2(o)) 0 is assumed

t {I (I)ll (I)12 ] })F _1’11 y=y

in which I1@11 =< by Redheffer’s theorem [42]. A class of solutions is therefore given by

O.141(4.56) Q= F{[ Q22 44J ()}
Transforming back to the coordinates in (4.53) gives

o]ro - (4.57) @= U[(R) 01]
// [.(R)lJ

and (4.57)B2

(4.58) ==>@B2 C2:,

which is a linear constraint on @ and similar to that obtained in [16].
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We are now in a position to state and prove the main result of this section.
THEOREM 4.4. Let Rij L’P"" for i, j 1, 2 have the realization

"-- C1 0 0
R21 R223 C2 0 0

with Re Ai(A) > 0.
If the conditions of Corollary 3.5(i) are met, then every Q satisfying

is given by

R21 R22 -k- Q

(4.59) Q--- El 642 044
in which

for some Y( with

d.24]

Proof The proof can be deduced using arguments similar to those given in the
proof of Theorem 3.6. We begin by making two preliminary observations. First, it is
an immediate consequence of Redheffers theorem that (4.59) captures a class of
solutions. Second,

(4.60) e21 R22-4c-Q22 R23+ Q23 Ritz V21---0 g21(-s
R, R2+Q2 R3q-Q3 R13 V, 0 U31(-s

for any

O 0 0 1Q= 0 Q22 Q23
0 Q32 Q33

such that liRa + Qllo--IIel[ 1 where V(s) and U(-s) are the maximal Schmidt
vectors of the Hankel operator FR [14], [18]. Since

it is immediate that

R2(4.61) p + k => rank
R V3

pl + rank (C22)

for almost all s; k is the multiplicity of the unit Hankel singular value of FR. Similarly,
since 11Raa -b Qa. [Iv Ra 11H l

(4.62)

0 0 0

Q_22--Q22 Q_23 Q23

032- Q32 033- 033

R, V, -]
R12 V21 --0.

R13 V31

0.22
Q42

has a state-space realization given by (4.52).
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In the same way we have that

(4.63) [ R 1"-1 R’I R31] 0 022-Q22 023-Q23 024U?I UI UI 0 032- Q32 033- Q33 034
and

R R2(4.64) rank
U- U-

=0

R
] -> m + rank (B22)

U .J
241 has an asymptotically stable left inverse while 042We now show that ()34_

an asymptotically stable right inverse. Substituting from (4.50) gives

(4.65) 034J C12X UBI_
Z

and a simple calculation yields

24 s__(4.66)
Q34-] O,[ C122 UB,2]

120]
B’13

(4.67) 042 043] s__ [
L

has a right inverse

-(2’)-1C2041040
(2’)-1[C2 C3]]ol o

(2’)-1[ "rl2 C2U]-CI

o 0

Q43] has

-AI --(2’)-1[ ]rB12 C2 U]02 ]
(4.68) 042 643] s__ B 02 J.B3 0

Since (A)> 0, the left and right inverses in (4.66) and (4.68) are asymptotically
stable. Furthermore,

(4.69) rank 034 =p-rank (B) for all Re (s)>_0,

(4.70) rank[d4 (4]= m-rank (B) for all Re (s)->0.

Hence, we may invoke Lemma 4.3 and the all-pass character of E to establish
the existence of a I1.11_-< such that

Q22 Q23 Q24
[Q_--22 Q23](4.7])
LO 033 =F 3 Q4 ;

644
It remains for us to show that any such c Y(. It follows immediately that

(4.72) air/--[ (-2411 [ (-22- Q22 Q_-23-Q23] [042 043]
Q34J LQ32- Q32 Q33- Q33

G(s)
C

Gt(s) DIc D

and a dual result is clearly true in the case of a right inverse.
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is stable. Now suppose that has a coprime factorization ND-1 with N, D Y.
Since (I-Q44t)-1 is stable, and q N(D-Q44N)-1 is a coprime factorization,
it follows that (D-Q44N) is outer. We may now deduce from

(4.73) det (D-Q44N)(jto)=det D(jto). det (I-044(I))(jto)
and 044(I) I1 < that the winding number of det D(jto) around the origin is zero. This
means that D is outer and therefore that ND-I Yt+ as required. [3

5. A representation formula for all internally stabilizing controllers that satisfy a
closed-loop H norm constraint. In this section we will show how the solution to the
four block problem given in 3 and 4 may be used to solve a rational Y control
problem. Suppose we are given

(5.1)

n m

P=
P21 P22 q

C2 D21 D22 q

in which p _-> m and -> q, and that we seek all controllers that stabilize FI(P, K) and
that satisfy the norm constraint

(5.2) IIF,(P, K)II<- ,.
We will make a number of assumptions regarding (5.1), the last of which is temporary
and is removed in our later development.

(i) (A, B2, C2) is stabilizable and detectable.
(ii) rank (D12) m and rank (D2) q.

(iii) rank
jtoI A

n + m for all real to.
L C1 D12

(iv) rank([jtoI-AL C2 O21
n + q for all real to.

(v) Temporary assumption. Dll 0 and D22 0.
Additionally, the results that follow presume that the problem has been scaled so that
the columns of D12 and DI are orthog,onal. This is always possible ~bY assumption
(ii) (see [43]). We will introduce D+/- and D+/- which make [D+/-D2] and [DD.] unitary.

The main results of this section will now be stated, and their proofs will be given
in the following three sections. Theorem 5.1 gives necessary and sufficient conditions
for the existence of a solution, while Theorem 5.2 characterizes all the solutions.
Assumption (v) will be removed in 5.3.

THEOREM 5.1. Suppose that P(s) is given by (5.1) and that assumptions (i)-(v)
are satisfied. Then for any 3’ > 0 there exists an internally stabilizing controller K (s) such
that F P, K )11 <= Y, if and only if:

There exists

Xoo2 of rank (n)

such that

[Xool I =[x,l(5.3) go
Xoo2A [_Xo2jrx, Re h,(Tx)<_-0 Vi,

(5.4) X Xoo2 X 2Xo
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where

(5.5,) H [ A- BzD2C1
-CD+/-DC1

(ii) There exists

Yoo2J
2n of rank (n) such that

(5.) Joo g g
(5.7

where

y-2B1B- B2B 1
-(A-B2D2C,)’I"

Re li(Ty)O Vi,

(5.8)

and
(iii)

(5.9)

YI Yo2-- Y’2

Joo [(A- B1D’2,C2)’
+/-D+/-B1

7-2Ctl C1- CC2]-(A- B1DI C2)

Xoo2Xoo
--1

"y Y2X2

-1 13t X 2 goo21 > O
Y2YI d

Remark 5.1 (connections with previous results). In the case where Xool and Yool
are invertible we have (5.9)>-0 if and only if

0 yl)_
(5.9)

0 Yo 3,-1YooXoo Yoo- g I 0 g(I y-2XY) I

Thus (5.9) is equivalent to the three conditions (1) X0, (2) Y0, and (3)
p(XY) y2. These last three conditions are given in [11] and [20] in the suboptimal
case. The optimal cases in which X and Y exist were considered in [33] where a
connection with vector interpolation is given.

The conditions of Theorem 5.1 treat the cases in which X and/or Y are
singular. Examples of this type of optimality are given in [27].

THEOREM 5.2. If the conditions of eorem 5.1 are satisfied, then all internally
stabilizing controllers K that satisfy II(e, g)ll are given by

(5.10) K Fl(Y{, U) with U , gll , det (I Y{22() U()) # 0

where

(5.11) Y{(s) +
G2J

(sE-A)[B B],

(5.12) E -2YXI Y2X2,

(5.13) Bkl YIB1DI +
(5.14) Bk2 Y

-2YB2+ Y2C1D2,

(5.15) G -OC,X,-;X,
(5.16) Ck2 -C2X1- T-2D21BX2,
(5.17) Ak EkT + Bk Ck2
(5.18) TEk
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Remark 5.2 (computations, degree reduction, and the effective dimension of the
free parameter). There are two possible consequences of Ek being singular. First,
SEk- Ak may have eigenvalues at infinity which do not appear as poles of Y(s), and
second, sEk -Ak may be singular for all values of s. The same remarks applied to the
realization of Qaa(s) given in 4, and this was shown to be reducible to a standard
state-space realization. The reason was twofold: First, Ea Ra +Q satisfies the
descriptor all-pass equations of Theorem 4.1, and second the realization of Q has a
particular structure as shown in 4.3. It is easy to use the linear fractional relationship
between Y{’(s) and Q(s) to verify that the calculations, which were previously applied
to Q(s) in 4, are applicable to the realization of Y((s), and these are now outlined.

Suppos ohogonal changes of basis U and V are chosen so that UEkV [k ] in
which Ek is nonsingular. Then (5.13) to (5.17) become

Akl2(5.19) Ak

(5.20)
B

(5,2 1 G
G2

V k21 G22

in which the paitioning is compatible with that of . As explained in 4, the state
dimension of 2((s) may be reduced by the rank defect of by a singular peurbation
type procedure. Direct calculation shows that a state-space model that is free of infinite
eigenvalues is given by

(5.3

(5.4 c =G ,
-A=A

[Dkrll Dkrl2] Ak22[Bk21 Bk22].(5.25)
Dkr21 Dkr22 Ck22

To explicitly show the reduction in dimension of the free parameter U(s), we select
ohogonal matrices Y and Z (which always exist) such that

/kr21 ](5.26) Y[fkr2 Dkr21]
0 0

(5.27)
Dkrl2

Z-- t.)krl2 0

y-I

Thus

Dkr11(5.29) YE(s)= kr21
Jk 21 --Dkr22.1 [ Ckrlk,_] (sI Ak)-l[Bkr
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5.1. A review of controller parameterization theory. The purpose of this section is
to show how the original H control problem may be recast as a four block general
distance problem. Our treatment of parameterization theory will be brief, as this
material is standard and the details already appear in several places [10], [14], [15],
[43]. Since Pll, P12, P21, and P22 share the same state-space it is clear the K stabilizes
FI(P, K) if and only if it stabilizes P22. Since (A, B2, C2) is assumed stabilizable and
detectable, such controllers always exist. Let

(5.30) Pa2
be left and right coprime stable rational matrix fraction descriptions of P22 and

(5.31) Vr Ur Dr
-N1 D1 Nr V 0 !

the corresponding Bezout identities. All the matrices in (5.31) belong to W+, and the
set of all compensators which stabilize P22 and thus also P are given by [43]

(5.32) K F,(Ko, Q), Q

where

V-; Ur V"; ](5.33) Ko(s) v_fl V_{1Nr j

Since

K(I- P22K)-I (-DrQ- Ut)D,

we obtain

(s) P11 + P12K(I- P22K)-’P,
(5.34) (P,,- P,2UD,P21)-(P,Dr)Q(DP2,)

T11 -- 7120721,which is an affine parameterization of all internally stable closed loops.
Since (A, B) is stabilizable there exists a state feedback matrix F such that A- B2F

is stable. Similarly, since (C2, A) is detectable there exists an output injection matrix
H such that A-HC is stable. Given any such pair of stabilizing matrices F and H,
the right and left coprime factorizations of P22 together with the solutions of the Bezout
identities are given by [10], [14], [15], and [43]

(5.35)
Ut"l

A BzF B2
-F I

v/
c2 o

and

E
(5.36)

Nt
Ur"]

A HC2
F !

D -C2 0

Substituting (5.35) and (5.36) into (5.33) yields

(5.37) Ko(s) -F 0 I

-C I 0
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after simplification. We will now make the following specific choices of the stabilizing
matrices F and H which will lead to all-pass properties in T12 and T21 in (5.34).
Specifically, we define F and H by

(5.38) F-- D2C1-F B2X,
(5.39) H B1D’I + YC’
where X and Y are the unique stabilizing solutions to

(5.40) X(A-B2D2C,)+(A-B2D2C1)’X-XBzBIX+CD_t_D’, C,=O

and

(5.41) Y(A- BID.,C2)’ +(A- B,D.,C:z) Y- YC.Cz Y+ BID’, D_t_B, =O.

Direct substitution into (5.34) leads to

A-B2F B:zF B1 -X*CD.c B2
T+/- T12] 0 A- HC2 B1- HD2 0 0

(5.42) +/- 0 0 ] (S) C,- D12F D12F 0 D_ D,:
Y* +/- 0 0T21 0 0 0 -D_t.B

0 C2 O21 0 0

With this particular choice of F and H, [Tzl T12] and [’1T-] are all-pass [10], [14],
[15], [43]. We call T_(s) and T+/-(s) all-pass extensions of T2 and T2, respectively,
and this all-pass property allows us to write

(5.43) 1] rll-[r+/- r12][ Q r21 R22 0 1[R21
where

(5.44) R(s)
R21 R_I T-_

T,[ T2 T-I].

Substituting (5.42) into (5.44) gives

-(A- BF)’ XB,(B, HD,)’ XBID XB,D,
0 -(A HC2)’ Y*B, b’_t_ C;

(5.45) R(s) DCIX* 0 0 0

-B FY 0 0

which describes the four block problem to be solved.
In the case where X and/or Y are singular, this realization will not be minimal

and it will be convenient to delete the nonminimal states as follows [31], [32]. Let

0
U’, X>0 where U=[U U] is unitary;

0 0
V’, YI>0 where V=[V V] is unitary.

The ccati equations for X and Y then give that

U(A-BDC)U= U(A-BF)U=O, D2CU=O
V;(A-n,D;,CgV,= V;(A-HCgV=O, V;n,D=O
B HD B’zDz- YCD2I V(B-HD2)=O
C DF DD2C1-DBX(C DF) Ua=0
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The state transformation o’ v,] applied to R(s) then exhibits the nonminimal
modes which may be removed, and this followed by the state transformation [Xo;’ oY1]
gives

(5.46) R(s)= CR, 0 0
DC,U 0

CR2 0 0
-B& U1X FV1

UB1D+/- UIBID21 !- c’
0

0

An alternative realization for R(s) can be obtained via a state-space transformation

TR= 0 I

That is,

(5.47) R(s)

where

-A’v CFCV
0 -a’.

D’+/- C1U DC1V
-B U,X, D2C, V,

0 UH
VBD+/- Y1V1C

0 0

0 0

AF X1U(A- B2F) U1X’An Y71V(A HC) V1 YI
BIH-- y71V(B1-HD21) YT’VBllJ+/- VCD2,

C,F C1- DI2F) UIX-(’ D+/-DC1UIX-1- DI2B’ U1
and the Riccati equations for X and Y can be rewritten as

(5.48) A’FX-’ + X-IAF + CyC,F O,

(5.49) AHY- + Y-IA’H + BHB, O.

However,

5.2. Necessary and sufficient conditions. A necessary condition for

1Q II --< 3’ is [[Rll el2ll 3"( T2 Tl1[ T2 Tl]lJc 3’: T2 Tll[Ic 3’.

T Tll
-(A BF) XB,
D’+/-CIX 0

--A’F B1]--[DCIU U
0

so that the corresponding spectral factorization Riccati equation to find R13 (note that
R13R13- y2I--[Rll RI][R-11 R]- 3"2I-T-fTllTIT+/-) has a solution >0=
satisfying

2=x
where

AF(5.50) H. _UBIB U,

-2 Ct3" U D+/-D+/-C U
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Similarly, the condition [[RI R-l[[o_-< y implies that there exists _>-0 such that

Hg[] =[] T., ReAi(T)=<0 Vi,

where

(5.51) H=[ A’I4 T-2VBaI+/-B V]VCC V -An
In order to apply the necessary and sufficient conditions of Theorem 4.2, the solutions
to the Riccati equations (3.51) and (3.52) (which determine R3 and R31 in R(s) are
required, and they are now given.

LEMMA 5.3. For the realization of R(s) defined in (5.46) the Riccati equations:

(5.52a) -P1AR-ARP1 + BRaBR1 + BR2BR2+ T-2p1CtR1CRIP1---0

(5.52b) -Q,AR -A’RQ, + C’RICRI + C2CR2+ y-2OaB’lBRaOa =0

are satisfied for

and

P1-- 0 Y1

TR--
0 I

Qa T’RQoTR

Re Ai(AR y-2P, C’, CR,) >_ O

Re Ai(AR--y-2BRaB’R,Q1)>--O Vi.

Proof. P1 is simply shown to satisfy (5.52) by (5.49) and (5.50) with antistability
given by the stability of T and An. An analogous derivation applies to Qo for the
alternative realization of R in (5.47) and then T-a relates Q1 to Go.

Proof of Theorem 5.1. Theorem 4.2 and the above calculations giv.e the necessary
and sufficient conditions for controllers to exist to be that -> 0 and Y_-> 0 exist, and

/max(P, Q,) -<-

To write this condition as that stated in the theorem, we write

(5.53)
y2I- PQa (y2T- Pl T’RQo) TR

0 Ya 0 yI TR

in which

1-[ "/ V U1

Since P1 and Q1 are both monotonically decreasing functions of y [51], hmax(PiQa)
is also a monotonically decreasing function of y, and so Amax(PQa) -< y2 if and only
if n(y)_>- 0.



314 GLOVER, LIMEBEER, DOYLE, KASENALLY, AND SAFONOV

This condition now needs to be written in terms of XI, X2, Ycxl, and Y2. The
Riccati equations for X1 (5.48) give, as in [11, VII.C], that

I H H-7-I 72X 0 U 0 U
Hence

O U 0 U1 --;2q [1--IX/T1
XT- ’ TI

and exploiting the structure of U’(A-B2D2C1)U and U’CD+/- give

Ix ,l_ [x ,lHoo
LX2.] Xo23

T

where

satisfy

Xcxl UI(XT1- ’)/--22) U -]" U2 U,

Xoo2 U1U

XtoolXoo2--Xoo2Xool
Xand all such matrices are given by [x2] S for a nonsingular S. (This comes from the

strict stability of U’2(A- B2D2C1) U2 and the uniqueness of X.) Furthermore, exploit-
ing the structure of[ 0’ ,]H[ 0 ] shows that ifx%1x x%x, then " ’ exists.
An analogous argument applies to Yool, Y2, and Y. The final condition II(y)-> 0 is
equivalent to

0<_-
0 Vl 0 v
X 2Xoo

-’-’)/ --1

-1
7 Xoo2Yoo21

5.3. Characterization of all solutions. Theorem 4.4 characterizes all optimal sol-
utions to the model matching problem and Theorem 5.2 claims to do the same for the
feedback control problem. A derivation of the formula in Theorem 5.2 can be obtained
by applying Theorem 4.4 to generate all Q(s)’s, and then substituting into Ko(s) to
generate all K(s)’s. Finally, all the nonminimal modes are removed from this para-
meterization. In the rest of this section we assume, without loss of generality, that
3/= 1 for simplicity.

Applying Theorem 4.2 to the realization of R given in (5.46) gives

1Q42 Q44J I -B2 j

((!-O.P.)s-(-A’-O..%P. + q.B... + C.C..P))-’

[01BR2 -C2].

Recall from (5.53) that

(I- QIP1) T [’/X1
k 0
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in which II H(1). Changing coordinates gives

(5.54a)

(5.56)

(5.54b)

(5.54c)

(5.54d)

Q22

Q42

[XTA=
0

Q24 o
+ (slI-Ao)-l[Bo, /o2]

Q44J

o]i (-rA"-Or’A"P + QTRBR1BtR1 + T-IcICR1P1)

y-i

(5.54e)

The characterization of all K(s) is given by

K(S)-- E Ko, E
Q42

Fl(ff{, U)

where

/1
0 Ko2

ff{= F
0 0

[K21 0 K22
I 0

Substituting for the realization gives that

0
(5.57) Y((s)

I

0

I [ Q220’042
0
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where

(.8) E= 0 n

(5 59) , [A- B2F HC2
t -oC:

(5.60) B,= /o, /o2

(5.61) "=-C2 CozJ"
This realization contains rank (X) uncontrollable modes and rank (Y) unobservable
modes and these are exhibited by the following transformation. First, define

(5.62)

(5.63)

(5.64)

(5.65)

V’ 0 0 I I U UlXcol
T/= -U I 0 T= 0 I

YQ1IV, 0 I 0 0

A221

V’ U V’ U Xoo
/2 T/, T [-I 0] 0

reoll W U W U rcll V UlXol

3, 3

2 1 22 d2 dT
23
=0 by (5.56),

d3=0 by (5.57),

A2131,,A223
A233

C22 C23],

Hence the first rank (X) states are uncontrollable. Furthermore,

/213 V’(A- BzF- HC2) VI + V’B2FVI [ V(A- HCz) V’ ]0

[A23, A232 A233] =-Y,IV[A-BzF-HC2 -BzB’zUIX,X B2FV1]Tr-- ’r VCC2 31o21 3]022] Tr
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:::::>A233 --0 and the last rank (Y) states are unobservable. A reduced state model can
hence be obtained and its realization transformed as follows"

=[v -v,][ v’u(5.66)
-YIVU Vn /ooll V U1Xool, U

without loss of generality (see proof of Theorem 5.1) we can assume

Xc11 O]Xool-- U 0 I
U’, Xc2 U1 U,

gl--V[ gll O]0 I
V’, go2 Vl V

and hence

B B,

(5.67)

Bk2]

’D12]Yo,B+ V, VIC

(5.68)

where

L1,--B2BX- YC’2C2,

LI2 B2B(I- UIX,fU)-

L21 -(I- V, q’, V)C.C2+ CDzDC,,

L22 (A- B2D2C, BlDg.,C2)’+ V,o2, U{,

VL22U1 9-- Y7’) VBIISf)+/-B U, + VCD+/-DCI U,(fi[-X-’).
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The equations XXool + U1X1XU U1 U and Yool Y+ V1 YY1 V1 V1 V and direct
substitution gives

[Yl- g2] [Ell El21 IXll
L21 L22J LX2J

0

and finally A --Ak since

H LXoo2J Xoo2] zx"

5.4. Removing assumption (v). In this section we show how we might tackle
problems in which Dll # 0 and/or D22 # 0. The idea is to show that assumption (v)
results in no loss of generality, and that the original problemwith Dll # 0^and D22 # 0
may be replaced with an equivalent problem in which Dll =0 and D22=0. This
observation is paicularly useful in theoretical work requiring state-space calculations,
since, as we will soon show, the case DI # 0 leads to controllers with an unwieldy
number of terms.

Step 1. The purpose of this step is to solve the four block problem at infinity.
Suppose F is a constant feedback to be defined, and suppose also that P(s) is as
given in (5.1). Then for any such F

(5.70)

L Pa, Paa Pa2 3

1 11 O12

[ A+BF(I-DzF)-’C B,+BF(I-DzF)-’D2, B2(I-FD)-’ ]C+DF(I-DF)-C D+DF(I-DF)-De D(I-FD)-I DF)-C (I DF)-De (I DeF) D
To find an F that solves the problem at infinity, we define Q= F(I-DeF)- and
apply Parrott’s result [39], which states that

Q= -D2(D,1 + D1,D[(TI-(DD,1D[)’(DD1,D))-I(DDllD)’DD,1)DI
solves the problem

[[ Dollt’t tDDllDlt l <T.D2D11D& D12D11D21 + QJ

<A solution exists if and only if max llDDll, I]DIII). Back substitution
gives

F (+ OD)-1

in which the existence of the inverse is assumed. There are two points to note:

(1) IIDll%
(2) i-DF= (I +DQ)- which shows that the existence of (I +DQ)-

the existence of (I-DF)-.
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Step 2. Here we select an orthogonal to-matrix in Fig.
(Fl(to, P11(s))(0o))11 =0. Note that

1 such that

Dll :-- Dll -F D12QD21

and define

to21 to223
3/

--1 fill
(I 3/--2DlD11) 1/2

(I --2 --! 1/2 1--3/ DllDll)

which satisfies toto’ 3/-21 for all 3/-> 3/p. By direct computation

(5.71)

0 0
,P(s- dl 0 /12(s) F

0 022
I 0

[ A+ B1022(I D11022)--11 /1(I 022Dll)-1021 /2 -t-/1022(I D11022)-1/12
}12(I --/11 {}22)--11 0 [} 12(I --/11}22)--1/12
+

which has the required property that Dll--0. It is an immediate consequence of a
specialization of Redheffer’s theorem that IIF,(P,

--1
3/ [30]. A small gain argument shows that the internal stability property is preserved
for all

FIG. 1. Loop transformations.
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Step 3. Here we eliminate /22 by connecting (/22--/22) in parallel with/322(s)
which is illustrated in F.ig. 1. See also [20].

.Step 4. Compute K(s) using equations (5.11)-(5.18). (Note that D12D12 # I and
D21D’21 # I so another scaling is requir,ed.)

Step 5. Reverse the effects of D22 and Fo to obtain a representation formula
for all controllers. Yet another calculation verifies that

[ Kll K12] II F g12

K2, K22J
F /r21 R22-21/22R12 R21/22 Rll

Note that the effects of the scale introduced in Step 4 must now be reversed.
It remains to show that provided 3’ is big enoug,h, the realization for P(s) in (5.1)

satisfies (i)-(iv) if and only if the realization for P(s) given in (5.70) satisfies these
same assumptions. In our analysis below, we treat the transformation between P(s)
and if(s) first, and the transformation between if(s) and/3(s) second.

LEMMA 5.4. Assumptions (i)-(iv) apply to the realization in (5.1) ifand only if they
apply to the realization in (5.70).

Proof (i) Stabilizibility and detectability are invariant under output feedback.
Assumption (ii) is immediate from (5.70). Assumption (iii) and (iv) follow from

-B2 I 0sI .,{ A

k 11 D12 C D12 Foo(I D22Foo)-1C2 (I FooD22)-1

[sI-, /1 ] [I BzFoo(I-D22Foo)-l][sI-A2 D21 0 (I D22Fo)-I C2 D21
LEMMA 5.5. Suppose that an internally stabilizing controller exists such that

Fl( P, g llo % ,Then
(1) (A, B2, C2) is stabilizable and detectable.
(2) rank (D12)= m <=>rank (/12)= m, and rank (D21)C:>rank (/521)-- q.
(3) rank ([J__/lA B2 (rJI-" 2D12] n + m for all real w ff and only ff rank t -c, 12])

n + m for all real w.

(4) rank t c D,]) n+ q for all real w ff and only ff ranktc D,
n + q for all real w.

Proo (1) Since ]O22[[2 < T-, it follows from a small gain argument that F;(, K)
is internally stable. As K is an internally stabilizing controller for (s), it follows that
(, 2, C2) is stabilizable and detectable.

(2) This follows from the inveibility of 12 and 2, (5.70) and (5.71).
Paas (3) and (4) follow from Lemma 5.3 and the identities

--dl 12 0,2(1-- 11022)-1 --1 12

d2 D21J 2 21 022(I- 1122)-11 (1 D22022)-1021
If we need to calculate a controller generator in terms of the original plant

description, it is possible to repeat calculations of the type given in the previous two
sections (these have only been ,checked in detail by the present authors in the case
where X and Y exist). In this event Step 2 is left out and we proceed as follows"
Execute Step 1 as before; note that this step can be carried out if and only if
max (]]D_DllI]2, 11Dll/_112)< 3’. After this step there holds IID11]12 < 3’. Execute Step
3 as before to remove D22. Execute Step 4 using the results of Theorem 5.1’ and
Theorem 5.2’ given below. End with Step 5 as before.
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THEOREM 5.1’. Suppose that P(s) is given by (5.1), and that the assumptions (i)-(iv)
are satisfied with D22=0 and [[Dill12 < )’. Then internally stabilizing controllers exist for
)" > 0 with Ft( P, K II <- )" if and only if

(i) Condition (i) of Theorem 5.1 is satisfied with (5.5) replaced by

H=
He.21 -Htll

in which

HI, A+ B,DID+/-D )’2B2D2)()’2I D,1DI D+/-D)-’C

H21 CD+/-(I --2 D+/-)-ID, C1--)" D+/-DllDll +/-

H12 (B1- B2D2Dll)( )’21- DID+/-D’, Dll)-I(B1- B2D2Dll)’- B2B’
(ii) Condition (ii) of Theorem 5.1 is satisfied with (5.8) replaced by

J=
J21 -Jll

where

Joll-- A+B,()’2I ]2ff)+/-D,1D, l)-l( ~’ ff)+/-DD+/- 11 C1 )’2Dl C2),
~, /+/-BJco21- BlJDtl I )’-2+/-D! OllO+/-)11

Joo12-- (C1- OllOl C2)’( )"2I -/ll/tl/+/-Ol)-l( C1- DllDI C2)- CC2.
X 2Xoo )" 2 >0. [’](iii)

)’- Yo2Xoo2 Yo2 Yoo
All the solutions may be characterized by Theorem 5.2’.

THEOREM 5.2’. If the conditions of Theorem 5.1’ are satisfied, then all internally
stabilizing controllers satisfying Ft(P, K)[[oo -<- )’ are given by

K F,(X, U) with U RHT, UIIoo --<
where

0 Okl2 + (S--ek)#[l Nk2],Y{(S)=
Dk21 Dk22A Ck2

Ek Y’IXI 2’-2 Y2Xo2
Bkl ()’2y’IBI+ Y2C1D11+ y2C2D21()’2I D1D11))()’2I b’,.)+/-D11Dll)-1D21,
Ck =-D2()’21-DllDID+/-D)-I()’2C1Xool + Dl BXo2

+ ()’2I DllDI)D12BX2),

D12 {I- D2Dll()’2I- DlD+/-DDll)-lDlD,2}1/2,

" f)+/-D’ D11D21}Dk21 {I D21Dll()’2I DI1D+/- 11) -1 1/2

Dk22 -(D-I)’D2,D )’I Dl )’, [)
+/- D1)-lD12Dk12

Ak EkT + Bk D-f,I Ck2
r’yEk + Bk2D-f,2Ckl,

Bk2 { + Y2(C CD21D ))YIB2+ YBlb’+/-D+/-DI 11

)’21 D11/’+/-D_,DI)-1~D12}Dk12,

Ck2 --Dk21{C2X1 + D21()’21 D,D+/-DDll)-’(DID+/-D C1XoI + BX2
-DlD12BX2)}.
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6. Conclusions. The purpose of this paper was to derive a representation formula
for all H solutions to the four block general distance problem in which particular
attention was paid to the optimal cases. The suboptimal case was treated in 3, and
was derived by an all-pass embedding procedure which is reminiscent ofthat introduced
by Parrott [39]. The optimal case was treated in 4 and the formula for all solutions
appears as (4.52) and (4.59). Section 5 dealt with the application to H optimal control.
In addition, we note the following:

(1) In contrast to the one block problem, there are two types of optimality. The
first is essentially the same as that addressed in Parrott’s theorem [39], and has nothing
to do with the requirement that the approximation Q be an element of H+. The second
is associated with a Hankel norm condition on Ra in (3.46). In the first type of
optimality, special algorithms may be required to take care of axis phenomena in the
spectral factorization problems (3.18) and (3.19). These issues are addressed in detail
in [8].

(2) The analysis in 3 breaks down when IIRalIH- 1 since Z in (3.65) becomes
singular. This difficulty is addressed in 4 where we introduce an alternative construc-
tion based on descriptor representations of all-pass transfer functions; see also [35]
and [44] in this connection. In the case of this Hankel norm type of optimality, the
effective dimension of the free parameter drops by rank (B22) =< k. B22 is defined in
(4.38) and k is the multiplicity of the largest Hankel singular value of R. This loss
of effective dimension may be characterized by the linear constraining equation (4.45)
which is similar to that given in [16, eq. (6.23)].

(3) An important application of this work is the derivation of a closed form
representation formula for all controllers that satisfy an L norm constraint. One such
formula is given in 5 and appears in equations (5.10)-(5.18) in the case that D =0
and D2-- 0 in the realization of P(s) given in (5.1). All the optimal cases are covered.

(4) The case in which D 0 has been treated by direct calculation and the results
are given in Theorem 5.2’. Since these formulae are awkward to write down, an
alternative approach based on loop shifting is also presented [45]. The idea here is to

replace the original problem which has DI # 0 with an equivalent problem in which

DI =0.
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Abstract. This paper considers the minimization of a convex integral functional over the positive cone
of an Lp space, subject to a finite number of linear equality constraints. Such problems arise in spectral
estimation, where the objective function is often entropy-like, and in constrained approximation. The
Lagrangian dual problem is finite-dimensional and unconstrained. Under a quasi-interior constraint
qualification, the primal and dual values are equal, with dual attainment. Examples show the primal value
may not be attained. Conditions are given that ensure that the primal optimal solution can be calculated
directly from a dual optimum. These conditions are satisfied in many examples.
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1. Introduction. A number of authors have recently considered dual approaches
to the solution of optimization problems of the form

inf f 4,(x( t)) dt
T

(EP)
subject to Ax b,

x>--O, xLp(T).

Here, (T, dt) is a o--finite measure space, 1-<p=<oe, b :E- (-ee, oe] is convex, and
A: Lp - En is continuous. Such problems arise in a number of areas. When (for p <
dp(x)--(1/p)xp we obtain the constrained Lp approximation problem (see [Micchelli,
Smith, Swetits, and Ward, 1985]). These problems appear in the theory of constrained
interpolation [Irvine, Marin, and Smith, 1986], and also as a result of using the Lp
norm as the objective function in spectral estimation problems (see, for example,
[Goodrich and Steinhardt, 1986] and [Ben-Tal, Borwein, and Teboulle, 1988a]). A
number of different objective functions can be used. Typically, they are "entropic" in
form, for instance b(x) -log x [Burg, 1975] and h(x) x log x [Johnson and Shore,
1984]. A survey of common objective functions may be found in [Ben-Tal, Borwein,
and Teboulle, 1988b]. For simplicity of exposition we will only consider the autonomous
case, where the function 4) does not depend explicitly on the variable t. The non-
autonomous case is a simple extension.

Let us denote the function b+6(.[+) by b+ (where 6 denotes an indicator
function [Rockafellar, 1970]). Assuming b+ is a normal convex integrand in the sense
of [Rockafellar, 1968], we can write the Lagrangian dual problem as

sup (th+)*((aTh)(t)) at
T

(DEP)
subject to h n,
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where * denotes convex conjugation and A7 :n_ Lq(T) ((1/p)+(1/q)= 1) is the
adjoint map. It is known (see, for example, [Ben-Tal, Borwein, and Teboulle, 1988b])
that under a suitable constraint qualification the values of (EP) and (DEP) are equal,
with dual attainment.

Suppose now that b+ is closed and essentially strictly convex, so, by [Rockafellar,
Thm. 26.3, 1970], (b/)* is essentially smooth. (We defer precise definitions to a later
section.) Suppose that is optimal for (DEP). Assuming that (AT)(t)
int (dom (b+)*), and that we can differentiate through the integral, we then obtain

(1.1) b-A(((qb+)*)’((AT)( )))=0.

If we now set (t)=((ch+)*)’((AT")(t)), t T, then by [Rockafellar, Thm. 23.5, 1970],

(Ar)(t) 6 0th+(ff(t)), a.e.,

so qb+((t))+(ck+)*((Ar)(t)) Y.(t)(Ar)(t), almost everywhere and, since (6+)* is
increasing, ff >= 0. Thus, by (1.1) 2(t) is feasible for (EP) and, integrating over T, has
the same objective value as the dual and hence is optimal (by weak duality).

The question of when the above assumptions are justified has, to the authors’
knowledge, never been addressed in the published literature on the subject. Since the
derivation of primal solutions is of paramount importance, this question is clearly
extremely significant. The aim of this paper is therefore to give these matters a rigorous
treatment. We begin by deriving the basic duality result from the theory developed in
[Borwein and Lewis, 1988]. We then give some examples to show how the above
assumptions can fail. This will motivate our rigorous treatment of the derivation of
primal solutions.

2. Duality. We will begin by deriving the fundamental duality result.
DEFINITION 2.1 [Borwein and Lewis, 1988]. Let (X, ’) be a topological vector

space, with convex C c X. The quasi-relative interior of C ("- qri C) is the set of those
x C for which cl (C x) is a subspace.

(Here, cl B denotes the closed cone generated by B.) Note that if X is normed,
the weak and norm quasi-relative interiors coincide.

Example 2.2 [Borwein and Lewis, 1988]. Let T be a o--finite measure space,
1 <_- p <_- c, (1/p) + (1/ q) 1 and let X Lp (T), Y Lq (T). Then

o-(X, Y)-qri X+ {xlx(t) > 0 a.e.}.

LEMMA 2.3. Let X be a topological vector space with convex C1, C2 X satisfying
cl C1 cl C2. For any x C1 f’) C2, x qri C1 if and only if x qri C2.

Proof The result follows immediately from the fact that cl(Cl-X)=
Cl [(C2- x). l]

The following duality result may be found in [Borwein and Lewis, Cor. 4.10, 1988].
THEOREM 2.4. Let X be locally convex, f: X - (-, c] convex, A: X - con-

tinuous and linear, b , and P a polyhedral cone. Consider the following dual
pair ofproblems:

inf f(x)

(CM) subject to Ax b + P,

(DCM)
max

subject to

xC,

brh -(f+ 6(. C))*(AA)
AP+.
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If there exists a feasible qri ((domf) C) for (CM), then the values of (CM) and
(DCM) are equal (with attainment in (DCM)).

To use the above result in our case we need to compute the conjugate of certain
integral functionals. We will need the following result concerning normal convex
integrands.

THEOREM 2.5. Let T be a finite measure space, 1 <-p <__oo, and suppose :R
(-oo, oo] is closed, convex, and proper. Define I Lp( T) - (-oo, oo] by Iq,(x)
r qt(x(t)) dt. Then (Iq,)*:Lq(T)-(-oo, oo] is given by (Iq)*=r d/*(y(t)) dt.

Proof For the proof see the corollary to Theorem 2 in [Rockafellar, 1968].
We can now derive the required duality result.
COROLLARY 2.6. Suppose T is a finite measure space, 1 <- p <= , ch -> (-c, o]

with r+ closed and convex, ai Lq( T) for 1, , n, and b ". Consider thefollowing
dual pair ofproblems"

inf I d(x(t)) dt
T

(EPp) subject to I x(t)ai(t) dt bi,
T

i--1,. .,n,

(DEPp)

x>--O, xLp(T),

max bTa--fr (t+)* [ i=1Aiai(t)]dt
subject to

Suppose further that the following constraint qualification holds:
(CQ) There exists a feasible for (EPp) with tr(Lp, Lq)-qri (dom I4 f-) (Lp)+).

Then the values of (EPp) and (DEPp) are equal (with dual attainment).
Suppose furthermore that (0, oo)c dom 4). Then (CQ) is equivalent to requiring the

existence of a feasible dom I4 with (t) > 0 almost everywhere. In particular, if
ess sup x < +oe and ess inf x > 0 then x dom I.

Proof In Theorem 2.4, set X Lp(T) with the tr(Lp, Lq) topology, f= I, C
(Lp)+, A defined by (Ax)=(x, a,)=rx(t)a(t dt for i= 1,..., n, and P {0}. Then
f+6(.IC)=I+ so by Theorem 2.5, (f+6(.IC))*=I+. Also, p+=n, and Ar)t

i=1 Aai, so the duality result follows.
If (0, oo) c dora th then the set K := {x LIess inf x > 0} is contained in dom

(Lp)+. To see this, observe that if x L with ess inf x > 0, then there exist M, e > 0
with e _<- x(t) _-< M, almost everywhere. Since (0, oe) c dom 4, th is continuous on (0,
by [Rockafellar, Thm. 10.1, 1970], and so the set b[e, M] c is compact. Thus, th(x( ))
is bounded on T, and so x dom I.

Now K is dense in (Lp)+ (the proof essentially follows [Rudin, Thm. 3.13, 1966]).
Thus, we have

cl K cl (dom I f-I (Lp)+)

cl ((Lp)+)

(/.)+
=clK,

so cl (dom I4, f’l(Lp)+)=(Lp)+. Applying Lemma 2.3 it follows that if ) (dom I6)Cl
qri (Lp)+ then 9 qri ((dom I4,) f"l (Lp)+), and the result follows by Example 2.2. [3
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In the case where the measure space is nonatomic and totally finite, we can handle
nonconvex objectives (as observed by the referee). Suppose that b+ is lower semicon-
tinuous (not necessarily convex), but that b*+ and b*+* are proper. Then, with A as
before, if we define

h(b):=inf(I q+(x(t))dt.Ax=b, xL1),
T

the domain of h is convex, and h is a convex function. This is a consequence of the
Liapunov convexity theorem [Holmes, p. 108, 1975]. In fact if we define the value
function of the regularized problem,

/(b):=inf{f d*+*(x(t))dt. Ax=b, xL1),
T

then whenever the constraint qualification is satisfied at b, in other words be
A(qri (dom I+)), we have h(b) h(b). This follows from [Rockafellar, Thm. 3H, 1976],
and the fact that the constraint qualification forces h to be lower semicontinuous at
b. In conclusion, our results apply equally well to b as to b**. See also [Ioffe and
Tihomorov, 1968] for similar ideas.

In some common cases the constraint qualification is particularly .easy to check.
The next result gives conditions under which the constraint qualification is no more
arduous than primal consistency. Note that in most applications the ai’s are actually
continuous (at least piecewise).

DEFINITION 2.7 [Borwein and Lewis, 1988]. A set of measurable functions ai"
T R, 1,. ., n, on a measure space T are called pseudo-Haar if they are linearly
independent on every nonnull subset of T.

PROPOSITION 2.8. Consider the measure space [a, fl c , with Lebesgue measure,
and suppose a’[ a, fl ]- are analytic and linearly independent. Then they are pseudo-
Haar on ce, fl ].

(A real function f defined on an open interval in is called analytic if it is
represented locally by an absolutely convergent power series at any point in the interval,
cf. [Bochner and Martin, 1964].)

Proof We will show that if a real function f is analytic on an open interval
T a,/3 ], and is not identically zero on a,/3 ], then it has at most finitely many zeros
on [a,/3]. The result then follows immediately.

Suppose f has infinitely many zeros on [a,/3]. By compactness, there exists a
sequence x - Xo a,/3 as oo, with f(x) 0, x Xo, for 1, 2, . Since f is
analytic, for some 6>0 there is an absolutely convergent power series f(x)=
Y,=o c,(x-xo)", for x N(xo). Suppose the c,’s are not all 0, and let c, be the first
nonzero coefficient. Then

f(x) (x- Xo) c,, + (x- Xo) 2 c,(x Xo) n-m-1
n=m+l

for x N(xo). Since the series Yn=,+l cn(x-Xo) "-"- converges absolutely on N(xo),
by a standard power series result it converges uniformly on N/2(Xo), so in particular
it is continuous at )Co. We then have

0 X XO) my(Xi

c + (x, Xo) E c. (x, Xo) ,
n=m+l

and letting oo implies c,, 0, which is a contradiction.
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Thus, c/1 0 for all n, so f(x)= 0 on N(xo). But 0 is an analytic function on the
domain T which agrees with f on N(xo), so by [Bochner and Martin, Thm. 4, Chap.
II, 1964], f-= 0 on T. This is a contradiction.

The following result shows essentially that if the constraint functions ai are
pseudo-Haar and (EPp) is consistent for any 1 <_-p <=oe then there is in fact a feasible
9 in the norm interior of (Loo)+. In the case when (0, oe)c dom b, 9 clearly satisfies
the constraint qualification, so the result shows that the constraint qualification is
always satisfied for a consistent primal (providing 0 is not the only primal feasible
solution).

THEOREM 2.9. Suppose T, 1 is afinite measure space and 0 <- x Lp( T) is nonzero
(1 <-_ p <-_ o). Suppose further that ai Lq (T), 1, , n, are pseudo-Haar. Then there
exists a y L( T) and e > 0 with y( t) >- e almost everywhere and (x, ai) (y, a), each i.

Proof Since 0 x _-> 0, there exists T1 c T with (T) > 0 and a 6 > 0 such that
x(t) _-> 6 almost everywhere on T. We claim that

(2.10) uai dtz u Lo( T1)
T

Suppose not. Since the left-hand side is clearly a subspace, there exists , 0 such that

i=1 ,i -, uai d/x 0, for all u L(T1). This implies i= Aiai(t) 0 almost everywhere
on T, which contradicts the fact that the a’s are pseudo-Haar. Thus, (2.10) holds.

Now define

C ua dx u Lo(T), u Iloo < /2
T

Since, by (2.10), PC =N/l, it follows that 0int C [Rockafellar, Cor. 6.4.1, 1970].
Let us now define a sequence of functions (x,)c Lo(T) by

m, if x(t)> m,

--<--x(t)<--_m,
x,,(t)

x(t), if
1

11
if x(t) <--.

For p < we have

P < x(t)p dl + dl -0, as m -,
and in the case p =oe, clearly Ilx,,-xllo_-< 1/m, for rn large. Thus, ((x,-x, a))"__
as rn- oe, and so, since 0int C, for m> 1/3 sufficiently large, ((x,,-x, a)i"= C. It
then follows that (x,,-x, ai)= (v, ai), each i= 1,..., n, for some v Lo(T)with
3/2 and v(t)= 0 almost everywhere on T.

Finally, set y= x,,-v. Then y L(T), and almost everywhere on T, y(t)=
x,,(t)_>-l/rn. On T we know x( t) _-> 6 > l/ rn almost everywhere, so x,,(t)
min {x(t), m}_-> 3, almost everywhere. Since v(t)<-_ 3/2 almost everywhere it follows
that y(t)>= 3/2 almost everywhere on T. The result now follows.

For a given set of constraint functions a, i= 1,. ., n, the question of for what
b’s the problem (EPp) is consistent is known as the extendibility problem. Simple
conditions are known, for example, when T=[0, 1] with Lebesgue measure and
ai(t) i- (one ofthe "classical" moment problems), and for the case when T [-Tr,
with Lebesgue measure and {al(0), , aZk+l( O)} {1, COS 0, sin 0,. , cos kO, sin kO}
(the trigonometric moment problem). See, for example, [Karlin and Studden, 1966]
and [Ben-Tal, Borwein, and Teboulle, 1988b] for more information.
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PROPOSITION 2.11. If dp+ is strictly convex on dom b/, then any optimal solution
to (EPp) is unique.

Proof. If b+ is strictly convex on dom b+ then so is 16/ on dom 16/. To see this,
suppose Xl,X2dom I6/, with Xl # x2, and 0< y<l. By strict convexity of b+,
3,b+(Xl(t))+(1-3,)qb+(XE(t))<=ch+(/xl(t)+(1-3,)x2(t)), with strict inequality on a
nonnull set. It follows that /I/(xl)+(1-3,)I,/(x)<I/(/Xl+(1-3,)x). The result
now follows. [3

3. Examples. In the course of the derivation of a primal solution described in 1,
the crucial step was differentiating through the integral in the dual objective function
to obtain (1.1). The following example shows clearly the sort of difficulties that can
occur.

For 1 -< p < 2, consider the convex integral functional I Lp[O, 1 - (-o% oo] defined
by

I(x)
log x(t) dt, x(t) > 0 a.e.,

+oo, otherwise.

By [Rockafellar, Thm. 22, 1974], yOI(x) if and only if y(t)O(-log)(x(t))=
{-1Ix(t)}, almost everywhere, for x(t)> 0 almost everywhere. With a slight abuse of
notation, let us denote the function that is identically equal to one by 1. Then
cI(1) {-1}, so ! has a unique subgradient at 1.

Now define hLp[O, 1] by h(t)=l/x/. For any e>0, 1-e/V_-<0 on a
set of nonzero measure, so I(1 (e/x/)) +oo. Thus, the directional derivative
I’(1;-h) +oo.

On the other hand, we have

log 1 + dt

It is straightforward to check that as e$0, (l/e)log (l+(e/x/7))’(1/x/), so by the
monotone convergence theorem, I’(1; h)--Jlo (1/x/) dr=-2.

Thus, ! has no Gateaux derivative at 1 although it has a unique subgradient there.
The choice of space is clearly important here. In the case p=oo, we have 1
[1" [l-int (dom I), and it is easy to see that I is I[" I}-continuous at 1. Thus, in this
case the Gateaux derivative does exist" VI(1) -1 (see, for example, [Holmes, 1975]).

Simple examples show that even when the constraint qualification is satisfied we
cannot necessarily expect primal attainment in (EPp).

Example 3.1. Consider the following semi-infinite linear program"

inf x(t) dt

subject to tx(t) dt 1, x >-0, x e Lp[O, 1].

In this problem (x) x, so (4+)*(y) supeo {xy x} (y (-oo, 1 ]). Thus, the dual
problem is

max , (a1 (-, 1 ]) de

subject to I eN.

The optimal dual solution is clearly I 1, giving value 1. The constraint qualification
is clearly satisfied by (t)= 2, so the primal value is also 1, by Corollary 2.6. However,
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since x(t)> tx(t) almost everywhere, 1o x(t) dt > 1o tx(t) dt 1 for any feasible x, so
the optimal value is not attained (for any 1 <-p _-< o).

The above behavior can be observed even when the function b is essentially
strictly convex.

Example 3.2. Consider the following problem:

inf dt

subject to x(t) sin dt 1, x >- 0, x Lp[0, 2-].

In this case 4(x) l/x, x>0, and oe otherwise. Thus, (4+)*(y) SUpx>o {xy-(1/x)},
so by differentiation,

(b+),(y) {-2v-y, y-<0,, otherwise.

The dual problem therefore becomes

iomax I- (-2-I sin t) dt

subject to -I sin 0 a.e. on [0, 2], I e .
The only dual feasible solution is X =0, so the dual value is 0. The constraint
qualification is satisfied by

(t) {’ 0t<

t2,

since

’- 1
(t) sin tdt [-cos 0]+ [-cos 012 1.

Thus, the primal value is also 0, by Corollary 2.6, or direct computation. However,
this value clearly is not attained.

In both of the above examples the function (4+)* is differentiable on the interior
of its domain, but the manipulation described in the introduction is manifestly invalid
since there exists no primal optimal solution. Our last example shows how attainment
in the primal problem can depend on the choice of space for the primal variables.

Example 3.3. Consider the following problem:

inf dt

Iosubject to tx(t) dt 1, x _>-0,

In a similar fashion to Example 3.2, the dual problem is

max A- (-2/-At) dt

x6 Lp[O, 1].

subject to -At >-O, a.e. on [0, 1], A R.
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This is equivalent to max {h +[h =< 0}. By differentiation, the .optimum occurs at
4---, giving a dual value of-.
The constraint qualification is again satisfied by, for instance, :(t)= 2, almost

4everywhere on [0, 1 ]. The primal value is therefore also . The manipulation described
in the introduction (differentiating the dual objective function) may now be performed,
at least formally, to obtain (t)= 3/2x/. It may be checked that ff satisfies the primal
constraint and has value . Thus, it is optimal, at least for 1 =< p < 2, and by Proposition
2.11 it is the unique primal optimal solution. However, Lp[O, 1] for 2=< p_-<, so
for these values of p there exists no primal optimal solution (otherwise we would
obtain a contradiction to Proposition 2.11). Note finally that the question of primal
attainment for this problem is not affected by the addition of the extra constraint

1o x(t)dt 3, since ff remains feasible. This provides a counterexample whose con-
straints are in the form of a standard moment problem.

4. Primal solutions. We shall now give a rigorous treatment of conditions ensuring
the existence of a primal optimal solution. We begin with some simple results aimed
at identifying the domain of the functional I,.

PROPOSITION 4.1. The function (05+)* :E- (-o, ] is monotone increasing.
Proof The result follows immediately from the definition:

(4+)*(Y) sup {yx 4 (x)}.

LEMMA 4.2. Suppose b :- (-, ] with oh+ closed, convex, and proper. Define
d := limx_ (ck(x)/x) (this limit exists). Then el (dom (b+)*) (-c, d].

Proof Define q(x)= 4+(x)-y(x). Then by [Rockafellar, Cor. 13.3.4, 1970], y
cl (dom (b+)*) if and only if (q0+)(z) => 0, for all z. By [Rockafellar, Thm. 8.5, 1970],

q( v + Az) 6( v)(q0+)(z) lim

4+( v + Az) 4+( v) yXz
lim

=(-yz,

for any vdom4+ and for z>O. For z<O, (O0+)(z)=+oe, and (00+)(0)=0.
Thus, (q,’O+)(z) _-> O, for all z, if and only if y<-d. The result now follows by
Proposition 4.1. [3

LEMMA 4.3. Suppose ck is as in Lemrna 4.2. Thefunctional I+." L( T) -. (-c, ]
is I]" ]]w-continuous at any y L( T) for which ess sup y < d.

Proof There exist M > 0 and e > 0 such that -M <= y(t) <_- d e, almost everywhere
on T. By Lemma 4.2, int (dom (4+)*)= (-c, d), so (4+)* is continuous on this set,
by [Rockafellar, Thm. 10.1, 1970]. It follows that (b+)* is uniformly continuous on
[-2M, d-(e/2)]. Thus, if y,-y uniformly on T, (ch+)*(y,(t))(ck+)*y(t) uniformly,
and so I,(yn)- I,(y), as required. Alternatively, it is sufficient to observe that I is
bounded above on some neighborhood of y [Holmes, 1975]. [3

We will use the following ideas from [Rockafellar, 1970].
DEFINITION 4.4. A proper convex function f’R" (-c, c] is essentially strictly

convex if f is strictly convex on every convex subset of {x[Of(x) }.
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Note that if n 1, f is essentially strictly convex if and only iff is strictly convex
on domf This follows from the fact that if f: n__> (_, ] is convex, the only way
in which it can fail to be strictly convex on domf is if it is actually affine on some
line segment. To see this, suppose f is not strictly convex on domf Without loss of
generality suppose f(O)=f(xo)=O for some Xo0, and that for some 0<Ao<l,
f(AoXo) 0. Convexity implies f(Axo)<= 0 for all 0=< A =< 1, so suppose we have strict
inequality for some A, and without loss of generality suppose 0 < A < Ao. We then have

0 =f(hoXo)

\ _/(Xo))
=\l-A]f(Ax)+ 1-A

f(xo)

<0,

which is a contradiction. Thus, f(x)= 0 on [0, x0].
However, if f is essentially strictly convex then it is certainly strictly convex on

ri (domf)c{xlOf(x)qb}, and the above argument then shows it must be strictly
convex on domf (provided n 1).

DEFINITION 4.5. A proper convex function f: n
_
(-o, ] is essentially smooth

iff is differentiable on int (domf) 4, and IlVf(x )ll-, whenever (xi)c int (dom/)
with xi- some x in the boundary of domf

THEOREM 4.6. Iff (--C, C] is closed, proper, and convex, then f is essentially
strictly convex if and only iff* is essentially smooth.

Proof For the proof see [Rockafellar, Thm. 26.3, 1970].
The following result gives conditions for dual solutions to be unique.
THEOREM 4.7. Consider theproblem (DEPp) ofCorollary 2.6. Suppose {al," ",

is linearly independent and oh+ is essentially smooth. Then any optimal solution is unique.
Proof Suppose A /2 are both optimal solutions of (DEPp). The two functions

=1Aa(t) dom (b+)* almost everywhere,j 1, 2. Since the a’s are linearly indepen-
dent, they differ on a nonnull subset of T, T1 say. By Theorem 4.5, (b+)* is strictly
convex on dom (b+)*, so if we set/3 =-/1 ql-1/2A2, then

almost everywhere, with strict inequality on T1. It follows that A3 is an improvement
on A and A 2, which is a contradiction. [3

We are now ready to prove our main result. We shall be concerned specifically
with the dual pair (EP1) and (DEP1), so the primal variable will lie in L(T). In this
result we shall give conditions allowing us to obtain the primal optimal solution by
differentiating the dual objective function at the optimum, as described in the introduc-
tion. This function involves the convex functional I6z:L(T)- (-c, c], whose sub-
gradients lie in L(T). We shall use the results in [Rockafellar, 1971] to decompose
such subgradients into their singular and continuous (lying in LI(T)) parts. Finally,
we shall find a condition ensuring the singular part vanishes, which will lead to the
desired conclusion. The result could alternatively be proved by a direct differentiation
argument (see [Ben-Tal, Borwein, and Teboulle, 1988b]), but we shall use the ideas
from our proof again in the last section.
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THEOREM 4.8. Consider the dual pair ofproblems (EP1) and (DEP1). Suppose that
all the assumptions of Corollary 2.6 are met, and that b+ is strictly convex on dom b+.
Let be dual optimal. Suppose finally that the following assumption is satisfied"

(4.9) d := lim
b(x)
>ess sup ha.

xc X i=1

Then the unique primal optimal solution is given by

:(t) ((b+)*)’( i:1 iai(t)).
Proof By Corollary 2.6 we know that the primal and dual values are equal, with

dual attainment. Let us denote the constraint map by A" L(T)-> ", so (Ax) (x, a),
each i. The adjoint map AT", -> L(T) is therefore defined by ArA 2i=1Aiai. It is
thus -]]. []oo continuous, so we can define ATT" L(T)-, and we will have
ATTI L,( T) A.

The dual objective function is -g(h), where g" --> (-oo, oo] is defined by g(h)=
-bTA+I(ATA), and since is dual optimal, OOg(). However,
range (AT) and I: is continuous at this point, by (4.9) and Lemma 4.3. It follows by
[Borwein, Thm. 4.1, 1981] or [Rockafellar, Thm. 19, 1974] that 0g()=
-b+ATT OI(AT), and so there exists/ OI(AT)c L(T) with Arr b.

By definition ofthe subgradient, for all y Loo(T), l(y Ar) <= I(y) I:(Ar).
Thus, /2>__--0, since if not, we could find a y<=AT with 12(y-AT)>O, implying
I(AT)< I(y), which contradicts the fact that (b+)* is monotone increasing by
Proposition 4.1.

We can now apply [Rockafellar, Cor. 1B, 1971] to deduce the existence of a
z L(T) and a singular component , L(T) such that //= z + ,, where z(t)
0(4+)*((Ar)(t)), almost everywhere and , attains its maximum over dom I at A
However, we know AT int (dom I), from which it follows that , 0 (alternatively,
see [Rockafellar, Cor. 2C, 1971]). Furthermore, we know (AT)(t)int (dom (&/)*),
almost everywhere, and from Theorem 4.6 we know (&/)* is essentially smooth. Thus,
zeLI(T), z->0, Az=b, and z(t)=((b+)*)’((AT)(t)), almost everywhere. In par-
ticular, z is primal feasible.

Finally, since &+ is closed,

d+(z(t))+(&+)*((AT)(t))-- z(t)(AT)(t), i.e.,

by [Rockafellar, Thm. 23.5, 1970]. Integrating over T gives

I6+(z) + I+(Ar) (z, A

(Az):r]
=bT,

so z has the same objective value as the dual value, so it is optimal by weak duality.
Uniqueness follows by Proposition 2.11.

5. Special cases. The last result of the previous section (Theorem 4.8) showed
that under suitable conditions, if the dual optimal solution satisfied the condition
that ess sup i--1 iai < d, where d was defined to be limx_, (4,(x)/x), we could obtain
the unique primal solution by differentiating the dual objective function. If d then
this condition is clearly no restriction. However, if d < o then condition (4.9) may
fail; this is the case, for instance, in Example 3.2. In this final section we shall consider
conditions on b that ensure a priori that condition (4.9) will hold.
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We begin by defining another constant associated with th. Assuming b+ is essen-
tially strictly convex, we know by Lemma 4.2 that el (dom (b+)*)= (-, d], and that
(b+)* is essentially smooth by Theorem 4.6. Let us define (assuming d <

(5.1) c := lim (d y)((b+)*)’(y).
y?d

LEMMA 5.2. Suppose d+ is essentially strictly convex and essentially smooth. Then

(5.3) c lim (d c’+(x))x.

Proof By [Rockafellar, Thm. 26.5, 1970], b_ is one-to-one from int (dom 4+) to
int (dom (4+)*) (-, d), continuous in both directions, and ((4+)*)’= (4_)-1. Note
that since d <, (k, )c dom b+, for k sufficiently large, so expression (5.3) is well
defined. Furthermore, b’+(x) increases to d as x increases to o, continuously, using
l’H6pital’s rule and the convexity of b+. Thus, we have

c lim (d Y)((4+)*)’(Y)
y?d

lim (d 4_(x))((b+)*)’(b(x))
x’

lim (d ch’+(x))x,

as required.
We will now restrict our attention to the case where the underlying measure space

T is a compact real interval with Lebesgue measure. We will need the following lemma.
LEMMA 5.4. Suppose h C[a, ], h(to)=0 for some a <- to<-_, and h is Lipschitz

(or in particular, continuously differentiable) at to. Then 1/ h V: L[a, ].
Proof Suppose first that h is continuously differentiable at to. Define a function

g’[a, /3] by

h(t)/( to), to,
g( t)

h’(to), to.

By L’H6pital’s rule, g is continuous, so by compactness, ]g(t)l<-M for all t[a, fl],
for some m. Since h(t)=(t- to)g(t) for all [a,/3], Ih(t)l<= mlt- tol, so h is Lipschitz
at to.

Now assume h is Lipschitz at to, so Ih(t)l<-MIt-tol, for all t[a, fl]. Thus,

1 1

h )-----[ >= M to[ f a, fl ], to.

Since clearly 1/I tol L[a,/3], the result follows.
For the last step in the above argument, it is critical that the underlying measure

is Lebesgue measure (or at least is greater than some positive multiple of Lebesgue
measure). The underlying space is important, too. Consider, for example, T=
[- 1, 1 x [- 1, 1 c 2, with Lebesgue measure. Then 1/Iltll tl (T).

THEOREM 5.5. Let T=[a, fl], with Lebesgue measure, and each ai be locally
Lipschitz (or in particular, continuously differentiable), i= 1,..., n. Consider the dual
pair ofproblems (EP) and (DEP). Suppose that all of the assumptions of Corollary 2.6
are met, and that qb+ is strictly convex on dom b+. Suppose that

(5.6) there exists tx" with txai(s)<d Is[a, fl],
i=1
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where d := lim (x)/ x ), and if d < oe define c := limy,d d y ch+)* )’(y). Suppose
that either d oe or d < oe and c > O. Then the unique primal optimal solution is given
by (t) ((4)+)*)’(2 i"= X iai (t)), where X is a dual optimal solution.

Proof Just as in the proof of Theorem 4.8, we know that 0e Og(A), where g(A)=
-brA +I,(ArA). We can write (5.6) as

range (Ar) 71 cont (Is,) 4,

by Lemma 4.3, so it follows by [Rockafellar, Thm. 19, 1974] or [Borwein, Thm. 4.1,
1981] that Og(A)=-b+Arr OI,(ArA). Thus, there exists fOI4,(Ar.). Applying
[Rockafellar, Cor. 1B, 1971] just as in the proof of Theorem 4.8, it follows that there
exists z L(T) with z(t)O(ch+)*((ArX)(t)), almost everywhere.

The next step is to observe that since (4+)* is essentially smooth (by Theorem
4.6), 0(4+)*(d)= 4. To see this, recall that as y]’ d, ((4+)*)’(y)’oe, by the definition
of essentially smooth, and the fact that, by Lemma 4.2, cl (dom (b+)*)= (-oe, d].
If ueO(b+)*(d) then u(y-d)<-_(c+)*(y)-(c+)*(d), for all y. By the mean
value theorem, given any M>0 there exists y< d with (4+)*(d)-(4+)*(y)
((ch+)*)’(z)(d-y)>-M(d-y), for some y<z<d. It follows that u>-M, which is a
contradiction as M was arbitrary.

Since z(t)eO(ch+)*((ArX)(t)) almost everywhere, it follows that (ArX)( t) < d,
almost everywhere, and so z(t)=((d+)*)’((ArX)(t)), almost everywhere. We know
from Theorem 4.8 that if ess sup Ar < d then ) z is the unique primal optimal
solution, as required. Since the ai’s are continuous on [a,/3], the only alternative is
(A rX)( to) d, for some a=< to<=fl. We will show that, in this case, z cannot possibly
lie in L[a,/3], giving a contradiction. This will complete the proof.

Assume therefore that for some a -< to_-</3, i= ia(to) d < oo. By the definition
of c, there exists e>0 such that (d-y)((ch+)*)’(y)>-_c/2>O, for all d>y>-_d-e. By
the continuity of the a’s, there exists 6>0 such that =Xa(t)>=d-e, for all
t- tol--< 6. Thus,

z(t) ((b+)*)’(,=1Xiai(t))
2(d -27=1Xiai(t))’

for all It-tol--< 6. But by Lemma 5.4, the right-hand side is not integrable (on either
to- 6, to] or to, to + 6]), so z LI[ a, ]. This completes the proof.

Note in particular that condition (5.6) will always hold if one of the a’s is a
nonzero constant function.

We will conclude with a number of examples of typical objective functions b,
taken from [Ben-Tal, Borwein, and Teboulle, 1988b]. Some of these objectives are
taken from the literature, others are new. For each function we give the numbers d
and c of Theorem 5.5. It is easy to check that th+ is closed and essentially strictly
convex in each case.

Examples 5.6.

(i) 4+(x) {-log x, x>0,
oo, x--<0,

-1-log (-y),
(th+)*(y)

y<0,
d =0,

y>=0,
C=I.
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(ii)

(iii)

(iv)

x log x x,
6+(x) o,

(+)*(y)=e y,

O++(x) {;x x->O,

[oo, x<O,

(+),(y)
1

(y+)q,
q

eX-1, x-->O,
4,+(x)

oo, x < O,

y log y-y+ 1,
(+)*(Y)

to,

x>O,
x=O,
x<O,

(with l<p<oo),

y->l,

y<l,

(v)

(vi)

yx-x
+(x) 1- "y

(+)*(y)

0(3,

+(x)={k-/k2-x,

x
iwith 0 < y < 1,

x<O,

y< q,

otherwise, d=,

(vii)

+y2-1), y->O,
(+)*(Y)

0, y < 0,

xlogx-(l+x) log(l+x),
+(x) =/o,

-log (1 eY), y < O,
(+)*(Y)

c, y _-> O,

x>O,
x =0,
x<O,

(viii)
--, x>O,

+(x) x

cx:), xO,

[ 2ff-2--Y,
(+)*(Y)

(oo,

y_<O,
d =0,

y>O,
c--O.

In all of the above examples, + is strictly convex on its domain, and except in cases
(iii), (iv), and (vi) it is also essentially smooth. With the exception of case (vi),
(0, oo)c dom+, so the constraint qualification will simply require the existence of a
feasible ) dom I+ with )(t)>0, almost everywhere. In the case of (vi) it can be
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checked using the results of [Borwein and Lewis, 1988] that the constraint qualification
requires the existence of a feasible with 0< 2(t)< k, almost everywhere. Example
(viii) shows, as we would expect, that the assumptions of Theorem 5.5 fail for
Example 3.2.

Suppose finally that (b+)* is actually continuously differentiable on (, d), as is
the case in all of the above examples. With the assumptions of Theorem 5.5 it then
follows that the unique optimal solution of (EP1), g, is actually continuous on T, so
it certainly lies in Lp for any 1-< p <= oe. Thus, will in fact be the unique optimal
solution for (EPp), for any 1 _-<p-_<oe, and also for the analogous problem posed in
c[c, #].
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1-DETERMINACY OF FEASIBLE SETS*

TOSHIHIRO MATSUMOTO?, SUSUMU SHINDOH$, AND RYUICHI HIRABAYASHI

Abstract. Germs of feasible sets, 1-determinacy of feasible sets, (strongly) restricted A-equivalence of
map germs, and (strongly) restricted 1-determinacy of map germs are defined. Then each concept of
1-determinacy is characterized by a necessary and sufficient condition. Finally, it is demonstrated that all
of these concepts are equivalent in some sense.

Key words, feasible sets, 1-determinacy, (strongly) restricted A-equivalence, singularity

1. Introduction. There are many articles on the study of nonlinear programs from
the topological point of view (see, for example, Kojima [9], Jongen, Jonker, and Twilt
[7], [8], Guddat and Jongen [4], Fujiwara [1], etc.). In 1986, Guddat, Jongen, and
Rueckmann [5] proved that a feasible set of a nonlinear program becomes a topological
manifold under the assumption that Mangasarian-Fromovitz constraint qualification
(MF-condition) holds at every point of the feasible set. Guddat, Jongen, and Rueck-
mann [5], Jongen, Jonker, and Twilt [8], and Guddat and Jongen [4] developed a
structural stability theory of nonlinear programs. Especially, in [5], Guddat, Jongen,
and Rueckmann proved that it is necessary and sufficient to assume the condition
mentioned above for a feasible set to be structurally stable. Hence, for the topological
study of nonlinear programs, it is natural to assume that the condition above holds.

In [11], under the assumption above, we obtained a necessary condition and a
sufficient condition that a feasible set of a nonlinear program has a standard differential
structure. In this paper we investigate a situation that the sufficient condition obtained
in 11 becomes necessary and sufficient. For this purpose we study a singularity theory
of feasible sets. The first and important papers on the singularity theory related to
nonlinear programs are Jongen, Jonker, and Twilt [6] and Siersma [12] (1982). In [6],
under a generic situation, Jongen, Jonker, and Twilt studied one-parameter families
of feasible sets and developed a surgery theory of feasible sets related to the Morse
theory. On the other hand, in [12], Siersma developed a singularity theory on finite
determinacy, unfolding and classification for manifolds with corners, assuming that
gradient vectors of active constraints are linearly independent.

We are also interested in constructing a singularity theory for nonlinear programs
under the MF-condition. This construction, however, is not so easy. Hence, we have
to go step by step. Therefore, in this paper we only study 1-determinacy of feasible
sets and prove that this is equivalent to studying the 1-determinacy ofmappings (Gibson
[3]) in a restricted sense.

1.1. Notation and symbols.
Rn n-dimensional Euclidean space,
C the class of any times continuously differentiable mappings,
fl U the restriction of a mapping f to the set U,

* Received by the editors November 21, 1988; accepted for publication (in revised form) May 1, 1990.
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/.

Diff.
Diffln
K

f
fHg
f’Hlg

f
f
f
M[g]
M[g]o

M(p,n:R)
R+
G(o)
B

G(x)
class C
G(0)

the equivalent relation on the set of all Coo-maps {f" R"- R p} at x
defined by fi "x f2 if and only if there exists an open neighborhood U
satisfying fll U f21 U,
differential operator with respect to x,
the identity matrix of order n,
the set of all C map germs of (R", 0)- R P,
the set of all Coo map germs of (R", 0) - (R P, 0),
the set of all Coo-diffeomorphic germs of (R", 0)- (R", 0),
the subset of b Diff. with Dxb(0)=
={,ueDiff. lthere exist a germ uE.,, such that ui(0)0 (i=
1,...,n) and a permutation cr on {1,...,n} satisfying qt..(x)=
(Ul(X)X,(1),’’’, u.(x)x,(.))r} where ui is the ith component of u,
K. f-I
Diffv x Diff.,
Kv x Diff.,

if and only if G.,p. f= G.,p. g (A-equivalence),
if and only if H..v f= H.,p. g (restricted A-equivalence),
if and only if H.,p. f= Hn,p. g (strongly A-equivalence),
the Taylor expansion of order one off at x =0 forfe E (the 1-jet of f),n,p

={g6Eo
.,p g

is 1-determined if and only if Jlfc G..p. f,
is restricted 1-determined if and only if jlfc H..p. f,
is strongly restricted 1-determined if and only if jlf Hn,p" f,
={xR"" g(x)>-O for a Coo mapping g" (R",O)(RP, O)},
is the feasible set germ,
is the set of all feasible set germs at 0 Rn,
is Kronecker’s delta,
is the set of real p x n matrices,
the set of nonnegative numbers,
the cotangent cone of M[g]0,

{:k}=l" a basis for Cg(O),
{j: Dg(O) R+k},
min {g(x)" j B,},
={gE .,p M[g]o M[G]o},
the dual cone (the tangent cone) of M[g]o.

2. Restricted 1-determinacy of Coo-map germs. Let R be the n-dimensional
Euclidean space. For a given point R n, define an equivalence relation --- on the
set of all any times continuous differentiable (Coo) maps {f: Rn- R e} by fl "f2 if
there exists an open neighborhood U of that satisfies fll U f2[ U. Here f[ U denotes
the restriction of a mapping f to U. A Coo-map germ from R" to R p at is defined
as an equivalence class with respect to ---. If fl and f2 are two representatives of a
germ f at , then obviously fl()=f2(g)( Y). This same value )7 is called the value
of the germ f at and denoted by f(). To show this explicitly, we write f: (R", )-

Let En,p be the set of all Coo-map germs at zero of R" R p E ,,p be the subset
off E,,p with f(0) =0, Diffn be the set of all Coo-diffeomorphic germ b’s of (R", 0)-
(R", 0), and Diffln be the subset of Diffn such that Dxth(0)= In, where D denotes the
partial differential operator with respect to x and I, is the unit matrix of order n.
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Define a subset of Diffn by Kn := {,u Ditt, there exist a germ u E,,, such that
ui(0)0 (i=l,...,n) and a permutation o- on {1,...,n} satisfying ,,(x)=
(ul(x)x,(l,’", u,,(x)x,(,,)r}, where ui is the ith component of u and T denotes the
transpose of vectors. Moreover, define a subset of Diffn by Kin := Knf-)Diffl=.
{,u Diffl ui(0) 1 (i 1 n) and r id} where id is the identical permutation

Dittl,. Then it is clear thatLet G,,p := Diffp Diff,, H,p := Kp Diffn and H,,p := Kp
oH1.,p =_ H,,p =_ G,,p as subgroups. G,,p acts on E n, p from left and right as follows. For

0 1any c=(/3, y) G,,p and fE,,p, c.f:=/3 fo y- i.e., the diagram below is
commutative:

f
R R p

R .y.R p.

oSince H,,,p and Hn,p are subgroups of Gn,p, they also act on En,p from left and right.
oSuppose f and g( E n, p) are in the same orbit by G,,,p (respectively, H,,,p, Hl,,,p), i.e.,

Gn p g G, p f (respectively, H, p g H. p f Hn,p g--Hn,p "f); then we write

fg (respectively, f ,g, fH g). Since it is obvious that these relations are
equivalence relations, we call these equivalence relations A-equivalence (see, for
instance, Gibson [3]), restricted A-equivalence, and strongly restricted A-equivalence,
respectively. We will mainly investigate the (strongly) restricted A-equivalence in the
following because it takes an important role in studying the singularities of feasible
sets in nonlinear programs.

Denote the 1-jet off E ..., Dxfp(O)x) and putn,p at 0 e R by jlf := (Dxfl(0)x,
J}:={geE,,p]jlg=jlf}. If J)c__ G,,,p f (respectively, H,,,p f Hl,,,p f) holds, then f
is called 1-determined (respectively, restricted 1-determined, strongly restricted 1-
determined).

0For a g En,p, denote {x e R Ig,(x) >- 0, 1, 2,. , p} by M[g]. M[g] is called
the feasible set defined by g. For 0e R", define an equivalence relation on the set
{M[g]lg6 E,,,} by M[gl]’-" M[g2] if there exists a neighborhood U of 0 R" such
that M[gl]f-I U M[g]f’l U. A feasible set germ on R" at 0e R" is defined as an
equivalence class with respect to and denoted by M[g]o. Denote the set of all
feasible set germs at 0eR by M[ ]o It is clear that for a germ gee and anyn,p

representatives gl and g2 of g, M[gl] M[g2]. Hence we may define a feasible set
germ M[g]o by M[g]o for any C-map germ g e E and its representative gl Letrl, p

p be a map assigning g E.,p to M[g]o. It is also clear that p is onto from E.,p to
M[ ]o. We say that M[g]o is 1-determined if M[g]o is ditteomorphic to M[h]o by the
action of Diff, (denoted by M[g]o M[h]o) whenever M[jlg]o M[jlh]o.

oRemark 2.1. Note that p is not one to one. For example, let g, h E,,p be given
byg 61 x3fori=l 2,..., wherexlandh=6g p, 6i=1 (i=j),or0(otherwise).Then
gh but M[g]o-M[h]o.

With respect to 1-determinancy of C-map germs, the lemma below holds.
LEMMA 2.2. Letf E Thenfis restricted 1-determined ifand only iffis stronglyn,p

restricted 1-determined.

Proof It is sufficient to show the only if part, since the if part is clear. Suppose
J}c H,,p. f Let g e J}. Note that Dxg(O)x Df(O)x J}. Then, by the assumption,
there exist ai (/3, b) e H,,p (i 1, 2) such that

[3 ofo 4?’(x)= Df(O)x= Dg(0)x t g 6;-(x),
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and

l f(x) (Dxf(O), el(X))

f12 g(x) (Dig(O), 2(x)).
Let ill(Y) (u(y)y,(,. , Up(y)yo-(p), where ui(0) 0 (1 <= <_-p) and tr is a permuta-
tion on {1,...,p}. By differentiating ui(f(x))f,i(x)=(Dxf(O), 1(x)), we have
u(O)Dxf,(O) Dxf(0)DxCa(0). Hence Dxf(0)= ui(O)Df,(O)(DxCa(O))-1. This
leads to

(ui(f(x))/ ui(O))f,(i(x) (Dxf,(i(O), (Dxd/)l(O))-l d/)l(X)).

Set r=r-, (x)=u(.x)/u(i(O) and (X)=(DxI(O))-II(X); then we get
(f(x))(x) (D(O), (x)). Obviously, (0) 1 and D(O) I,. By rspeting the
same argument for Dg(O)x 2 g (x), we see that there exist ( ) Hn,p

(i 1, 2) satisfying

Define (y)=;lo (y)and (x)= ;1 (x). Then g(x)= ofo -(x). It is easily
shown that (fl, )e Hn,p.

The following four definitions are fundamental in what follows. Let M(p, n’R)
be the set of real p x n matrices.

DEFINITION 2.3. Let A M(p, n’R). We say that A is of type 1 if
(1) rank A min (p, n),
(2) pn+2,
(3) All the minors of degree n of A are nonzero.
DEFINITION 2.4. Let A M(p, n" R). We say A is of type (*) if for any g e E n,p

with Dg(O) A; then there exist z E,,p such that z(0) 0 (1 p) and e Diff
satisfying z(x)gi(x)=(Dg(O), (x)) (1 ip).

DEFINITION 2.5. Let g e E ,,p. We say that g is irredundant if Dg(O) and Dg(O)
are linearly independent to each other for ij.

Remark 2.6. The definition of "irredundant" is related to that of "smoothness
condition" in 11].

DEFINITION 2.7. Let g E ,,p. We say that g is a minimal representative if M[g]o
M[g(>]o for all where g(> is defined by gj0 (1- j)gj.i

Remark 2.8. The definition of "a minimal representative" is related to that of "a
conical basis" in 11].

When we study topological propeies of M[g], it is essential to assume that the
well-known MF-condition holds (see, for example, Guddat and Jongen [4], Guddat,
Jongen, and Rueckmann [5])"

Condition 2.9. Let A M(p, n" R). Then there exists a w R such that Aw>O
holds.

Condition 2.10 (Mangasarian and Fromovitz [10]) Let geE Then Dg(O)
satisfies Condition 2.9.

Remark 2.11. Since we do not treat equality constraints, the MF-condition
coincides with the Cottle constraints qualification (Gauvin [2]).

According to 11], we restrict the problem to the class below. Let g e E Define
the cotangent cone Cg(0) by

lNiNp
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Since Cg(0) is finitely generated, there is a nonnegative integer q such that a basis of
Cg(O) is B := {SCk},=l. It is easily shown that q is independent of the choice of a basis.
Define the index subset by Bk := {j: Dxgj(O) R+k} and the minimal constraint function
by Gk(X) := min {gj(x): j Bk}, where R+ {r R: r >- 0}. M[g]o M[ G]o does not
necessarily hold. So, in the remainder of the paper, we assume that g E is alwaysn,p

in the class C={gE,,p g satisfies M[g]o M[G]o}.
We will introduce two main results of the paper [11] in the following theorem.
THEOREM 2.12 [11]. Let n >--2 and A M(p, n: R). Suppose the matrix A satisfies

Condition 2.9; then A is of type 1 if and only if A is of type (*).
Proof Only if. Let A be of type 1. If p =< n, then rank Dxg(O)= p, where

gE, with Dxg(0) A. Hence it is easy to show the existence of z E,, with z(0) 0
(l<-i-<p) and 4Diff such that z(x)g(x)=(Dgi(O), ok(x)) (l=</--<p). (See, for
example, Jongen, Jonker, and Twilt [7].) If p > n, i.e., p n + 1 or n + 2, the proof is
constructive. In fact, we can construct z(x) and 4(x) for any g E ,v with Dg(O)= A
in the category of C map germs. For more details, see Theorem 4.2 of [11].

If. Suppose that A is of type (*). It is easily shown that rank A--min (p, n). If
p <_- n, it is clear that A is of type 1. If p > n, we must treat this carefully. In this case,
without loss of generality, we may assume that A is of the form [I, B], where B is
a matrix of an appropriate size. By constructing g E such that Dxg(O)= A andn,p

each g (1 _-<i_-<p) is a linear or a quadratic map germ, we can verify that each entry
of B is nonzero, rank B_-< 2 and all the minors of B with order two are not equal to
zero. If p-> n+3, then it is easy to construct a g with Dxg(O)-A, leading to a
contradiction. For more details, see Lemma 3.4 and Theorem 3.2 of [11]. [3

THEOREM 2.13 (characterization of 1-determinacy of feasible sets). Let n >- 2 and
g E be irredundant, a minimal representative, and satisfy Condition 2 10. Then M[g]on,19

is 1-determined if and only if Dg(0) is of type 1.

Proof Only if. Suppose that M[g]o is 1-determined. Then M[g]o M[jlg]o. By
Theorem 3.1 of 11 ], it follows that there exist zi(x) (1 <-_ <-_ p) satisfying

gi(x)zi(x)--(Oxgi(O), y(x)) (1-<ip)

where y(x) is a local diffeomorphism from M[g]o to M[jlg]o and y(0) 0. This implies
that Dg(O) is of type (*). By Theorem 2.12, we see that Dg(O) is of type 1.

If. Suppose that Dxg(O) is of type 1. Define the cotangent cone Cg(0) and its dual
cone (the tangent cone) Cg(O)d of M[g]o by

Cg(0)={ riDxgi(O)" ri>-O(lip)}
lip

and
Cg(0) d {v R: (v, u)>-0 for every u Cg(0)}.

Note that M[jlg]o M[jlh]o means Cg(0)d Ch(O)d). (See Appendix D in [11].)
Let p-< n. Then rank Dg(O)- p. In this case, there exists a local diffeomorphism

yg with yg(O)=0 from M[g]o to Cg(0) d. (See, for example, Jongen, Jonker, and Twilt
[7].) From the fact that g(O)=h(O)=OR p and rank Dg(O)=p, we see that
rank Dh(O)=p. Hence there exists a local diffeomorphism yh from M[h]o to Ch(O) d.
Since Cg(O)d- Ch(O)d, it follows that y-oyg is a local diffeomorphism from M[g]o
to M[h]o, i.e., M[g]o is 1-determined.

Next, suppose p >- n. By Theorem 4.2 of [11], we can construct a local diffeo-
morphism yg from M[g]o to Cg(0)d since Dg(O) is of type 1. The assumptions with
respect to g and M[jlg]o M[jlh]o imply rank Dh(0)= n. It is easily shown that
Dxh(O) is also of type 1. Repeating the same argument above, we obtain a local
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diffeomorphism Yh of M[h]o to Ch(O) d. Thus yl yg is a local diffeomorphism from
M[g]o to M[h]o since Cg(O)d= Ch(O) d. Therefore M[g]o is 1-determined. [3

In order to get an understanding of Theorem 2.13, we give two examples with
g:(R3, 0) --> (R 5, 0) below.

Example 2.14. Let gi(x)=xi (1_-<i_-<3), g4(x)=2Xl+X2-X3, and gs(x)=xl+
2

xl +2x2-x3. Then M[g]o is 1-determined. (Note that Dxg(O) is of type 1.) To show
this, we must construct a Diff3 and zi(x) (1 _-<i_-< 5) with z(0) 0 satisfying

zi(x)gi(x) (Dxgi(O), oh(x)) (1 _<- -<_ 5).

Assuming Za(X)= 1 with no loss of generality, a tedious calculation (see Appendix B
in 11]) shows that

Zl(X) (3 + 3Xl + 2x2- 3x3)/3(1 xl),

zz(x)=(3-x)/3(1-xl), Za(X) 1,

z4(x) (1 +Xl)/(1-Xl), z(x) 1/(1 Xl)

and 4)= (1, :, th3) is given by

l(X X1ZI(X), 2(x) X2Z2(X), 3(x) X3Z3(X).

Example 2.15. Let gi(x)=xi (1-<i-<_3), g4(x)=2Xl+X-X, and g(x)=xl+
2x-x-x. Then M[g]o is not 1-determined. (Note that Dxg(O) is not of type 1.)

Suppose there exists a 4)e Diff and zi(x) (1 <_-i<_ 5) such that

zi(x)gi(x) (Dgi(O), (x)) (1 <_- _-< 5).

Then

el(X) X1ZI(X), 2(x) X2Z2(X), 3(x) X3Z3(X),

21(x) + 2(x) 3(x) (2x +x- x3)za(x),
2(x) + (x) (x) (x + x-x x)z(x).

Without loss of generality, we may assume z3(x) 1. From equations above, we obtain

(*) 2xz(x) + XzZz(X) x3 (2xl + x- x3)z4(x)

and

(**) x(x) + xz(x) x (x + x-x- x)(x).
Consider the Taylor expansion at 0 of each z(x). Put

z(x) a + sx + sx2 + s3x3 +" ,
Z2(X a2 d- tlX + t2X2 -+- t3x -4r.

z4(x) a4 + ulxl + uzx2 + u3x3 +" ,
zs(x) a5 + vx + VzX2 + v3x3 +" .

Substitute these Taylor expansions into (*) and (**). Then it is easily shown that
a a2 a4 a5 1. Furthermore, we have t2 + t3 0 from (*) and t2 + t3 + 1 0 from
(**). This is a contradiction.

Now we are in a position to characterize the restricted 1-determinacy of C-map
germs.

LEMMA 2 16 Letf E Supposefis strongly restricted 1-determined" then D,f(O)n,p

is of type (*).
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Proof We must prove that A= Dxf(O) has the property (*) of Definition 2.3.
Suppose that g E satisfies Dxg(O)=A(= Df(O)) Since f is strongly restrictedn,p

1-determined and D,g(O)= Dxf(O), g is also strongly restricted 1-determined. This
implies g(x) H’ D,g(O)x. Hence there exist b Diff 1. and u E,,p such that u(0) 1
and g(x)u(g(x)) (Dxg(O), (x)) for i= 1, 2,. ., p. Set zi(x):= u(g(x)) for 1 p
and the lemma holds.

TEOREM 2.17 Let n > 2 andf E Supposef satisfies Condition 2.10; then the
following two conditions are equivalent:

(1) f is restricted 1-determined,
(2) Df(O) is of type 1.

Proof From Theorem 2.12 and Lemmas 2.4 and 2.16, (1) clearly implies (2).
Conversely, we will consider the case that condition (2) holds Suppose that g E
satisfies Dxg(O) Dxf(O). If p < n, then rank Dg(O) rank Df(O) min (p, n) p.
Hence there exist Diff, such that f= v f and g v , where v is the natural
projection from R" to R P. Define Diff, by -o Then f= o &. Hence f= v f
v & g . This shows that f, g. When p n, from Theorem 2.12, there exist
z E,,p such that z(0) 0 and Diff, such that g(x)z(x) (Dg(0), &(x)) for
1 p. Since p n, rank Dxg(O) n. Hence the equation y g(x) can be solved with

orespect to x, i.e., there exists hEp,, such that locally h g=Idn-. Therefore
g(x)z(h(g(x))) (Dg(0), (x)) for 1 p. This means g njg(O) Dg(O)x.
Similarly, we have fnjf(O)=Dxf(O)x. Since Dxg(O)=Df(O), we obtain
g jg(O)=jf(0) n f

COROllARY 2.18. Let n > 2 and g E be irredundant, a minimal representative,n,p

and satisfy Condition 2.10. en the next three statements are equivalent"
(1) g is restricted 1-determined,
(2) g is strongly restricted 1-determined,
(3) M[g]0 is 1-determined.

Proof The proof is clear from Lemma 2.4, and Theorems 2.13 and 2.17.

Acknowledgments. The authors thank the referees for valuable comments and
suggestions.
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ASYMPTOTIC LOCATIONS OF EIGENFREQUENCIES OF
EULER-BERNOULLI BEAM WITH NONHOMOGENEOUS
STRUCTURAL AND VISCOUS DAMPING COEFFICIENTS*

HANKUN WANG AND GOONG CHEN$

Abstract. A slender beam has two spatially nonhomogeneous damping terms. The first one acts opposite
to the bending moment time derivative and is sometimes called structural damping, while the second acts

opposite to the velocity and is called viscous damping. When these damping coefficients are constant, it is
known that structural damping causes a strong attenuation rate that is frequency-proportional, whereas
viscous damping causes a constant attenuation rate for all frequencies. In this paper, using the method of
Birkhoff [Trans. Amer. Math. Soc., 9 (1908), pp. 219-231], [Trans. Amer. Math. Soc., 9 (1908), pp. 373-395],
and Birkhoff and Langer [Proc. Amer. Acad. Arts Sci., (2) 58 (1923), pp. 51-128] explicit asymptotic
expressions for the eigenfrequencies of the nonhomogeneous damping problem are derived. It is shown
that the asymptotic patterns of the eigenspectrum remain similar to the constant coefficients case. The viscous

damping effect is also shown to cause a constant shift to both the attenuation rates and the frequencies;
thus it is overwhelmed by the structural damping effect.

Because experimentally it has been observed that all eigenfrequencies of light beams essentially lie
within the asymptotic regime, the asymptotic formulas derived herein should be useful in determining the
pole assignment for feedback stabilization.

Key words, beam equations, damping, locations of eigenfrequencies

AMS(MOS) subject classifications. 93D99, 93D15, 35B35, 34E05

1. Introduction. The analysis of damping is important in the understanding of
mechanical behavior and control of vibrating systems. For lightweight flexible vibrating
structures in contemporary large space technology, the EB (Euler-Bernoulli) beam
equation is the most commonly used mathematical model. Several papers [4], [5],
[10], [11], [12] have addressed questions in the modeling and analysis of distributed
damping on an EB beam, for which it has been noted that the rate of attenuation of
eigenmodes is roughly proportional to the frequency. Consequently, a "square root"
operator was incorporated in the EB equation to model the distributed damping effect.
The simplest such modeling equation is

O2 02 04
(1.1) mot2 y(x, t) 2my1

OtOx2 y(x, t) + EIox---= y(x, t) O, 0 < x < r, > O,

where m, El, and 71 are positive constants signifying, respectively, the mass density,
flexural rigidity, and damping coefficient. The beam length has been chosen to be r

just for the sake of some notational convenience later. Associated with (1.1) the hinged
boundary conditions are used at both ends:

(1.2) y(0, t) Yxx(0, t) y(r, t) Yxx(r, t) O.

Two initial conditions y(x, 0), yt(x, 0) will also need to be prescribed, but they will not
be used here.

Let be an eigenfrequency and b(x) be an eigenmode. Then

(1.3) y(x, t)= e;td/)(x), O<- x
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leads to the following eigenvalue problem:

0<x<Tr, a(--) 1/4,a4dp(4)(x)-2ylAdp"(x)+ Aedp(x)=0,
(1.4)

6(0) 6"(0) 6() "() 0.

We easily derive that

A -yk ikZa4-
(1.5) k=1,2,3,...,

(x) sin kx,

where kZ(a4-T)/2 is the frequency. The spectral pattern is shown in Fig. 1. All
eigenfrequencies lie on the rays which form angles

(1.6) 0 +tan-1 71
N/a4 ’)/12

with respect to the imaginary axis. Note that generally the value of 3’ is not large, thus
we can assume

(1.7)

More recently, Russell has proposed a more elaborate damping model with
governing integrodifferential equation

my(X,at e t)-2 h(x, ) y(x, t)---y(, t) d

04

+EIy(x, t)=0, 0<x <
Ox4

(1.8)

t>0,

to model frequency-proportional damping. The kernel h herein satisfies

h(x, )= h(, x) and h(x, )[f(x)-f()]2 dxd>-O

for any functionf L2(0, r). This model takes into account the presence of reinforced
fibers and seems particularly suitable to model modern matrix materials. As of this
writing, only small progress has been made in analyzing the asymptotic location of

0 tan -1

x/a4

")/1

FIG. 1. Spectral pattern offrequency proportional damping.
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the eigenspectrum, or the holomorphic semigroup property for the general equation
(1.6).

We can regard (1.8) as an EB equation with essentially a variable damping coefficient
for the term (03/OtOx2)y(x, t), with the understanding that such a coefficient is now a
convoluted integrodifferential operator. Therefore to analyze the eigenspectrum pattern
of (1.8) it is fundamental that we understand the corresponding problems for a simpler
damped EB equation

(1.9)
02 0 04
my(x, t)-2my(x) y(x, t)+EIy(x, t)=O,

Ot2 OtOx2 OX4

where ’tl(X)0 is now a nonhomogeneous damping coefficient. As a matter of fact,
using the basic asymptotic analysis developed herein and by using this idea of viewing
the convoluted integrodifferential term in Russell’s equation (1.8) as something like a
spatial varying damping coefficient in equation (1.9), in a recent conference proceedings
[13] Wang has been able to derive an identical asymptotic formula (cf. (3.23)) for
Russell’s model (1.8) subject to the hinged boundary conditions (1.2). From the purely
mathematical point of view, the eigenspectrum pattern of this equation is worth
investigation in its own right as (1.9) is now much more general than (1.1).

From the control theoretic point ofview, in the feedback stabilization of a vibrating
structure, it is often necessary to study closed-loop systems with variable coefficients.
For example, consider a controlled beam

(1.10)
02 04
my(x, t)+ EI2- y(x, t)= yl(X)U(X, t),

Ot2 OX

where ’/l(X)0 is a locally supported function (i.e., the support of ’/1 is a proper
subset of (0, r)), signifying the span on the beam interval (0, r) where the controller
is distributed (cf. Fig. 2).

If we feedback the rate of bending moment

0
u(x,t)=2m y(x,t)

OtOx2

in (1.10), then the closed-loop system will be just (1.9). The classical separation of
variables approach will not give us the precise locations of the spectrum because
equation (1.9) contains variable coefficients and does not have closed form solutions
in general. Therefore the best hope lies in asymptotic solutions. Although the
expressions we have derived herein are asymptotic formulas, there is both theoretical
and experimental evidence from our work elsewhere [6], [7], [9] on beam theory that
the eigenspectrum will be in the asymptotic regime evenfor very lowfrequencies. Therefore
the analysis of locations of eigenfrequencies and their damping rates carried out in
this paper may provide vital information for the pole assignment of the closed-loop

distributed span of actuator

FIG. 2. A beam with controller distributed on only part of the span.
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system. In this paper, we will actually move one step further by studying the model

02 03 04
(1.1 1)

m2 t)-Zmyl(X)
OtOx2 y(x, t)+Zmy2(x) -0 y(x, t)+ EI-x4 y(x, t) O,

7(x)>=0, y(x)_->0, 0_-<x_-<re, t>0,

which takes into account two types of variable coefficient damping forces, the first
one, -2myl(X)O3y/OtOx2, is proportional to the time derivative of bending and is
sometimes termed structural damping (of. [5], [11]), while the second one,
2myz(x)Oy/Ot, is proportional to velocity and is commonly referred to as viscous

damping. As yl(x) is not large, let us further assume

(1.12) a4- y(x) >-- 8 > 0 on [0, rr], for some 8 > 0.

Our treatment and results here are also good for the equation

(1.11)’

a o[ a ] 04
my(x, t) 2m-- yl(X) y(x, t) + 2myz(X) y(x, t) + EIx4 y(x, t) O,

at2 Ox at ox

which is perhaps an even more natural analogue of (1.8). See Remark 3.5.
If in (1.11), we let yl(x)=O and y2(x)=-y2>0 on [0, rr]:

02 O
(1.13) m2 t)+2my2 -t y(x, t)+ EI y (x, t)=0

subject to the same boundary conditions (1.2), then a simple separation of variables
argument shows that all eigenfrequencies A satisfy

(1.14)

Thus all sufficiently high eigenfrequencies have a uniform stability margin -yz.
Our paper is also motivated by an earlier study in Chen et al. [8], which states

that for the second-order wave equation with a nonhomogeneous viscous damping
coefficient"

oZw(x, t) Ow(x, t) 02

(1.15) Ot+2y(x)-c20t W(X,ox2 t)=0, 0<X < rr, t>0,

subject to various conservative boundary conditions at 0 and rr,

the rate of damping will be the average at high frequencies

(116) f0 ,(x)dx,

thus asymptotically the rate of damping caused by the variable coefficient y(x) in
(1.15) is "homogenized" to become its average. For our system (1.11), (1.2) under
study, we wonder what kind of"homogenization" result will hold for its eigenspectrum.
To be precise, we pose the following questions:

(Q1) Consider equation (1.9) subject to (1.2). For large eigenfrequencies A-
1 + iv, tx, v, will the slope asymptotically satisfy (a homogenization
property like (1.6))

lim = +tan-1
Tl,av

I, Io r’ x/a 4 2
")/1,av
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(Q2)

(1.17)

where

-=- 7,(x) dx ?

Consider the equation

(92 (9 (94

mot2 y(x, t) + 2my2(x) -- y(x, t) + EI(gx4 y(x, t) 0

subject to boundary conditions (1.2). For large eigenfrequencies A
/x + iu,/x, , , will the stability margin satisfy (a homogenization property
like (1.16))

lim /z

where

3’2,, 72(x) dx ?

An answer to (Q2) was also briefly mentioned in 8 without any rigorous treatment.
The main objective of this paper is to determine the asymptotic locations of the

eigenfrequencies of (1.11), and to answer (Q1) and (Q2) in order to apply to various
modeling, stabilization and control problems mentioned earlier. Our contributions are
the following:

(i) We have shown that at large frequencies a spectral pattern like Fig. 1 will
emerge. Asymptotically, all large eigenvalues will fall in a close vicinity of two rays
on the left halfplane whose angle (i.e., 0, cf. Fig. 1) is determinable by yl(x).

(ii) We are able to compare the magnitudes of contributions by y(x) and yz(X)
in the asymptotic estimates of eigenfrequencies A.

The idea for our paper came from the work [8] cited earlier based on an asymptotic
expansion procedure of Birkhoff [1], [2] and Birkhott and Langer [3]. The eigenvalue
problem treated here constitutes a fourth-order problem, but its complexity and
difficulty seem to have quadrupled (instead of being merely doubled). The form of
the asymptotic solution also looks rather different from the one in [8] because equation
(1.1) is not homogeneous of the same degree in x and t. An additional transformation
(cf. (2.4) in 2) is required and an adjustment of the Birkhoff-Langer procedure
ensues, yielding a successful asymptotic treatment.

In 2, we transform the eigenvalue problem into a first-order ordinary differential
equation containing a large parameter.

In 3, we derive asymptotic estimates of eigenvalues and state the main results.
In 4, a higher order asymptotic estimation is carried out to help compare the

structural and viscous damping effects.
Finally in 5, we furnish proofs which rigorize the formal asymptotic expansions.

2. Transforming the eigenvalue problem into a first-order system with a large para-
meter. We consider the eigenvalue problem corresponding to equation (1.11). Let us
again assume that the energy-conserving hinged boundary conditions (1.2) are in effect.
They are imposed here for the sole purpose of simplifying presentations. (Other types
of boundary conditions such as the clamped, roller-supported, free, and dissipative
conditions can be treated along similar lines of estimation as given here and in [4]
and [9], but the calculations usually are much lengthier and more tedious; cf. Remark
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2.1.) Using (1.3) and dividing by m, we obtain

(2.1)
a4q (4)(x) 2ATI(X) b"(x -+- 2AT2(x)b (x) -+- A 2b (x) 0,

(0) "(0) () "() 0,

where as before a (EI/m) 1/4.
Let

(2.2)

Then (2.1) is equivalent to

(2.3)

where

(x)= [ (x)+ A-a2d2"(x) ]_(X) q_ A-la2,,(X)

P"(x) [a (A + B(x)) + C(x)]ap(x),

MOP(0) =0, McP(r) =0,

A=a-2[ 0-1 0’1] B(x)=a-4" TI(X)[ 11
(2.4)

C(x)=a-2.yz(x)[ -1 11 M=[1

1 1 1

To further reduce (2.3) to a first-order system, we let

(2.5) 02= A, Y(x)
p_l,,(x)j,

resulting in

(2.6)

where

1]1
-1].1

Y’(x) [p(M + (x))+ p-’ CS(x)] Y(x),

[Mo ]Y(0)=0, [Mo 00] Y(zr)=O’

O=<x=< r,

0=<x=< r,

[: [ o] [ ]0
(x)

0 0
(2.7) M= (x)=

B(x) C(x) 0

Remark 2.1. From the very definitions of (P(x) in (2.2) and Y(x) in (2.5), it is
easy to see that any set of boundary conditions involving (Y)(0), (Y)(r), 0=<j_-<3,
two at each end, can be expressed as

oY(0)=0, 2//=Y(r) =0,

where 3//o and 3//= are 4 2 constant matrices. The case of hinged boundary conditions
(1.2) results in perhaps the simplest such matrices

Mo= J//= ]M 02/ 02 is the zero 2x2 matrix.
02 02

This is naturally so because the hinged boundary conditions correspond to the "square
root" model [5], and it is also observed in (2.2) that only 4(x) and 4"(x) (the "square
root") appear in (x). Actually in (2.3) we can just write the boundary conditions as

(0) =0, (r) =0.

To give a presentation in the general context, we keep the matrix M here.
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We now diagonalize the dominant coefficient matrix + (x). Let

x/a4 yZ1(x) yl(X) + ix/a4 yl(X)]2 1/2

b(x) a2+ y,(x)
l(X)

a2

[yl(X) ix/a4- y(x)] 1/2

2(x) =- a2

1 1 1 1

b(x) -b(x) -b(x) b(x)

,(x) -(x) (x) -,(x)
b(X)l(X) b(x)2(x) -b(x)2(x) -b(X)l(X)

(2.8)
Q(x)

[Q,(x) Q,2(x) ]Q2,(x) Q22(x)

where Qo(x), 1 <-i,j_-<2, are all 2x2 matrices. Then

Q-l(x)

1 1 1 1

4 4b(x) 4Sol(X) 4b(X)l(X)
1 1 1 1

4 4b(x) 42(x) 4b(x)2(x)
1 1 1 1

4 4b(x) 4:2(x) 4b(x)2(x)
1 1 1 1

4 4b(x) 4,(x) 4b(X)l(X)

SO

(2.9) Q-l(x)[ + Y3(x)]Q(x)

is now diagonalized. Let

,(x) 0

-(x)
(x)

o -(x)

(2.10) Y(x) Q(x)Z(x).

Then the differential equation in (2.6) becomes

(2.11)

Z’(x) pQ-’(x)[g + (x)]Q(x)Z(x)- Q-l(x)Q’(x)Z(x)
-Jr- p-1 Q-l(x ((x)Q(x)Z(x)

=[pR(x)+ S(x)+p-’T(x)]Z(x),
where

(2.12) S(x) =--Q-l(x)Q’(x), T(x)=- Q-l(x)Cg(x)Q(x),

subject to boundary conditions

(2.13) [MQll(0)0 MQ12(O)] Z(O) [MQll(r)0 MQ12()I Z()
Let us assume that the damping coefficient functions satisfy

(2.14)

=-R(x)
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Congequently from (2.12), we have

(2.15) $6 CO ([0, r]) T C’ ,([0, r])nxn

Following [1]-(3), we now seek a matrix solution Z of (2.11) which has a formal
asymptotic expansion

Z(x) [P0(x) + p-’n,(x)+ p-2P2(x)+. .] epr(x),(2.16)

where

(2.17) F(x)= R(u) du,

and Po(x), Pl(X)," ", are n x n matrix functions satisfying

PoR RPo
P’o + PR RP1 + SPo
P +PR RP+ TPo +

(2.18)

-J" Pj + Pj+IR RPj+ + TPj-1 -- SPj
Remark 2.2. Although (2.11) appears slightly more general than does (19) in

[3, p. 71] (due to the presence of the extra term p-iT(x) in (2.11)), the asymptotic
expansion will go through because the matrix s + (x) has four distinct eigenvalues
+sel(x) and +see(x) on [0, r], cf. (2.9). The distinctness of eigenvalues of the matrix
R(x) (or equivalently, s + N(x)) is essential to the applicability of the ansatz (2.16).

Let us denote
(k)

p,..j the (i,j)-entry of the matrix Pk,
crij, ro" the (i,j)-entry of matrices S and T, respectively.

(2.19) ’l(x) sOl(x), ’2(x) -sC2(x), ’3(x) sC2(x),

(2.20)

(2.21)

Using the arguments as in [3, p. 75], we get

pla.)(x)=O ifi#j, 1-<_i, j-<_4,

pjO.)(x =fo exp o)j(u) du

(1)
pj (x)

(r(x)pSJ)(x)
if #j,

3(x) ,(x)

and for _-> 2,

(2.22)

j= 1,2,3, 4,

l=<i, j--<_4,

4 4
(o)pJ)’(X)-- E trjk(x)p(k)(X) E "rjkPkj tX) =0,

k=l k=l
k=1,2,3,4

2(x)-(x)
i#j, l<=i, j<=4,

4 4

p}})’(X)-- E ’jt(X)P()- ’rjk(X)P(t-1)(X) =0,
k=l k=l

ij, l<--i, j<=4.

(x) -,(x).

f are constants;

--pl}-l)’(X)-k-2=
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Note that the second equation in (2.20) and (2.21) can be solved by a quadrature.
Thus all the matrices Pi(x), i= 0, 1, 2,. ., can be formally determined in a recursive
way.

3. Asymptotic estimation of eigenfrequencies. We first determine the leading term
Po(x) by (2.20), wherein the diagonal entries o-j(x) of S are easily found to be

l ( b’(x) (x)
o-(x) -- \ b(x)

/
(x

1 {b’(x) ’2(x)
o’22(x) -/

\ b(x)
+
2(x)

+

b’(X)l(X)+ b(x)sC(x).) 1 [b(x)l(x)]’
b(x)(x) =-- b(X)l(X)’

b’(x)2(x)+ b(x)’2(x)) 1 [b(x)2(x)]’
b(x)z(X) =-- b(x)2(x)’

O’33(X O’22(X), O’44(X O’ll(X).

Therefore

(O)(x) fO) exp { l lo [b(U)l(U)]’

(o(x { lfo[b(u)2(u)]’P22, )=f2) exp - b(u)2(u)

(O(x fb(O)sc(O)
P33, =fo).

b(x)(x)’

P44(0)(x) =f4() b(X)l(X

(3.1)

[(b(O):,(O) )
1/2

Po(x) diag
b(X)l(X

a/b(O)l(Odu =f) Vb--i,(x),

} /b(O),(O)du =f2)" b(x)2(x)’

where

(3.3)

P,(x)
Z(x) Po(x) +

p
P2(x)2 -]-"" "1 eor()
p

q(x, p)] eOr(x)Po(x)+
P

xI)’(X, p) Pl(X) q- p-’P2(x)+’’"
(3.4)

=---[[ltij(X,p)]4x4, l<=i, j<=4.

Since Y(x) as defined in (2.4), (2.5) is a vector solution, and since Z(x) is the

fundamental matrix solution of (2.11), the transformation (2.10) will actually give us

(3.5) Y(x) Q(x)Z(x)e,

where is a 4 x 1 constant vector with entries cl, c2, c3, and c4 in C. Thus (2.13) becomes

(3.6) [MQll(O)o MQ12(O)]z(O)=O’O [MQll(Tr)o MQ(Tr)] Z(Tr)=O"

We now formally write (2.16) as

The constants jTo, j 1, 2, 3, 4, can be chosen freely as long as they are nonzero. We
simply choose them equal to one so that

(3.2)

(b(O)2(O)
1/2

(b(O)2(O))
1/2 (b.(_0)._1_(921!21/21b(x)-)] b(x)sC2(- b(X)l(X ]
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From (2.8), (3.2), (3.3), we obtain from the boundary conditions in (2.13) that

(3.7)

0 M

p

b(O)+
P

KE(p)

+
p

b( r)K,E, (p
EI(P)4,(P)+

P

I2(P I (P) I#14(0
14- 14 I+

P P P
22(P 23(P I24(P)-b(O)+ -b(O)+ b(O)+

P p p

K2E2(p K2E3(p K,E4(p
(P)32(P) (P)33(P) 4(P)34(P)+ +

P P P
-b()K22(p) -b()K23(p) b()K4(p)

+ +
p p p

A(p)e= O,

where

(3.8)

K, b (0)1(0)/b (0)l( "rr)] ’/2, K= b (0)2(0)/b(r)2(r)],/2,

r,() ,(x) dx, r=() (x) ,ix,

El(p) eprl() E2(p) e-pr2(’) E3(p) eor2() E4(p) e

4 4

i=1 i=1

4 4

3k(P) Z Oik( or, D), 4k(P) b() Z (-I)[’/2]0,(’, P),
i=1 i=1

k= 1,2,3,4.

It is easy to see that K1, K2, Fl(r), and F2(-rr are bounded. From [3], we know that
Pjk(p), 1 <=j, k<=4, are uniformly bounded for ]Pl large, p is an eigenvalue of (2.11)
and (2.13) if and only if the determinant of the product matrix in (3.7) is zero. But
the matrix M in (3.7) is invertible, and the constant vector is nontrivial, therefore

(3.9) det A(p)=0.

First let us determine the roots of the simpler equation

1 1 1

(3.10) det
b(0) -b(0) -b(0)
KIE KzE2 KzE

b( vr)K, E, -b( r)K2E2 -b( vr)K2E

1

b(O)
-= det Ao 0,

K1E4
b(r)K1E4

obtained by neglecting (p-1) terms in A(p). This determinant is easy to expand, giving

(3.11) det Ao=4b(O)b(r)KiKz(E- E4)(E3 E2) =0.

By (1.12), b(0), b(r), K, and K2 are all nonzero. Therefore

(3.12) E E4 epF,() e-pF,() 0,
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or

(3.13) E3 E2 epv2(=)- e-pr2(=) 0.

The roots p of (3.12) are determined by

e2pF(’tr) 1,

1
i2k,rr, k c 7/

(3.14) P 2F1(Tr)

Noting that

a2kTr

r ,)/l(X + i/a4 TZ(x)]

,)/1(/) " i/a4_ ,)/12(X)]1/2 1 [/a2 + yl(x) + i/a2- yl(x)],

we obtain from (3.14) that

p(k)---
a

Ia+ ya(x) dx + I Ja- 1(/) dx
(3.15) + ia

S? ?( a2) k, k Z,

where

(3.16) a /a2-- ’/I(X) dx, [3 x/a2- Tl(X) dx.

Similarly, from (3.13) we obtain

(3.17) p:z(k)=- + ia

-+t (4 a) k,

Let

k c T/.

i= 1,2, Iklko,

i= 1,2,

where ko is a large positive integer. Then we have the following lemma.
LEMMA 3.1.

detA(p)=detAo+p-l(gl(p)E3(p)+g2(p)), peGS,
det A(p)=det Ao+ p-l(g3(p)Ez(p) + g4(p)),

(3.18)

(3.18)’

and

(3.19)

(3.19)’

detA(p)=detAo+p-l(gs(p)El(p)+g6(p)), pc G2,
detA(p)=detAo+p-l(g7(p)E4(p)+g8(p)), pc G,

where gi(p), i= 1, 2,..., 8 is uniformly bounded.
The proofs of Lemmas 3.1 and 3.2 will be given in 5.
As in [8], we compare the roots of (3.9) with those of (3.10). The results show

that the two sequences of roots pl(k), p2(k) constitute a first-order asymptotic approxi-
mation of roots of (3.9) in the following sense.
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LEMMA 3.2. Let p(k), p2(k), k7/, be the roots of (3.10) and let be a root of
(3.9). Then there exists a bound B > 0 such thatfor any " I1 >-- B, there exists some c 7/

such that

(3.20) Ifi P(k)l <- 1, j 1 or 2,

where fc is dependent only on .
Consequently, any solution fi of (3.9) satisfies

(3.21) fi=p(k)+ff(1), j= 1,2, Ikl large.

From (3.21), we can now determine the asymptotic distribution pattern of the
eigenfrequencies 3, of (1.11) and (1.2). From (2.5), (3.15), (3.17),

A p2= [p(k) + (1)]2 k or 2, [k[ large,

(2a47r2k2)+(k), "+"forj=l,"-"forj=2.

Therefore we see that asymptotically eigenfrequencies A are located at the vicinity of
two rays on the left half plane whose angles with respect to the imaginary axis are

(2 + 2)--2[(__a2
__

f12) Za47rZk2 A- (k
0 lim tan- 2 2)k Ce +[3 2 -t- 2o[3 2a4

7r k2 + k

(3.22) "+" for j 1, "-" for j 2,
2 2

-1+tan

We conclude
THEOREM 3.3. Let A =tx + i,, tx, ’, be a large eigenfrequency of (1.11) and

(1.2). Then

1 [I’ ffa2+y,(x) dx]2-[I’ x/a2-y,(x) dx]2

(3.23) lim /x= +-
lal- t, 2 [I x/a2+ yl(X) dx]. [ x/a2- y(x) dx]

Hence the damping rate p. is asymptotically proportional to the frequency ,, with the
constants ofproportionality (3.23) depending only on thefunction yl(X) satisfying (1.12),
(2.14).

Remark 3.4. (i) Theorem 3.3 points out that the answer to (Q1) in 1 is negative.
The "homogenization" formula (3.23) is much more complex than the one in (Q1).

(ii) Note that when

(3.24) 71(x) 71 a positive constant,

then the slopes in (3.23) become

1 7rx/a -k- a/]2 "rrx/a 2 ’yl]2
+/-
2 [r/a2+ y][rx/a2_ y,]

consistent with (1.6).
Remark 3.5. If instead of (1.11), we treat (1.11)’, then the eigenvalue problem

(2.1) becomes

(2.1)’

a4t(4)(x) 2,.3/1 (x) t"(x 2Ay(x)ch’(x) + 2Ayz(X)Ch(x) + A 2oh(x) O, Ox r,

(0) "(0)= ()= O"(r)=0.
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Following the same transformation and diagonalization procedures as in (2.1)-(2.11),
we will obtain, in lieu of (2.11), an equivalent first-order system

Z’(x) [p(x) + S(x) + o- r(x)]Z(x),(2.11)’
where

S(x) Q-l(x) @(x)Q(x) Q-l(x)Q’(x),
o

O(x) =- a- ’(x)(x)
D(x)

and everything else remains unchanged. Since (3.23) in Theorem 3.3 is independent
of S(x) or S(x) in (2.11) or (2.11)’, we see that the very same structural damping
property holds good for (1.11)’.

4. A high-order approximation under the assumption of uniform structural damping
in order to examine the effects of viscous damping. So far in our analysis of damping,
we see that in (1.11) the effect of the term -2myl(x)O3y(x, t)/OtOx2 completely over-
whelms that of the viscous 2myz(x)Oy(x, t)/Ot. Nevertheless, we are still Curious to
determine what is the order of magnitude of the (asymptotic) effect of the viscous
damping term.

We make a quick observation at (2.11): in

Zt(x) [oR(x)-- S(x) + o-1T(x)]Z(x),
only the matrix p-iT(x) depends on the viscous coefficient ]/2(X), with magnitude
if(p-l), whereas the matrix S(x), depending on 71(x) and yi(x), still has a larger
order of magnitude if(l). Therefore even if we go to the second-order approximation
of Z(x), i.e., to obtain P(x) in (2.16), the asymptotic effect contributed by viscosity
’yz(X) still would be overshadowed by S(x). In order to satisfy our probing curiosity
and to avoid lengthy calculations, we assume

S(x)=-o,

resulting in a simpler equation

(4.1) Z’(x) [pR(x) + p-1T(x)]Z(x).
This is equivalent to assuming (3.24) for model (1.11) or (1.11)’. (The reader can also
see from (2.22) that if S(x) O, the solution of P(x) is a great deal more complicated
in general because it may not be in diagonal form and lack closed form solutions,
causing a severe obstacle in obtaining higher order approximations.)

Under the uniform structural damping assumption (3.24), now we can obtain
P(x) explicitly as a diagonal matrix:

Pl(X) diag Zll(U) du, T22(U du, z33(u) du, 7"44(//) du

diag ?(x), ?(x),--;- ?(x), ?(x)

where

x/a4- T12b i (from (2.8)),
a +Yl

:, sc2 as in (2.8) formerly, now are constant through (3.24),

n(x)=- ,(u) du.
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The very fact that Pl(x) is a diagonal matrix crucially facilitates the tractability of our
problem. Also, from (3.2) and (2.9), (2.17),

(4.2) Po(x)= I4, r(x) =diag [lX,-2x, sx,-lX].
From the ansatz (2.16), using (4.2), we can rewrite

Z(x) [I + p-2r(x, p)]E(x, p),

where

E(x, p) [I + p-’Pa(x)] er(x)

diag 1+7(x) exp (px), 1+r/(x) exp (-p2x),4a2blp 4a2b2p
(4.3)

( b2_l ) ( b2_l ) )1-4a2b:2 r/(x) exp (p2x), 1-4a2b:1 r/(x) exp (-px)

(x, p)--= [P2(x)+ p-Ip3(x)+’’"-F p-"P,,+2(x)+’" "][I +
The boundedness and holomorphic properties of this function (x, p) are similar to
those of (x, p) in (3.4) so we will not repeat the discussions here. The boundary
conditions in (3.6) require that p satisfies

(4.4) det {(p) + p-2XI(p)} 0,

where

-(p)

b -b -b b

r/(r) r/(r) 1-r/(r) r/(r)+4a2b1p +4a2b2p 4a2b2p 4a2blp
exp (pslr) exp(-pszr) exp (p2) exp (-psl

b 1+ r/(r) -b r/(r) -b 1-r/(r) b 1---r/(r)
4a blp

+
4a b2p 4a b2p 4a blp

exp (ps, r) exp (-pszr) exp (pszr) exp (-ps,
and"
(4.5)

with

for k= 1, 2, 3, 4.
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(4.6)

The approximation of p is done by dropping the (p-2) terms in (4.4)"

0 det .(p)

( b2-1
=4b2 1+

4a2b,p
q(Tr) e’< 1 -4a-Zp q(Tr) e

1-q(rr) e’- l+rl(rr e
4aZb2p 4a2b2p

This is of a higher order approximation to p than that given in 3. Therefore p satisfies
either

(7r) e =0(4.7) 1 +4a2b,p rl( vr) ep,= 1

or

(4.8) 1-4a2b2--fi rl(’rr) e2 1 +4aZb2p e’2 O.

Note that (4.7) is obtainable from (4.8) by the formal change of variable

(4.9) :2 -so,,
therefore we need only solve (4.7), where from

e2" (1 (b2-1)r/(rr)’/(
(4.10)

1 k
P=27r, ln w(p)+ i, k 77.

(b2- 1)r/(Tr)) =-,o(p),4a2b,p

Since

(4.11)

In w(p)
(b2-1)r/(r) 1 [(b2-1)n(r)]2 1

-+2 -i -5+ (P-’)’2a2b, p P
large,

SO

(4.12)

we have

(4.13)

where

k
-i:, +

p

k2 k 12 __+ lnw(p)+ In2(to(p))p , --"JT 47r2:12

k2 a4k2

3/, + x/a4- 3/21
=--k23/, + ik2x/a4-
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k
,2 i--- In to(p)

k [ (be-1)r/(Tr) 1 -2)]-+O(p7r: 242b:1 p

(b2- 1)r/(Tr) k

24=br:31 p

(b- 1)r/(Tr)
2a 2 b.tr

2a27r i.

+ (p-’) (by (4.12))

(a4- /21) 1/2

’11(7/’) ’)/1

77" v/a 4
3/1 71"

(p-).

+C(p-=)

Combining the above in (4.13), we therefore have

(4.14)
2 (k2 ’1"17)) ( 2_p y,+ + k2da4- 71 x/a y2

(by (4.11))

if- O(p -2

k 77 is large.

Similarly, (4.8) will lead to

(4.15)

Now we return to solve

(4.16) det [()+ -l()] 0,

namely, (4.4). By a careful peurbation argument, we can again show that the eigen-
frequencies I of (1.11), (1.2) have the asymptotic expansion

( ) ( 1

Y ()+() ]AI large.(4.17) A kyl+ k2a4- y-(a4_
Therefore we conclude

THEOREM 3.6. Consider (1.11) and (1.2). Assume that yl(X)yl is constant
satisfying (1.7). Let A be an eigenfrequency of the system; then for [A] large,

A _(k2yl+)) i(k2a4 2__
1 a4-- T(4.18)

k is large.

Therefore we see that, asymptotically, the contribution of the viscous damping
term 2my2(x)oy/ot to the total rate of decay

(4.19) [k2yl +()
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is rather insignificant because the contribution rt(Tr)/Tr=Io y2(x)dx/Tr is fixed,
whereas k2yl can grow large very fast. If yl(x) is not constant, then the asymptotic
decay rate (4.19) would contain a if(k) term, which is still of larger order of magnitude
than (Tr)/Tr. Also, it contributes a constant phase shift

(a4- -to the overall (temporal) phase

A special case of (4.18) is when

(x) y O.

Then we have

(4.20)
__1 72(X) dx + k2a2 + l

This says that the rate of decay is the average of the viscous damping coefficient
function y2(x) on [0, 7r]. This is consistent with (1.14) and has also answered (Q2)
affirmatively which was posed earlier in 1.

5. Proofs of two technical lemmas.
Proof of Lemma 3.1. We.pointed out earlier in 3 that in A(p) of (3.7), K1, K2,

Fl(Tr), and Fz(Tr) are finite, q%(p), 1 =<j, k=<4, are uniformly bounded for IPl large.
Let k0 be a sufficiently large positive integer, and k ;, ]kl->-ko. Let p Glk. Then

=p(k)+(ei+ie2) (cf. (3.16)),

where levi 1, lezl 1. We have

e(’+i:)r’(=)[, (’.’p(k)r() ik),

[E2(p) le-[O’(k)+et+ie2]r2()] [e-(’+i2)r2()l exp --a2 +2
( a k)(a iffi)

++i+
SO

IE:(p)I-->+ as k--> +o,

IE3(p)[--> +0 as k -> -o.
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Similarly, we can show that

IE3(p)I /cx3 as k-* +,

IE3(p)I - 0 as k -.
Let us look at the case p GI+, k => ko. From the above, we see that E(p), E2(p),

and E4(p) are bounded uniformly in k in p, while ]E3(p)I-/ as k- /cx. Applying
the fact that

det

al / bll a12 a13

a2 + b2 a22 a23

a3 + b31 b32 033

a41 / b41 a42 a43

11 (/12 (/13

det a2 a2 a23

a31 a32 a33

041 042 043

a14

a24

(/34

a44

a14 bll a2 a13 a14

a24 +det b2 a22 a23 a24

a34 b3 a32 a33 a34

a44 b41 a42 a43 a44

four times, we can expand det A(p) into four determinants, such that

det A(p) det Ao(p) + 2 det A(p).
j=l

In each Aj(p), j 1, 2, 3, there is at least one column having 1/p as a common factor.
Hence we get (3.18).

The other cases (3.18)’, (3.19), and (3.19)’ can all be treated in the same manner.
So the proof is complete. [3

Proof of Lemma 3.2. We proceed in two steps.
(1) There exists kl 7/+ such that for k 7/, kl--> k, there exists one and only one

solution t; of (3.9) in Gig, for i= 1, 2.
We need only consider the case i= 1, k-> k. From Lemma 3.1, equation (3.9)

can be written as

4b(0) b(Tr)K,K[El(p) E4(p)][E3(p) E2(p) / p-l[gl(p)E3(p) / g2(P)] 0,

1 g, (i0 E3(io / g2(P)
(5.1) E,(p)-E4(p)+-" =0,

p 4b(O)b(’rr)KK2[E3(p)-E(p)]

or

(5.2) El(fl)-E4(fl)/! g(p) 0,
p

where g(p) is uniformly bounded for pc Gl+k, k => kl. Define F(p)= EI(p)-E4(p).
For p OG+,

[F(p)l le[P,(k)+e,+ie2](a+i3) e-[O,(k)+e,+ie2](a+i3)]
]e(e’+i)(+i)- e-(e’+ie)(a+il3) (by (3.12))
e-,-2, e-i(,+2l. e(,-2 e’(,+2_ .

Refer to Fig. 3. On l" el 1,-1 N eN 1, we have

IF(p)[ le-(-2)1 ]e2(a-e2) e2i(+e2a)- 11
e-" -)[ e"-) 1 M > 0 (’.’a > fl ).
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1/4

-1
12

FIG. 3. A small neighborhood.

On 13 e -1, -1 _-< e2 _-< 1,

IF(p)I--le-(-"-:)l" e(-"-:) e2i(-+%)-- 11
>= e"-’[ 1 e-2’-3] M2> O.

On 12" -1 -< e -< 1, e2 -1,

IF(p)I- le-’+l" le=+ e’-- 11

We claim that

min lez(’’"+’) e2i(e1’8-)- II > 0.

oOtherwise, there exists el [-1, 1] such that

e2(e1c+/3) e2i(e-’) 1 O,

implying

2( oe 10 -"/) 0 / 0 O

2(e/3 a) 0’ i.e., el=--.

So a2+/32= 0, a =/3 0. This is a contradiction. Therefore on 12,

In(p)l >-- M3 > 0 for some M3.

Finally, on 4 -1 _--< 81 : 1, 82 1,

IF(p)l- le-(’"-’)l" e(’"-’) e2i(%/3+")-- 11
>= e-("-) le2(’"-) e2i(e’+’)- 11 >-- M4> O,

for some M4 > 0, for the same reason as on 13.
Let Ms min (M1, M2, M3, M4).
The uniform boundedness of g means that there exists M6> 0 such that

for all/9 e Gl+, k _-> ko.Ig(p)l -< M6

Choose kl >----ko such that for p

2M6
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Then for p e OGlk, k >-kl, we have

IE,(,o) E4(,o)l >- Ms > ---= P

Since E(p), E4(p) and p-g(p) are all analytic in p, by Rouch6’s theorem there exists
one and only one solution/; of (3.7) in G+k. The other cases can be treated similarly.

(2) For IPl large, there are no solutions t; of (3.9) outside G U G2.
From (5.1) and (5.2), we can write

1
e2r’()- +- 0

/ e-SF1()

or

1
(5.3) e2fir’(=) 1 +- ()= 0.

P

Assume that as I/1-, oo, exp [2fiFl(Tr)] becomes unbounded. Then from our foregoing
discussions, we have

Iff(/)l bounded as I;I-, oo,

Therefore from (5.3)

fi 2Fl(Tr-ln +i

1 (if(P))=p(k)+2F1)Tr,In 1-
P

showing that/ e G for Ifil large.
If instead we use equations derived from (3.19), (3.19)’, then /e G2 for IPl

large. D
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EXPONENTIAL DECAY OF THE ENERGY OF A ONE-DIMENSIONAL
NONHOMOGENEOUS MEDIUM*

JONG UHN KIMf

Abstract. The energy method based on wave propagation is used to show that locally distributed
damping can stabilize the motion of a composite bar exponentially fast.

Key words, exponential decay, nonhomogeneous bar, energy method
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Introduction. In this paper we prove that locally distributed damping can stabilize
the motion of a one-dimensional nonhomogeneous medium exponentially fast.
Specifically, we consider either longitudinal or torsional vibration of a non-
homogeneous bar. The bar is composed of two different segments, only one of which
is damped.

The model equations are

a(x) 0 in (0, oe) x (L, L),(0.1) ml(x)
Ot2 Ox

02u 0 ( O_x) 0u=0 in(0, c)x(L2, L3),(0.2) m(x)
t ox a(x) + b(x)

t

where L < L2 < L
The bar is represented by the interval (L1, L3) and consists of two different parts,

represented by (L1, L2) and (L2, L3), respectively. Here, mi(x), ai(x), 1, 2, and b(x)
are appropriate physical coefficients accociated with each segment. At the interface
x L2, we impose the transmission condition:

(0.3) lim u(t, x)-- lim u(t, x),
L2- L2q-

(0.4) lim al(x) mOu
i2- Ox

(t, x) lim a2(x) O--u-u
x-+ Ox

(t’x)"

At the boundary x L1, L3, we assume

(0.5) u(t, L,) u(t, L3) 0.

It is known that the energy of a single bar with damping distributed over the whole
interval decays exponentially fast with the homogeneous Dirichlet boundary condition
(see 1]). Here we join two different bars, only one of which has damping. An obvious
question is whether or not the energy of the combined system decays exponentially
fast. Similar problems have been discussed in [2], [3], and [7]. Chen gave a talk on
[3] at VPI and his talk motivated the present work. Reference [3] presents a general
theorem on an abstract evolution equation with partially distributed damping. The
result of [3] can cover various types of evolution equations. The conditions in [3] for

* Received by the editors April 17, 1989; accepted for publication (in revised form) April 27, 1990.
? Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA

24061. This research was supported by Air Force Office of Scientific Research grants AFOSR-86-0085 and
AFOSR-89-0268.
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the exponential decay of energy involve eigenvalues and eigenfunctions of the associ-
ated stationary system. Chen et al. also discussed some specific examples for which
these conditions can be easily verified. In fact, if m m2 const., a a2 const., and
b(x) > 0 on a certain subinterval, the above problem reduces to one of the examples
treated in [3]. However, when mi and ai, 1, 2, are variable, it is not obvious whether
we can verify all the conditions needed for their theorem. The well-established proper-
ties of eigenvalues and eigenfunctions ofthe Sturm-Liouville problem are not sufficient.
In this paper, we employ the energy method in the same spirit as in [7]. Rauch and
Taylor [7] treated problems on compact manifolds of any dimension without boundary
and also the case of a one-dimensional bounded domain with boundary. Their dis-
cussion of the latter case gives a clue for our problem. But more involved energy
estimates are necessary since the operator (after our problem is put in the framework
of [7]) is not strictly dissipative (according to [7]) at any point of the interval. We
also need a quantitative analysis of the energy transmission across the interface. The
main tool we shall use is a multiplier technique due to Lasiecka, Lions, and Triggiani
[5]. Our argument depends heavily on the phenomenon of wave propagation and does
not extend to nonhyperbolic evolution equations such as Euler’s beam equation.

In 1, we present some technical preliminaries, and in 2, we state the main
result and give the proof.

Notation. ()x or ]x denotes an interval for the x variable. Similarly, ()t or ],
is an interval for the variable. For the derivatives of a function, we use the following
notation:

O,f f =Of Oxf f
Of

Oxxf f,
oZf etc.

Ot’ Ox’ Ox2’

When f is an open subset of R", n => 1, then @’(f) is the space of distributions, and
Hm() and H’() are the standard notation for the Sobolev spaces.

When E is a Banach space and I is an open interval, we use the following notation:

(0.6) LV(I; E)= the set of all E-valued strongly measurable Lv functions on L

(0.7) C’(I; E)= {fe cm(I; E): supp f is a compact subset of I}.

(0.8) p(t) p(t/e)/e, where p(t) =a nonnegative even C function with support
in (-1, 1) and integral one.

1. Preliminaries. We shall present some properties of one-dimensional hyperbolic
equations, which will be used later.

LEMMA 1.1. Let A(x) CI([J, J2]) and B(x) C([J1, J2]) be 2 x 2 matrices. Sup-
pose that A(x) has real eigenvalues hi(x) and hz(X) such that 0<a_-<h(x)_-</3 and
-/3 _-< h2(x) <-- -a, for all x [J1, J2], for some positive constants < . Then, for given
h(t) e L2( T, T2), there is afunction v C([J1, J2] L2( T, T2),) satisfying the hyperbolic
system

(1.1) O,v a(x) Ov + B(x)v 0 in T T2) x (J, J2),

(1.2) v(t, J2) h( t) for almost all T1, T2).

Furthermore, for 0< c<min (J2-J1, a(T2-T)/2), v is uniquely determined in a

trapezoidal region { t, x): J2 c <_- x -< J2, T1 + (J2 x)/ a _-< -<_ T2 (J2 x)/ a }, and

(1.3) [v(t,x)[ 2 dt-M Ih(t) dt
T+ T

holds for each J2-c -x -J2, where M is a positive constant independent of x, , and h.
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Proof The p.roof seems to be known, hence we shall only sketch it. First, extend
h(t) such that h(t)= h(t), for TI<--t<- T2 and h(t)=0, otherwise. Next, choose a
sequence {h,(t)}= C((-, )) which approximates /(t) in L2(-, ). For each
h,(t), we use the method of characteristics to find v, C1((-, c)t [J1, Jz]x) satisfy-
ing (1.1) and v,(t, J2) h,(t), for all t(-, ). We then obtain a standard energy
estimate for v, in terms of the L2 norm of h,(t). By means of this estimate, we can
easily establish the existence of v C([J1, Jz]x LZ(T1, T2)) satisfying (1.1)-(1.3). The
uniqueness of v in Y is well known and the proof will be omitted.

LEMMA 1.2. Let 1) T1, T2)t (J1, J2)x and assume that b(x) C([J1, J2]), m(x)
and a(x) C([J1, J2]) with m(x), a(x) >= c > O, for all x [J1, J2], for some constant c.

If u H (1)) satisfies

(1.4) m(x) O,u-Ox(a(x) Oxu)+ b(x) O,u =0 in ’(),

then for any small 6 > O, we have

(1.5)

(1.6)

and

(1.7)

(1.8)

Otu, Ou C([J,, J2] L2( T + 6, T2- 6)t),

Ot OxU C([ T1, T2] Lz(J1 + 3, J2- 6)x)

[[OtU(X) L2( Tl.t-i,T2-6)t "3V

M(llo,ul]2()+ IlOxull    )) for each X [J1, J2],

I[Otu( t)llL2<j,+,J-) + ’(

  (110tu11, 2<  / I10xU11 2   ) for each

where M stands for positive constants depending, only on 3.

Proof Fix any small 3>0 and >0. Choose ql(t) C((G, T2)) and qz(X)
C((J,J2)) such that q,(t)=l, for t[T+3, T2-3] and q2(x)=l, for x
[Jl-I’- , J2-- ]"

Next we set q(t, x)= pl(t)cpz(X and v qu. Then v satisfies

(1.9) m(x) O,v-Ox(a(x) Oxv): g in ’(1)),

where

g -b(x)qou, + 2mq,u, + mq,u 2aqu axU aUqx.

We let

(1.10) v=v,p, g=g,p for small e>0,

where p(t) is the regularizer defined by (0.8) and the convolution is taken in the
variable. Then, for every small e > 0,

Ve C(( T1, T2)t H(J1, J2)x)

(1.11) m(x) OttV -O(a(x) OG): g

holds. Hence, Oxv C((T, T2),; H(J1,J2)x). We shall show that {O,v(x)} and
{Gv(x)} converge in L2( T1, T2), as e - 0 uniformly in x [J, J2]. Let w v v,. Then

(1.12) m(x) OttW-Ox(a(x) OxW)-- g-g,.

and
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Let us multiply (1.12) by Wx, choose any Xoe [J1, J2], and integrate over [T1, T2] x
[Xo, &]:

m(Xo)Wt( t, Xo)2 dt + a(xo)Wx( t, Xo)2 dt
TI T1

(1.13)
2 2 ,)2<-M (w,+wx) dxdt+ (g-g dxdt,

whre M is a positiv constant independent of" Xo, , and . W nxt choos any
to T, T], multiply (1.12) by wt, and integrate over T, to] [J, J:]:

(1.14) m(x)w,(to, X)2 dx+ a(X)Wx(to, X)2 dx=2 (g-g,)wtdxdt.
T1

By virtue of Gronwall’s inequality, it follows that

m(x)wt( t, x) dx + a(X)Wx( t, x)2 dx

(1.15)
<- M (g g dx dt for all t[T,T],

where M is a positive constant independent of e and e’. Combining (1.13) and (1.15),
we obtain

f T2 ; T2 fT2fj]2
,)2(1.16) wt(t, Xo)2 dt+ Wx(t, Xo)2 dt<-M (&-g dxdt,

where M is a positive constant independent of Xo, e, and e’. It follows from (1.16)
that {O,v(x)} and {OxV(X)} converge in L2( TI, T2)t uniformly in x e [J, J2]. Therefore,
Otu, OxU C([J1 + s:, J2- Se]x L2( T1 + t, T2- t)t). Since sc is arbitrary, we conclude that

(1.17) O,U, OxUe C((J,J2); L2(T,+ , T2- ),),

for each 0<6<(T2-T)/2. Next we extend m(x), a(x), and b(x) such that /(x) e
C([J-I, J2+I]), th(x) and a(x)eC([J-l, J2+l])with th(x),a(x)>=c/2>O for
all x e [J 1, J2 + 1 ]. Then, we consider the hyperbolic system

(1.18) o,g-a(x)/rfi(x), Oxg+-gtx(X)/rfi(x), )(x)/rfi(x)
g=0.

Let a be a positive constant such that

(1.19) a(x)/th(x) -> a 2 for all x e [J 1, J2 + 1 ].

Fix any small r/> 0. We apply Lemma 1.1 by choosing e,(o7) at x J + as the initial
datum to find a function

U C([S 1, Sl nt- T/]x L2( T, + a, T2- a)t),

which is equal to (oTu) in (J1, J1 + r/) x T + a + r//c, T2 8 / c ). Since a and r/ are
arbitrary, we derive that O,u, OxU C([JI, J2),, L2( T1 + a, T2- a),) for each small > 0.
Similarly, we can apply Lemma 1.1 near x J2 and obtain the continuity at x J2.
Now the proof of (1.5) is complete.
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To obtain the estimate (1.7), we first derive an analogue of (1.13) for v defined
by (1.10)"

(1.20) vt(t,x)Zdt+ vx(t,x)Zdt<M(8,)l[ull 2
H’m) for all x [J1, J2],

T1 T1

where M(8, :) is a positive constant depending only on 6 and . It follows from (1.20)
that

(1.21) (ut(t,x)2+u(t,x)2) dt <
T+

for each x 6 [J + (, J- ].
Again we apply Lemma 1.1 with the initial datum (o7,) at x J +

respectively. Formulas (1.3) and (1.21) imply

(r--e/ )2(u,(t, x + Ux(t, x)2) dt

(1.22)
’(m for all x e [J,, J, + ] U [&- g &],

where M(6, ) is a positive constant depending only on 6 and . Since 6 and are
arbitrary, it follows from (1.21) and (1.22) that for each 6 > O,

T2-6
)2(1.23) (u,(t,x +Ux(l,X)2) dtMllull,(),

JT+

for all x [J, J2]. Next we lt

(.4)
meas (a)

Then, a e H(a) and satisfies (1.4). Therefore, a satisfies (1.23)

)2(.2s) (a,(t,x

for all x e [J, &]. But, O,u =0,, Ou =0, and, by Poincare’s inequality,

holds. Now (1.7) is obvious. The proof of (1.6) and (1.8) can be carried out in a similar
manner, and we omit the details.

LEMMA 1.3. Let
C’([J,, &]) with re(x), a(x) c > O, for all x [J,, &]. Suppose that u satisfies

(.27) ueU’(),

(.28) re(x) o,,u-o(a(x) ou)+ b(x) o,u =0 in ’().

en, it holds that

(1.29)

for each small 6 > O, where

(T,+ , T-8)x(J,+,&-),
and M is a positive constant independent of u and dependent only on
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Proof It follows from (1.9)

(1.30)

Using qu =O(qu)-q,,u and integration by parts, we can easily derive (1.29) from
(.30).

2. Main result. Throughout this section, we assume the following:
(i) m(x), al(x) CI([L1, L2]) and

(2.1) ml(x), al(x) _->/3x > 0 for all x ILl, L2].

(ii) m_(x), a2(x) CI([L, L3]) and

(2.2) mz(x), a2(x) _>-/32 > 0 for all x [L2, L3].

(iii) b(x) C([L2, L3]) and

(2.3) b(x) ’ 3> 0 for all x [L, L3].

Here fl’s are positive constants, and we do not assume that al(L) a(L2) or ml(L2)
m2(L2).

We define

(2.4) " 4(L3- El)(
I. maxL1 ,L2]

(ml(x)/al(x))l/2+ xmaxL2 ,L3] (m2(x)/a2(x))l/2).
Before we present the main result on the uniform stabilization, the existence and
uniqueness of solutions should be made precise.

LEMMA 2.1. If Uo(X) H(L1, L3) and Ul(X) L2(L, t3), then there is a unique
function u such that

(2.5) u E C([O, oo)t H(L1, L3)x), Otu C([O, oo)t L2(L1, L3)x),

(2.6) u(O, x) Uo(X), Otu(O, x) Ul(X) for almost all x (L1, L3),

ml(X)titft dx dt m2(x)tlttt dx dt
L L

I; ;L2 IOX3 IL’3(2.7) + al(X)Uxx dx dt + a2(X)UxdPx dx dt

io i+ b(x)tlt dx dt 0

holds for every ch C((O, o) (L1, L3)).
Proof This lemma seems to be known. We can prove this by following the

procedure in the proof of Theorem 8.1 of [6, p. 265] and Theorem 8.2 of [6, p. 275].
The argument is due to [8]. We omit the details.

Next we show that the above solution satisfies the transmission condition at x L2

LEMMA 2.2. For any T> O, the above solution u satisfies:
(2.8)

(2.9)

(2.1o)

(2.11)
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Proof It is easy to see that the solution can be uniquely extended to (-oo, oo), so
that

(2.12) u E C((-oo, oo)t H(L1, L3)x),

(2.13) Otu C((-, )t L2(L1, L3)x).
Now (2.8) and (2.9) follow from Lemma 1.2. Condition (2.12) implies (2.10).

To show (2.11), we fix any T>0 and C((0, T)).
Let us denote by [,] the L inner product in L2(0, T),. Then, according to (2.7),

ml(x)[ut, Ot](x)$(x) dx- m2(x)[ut, Ot](x)$(x) dx
L L

(2.14) -ll- 1" L2

L1

+ j"L3
L2

L

al(x)[u,, q](x)4,(x) dx + az(x)[ux, 0](x)4x(x) dx
L2

b(x)[u,, 6](x)6(x) dx=O,

holds for each 4 C((LI, L3)).
This implies, by choosing b C((L, L2)) and b C((L2, L3)),

(2.15) --m(x)[ut, @](x)-Ox(al(x)[Ux, t](x))=0 in ’((L1, L2)),
and

(2.16)- m2(x)[u, O,](x)-Ox(a(x)[Ux, 0](x))+ b(x)[ut, 0](x) =0 in ’((L2, L3)).
Since [u,, 0,](x) L(L1, L3), we infer from (2.15) and (2.16) thatOx(al(x)[Ux, 0](x))
L2(L1, L2) and O(a2(x)[Ux, 0](x)) L2(L2, L3), and that (2.15) and (2.16) hold in
L2(L, L2) and L(L2, L3) respectively. Hence, for each e C((Lt, L3)),

L2 L3
m,(x)[u,, Ot](x)(x) dx- m2(x)[u,, O,](x)(x) dx

L L

(2.17) (X) Ox(al(X)[Ux, O](X)) dx- (x) Ox(a2(x)[Ux, O](x)) dx
L L

L3
+ b(x)[u,, 6](x)6(x) ax=O.

L2

After integration by pas using (2.8) and (2.9), we compare (2.14) and (2.17) so that

(2.18) lim (x)al(x)[Ux, 0](x)= lim (x)a2(x)[u, ](x).
L2- L2+

Since (2.18) holds for all C((L1, L3)) and 0 C((0, r)), (2.8) and (2.9) imply
(2.11). This completes the proof of Lemma 2.2.

We are now ready to present the main result. Let u be the above solution and we
set

(2.9) (t) (u,, U,)l+(U, u),

where (,) and (,) are defined by

(2.20) (, 2)1 m(x)l(X)2(x) dx + m(x)l(X)2(x dx,
L1 L2

I L2 L3
(2.21) (,, )= a,(x)(oe,)(o) & + a(x)(o,)(o) &.

Lt L2

The main result is Theorem 2.3.
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THEOREM 2.3. There are constants C > 0 and ce > 0 independent of u such that

(2.22) E (t) <-_ C e-atE (0) for all >= O.

The remainder of this section will be expended on the proof of (2.22).
The basic idea is to establish

(2.23) E( T) <= k( T)E(O)
for some T> 0, where 0< k(T)< 1 is a constant independent of u. Formula (2.23)
implies (2.22). For (2.23), we need Lemma 2.4.

LEMMA 2.4. Let T> 3 (defined by (2.4)) and define a function space

X-- {rE Hi((0, T) x (L1, L3)): v(t, L1)= v(t, L3)=0

for almost all E (0, T), and v satisfies
(2.7) for every & H((O, T) x (L1, L3))}.

Then for each e > O, there is a positive constant C T, e) such that

I-ff IoZl L3
2 IoT; L3

(2.24) ((v,, v,)l +(v, v)2) dt<--C(T, e) v, dxdt+e v dxdt,
L2 L2

for all v X.
We shall show that (2.24) implies (2.23).
First, E(t) satisfies

I[2 I L3
(2.25) E(t2) E(tl)-2 b(x)u 2, dxdt for all t2 >-- tl>0.-

tl L2

Since u C([0, T], H(L1, L3)) and E(t) is nonincreasing in by (2.25), it is easy
to see that

(2.26) u dx dt <- MT(0),
L

where M is a positive constant independent of u and T. By choosing e 1/T, it follows
from (2.3), (2.24), (2.25), and (2.26) that

(2.27) E(t) dt<=(E(O)-E(T))C T, +ME(O).
C 2fl3

Since E(t) is nonincreasing in t, we have

(2.28) TE(T)<= E(t) dt+2E(O),

which, combined with (2.2?), yields

(2.29) T+C T, E(T)<= M+2’+z--7-_ C T, E(0).
2/33

Hence, by taking T> M+ 2’, we get (2.23).
Before proceeding to prove Lemma 2.4, we need to show Lemma 2.5.
LEMMA 2.5. Let v X. Then v satisfies

(2.30) lim Otv(t, x)= lim Otv(t, x) in L2(c, T-6) for any 3>0,
L L2+

(2.31) lim a(x)Gv(t,x)= lim a2(x) Gv(t,x) in L2(6, T-6) for any 6>0.
L L2+
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Proof Since Oxv L2((O, T) (L1, L3)), we find that v
possibly after a modification on a set of measure zero. Thus, we have

(2.32) lim v(t, x) lim v(t, x) in L2(0,
L2- L2+

In the meantime, it follows from Lemma 1.2 that

(2.33) O,v, OxV C([L1, L2] L2(6, T- 6),),

(2.34) O,v, OxV C([L2, L3]x L2(6, T- 8),),

for any 8 > 0, which, together with (2.32), yield (2.30). Equation (2.31) can be derived
by the same argument as for (2.11), and we omit the details.

Proof of Lemma 2.4. Suppose that (2.24) is false. Then there is some eo> 0 and
sequences { C,}_ 1, { v, }= c X such that C, - oo and

((OtVn, Otl)n) "’(Vn, Vn)2) dt > C, (Otv,)2 dx dt + eo v, dx dt.
L2 L2

Meanwhile, it follows from Lemma 1.2 that for all x [L2, L3]

(2.36)
T-3/4 f T-/2

{(O,v,( t, x))Z + (oG( t, x))2} dt <= C {(Otv,)Z + (OxV,)2} dx dt,
d 3’/4 d ’/2

where C is a positive constant independent of v,.
Noting that U= (o7C) satisfies

al(x)/ml(x), OxU+ U=0,
-Gal(x)/ml(x),

in (0, T) x (L1, L2) and recalling (2.4), we can use (1.3) of Lemma 1.1 to derive for all
x [L1,

(2.38)

{(O,v,( t, x))2 + (Oxv,( t, x))2} dt

T-3/4

3’/4
{(Otv,(t, L2))2 + (OxV,( t, L2))2} dt,

where C denotes a positive constant independent of v,.
Now, we combine Lemma 2.5, (2.36), and (2.38) to find

(2.39)

{ml(x)(Otv,)2 + al(x)(OxVn)2} dx dt

T-/2 f L

<- C {mz(x)(Otv.)2 + a2(x)(O,v,)2} dx dt,
d /2 L

where C is a positive constant independent of v,. Hence, it follows that

(2.40)
for-c/2 f G {m2(x)(O,v,)2 + a2(x)(OxV,)2} dx at

/2 L

(Otv,) 2 dx dt +>C+I L2 C+I

T I 2v dxdt.

Now we set

(2.41) /(f-c/2f3 )1/2w, v, {m2(x)(O,v,)2 + az(x)(OxV,)2} dx dt
d /2 L
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Then wn e X and
T--/2

f
L

(2.42) {m(x)(o,w) + a(x)(OxW)} dx dt 1,
d /2 L

CF/ ;0It’ I L3
)2 0 IoFIL3(2.43) 1 > (O,w, dx dt + w, dx dt,

C+I C+I

hold for every n.
According to Lemma 1.3, we derive from (2.43)

(2.44) (OxW,)2 dx dt N M for all n,
d if/8 alL2+

where =(L g2) and M is a positive constant. By means of (2.43), (2.44), we can
apply Lemmas 1.1 and 1.2 in the same manner as for (2.39) to obtain

(2.45) + (Gw,) dx dt N M for all n,
d if/4 L L3- D

so that
T-/4 f L

(2.46) {(0xw,)2 + (0tw,)2} dx dt <- M for all n.
/4 L

Again by the same argument as for (2.39), we obtain from (2.46)
T-/2 ff

L

(2.47) {(0xw,)2 + (0,w,)2} dx dt <- M for all n.
aK/2

By (2.46) and (2.47), we can extract a subsequence still denoted by {w,} such that

(2.48)

(2.49)

for some

Otwoo L2((sr/2, T-/2) x (L1, L3))[’-]L2((/4, r-/4)x (L2, L3) ).
satisfies

OxW, OxWoo weakly in L2((sr/2, T- ’/2) x

L2((’/4, T- ’/4) x

O,wn O,w weakly in L2((ff/2, T- if/2) x (L, L3))

t2((ff/4, T- if/4) x (Lz, L3)),

w L2(/2, T- /2; H(L,, L3)x) Hl((/4, T- /4) x (L2, L3))
This w

with
also

Proof See [4] for the proof.

p,rn + q,sn pr + qs in @’().

(2.50)
T--/2 ff L+ b(x)(O,woo)chdxdt=O,

d 2 L

for every beH((’/2, T-/2)x(L1,L3)), and a similar equation for every
H((sr/4, T-st/4)x (L2, L3)). Next we shall investigate the implication of (2.42) and
(2.43) on w. The following version of the div-curl lemma is useful.

LEMMA 2.6. Let {p,}=l, {q,}=, {r,}=, and {s,}-i be bounded sequences in
L2(-), where 1) is a bounded open subset ofR2. Suppose that Oxp, O,q,, for each n and
that {O,r, "Jl-OxSn}n_l is bounded in L2(-). If p, p, q, q, r, -. r and s, - s weakly in
LZ(f), then
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By setting Pn "-OtWn, qn =OxWn, rn m2(x) OtWn, Sn =--a2(x) OxWn, we use (2.46),
(2.48), (2.49), and

(2.51) mz(x) OttWn -Ox(a2(x) Oxw,)+ b(x) OtW "-’0

to conclude

in @’((0, T) x (L2, L3))

(2.52) m2(x)(Otw,)2- az(x)(Oxw,)

-+ me(x)(O,wo)- az(x)(OxWo)

By virtue of (1.7), (1.8), and (2.46), we find

(2.53)

(2.54)

in ’((sr/4, T- ’/4) x (L2, L3)).

L2+e d/2 aT--/2-

+ {(0xw,)2 + (0,w,)2} dx dt <- Me,
d /2 dL L3--e

for all n and all small el > 0,

){(Oxw,)Z+(O,w,)2} dt dx<= C(l)2

for all n and all small e2 0.

Here, M and C(el) are positive constants.
Fix any small e > 0, and choose el so that

(2.55) Me1 < e (M is the same as in (2.53))

and then,, choose e so that

(2.56) C(e)e2<e (C(el) is the same as in (2.54)).

There is a function C((’/2, r-/2) x (Lz, L3) such that 0-< _-< 1 and xIt(t, x)=
1, for (t, x) [s/2 + e, T- /2- e] x [L + el, L3- e].

By (2.52), it is clear that
r--/2 g

lim {m2(x)(O,w,)2- a2(x)(Ow,)} dx dt
n d /2 L

(2.57)
T-C g

d /2 L

Combining (2.53)-(2.57), we obtain

r--/2 g

lim {m2(x)(o,w,)2- a2(x)(ow,)2} dx dt
n d/2 L

r--/2 g

(2.58) {m(x)(o,w)2- a(x)(OxW)} ax at
a /2 2

< Ce where C is a positive constant independent of e.

Note that w also satisfies (2.53) and (2.54). Since e is arbitrary, we have

(2.59)

T--/2 IL.3lim {m(x)(O,w)- a(x)(OxW,,)} dx dt
,d 2

{m2(x)(OtWoo)2- a2(x)(OxWoa)2} dx dr.
/2 L
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In the meantime, it follows from (2.43) that

(2.60) lim (Otwn)2 dx dt 0
L2

and thus
T--(/4 I L3

(2.61) (0twoo) 2 dxdt=O.
’/4 L

Now we see from (2.42), (2.59), (2.60), and (2.61) that

T--/2 f
L

(2.62) a2(x)(Oxwm)2 dx at 1.
U2 2

Since O,w=O in (r/4, T-’/4) (L2, L3), it follows from Lemma 1.2 that

(2.63) lim a2(x)Gw(t, x) fl in L2(’/2, T- st/2),
L2-+-

for some constant/3. By the same argument as for (2.30) and (2.31), we see that

(2.64) lim Otw(t, x) 0 in L2(3’/4, T-3’/4),
L

(2.65) lim a(x) O,w(t, x) --/3 in L2(3sr/4, T- 3r/4).
L

Let us consider the initial value problem:

(2.66) ( 0, 10) ( 0, 00)al(x)/ml(x), OxY- Y=O,
Gal(x)/ml(x),

(2.67) Y(L2)--(/al(n2))"0

Then, by Lemma 1.1, we conclude that

(Owo( t, x))(2.68) Y(x)

Consequently, Otw 0 in (’, T- sr) x (L, L3), and w satisfies, according to (2.50),

(2.69) (w, b)2=0 for all 4 H((L1, L3)),

which yields w---0 in (st, T-sr) x (L, L3). This contradicts (2.62), for O,wo=O in
(st/2, T- st/2) x (Lz, L3). This completes the proof.

3. Final remarks. We have considered only a special combination of different
bars. But it is obvious that the same method can be applied to any combination of
several different bars at least one of which is damped.

In (2.3), we assumed that b(x) ->_ J3 > 0, for all x [L2, L3]. If b(x) >-/33 > 0, only
for x I c [L2, L3], then we can regard the bar as a combination of different bars:
[g2, L3]--IU (one or two segments). Then, the same method can be still applied.

It is also easy to see that the boundary condition at one end can be replaced by
the homogeneous Neumann boundary condition.

Note added in proof. After this paper was submitted, the author found the works
of Ho [9] and Lagnese [10] which are closely related to our problem. They considered
the case of smooth coefficients without discontinuity by different methods.
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ON A CONVEX PARAMETER SPACE METHOD
FOR LINEAR CONTROL DESIGN OF UNCERTAIN SYSTEMS*

J. C. GEROMEL-, P. L. D. PERES-, AND J. BERNUSSOUz

Abstract. This paper presents a new procedure for continuous and discrete-time linear control systems
design. It consists of the definition of a convex programming problem in the parameter space that, when
solved, provides the feedback gain. One of the most important features of the procedure is that additional
design constraints are easily incorporated in the original formulation, yielding solutions to problems that
have raised a great deal of interest within the last few years. This is precisely the case of the decentralized
control problem and the quadratic stabilizability problem of uncertain systems with both dynamic and input
uncertain matrices. In this last case, necessary and sufficient conditions for the existence of a linear stabilizing
gain are provided and, to the authors’ knowledge, this is one of the first numerical procedures able to handle
and solve this interesting design problem for high-order, continuous-time or discrete-time linear models.
The theory is illustrated by examples.

Key words, linear system control, linear programming, cutting-plane techniques, robust control

AMS(MOS) subject classification. 93C15

1. Introduction. The Linear-Quadratic Problem (LQP) has been extensively
studied in the last decades. As a natural consequence of an enormous deal of work
and interest, many properties of its solution came to light (see, for instance, [1] and
the references therein). One of the most important properties states that the optimal
solution of the LQP can be expressed as a linear feedback law which stabilizes the
closed-loop system. It can be numerically determined by finding the positive-definite
solution of a Riccati-type equation which also provides a quadratic Lyapunov function
associated with the closed-loop system [1]. This important fact has served as a basis
for the analysis of the dynamic behaviour of the closed-loop system when subjected
to several classes of perturbations yielding many known robustness conditions [9],
[21], [22].

However, almost all properties of the LQP, including those mentioned above,
disappear when any additional design constraints are added. Among the problems
raised, either the linearity of the optimal control law is lost or the associated problem
to be solved in the parameter space (the elements of the matrix gain) does not present
any property like convexity which obviously is an interesting one for optimization
purposes [8], [15]. Furthermore, generally an initial feasible gain which stabilizes the
system is asked for and this can be a difficult task depending on the strucure of the
design constraints. In the case of the decentralized control problem, a tentative can
be made from the solutions of the LQP associated to the isolated subsystems. Unfortu-
nately, this procedure works only if the plant is weakly coupled [23] or if certain
matching conditions are fulfilled [10].

More recently, the LQP has been used to determine stabilizing feedback gains for
uncertain systems (see [24] and the references therein). When some matching conditions
are fulfilled, the stabilizing gain is determined from a Riccati-type equation, provided
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it admits a positive-definite solution [17]. However, it is important to keep in mind
that in all cases we must handle a nonlinear equation that probably must be solved
many times until it is decided whether or not there is a positive-definite solution [12],
[17]. This can be a serious drawback mainly if high-order systems are under consider-
ation.

In this paper we propose a convex parameter space method for linear system
control design. It is based on the fact that the stabilizability property is related to the
existence of a nonempty convex cone defined on the parameter space in the elements
of a positive-definite matrix. Consequently, the feedback control synthesis derives from
the global solution of a convex problem defined over the above-mentioned convex cone.

The paper contributes in several directions. First, the convexity of the design
problem opens the possibility of solving it, directly in the parameter space, by means
ofthe most powerful tools available to date in the mathematical programming literature.
Furthermore, additional convex design constraints are easily incorporated into the
original problem. This fact allows us to solve the decentralized control problem for a
wide class (called strongly decentralized) of linear dynamic systems. Necessary and
sufficient conditions for its solvability are provided. Another contribution is related to
the concept of quadratic stabilizability of uncertain systems [3]. Assuming the set of
uncertainties is bounded and convex (an hyper-rectangle, for instance), the uncertain
system is shown to be quadratically stabilizable if and only if the intersection of a
finite number of convex cones is nonempty. This simplifies the results of [3] and
enables us once again to find the Lyapunov function by means of a convex problem.
The feedback gain is found directly from its solution which is numerically determined
by constraints generation or by its dual the Dantzig-Wolfe decomposition principle
(column generation) [13]. Finally, all the results above are generalized to discrete-time
systems. In this case, the quadratic stabilizability problem is solved for the first time
without assuming any special system structure or matching conditions.

The paper is organized as follows. The first sections are devoted to the analysis
of continuous-time systems. In 2 some definitions are introduced and the basic design
problem is stated. Extensions for dealing with decentralized control and quadratic
stabilization of uncertain systems are considered in 3. Since one of the main control
objectives is to get a small feedback gain, the index of the basic design problem is
chosen for this purpose.2 It will be defined in terms of an extended system model
introduced in 4. In the next section, several numerical aspects are considered. In
particular, the iterative procedure for control design is stated and its convergence
analysed.

In 6 the same results for discrete-time systems are stated. Although there exist
many different theoretical aspects when compared with the theory developed for
continuous-time systems, it will be shown that the same numerical procedure can still
be used. Finally in 7 some examples are solved and simulation results are included
and compared with others available in the literature. In 8 we summarize the most
important conclusions.

2. Definitions and problem statement. In this section we introduce the basic design
problem written directly in the parameter space. Its relationship with the classical LQP

For alternative approaches leading to convex programming problems, see [6] and [20]. Unfortunately,
the parametrization introduced results in high-order compensators.

In principle, other important performance functions can be considered, making use of the concept of
majorization 19].
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is investigated as well. Consider a continuous-time linear system

(1) (S): 2=Ax(t)+Bu(t),

where x(t) n is the state vector and u(t) " is the control vector. The real matrices
A and B are of appropriate dimensions. Let us define the following set of matrices:

()
Es a= {2a’xx’ "": B’x=O, ]]x[[ 1},

where Ilxll denotes the Euclidean norm of x". Denoting the inner product of
matrices in the "" as (W, X)-a Trace (W’X), the set will be important in further
developments:

(3) &{W"": (W,X)<O,XE},

where E &E0 Es and W is assumed to be real and symmetric. This set is strongly
related to the stabilizability of system (S). This property can be easily verified by noting
that:

(4) W, X) < 0: X e Eox’Wx > 0 Vx "
and a similar relation holds for X Es, that is,

(W,X)<0:XEsCx’(AW+WA’)x<0 Vx: B’x=O.

Consequently, for We c, both inequalities (4) and (5) hold simultaneously. In view
of the above, the interpretation of is quite simple. Indeed, (4) states that W W’> 0
(positive definiteness) and (5) implies that all modes of (1) belonging to the nullspace
of B’ are asymptotically stable. Using a definition given in [25], we conclude that this
is possible only if the pair (A, B) is stabilizable. More precisely, we have the following
result.

THEOREM 1. The set c defined in (3) is such that
(a) # if and only if (A, B) is stabilizable.
(b) is a convex cone.
(c) If W, : , there exists X, , such that the set

,-{W,’’: (W, X,) < 0}

satisfies W, , D .
Proof The proof of part (a) is simple and is left to the reader. The proof that

is a convex set follows from its definition (3). Indeed, is the intersection of an
infinite number of open halfspaces defined by linear (and hence convex) inequalities.
On the other hand, for any W , hW , for all h > 0, consequently is a cone.
To prove the last part, we define X, as follows:

(6) X, ____a arg max {( W,, X): X Z}.

Since by assumption W, q, then (W,, X)>-0, which implies that W, ,. In addi-
tion, X, being an element of E, it is obvious that is a subset of ,. This proves the
theorem.

Theorem 1 deserves some remarks. From the proof we verify that in fact is an
open convex set. However, being a cone, it can be rewritten as

(7)

For arbitrary matrices with appropriate dimension, Trace (AB) Trace (BA).
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with/3 > 0. Now, c is closed and no loss of generality is introduced by a particular
choice of/3 > 0. Indeed, as will be seen in the sequel, the parameter/3 has no influence
on the determination of a stabilizing feedback gain. However, it is important to note
that in this case the set . must be changed into

(8) %={we"": (w, x,)_-< -t}.
Based on the above discussion, we adopt throughout the text the normalized value/3 1.

Part (c) of Theorem 1 states that for each W. c there exists a separating
hyperplane which separates W. from c. It is calculated from the optimal solution of
problem (6). At first glance it appears difficult to solve. However, from the definition
of 2; we readily see that

(9) max {( W,, X): X E} max {Po, Ps},

where po and ps are the optimal values of the left-hand side of (9) with I; replaced
by Eo and Es, respectively. Using (2), we get

(10) P0 -Am[ W,], Ps AM[ T’(R)(W,) T],

where 6)(W)a__ AW+ WA’, T 9t is an orthonormal matrix spanning the null-
space of B’ and Am[" ], AM[" denote the minimum and the maximum eigenvalues of
[.], respectively. Obviously, the optimal solution X,E is determined from the
normalized eigenvectors associated with po or ps.

Now, assume that the pair (A, B) is stabilizable and pick up from a generic
element W. From (4), we have W W’> 0 and, using Finsler’s lemma (see, for example,
[17]) to (5), there exists a symmetric positive-definite matrix R e,qt such that
6)(W) < BR-1B (see [4] for a particular choice of R). Consequently, the symmetric
positive definite matrix Q

(11) Q W-I[BR-1B’-6) W)]W-1

is such that P W-l> 0 solves the following Riccati equation:

(12) A’P + PA- PBR-IB’P + Q O.

This shows that the linear time-invariant feedback gain K R-B’W-1 is such that
the control law u(t)=-Kx(t) stabilizes (1) asymptotically and is optimal with respect
to the quadratic index

(13) min {x(t)’Qx(t) + u( t)’Ru( t)} dt

with V(x)= x’Px being a Lyapunov function for the closed-loop system. From the
results above, we conclude that there is a one-to-one correspondence between each
element of and a pair of positive-definite matrices (Q, R) which defines a standard
LQP. That is, the condition and the existence of a positive-definite solution for
(12) are equivalent.

However, from a numerical point of view, the above equivalence no longer takes
place. In the classical LQ design, matrices Q and R are chosen and (12) is solved for
P > 0, giving rise to the optimal feedback gain. As discussed in the Introduction, the
nonlinear nature of (12) imposes serious difficulties for the inclusion in the LQP of
additional design constraints.

Theorem 1 allows us to work directly in the parameter space ,9t "". A particular
stabilizing gain (and optimal in a certain sense) can be determined from

(14) min {f( W): W },
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where f(. ): ,qt -* is a convex matrix-valued function. Again, in view of Theorem
1, (14) is a feasible convex problem whenever the pair (A, B) is stabilizable. As will
be seen in the sequel, all machinery available to date in the mathematical programming
literature can be used to solve it. Furthermore, additional design constraints like
decentralization or parameter uncertainties are relatively easily incorporated in the
basic structure.

Keeping this fact in mind, the final choice of the index f(W) follows from a
simple design strategy: Define convex constraints which reflect the designer objectives
(a degree of stability a > 0 may also be included by simple substitution of A by A + al
in Zs) and choose f(W) such as the feedback gain determined from the optimal
solution of (14) be "small." This procedure will be deeply analysed in 4.

3. Decentralized and uncertain systems. First, we analyse the decentralized control
problem [5], [24]. To this end, we assume that in (1), B is a block-diagonal matrix,
that is,

(1) B Bo block-diagonal {B1, , BN},

where Bi )?livtli, i= 1... N. For convenience we introduce the following notation.
A subscript "D" in a matrix indicates that it is block-diagonal, each block with
appropriate dimensions. The set is now replaced by

(16) o &{Wo ’’: (Wo, X)<O,XZ}

and we define a class of decentralized dynamic systems.
DEFINITION 1. The system (S) is called strongly decentralized if there exist WD

Wb > 0 and Ko such that A BKo)’ W9 + W, A BKo < O.
Note that for this class not only the system must be stabilized by a decentralized

gain but, in addition, the Lyapunov equation associated with the closed-loop matrix
must have a block-diagonal solution. It is important to note that almost all the results
available in the decentralized control literature deal with this class of systems.

THEOREM 2. The system (S) is strongly decentralized if and only if o (.

Proof The "only if" part is proved assuming that there exist Wo and Ko satisfying
Definition 1. In this case (A- BKo) Wo + Wo(A BKo)’ < 0. Multiplying this inequal-
ity by x’ on the left and x on the right, for x 9" arbitrary, we get Wo, X) < 0: X
Since Wo is positive definite and block-diagonal, we conclude that Wo

The "if" part is proved by construction. Take any Wo o and determine
such that 19(Wo) < BR91B (this is always possible by Finsler’s lemma). Define Ko
R9BbW and observe that

(17)

A BKD)’ W9 + W A BKD
A’ W-DI + W-DA 2 W-DBR B’ Wy

--< W{O( WD)- BR9B’}W < O.

Note that by assumption B--Bo, and the theorem follows from Definition 1.
As a final comment, we note that Theorem 1, as well as all remarks after it, remains

valid if we replace the matrices by their decentralized representation. Obviously, the
difference between both theorems stems from the decentralized nature of the matrices
involved. In fact, o could be defined from by adding a number of linear constraints
which reduce to zero all off-diagonal elements of W e "". As a conclusion, we note
that the optimal solution of (14) for decentralized control synthesis is easier to calculate
than the former one since fewer variables are involved.
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Now we turn our attention to uncertain systems control. First, we consider the
case in which only the A matrix is uncertain. The general case will be analysed in the
next section. Suppose the linear system (1) is such that A DA, where

(18) DA & AG?nn" A= 2 AiAi, AiO, Ai--1
i=1 i=1

Obviously, DA is a convex and bounded domain. It is defined by a convex combination
of the "extreme" matrices A, i- 1 N. We claim that this representation of DA is
quite general. A particular and important case corresponds to linear systems where
the coefficients are known up to a certain precision defined by bounding them from
below and above (interval matrices).

DEFINITION 2. A collection of linear systems defined by (A,... ,AN, B) is
quadratically stabilizable via linear feedback control if there exist W- W’> 0 and K
such that (Ai- BK)’W-1 + W-I(Ai- BK) < 0 for all 1 N.

Defining the convex cone (see equation (3))"

(19) rg: = {W ,,. (W, X)<0, X Eu},

where o kA U kA Eu. The sets Ei, 1, N are given by (2) with A replaced
by Ai, 1 N. We have the following result.

THEOREM 3. The collection (Ai, , Au, B) is quadratically stabilizable via linear
control if and only if rgu .

Proof The "only if" part is obvious and thus omitted (see the proof of Theorem
2). For the "if" part take an arbitrary We rg:, define O(W)&AiW+ WAI, and
determine positive definite matrices R such that (R)(W)< BRr,B’, i= 1 N.

It is clear that any matrix R R’> 0 such that R -1 R-1 for all 1 N satisfies
(R)( W) < BR-B’. Setting K R-1B’W-1, we get

(A,- BK)’W- + W-(A BK)

(20) A’iW-I + W-IA-2W-BR-1B’W-1

_--< W-’{O(W)-BR-B’}W- <0, i= 1 N

and the theorem is proved by Definition 2.
It is interesting to observe that with the positive-definite matrices

(21) Qi-- W-[BR-IB’-Oi(W)]W-, i= 1... N

all Riccati equations

(22) AIP, -+- PiAi- PBR-’B’Pi + Q, 0

have the same positive-definite solution, namely, P W-, i-- 1 N. Consequently,
to each pair (Ai, B) it is possible to define a LQP which provides a linear feedback
gain independent of the index i= 1 N.

On the other hand, we can verify that the set Z u does not introduce any funda-
mental additional difficulty for the determination of the separating hyperplane (see
Theorem 1). Suppose that W, u then

(23) max {(W,, X): X Et:} max {po, p,""", pr},

where po is given in (10) and

(24) p ,M[ T’(R)i(W,) T], i= 1’’" N.

The optimal solution X, Eu is determined from the normalized eigenvectors associ-
ated to po and pl... pu.
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THEOREM 4. Assume A DA. The system (S) is quadratically stabilizable via linear
control if and only if the same holds for the collection (Ai," AN, B).

Proof. The necessity is obvious since Ai OA. The sufficiency is proved by taking
K R-1B’W-1 where W u and R is the matrix defined in the proof of Theorem
3. For all ADA, we have (remember that hi>_-0 and Yi=l hi= 1)

(25)

(A- BK)’W-1 + W-I(A BK)

AiA BK W-1 + W-1 E AiAi BK
i=l i=l

N

E Ai{(Ai- BK)’W-1 + W-I(Ai- BK)}
i=1

N

<=-- AiQi <0,
i:1

where the last inequality follows from (20) and (21). This proves the theorem proposed.
In view of both Theorems 3 and 4, we conclude that the uncertain system (S) is

quadratically stabilizable via linear control if and only if all extreme matrices which
define the uncertain domain DA are quadratically stabilizable via linear control. This
improves the results of [16] (mainly because it can be generalized to cope with
uncertainties in the input matrix too) since only a finite (N) number of matrices have
to be handled.

We want to stress that t is a convex cone for which separating hyperplanes are
easy to determine (23). Based on this property, we propose in 5 a simple and efficient
algorithm which verifies whether or not # and an affirmative answer provides
the stabilizing feedback again.

4. The extended system. In this section we introduce the extended system model
associated to system (S). The idea was first proposed in [2] and, as is seen below, it
allows us to solve the problems stated previously in a much more general framework.
For convenience, through this section we note p n + m.

The extended system associated to (S) is defined by

(26) (E)" Fz( t) +.Gv( t),

where z(t) p is the extended state vector and v(t) is the control vector. Matrices
F PP and G P are given by

0 I

As in 2 we define the sets of matrices

o{-zz ,. O’z=O, Ilzll 1},
(28)

{2F’zz’ ’’. ’z :0, Ilzll 1}.

Note that Zo in (28) is slightly different from the set defined in (2). As a consequence,
the elements of the cone

(29) &{PP" (, Z)<0, Z 6 Z}

with Z &o UZ are not necessarily positive-definite matrices.
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COROLLARY 5. The set defined in (29) has the properties stated in Theorem 1.

Proof Only part (a) is proved. For the proof of parts (b) and (c) see Theorem 1.
Assuming (A, B) is stabilizable, there exist matrices W W’> 0 and K with appropriate
dimensions such that

(30) (A- BK)’W-’ + W-’(A- BK) < O.

Forming the matrix 7/" ,qt pxp as

(31) o/g.= / W
KW

and, using the definition of c, we conclude that iV c. Conversely, assume that
Partitioning it as

(32) 72= Wl
W W

we immediately note that with W W1 and K WW-1, (30) holds. This proves the
first part of the corollary.

From the above we conclude that no condition is required for the matrix W3
and, more importantly, for any W % it is always possible to choose W3 such that
7g’ c and 7//’=

Consequently, there is no loss of generality if we redefine % as being (see the
discussion concerning the closure of just after Theorem 1)

(33) c-a {7//" 7r’_-> 0: (Tg’, Z)_-< -1, Z 6 E}.

Now, assume that 7/V c is partitioned according to (32). Two facts are of great
importance. First, WI->I and, second, the positive definiteness of 7/V implies that
W3->- WW- W2. For all 7/2 c the corresponding stabilizing gains satisfy

(34) KK’<- KWK’= W’W1W2 W G’Tg’G,

which implies that IIKII=<-_AEG’G]. We can select a small stabilizing gain from
the solution of the basic design problem (14) with

(35)

It is important to note that f(Tg) is a convex (but not everywhere differentiable)
function. Indeed, its epigraph [13] can be written as

(36) epi f a {(p, 7/V) p -> 7/V, Z), Z E},
where E- is orthogonal to Eo defined in (28).4 At this point, it is obvious that the basic
design problem can be rewritten as

(37) min {p: (p, 7g’) epi f, 72 }.

In the next section we propose an algorithm based on the dual-simplex procedure able
to detect whether and in the affirmative determine a stabilizing feedback gain
with small norm (in the sense discussed above).

Some remarks are now in order. A decentralized optimal gain can be obtained
from (37) by simply imposing on o/ the structure

(38) 7g’=
W2o

4_ is given by E&{zz’!lPx"zRange(a),llzll=l}. Note that for all XZo and YE0
(X, Y)=O.
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In this case the decentralized control problem can be solved in a more general
framework since we do not need to assume a special structure for the input matrix,
that is, B BD.

Another important remark concerns the function f(/g) defined in (35). Indeed,
problem (37) can be significantly simplified by imposing on the particular structure

(39) w/d/, W1
W_ pI

In this case, f(w/g’)= P, and (37) simplifies to

(40) min {p" W e }.

We are now in position to generalize our previous results to uncertain systems
with both A and B uncertain matrices. To this end, we assume that A and B belong
to polyhedral convex domain with nv,(A) and ne(B) extreme matrices, respectively.
In the same way, we assume that the extended system (E) is such that F e DF where

(41) DF - Fe!i)] pxp" F= , hiFi, hiO 2 hi 1
i=1 i=1

and M n (A) x ne (B). Following Definition 2, we say that the collection of linear
systems {(Ai, Bi), i= 1 M} is quadratically stabilizable via linear feedback control
if there exist W= W’>0 and K such that (Ai-BiK)’W-I+ W-I(A-BK)<O for all
i= 1... M. As before we define the convex cone

(42) u __a {w/dy e ,91exp. w/g., Z)< O, Z e Y-.,u},
A EoUE U’" "UM. The sets E i= 1... M are given by (28) with Fwhere Eu

replaced by Fi i= 1... M.
COROLLARY 6. The collection {(A, B), i= 1... M} is quadratically stabilizable

via linear control if and only if cCu .
Proof. The "if" part closely follows the proof of Corollary 5. For the proof of

the "only if" part, take any o/ e u. Partitioning it as (32), we have

(43) AiWl + W1A < W2B + BiW2, i- 1 M.

On the other hand, with W- W and K WW-1, simple calculations yield

(44) (Ai BiK)’W-1 + W-I(Ai BiK) W-I[AiW1 + WiA’i- W2B’- BiW’2] W- < O.

Since the above inequality holds for all i= 1 M, the corollary is proved.
COROLLARY 7. Assume that F e DF. The system (S) is quadratically stabilizable

via linear control if and only if the same holds for the collection {(Ai, Bi), i= 1 M}.
Proof Once again the necessity is obvious. For the sufficiency, suppose the

collection {(A, Bi), i= 1... M} satisfies Corollary 6. In this case %u # . After
partitioning o/g. e u, setting W W, K WW-, and noting that for each F e Dr
there exist hi>-_0, Yil hi= 1 such that

M

(45) (A, B)= Y, Ai(Ai, Bi)

we immediately obtain for all F e Dv
M

(46) (A- BK)’W-’ + W-’(A- BK) E A,{(A,- B,K)’W- + W-’(A,- B,K)} < 0,
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where the last inequality follows from (44). This concludes the proof of the corollary.
We close this section with some remarks. From the definition of the extended

system (E), it has been possible to determine an objective function for the basic design
problem in such a way that a small feedback gain is provided by its optimal solution.
This is an important practical aspect mainly because many other design requirements
can be imposed by a proper choice of additional convex constraints.

The analysis of uncertain systems stability has been possible in the general case
corresponding to A and B uncertain matrices. The results reported here generalize
those available in the literature in several directions. First, in contrast with what is
done in [16], we provided necessary and sufficient conditions for stabilizability of a
collection of multivariable systems by means of linear feedback. Numerically speaking,
the result of Corollary 7 is important. Indeed, the "abstract condition" given in [3]
can be effectively solved with an important reduction of the computational burden
since only a finite number of "extreme" models have to be considered.

5. Numerical procedure. In this section we present an algorithm for solving the
convex programming problem

(47) min {f( 7/F): 7/F },
where f(.) is convex and is a convex cone. From the results presented before, a
particular design problem can be considered by a particular choice of the cone and
the structure of 7/U P. The algorithm must be able to detect whether and
in the affirmative case provide 7/V* such that f(7/V*)=<f(TU), for all 7/" .

In our context, the more general problem to be solved can be stated as

min p
(48) (Tg’, Z) _-< p for all Z Eo,

(]/,Z)-i forallZ6Ei, i=0... M+I,
where /3i--1, 0... M. The constraint corresponding to M + 1 imposes 7V=> 0.
Consequently, we set/34/ 0 and

(49) E+--a {-zz’.m: Ilzll- 1}.
For convenience, matrices 74# pxp and (R)(7V) FiT/V + 7,#FI 9] pxp are partitioned
according to (32), that is,

w; w3’ ? =M’

where W ,t and (R)(7/V) ,9t’. Note that for each 7g/" a separating hyperplane
between V and is readily calculated (see Theorem 1).

Step 1. Set the iteration index 0 and

7/V= [0
Step 2. Define the constants pi, 0,. ., M + 1 as being

o=-h[W’,l,
Pi /,M[Oli( c/)], i= 1 M,

p+=

See also [18]. The difficulty is that is not known explicitly.
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and determine w* max {pi +/3i" 0, , M + 1 }. If o9" =< 0 go to Step
6. Otherwise set i*= such that p +/3i w* and go to next step.

Step 3. Set yl=-/3, and determine ZI Z. from the normalized eigenvector
associated to p.. Clearly, z has the form z [(x) 0]’ if O<-_i*<=M.

Step 4. Determine the normalized eigenvector y ,g)m associated to AM[ W].
Set z= [0 (y)’]’, YI= (zl)(z) and solve by any applicable method the
linear programming problem

min p

(,51) (TY’, Y)<=p,
j=0,... ,L, zJ> <= ,

Step 5. If (51) is unfeasible then ( , stop. Otherwise, let Wt+l be its optimal
solution. Make + 1 and go back to Step 2.

Step 6.

The algorithm above works with the relaxed version of problem (48). Thanks to
its convexity, at each iteration two linear constraints are added to the relaxed master
problem (51) which approximates better both the epi f and the cone . Each linear
constraint is defined in terms of Z, which satisfies

(52) Z/= arg max {<cl,z>’- Z
This fact contributes to reducing the number of iterations since the rate of convergence
of this class of algorithms depends mainly on the deepness of the cut associated to
each separating hyperplane.

On the other hand, calling pl+l the minimum value of the index in (51), the dual
representation of its first constraints gives for some/x _-> 0, 2s=1/x2 1"

1+1 cl+l,
j=O

j=O

Consequently, the relaxed master problem approximates f(7/tr) (7, Y) where Y is
iteratively determined. Note that in the previous version of the algorithm, it stops when
some feasible 7/U c is reached.

It is obvious that both structures (38) and (39) can be imposed to solve problems
with decentralized constraints and simpler objective function. In the last case, (51)
simplifies considerably to

(54) min {p" (Tg’, Zs)<= ys, j= 1,..., 1}.
The algorithm is sufficiently general to cope with other important problems. Indeed,

the generalization to handle Dv convex but not necessarily polyhedral is immediate.
The same occurs to the problem of synthesizing a linear feedback control so as to
maximize the uncertainty parameter region 11 ]. Consider DF(e), e -->_ 0, the uncertainty
domain defined in (41) for Fi Fo+ eFl, i= 1’’. M (see Fig. 1) and assume that
)g(e) for e =0.

In this case, the object function of (48) depends on e ,9t and for each e _-> 0 it
can be calculated by our procedure. The problem is to find e for which (e)= or
p(e) +co. Since p(e) measures the magnitude of the feedback gain, from a practical
point of view we have to solve

(55) max {e" p(e) <-_ Pmax},
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Fo DF(

"" F2o

’".,Fo ..........
DF( e2)

.s" F3
F4

Uncertain Domains
Parameter Cones

FIG. 1. Geometric interpretation of Dz(e) and (e) for ee> 81

which needs in addition only a one-dimensional search. We claim that this approach
appears to be more efficient than the one proposed in 11 since it avoids the calculation
of the control gain itself which is determined only at the end of the iterative process.

THEOREM 8. Suppose the algorithm generates the sequence of matrices 7Vl, =0,
1, . Then, the following hold:

(a) If , any limit matrix of this sequence solves (47).
(b) If , an iteration index will existfor which the linear problem (51) at Step

4 is unfeasible.6

Proof The proof is based on the convexity of problem (47). It follows the same
pattern as that presented in [7] (see also [14]).

With regard to the convergence, Step 4 is of great importance. Since only two (or
even one if (54) is under consideration) constraints are added to the linear programming
problem (51), one of the best ways to solve it is using the DUAL-SIMPLEX procedure.
Indeed, at any further iteration, the basis matrix is readily determined from the one
of the previous iteration [13].

On the other hand, the global convergence stated in Theorem 8 is not destroyed
if the algorithm is arranged by discarding the nonbinding constraints at the end of
each iteration. Using the fact that 7V is symmetric, at most p(p+l)/2 linearly
indepedent constraints have to be retained [14].

Of course this is not essential since the sequence pl, l=0, 1,... will still be
monotonically nondecreasing (and bounded in the case ) but certainly contributes
for the global efficiency of the algorithm proposed.

6. Discrete-time systems design. We now focus our attention on discrete-time
system given by

(56) (S): x(t+l):Ax(t)+Bu(t),

where x(t) c " and u(t) c, are the state and control vectors. An important observa-
tion is that due to some nonlinear relationships introduced by the discrete-time
Lyapunov equation, the feedback control design cannot be accomplished in the original
space (9In). For this reason, we immediately define the extended system associated to
(s):

(57) (E): z(t + 1) Fz(t) + Gv(t),

where z(t) E P, v(t) E ,9 and F and G are given by (27). For convenience, throughout
this section we use the same notation introduced in 4.

In practice, problem (51) is also declared unfeasible if, for some index l, pt> P where Pmax is a
sufficiently large positive parameter.
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The set E defined in (28) is now redefined as

(58) "E A’’{ FtZZtF-ZZt ,qpp: G’z-O, Ilzll -1}
while the cone c defined in (29) moves to

(59) c & {7/ 7’>=OPP: (4/’, Z) < 0, Z E},

where, as before, E & Eo U Ee. From (59) we note the main difference between discrete-
time and continuous-time linear system control design. Indeed, in the continuous-time
case, the nonnegativeness constraint W_-> 0 has been introduced without loss of general-
ity. On the contrary, in the discrete-time case, it is crucial to get the next results.

THEOREM 9. The set c defined in (59) has the properties stated in Theorem 1.

Proof Once again only part (a) will be proved. The remaining ones are simple
(for details see the proof of Theorem 1). Suppose first that (A, B) is stabilizable; then
there exist matrices W W’> 0 and K with appropriated dimensions such as

(60) (A- BK) W(A- BK)’- W< O.

Defining the matrix W ,qt PP as

(61) 7///’=
KW KWK

and using the definition of , we conclude that indeed, 7/V . Conversely, assume
that W is partitioned according to (32) and define W W1 and K WW-1. Since
any z p such that G’z =0 can be written as z’= [x’ 0] with x n we have

(62) x’[(A-BK) W(A-BK)’- W]x= z’[FT/VF’- 7/V]z-x’B(W3- W’W-; W2)B’x.

The first term on the right-hand side of (62) is strictly negative because and
the second one is nonnegative because all feasible V are nonnegative definite matrices.
Consequently, (60) holds and the theorem is proved.

For optimization purposes, the theorem above states that c is a convex cone
which can be replaced by (33). The feedback gain is bounded below by f(7/V) defined
in (35) in which case the basic design problem (37) can be still used. Furthermore, a
decentralized gain can be calculated (if any) by simply setting to 7/V the structure (38).

Note, however, that in the discrete-time case, if we use the simplified version (40)
of the basic design problem then only the sufficient part of Theorem 9 is achieved.

We now generalize the results of Theorem 9 to uncertain discrete-time systems.
To this end we assume that (E) is such that F Dv where DF is the convex domain
given in (41).

We say that the collection of linear systems {(Ai, Bi), i= 1... M} is quad-
ratically stabilizable via linear control if there exist W= W’>0 and K such that
(Ai- BiK) W(Ai- BiK)’- W< 0 for all 1 M. Defining the convex cone

(63) cot: &{TV= 7T">-O,iPP: (Tg’, Z) < 0, Z Et:},

where Eu a_EoU E1U’’’ EM and Ei= 1... M are given by (58) with F replaced
by Fg 1 M, we can prove that the collection {(A, Bi), 1 M} is quadratically
stabilizable via linear feedback control if and only if CCu .

The proof of the main result of this section (Theorem 11) is based on the following
property.

LEMMA 10. Assume that 7IV= [/ff’t O gf PP; then

M

(64) FI/’F <- Z FPl/’F VF DF
i=1
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Proof For arbitrary but fixed z p define the function g(. )" ,9t PP "--) )

(65) g(F) a= z,FTl,rF,z.

This function is convex. Indeed, for all F, F ,g)PP we have

d2

(66)
da

g(F+ aF) 2z’F 7/F’z _->0,

where the inequality follows from the nonnegativeness of /4/. Using this fact together
with the definition of De, we get

zVFT/trFVz=g( i=1/iF/)
(67)

M

<-- _, Aig(F)
i=1

z’ 2 AiFe T/f’F’i z.
i=1

Since z p is arbitrary, (67) implies (64) and the lemma is proved.
THEOREM 11. Assume that F De. The system (S) is quadratically stabilizable via

linear control if and only if the same holds for the collection {(Ae, Be), i= 1 M}.
Proof The necessity is obvious. For the sufficiency, suppose the cot: . Partition-

ing 6 t: according to (32), setting W W1, K WW-1, and recalling that o/__> 0,
we get for all F De and z’--Ix’ 0], x n (see (62)):

(68) x’[(A- BK) W(A- BK)’- W]x <-_ z’[FTg’F’- 7C]z.

Now, using (64) it follows that

z Ff’F t/" z <-z’ . A Fef’F z
i=1

M

(69) <= E A z FiP[/’F [/I/" z
i=1

<0 /F DF.
Finally, (69) together with (68) proves the theorem proposed.

This theorem implies that the algorithm proposed in 5 can be still used to
determine a small feedback gain just sufficient to stabilize a given uncertain discrete-time
system. To this end it is sufficient to define (R)e(7/) __a FiTtF’- 74/’, 1 M. As before,
this is a linear function of 7/" 6 ,gpxp and the relaxation procedure will determine the
feedback gain whenever .

7. Examples. In this section, some examples covering the main problems discussed
are given to illustrate the usefulness of the approach.

The first example is borrowed from [16], where it is shown how to stabilize a
denumerable set of operating points (a set of linear systems) by means of a nonlinear
control. The proposed approach has been run (results below) under the same data,
resulting in a linear feedback gain stabilizing simultaneously each of the four systems.

The systems are of third order with the following structure:

Ia11 a12 a13 I Ibll. a21 a2 a23 x + 0 u

0 0 -30 30
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and the numerical data (in Table 1)"
For the W1 and W2 matrices the final results are

I171-5583 -15.9527 -5-10701W1--- -15.9527 2.5890 0.6497

-5.1070 0.6497 1.5261

1.4005

-0.7400

0.0444

resulting in a K such as

K =[-0.0411 -0.5729 0.1355].

With the given approach, not only the four operating points are stabilized, but
also all the systems given by a linear convex combination of the former. This is partly
verified on Fig. 2 where the root loci of the following systems are plotted:

A tz(Ai BiK) W (1- tz )(Aj BjK),

ij, i,j=1,2,3,4, 0=</x<_-I

in the open-loop (K =0) and the closed-loop (K given above) cases. In open loop,
some systems are unstable, with a part of the root locus inside the right half complex
plane. It is verified that the closed-loop root loci all lie in the stable part of the complex
plane.

Some experiments have also been performed for discrete-time systems. The one
given below is derived from the preceding example in the following way:

x(t+l)=Aix(t)+Biu(t), i= 1,2,3,4,

where
Ai=exp[AiAt],

/}i exp (Ad’)Bi dr.

The sample period At has been chosen equal to 0.1, which gives the data (Table 2).
The same processing as for the continuous case was repeated, leading to the

following results and the same conclusion as for the stability (see Fig. 3)"

I 3620.22 -335.211-122.4061 I 4"63301WI= -335.211 50.9528 16.8288 W2= -6.0835

-122.406 16.8288 23.772 2.7064

resulting in a K such as

K--[-0.0230 -0.3513 0.2441].

TABLE
Continuous operating points.

Operating point 2 3 4

al -0.9896 -0.6607 1.702 -0.5162

a12 17.41 18.11 50.72 29.96

al3 96.15 84.34 263.5 178.9
a21 0.2648 0.08201 0.2201 0.6896"

a22 --0.8512 --0.6587 1.418 1.225

a23 11.39 10.81 --31.99 --30.38

b -97.78 -272.2 -85.09 175.6
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8

6

4

2

0

-2

-4

-6

-8
-35 -s’0 -J -’0

open loop

-15 -10 -5
real

closed loop

4

2

0

-2

-4

-6

-3b -2’5 -J0 -15 -10 -5 0
real

FG. 2. Open-loop and closed-loop continuous root loci.

The last example concerns the problem of decentralization. It has been borrowed
from [26], where it is presented as a mechanical manipulator control example. The
difference here is twofold" First the decentralization constraint is imposed, then the
uncertainty intervals on the parameters are enlarged.

The system is written as

d
1Xl

X2

x31
X4 I--X5

X6.,

-1/r 0 0 0

0 0 1 0

k -kll (Cl- k12 0

0 0 0 -1/7"2
0 0 0 0

0 0 C k2

0 0

0 0

0 c2

0 0

0 1

-k2 -k22.

X2

X3 +
X4

X5

.X’6

1/7"1 0

0 0

0 0

0 1/7"2
0 0

0 0

The decentralized constraints restricts u to involve (X1,X2, X3) and u2 to involve
(x4, xs, x6). The nominal system is defined by the following data:

kll k21 10, k12 k22 2,
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TABLE 2
Discrete operating points.

Operating point 2 3 4

all

a13
a21
a22
a23
a31
a32
a33

b2
e3

0.9268 0.9430 0.8915
1.6002 1.6996 4.4207
2.4524 2.1347 4.3207
0.0243 0.0077 0.0192
0.9396 0.9432 0.9162

-0.2897 -0.3130 -0.8262
0 0 0
0 0 0
0.0498 0.0498 0.0498

-3.5451 -21.2959 4.9973
-0.8124 -0.8095 -2.0311
0.9502 0.9502 0.9502

0.8648
2.3959
3.4747

-0.0613
0.8018

-1.0917
0
0
0.0498

-6.9694
-1.6916
0.9502

open loop
1.5

0.5

-0.5

-1

-1.5

real

closed loop
1.5

1.5

-1

-1.5
-1.5 -1 -0.5 0 0.5 5

real

FIG. 3. Open-loop and closed-loop discrete root loci.

"/’1 7"2 0.1,

Cl 0.2, c2 c3 0.1.

The first simulation (Fig. 4) is performed from the results in [26] on the nominal
system, and the associated feedback K"

5.67 114.0 14.4 0.017 0.321 0.094
K-"

0.017 0.321 0.094 5.63 113.0 14.2
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0.5

0

-0.

-1

-1.5

-2

-2.5
0 015 1’.5 2 2.5 3 3.5 4 4.5 5

(sec)

FiG. 4. Nominal parameter values--centralized gain.

Throughout the figures only the three first-state variables are plotted, from the initial
conditions

Xo=[0.3 0.2 0 0.7 0.2 0]’.

For the nominal system the proposed approach provided the W1 and W2 matrices

3.2437 0.8842 0

0.8842 1.4231 0

-1.0682 -0.7962 0

0 0 0.8854

0 0 1.4657

0 0 -0.9280

-1.0682 0

-0.7962 0

3.2437 0

0 3.2437
0 0.8854
0 -1.2115

-0.8240 0

-0.5724 0

1.5125 0

0 -0.7607

0 -0.6179

0 1.5161

from which follows the decentralized gain

-0.0869 -0.1198 0.4083
K=

0 0 0

0 0 0 |.
-0.0439 -0.1337 0.4127

0

0

0

-1.2115

-0.9280

3.2437

Figure 5 shows the responses for the decentralized gain.
Finally, the case of both uncertainty and decentralized constraints has been run.

The uncertainty affects the parameters -1, z2, c, c2, and c3 in the following way:

0.02 _-< z ,7-2 0.18,

-14.8-<_ c -< 15.2,

-7.9 =< c2 c3 =< 8.1.
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0.3

0.2

0.1

-0.1

-0.2

-0.3
0 0.5 1.5 2 2.5 3 3.5 4 4.5

(sec)

FIG. 5. Nominal parameter values--decentralized gain.

The numerical results are

38.4122 2.5394 0

2.5394 2.7764 0

-14.175 -0.2563 0

0 0 -11.0742

0 0 -0.1876

0 0 6.0045

-14.175 0

-0.2563 0

7.7523 0

0 38.4122
0 1.9798

0 -11.0742

21.2088 0

-3.1099 0

19.6773 0

0 50.6388

0 -1.7759

0 14.5368

which give the following robust gain:

0

0

0

1.9798

2.1106

-0.1876

5.3936 -4.9236 12.2377 0 0 0
K

0 0 0 4.6937 -4.2712 10.9442
In Figs. 6 and 7 are plotted the results of a numerical simulation where the

coefficients are time-varying according to

7"1 =0.1 +0.08 cos (0.1 t),

7"2 0.1 + 0.08 sin (0.5 t),

cl 0.2 + 15.0 cos (0.1 t),

c2 0.1 8.0 cos (0.2t),

c3 0.1 8.0 cos (0.1 t).
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300

200

100

-100

--200

-300
0 0.5 5 2 2.5 3 5 4 4.5 5

(sec)

FIG. 6. Uncertain parameters--centralized nominal gain.

0.31
0.25

0.2

0.

0.1

0.0

0 ...... ................
-0.05

-0.1
0 5 10 1’5 2’0 25 0

(sec)

FIG. 7. Uncertain parameters--decentralized robust gain.

Figure 6 corresponds to the centralized gain given in [26], and Fig. 7 shows the one
obtained by the robust decentralized gain given above. Note that the perturbations
correspond to rather big variation around the nominal values. That almost causes
divergence of the response plotted in Fig. 6 within a five-second interval time, while
the plot of Fig. 7 drawn over a 20-second interval time shows a good damping of the
response.

8. Conclusions. In this paper we introduced a new parameter space method for
linear system control design. One of its most important features is that the feedback
gain is determined from the solution of a convex problem. This is a key result because
it opens the possibility of applying the most powerful techniques available to date in
the mathematical programming literature for the solution of the above-mentioned
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problem. Furthermore, large-scale systems can be handled more efficiently by means
of decomposition procedures (this important aspect has not been analysed in this
paper).

The procedure is sufficiently general to solve several important design problems
including the decentralized control problem and optimal control of uncertain systems
by means of linear feedback. For them, necessary and sufficient conditions for solvabil-
ity have been provided in terms of existence of some convex cones.

It is important to stress that the same algorithm can be used for both discrete-time
and continuous-time systems control design. Indeed, the necessary and sufficient
condition for the solvability of the quadratically stabilization problem of uncertain
systems can be written as

T’ 7/UT > 0,

T’O(7)T< O, i= 1... M,

7>-0,

where T ,qt pn is a matrix spanning the nullspace of G’ and )i( ), i= 1... M are
linear functions of W 9i PP. At each iteration only the linear cut to be added to the
master linear programming problem depends on the dynamic (continuous-time or
discrete-time) representation of the system.

The present approach proposes a bridge between optimal control problems formu-
lated on the parameter space and one of the most important and basic properties of
mathematical programming programsmthe convexity. As a natural consequence, it
allows to solve several control problems in a unique and well-posed (numerically
speaking) way, a fact which does not hold even for the LQ design.

Acknowledgment. The authors wish to thank Reviewer 2 for several helpful com-
ments.
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ON THE CONVERGENCE OF THE PROXIMAL POINT ALGORITHM FOR
CONVEX MINIMIZATION*

OSMAN Gf0LER?

Abstract. The proximal point algorithm (PPA) for the convex minimization problem min,Hf(x),
where f: H- R U {} is a proper, lower semicontinuous (lsc) function in a Hilbert space H is considered.
Under this minimal assumption on f it is proved that the PPA, with positive parameters {Ak}k=l, converges
in general if and only if r =k=l A -->. Global convergence rate estimates for the residual f(xn)-f(u),
where x, is the nth iterate of the PPA and u H is arbitrary are given. An open question of Rockafellar is
settled by giving an example of a PPA for which x, converges weakly but not strongly to a minimizer off

Key words, proximal point algorithm, convex programming, strong convergence

AMS(MOS) subject classifications, primary 90C25" secondary 49D45, 49D37

1. Introduction. Let H be a real Hilbert space. We consider the minimization
problem

(1.1) minf(x),
xH

where f" H- R U {} is a proper, lower semicontinuous (lsc) convex function, where
we follow the terminology established in Aubin and Ekeland [1] or Rockafellar [16].
Many convex programming problems with or without constraints can be reduced to
(1.1).

One method for solving (1.1) is the proximalpoint algorithm (PPA) first introduced
by Martinet [10]. The PPA is based on the notion of proximal mapping J,

(1.2) J, (x) x arg min f(z) + x
xH

introduced by Moreau [12]. The PPA is an iterative procedure, which starts at a point
x0 H, and generates recursively a sequence of points Xk+l Jk+lxk, where {Ak}_-i is
a sequence of positive numbers.

It turns out that a proximal mapping can be defined for an arbitrary maximal
monotone operator A" H- H. Recall that a multivalued mapping A" H - H is said to
be a monotone operator if w’ A(x’) and w A(x) imply (w’- w, x’- x)_>- 0. Clearly,
if A is a monotone operator, then

(1.3) wa(x), w’ a(x’)::ll(x’+ w’)-(x+ w)ll =

=> IIx’-xll IIw’- wll ;
in particular

(1.4) x’ x=:>(I + A)(x) 71 (I + A)(x’) (.

A monotone operator A is said to be maximal monotone if the graph G(A)=
{(w, x) H x HI w A(x)} is not properly contained in the graph of any other monotone
operator A" H--> H. A solution to A is a point x* H such that 0 A(x*).

Many problems that involve convexity can be formulated as finding the solution
of a maximal monotone operator. For example, convex minimization, concave-convex
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saddle-point problems, and solutions of games can be formulated in this way. In
particular, the subditterential A =Of is a maximal monotone operator, and a point
x* H minimizes f if and only if 0 Of(x*). The classical result of Minty [11] states
that a monotone operator A is maximal if and only if I + A is surjective. If A is a
maximal monotone operator and A>0, the operator J;, defined by J(x)=
(I + AA)-(x), is called the resolvent of A. It follows from (1.4) that the resolvent J
is a single-valued operator on H. Moreover, (1.3) implies that J is nonexpansive: that
is, if x, y H, ]]J(y)-J(x)]] <= Ily-x[[. Also, the Yosida approximation a, a(x)
(x-J(x))/A, is Lipschitz continuous with constant 1/A. That is, for x, y H, ]]A(y)-
A (x)ll <- tly xll/,.

The PPA for a maximal monotone operator is an iterative procedure that starts
at a point xo H, and generates recursively a sequence of points Xk+l Z,k/,(x,), where
{A}__I is a sequence of positive numbers. It is treated in the papers [4], [7], [10],
[17], and [18]. The important paper of Br6zis and Lions [4] contains many interesting
results. Rockafellar [18] shows how the PPA can be applied in convex programming.
We stress that when A Of, the PPA described here reduces to the iteration described
above in the context of (1.1).

Notation. We use the following notation in the paper. Iff is a proper, lsc convex
function on H, the effective domain off is the set {x H: f(x)< oe}, which we denote
by D(f). We will sometimes refer to lsc convex functions as closed functions. The
infimum of f is denoted by f* infxH f(x), and the set of minimizers of f (possibly
empty) is denoted by X*= {x H: f(x)=f*}. If A: H H is a multivalued operator,
the domain of A is the set D(A)= {x H: A(x) }, and the range of A is the set
R(A)=U{A(x)" xD(A)}. If the sequence {Ak}k_- of positive numbers lists the
proximal parameters, we define o-n- Yk=l Ak. By convention ro =0. If the sequence
{Xk}k=o is the trajectory of a PPA, we will write Yk =--Ak(Xk-1)=(Xk---Xk)/Ak. We use
J(x) and x interchangeably. If A is maximal monotone then A(x) is closed and
convex (see Aubin and Ekeland 1, Prop. 3, 6.7]. In this case, if A(x) , we denote
the least norm element of A(x) by Ax. For any set S

_
H, we define the distance

function p(x, S) inf {[[x s[[: s S}.
Every maximal monotone operator engenders a nonlinear contractive semigroup

{S(t): => 0} of maps S(t) D(A) - D(A), satisfying the following properties for t, s _-> 0
and x, y D(A):

(i) s(o)x x,
(ii) S(t + s)x S(t)S(s)x (semigroup property), and
(iii) I[S( t)x- S( t)y[[ <-[[x-y][.

Indeed, S(t)x u(t), where u(t) is the unique solution to the differential inclusion

du
(1.5) dt-Au(t) u(0) x.

For an excellent treatment of nonlinear contractive semigroups in a Hilbert space, the
reader is referred to Br6zis [3].

There is an intimate relationship between nonlinear (contractive) semigroups and
the proximal point algorithm. If we discretize the differential inclusion (1.5) by the
backward Euler differencing, we obtain

(1.6) Xk Xk-l -A(xk ),
hk

and we obtain Xk =(I +hkA)-xg_ J(Xk-). Therefore, PPA is just the backward
Euler discretization of the differential inclusion (1.5). It is important to keep this
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connection in mind, since PPA inherits many of the nice properties of the contractive
semigroup S(t) and vice versa. See 5 for details.

In this paper, we restrict our attention to the case A Of for two reasons. The
first reason is subdifferentials of convex functions form an important subclass of
maximal monotone operators. The second, and perhaps the more important reason,
is that the operator Of has special properties (for example, demipositivity; see Bruck
[5]) not shared by other maximal monotone operators. We exploit the special properties
of Of to obtain sharper results.

In the literature, the convergence properties of the PPA are studied only in the
case where f has a minimizer, and the convergence rate of the algorithm is given only
in the case where f is strongly convex. Moreover, the convergence rate is given in
terms of the closeness of Xk to a minimizer of f We depart from this tradition. We
give convergence of the PPA under the weakest conditions, even in cases where f has
no minimizer, or is unbounded from below. Our convergence rate results are in terms
of the residual f(Xk)--f(u) where u is an arbitrary point in H.

The organization of the rest of the paper is as follows. In 2, we establish the
convergence properties of the PPA under the weakest possible assumptions. We
establish global convergence rate results along with some interesting results which we
use in later sections. In 3, we sharpen the convergence rate result for the residual
f(x,)-f* in the case where the PPA trajectory converges strongly to a minimizer of

f In 4, we present a fundamental estimate due to Kobayashi. In 5, we answer an
open question posed by Rockafellar [17]: Does the PPA always converge strongly?
We give a proper, closed function in an infinite-dimensional Hilbert space for which
the PPA converges weakly but not strongly.

2. The convergence of the proximal point algorithm. Let H be a Hilbert space and

f: H-R{c} be a proper, closed convex function. We are concerned with the
convergence properties of the PPA applied to the minimization off In the literature,
convergence results for the PPA are given only in the case where f has a minimizer,
and convergence rate results are given in the case in which f enjoys strong convexity
properties. Moreover, the convergence rate results are only asymptotic.

In this section, we prove the convergence of the PPA under the weakest possible
conditions and provide global convergence rate estimates for the residual f(x,)-f(u),
where xn is the nth iterate of the PPA and u is any point in H. The behavior of xn
and y, =(x_l-x,)/,, is also studied.

The following result is well known. Since the proof is short, we include it.
LEMMA 2.1. {lly.ll}7- is a decreasing sequence.
Proof Since y, Of(x,), y,+ Of(x,+), and Of is a monotone operator, we have

(y,+- y,, x,+-x,)>-O. Since y,+ =(x,-x,+)/h,+, we obtain (y,+- y,, y,+l) <=O,
which implies [[y,+[[_-<(y,, Y,+)<--IIY,[[" [[Y,+I[I. The lemma is proved. [3

The following result contains the fundamental estimate from which we derive most
of the convergence results of this section.

LEMMA 2.2. Let {h} be an arbitrary sequence ofpositive numbers. Suppose the
PPA starts at Xo and generates the sequence {x,},=o, where x, J.(x,_). Then for any
u H,

(2.1) f(x.)-f(u) ll_Xo,,_llu Ilu -x. =.11 y. 2,
2o’, 2o’, 2

Proof. Recall that yk =(xk_-x)/h Of(x). By the convexity off we have

(2.2) f( u f(x, => (y,, u x, x, --1 Xk, U Xk).
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Therefore,

(2.3)

Summing (2.3) for k= 1,..., n, we obtain

(2.4) 2o-nf(u)-2 Af(x,) -> ,2llyll2/llu-xll2-11U-xoll2.
k=l k=l

Setting x-l for u in (2.2) yields

(2.5) f(x,_l)-f(x,)>-_A-1llx,_l-x,ll2= A,lly,ll 2,

Recall that o- 2jL1/j, for k_-> 1. Multiplying (2.5) by o-_1, we obtain

O’k-lf Xk-1) O’kf(Xk q- Akf Xk >= O’k--lAk [lYk 2.

Summing the last inequality for k- 1,. ., n and noting cro-= 0, we obtain

(2.6) -o’,,f(x,,)+
k=l k=2

Adding twice (2.6) to (2.4) yields

2o,,(f(u)-f(x,))>=2
k=2 k=l

( k=l
A+2

k=2 O’k-llk)]]Yn ]]2nt-]]/,t--Xnll 2- ]IN--X0]] 2

2 2 2. Ilyn / u x. u xol] 2,

where the second inequality follows from Lemma 2.1. Rearranging the terms of the
inequality above gives (2.1).

The next theorem contains the convergence properties of the PPA under the
weakest possible assumptions. It is the main result of this section.

THEOREM 2.1. Let the sequence {x,}n=o be the trajectory of a PPA. For any u H
the following global convergence estimate holds"

(2.7) f(x,)-f(u)<=.
2tr,

Consequently, ifcr, - oo thenf x, Sf* inf Hf Z ). IfX* , then x, converges weakly
to a minimizer off Moreover,

p(xo, X*)2

(2.8) f(x,)-f*<=
2o"

Proof The estimate (2.7) follows immediately from (2.1). In order to prove that
f(x,) converges to f*, we first consider the case f* > -oo. Let e > 0 be arbitrary, and
choose a point x such that f(x)<=f*+e. From (2.7) we obtain f(x,)<=
f*+e+l[x-xl]2/(2o,,). Since r,-oe as n-oo, we have f(x,)<=f*+Ze for large
enough n. Line (2.5) shows that f(x,) is nonincreasing. Since e is arbitrary, f(x,,)Sf*.
The proof of the convergence in the case f* =-oe is similar.
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It remains to prove the assertions about the case X*. In this case, the weak
convergence of xn to a minimizer of f is proved in Br6zis and Lions [4, Thm. 9].
Formula (2.8) follows by substituting x* for u in (2.7), where x* is the point in X*
closest to x. ]

Remark 2.1. The condition trn-c is the weakest condition in order to ensure
that f(x)$f*. If o-- cr <, then x always converges strongly:

n+p n+p

(2.9) tlx/-/ll --< E IlX-l-X[[-- E AIIyII
j=n+l j=n+l

\j=n+l

Since rn r, (2.9) shows that x is a Cauchy sequence, and therefore converges strongly
to some point x, even if f does not have a minimizer! Even if X*, we have

Ilx-xll -<- E IlX-l-Xl[- E AIIyIIIIyII,
j=l j=l

so that p(x,X*)p(x,X*)-lx-x]]p(x,X*)-y. If is small, then
p(x, X*) > 0, and x X*.

Remark 2.2. In [7], Gfiler introduced new proximal point algorithms for minimiz-
ing f The first of these algorithms converges under the condition =1 /2 . Note
that under this condition, which is weaker than , , the standard PPA need not
converge.

By setting Xo for u in (2.1), we obtain the following result.
COROLLARY 2.1. In a proximal point algorithm the following estimate holds"

(2.10) f(x,)Nf(xo)-
2n

The next result will be useful in this section as well as in 5.
TnoM 2.2. Let A Ofand u D(A). In a proximalpoint algorithm thefollowing

estimates hold"

Proof Formula (2.11) follows by substituting x, for u in (2.1). From the convexity
of f we obtain f(x,)f(u)+(Au,x,-u), which implies f(u)-f(x,)N
IlAul[ IIx-ull. Using this inequality in (2.1), we obtain

2n11
Ilu -Xo[[2- [1 -xll2+(%[iAull=+ IIx ull =)

([lu -Xoll + . [[A 1).
The theorem is proved.

Remark 2.3. In Theorem 9 of [4] Br6zis and Lions prove a weaker version of
(2.12), in a special case. In paicular, they prove that if X*, then IIll

p(x, X*)/,. However, their proof can be modified along the lines of the proof of
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our Lemma 2.2 so as to eliminate the factor x/. Our stronger estimate (2.12) is essential
to prove (i) of Theorem 2.3 below.

The following continuous version of Theorem 2.2 can be obtained from it by
passing to the limit. It will be needed in 5.

COROLLARY 2.2. Let A Of For any x D(A) and u D(A), we have

(2.13) ilAoS(t)xll <__ Ils(t)x-xll,

(2.14) ]]AS(t)x]] <-_ IlAul] +

Remark 2.4. A different proof of Corollary 2.2 is given in Br4zis [3, Thm. 2.3.2].
The following result gives information about the behavior of x, and y, in a PPA.
THEOREM 2.3. Let A=Of and let v be the least norm element of R(Of). If

then:
(i) y, converges strongly to v,
(ii) x, / r, converges strongly to v.
(iii) {x,},__0 is bounded if and only iff has a minimizer, that is, X* (g. We have

x, - do if and only ifX* .
Proof R(Of) is a closed convex set. See, for example, Br4zis [3, Thm. 2.2.2].

Therefore, the least norm element, v R(Of) exists and is the projection of zero onto
R(Of). Let e>0 be arbitrary, and choose x D(Of) such that Ilaxll<-_ vll+e. Sub-
stituting x for u in (2.12), and letting n do, we obtain

lim [[y,[] inf ]]y,][-<_ Ilax[[ <_-[]vl[+e,
nl

where we use the fact that tr,- in the first inequality above. Since e is arbitrary,
limlly IIll. By the parallelogram identity, Ily 2/ Ily / ll z--
which implies

(2.15) ]ly,-vl12=2]ly,,]12+2]]vl12-41](y,+v)/2]l 2.
Now, since R(Of) is convex, (y, + v)/2 R(Of), and thus we have ]](y, + v)/2]]->
By triangular inequality we also have ][(y, +v)/2ll--< Ily.]l/2+ Ilvll/2-*
Therefore ]](y,+v)/2][ I1 11. Letting n-.eo in (2.15), we conclude that y, converges
strongly to v and (i) is proved.

To prove (ii), we note that (x-x,)/r,=tr-1Yi=l (Xi-l-X)= tr;1Y=I Ay. Since
y, v strongly, by an application of the Silverman-Toeplitz theorem (see, for example,
Dunford and Schwartz [6]), we obtain that (x-x,)/tr, converges strongly to v. Since
tr,- do, x,/r, converges strongly to -v. This proves (ii). Part (iii) is known in the
literature, See, for example, Reich [15] for a proof. El

Remark 2.5. Reich [15] actually proves (ii) for an arbitrary maximal monotone
operator by a different method.

COROLLARY 2.3. Let A Of Suppose a PPA generates the sequence {xn}_o, where
tr, =k=l Ak-.dO. Then, if f*>-co, y, converges strongly to zero. Consequently, if
f* > -do, then 0 R (Of).

Proof Summing (2.5) for k= 1,..., n, we obtain

do >f(x) -f* >=f(x) -f(x,) >-_ or, Ily. 2-
Since or,- do, we have y,-*0= v, where v is the least norm element of R(Of).

Remark 2.6. Ekeland’s e-variational principle (see Aubin and Ekeland [1, Chap.
5]) can be used to prove the fact that iff* > -do, then there exists x,, y, with Yn Of(x,),
f(x,) Sf*, and y, -* 0. Corollary 2.3 shows that such x, and y, can be generated by a PPA.
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Remark 2.7. It is tempting to conjecture the converse of Corollary 2.3, namely,
if 0 R(Of), then f*>-oe. However, this conjecture is false. In the first draft of the
paper we had a counterexample. One of the referees suggested the following simple
counterexample:

-,f if x >= 0,
f(x) +oe otherwise.

Observe that f(x) - -co as x - oe, while Of(x) - O. The other referee suggested another
simple counterexample"

1-x if x_-< 1,
f(x)=

-log(x) ifx_->l.

Again f(x) - -oe as x oe, while Of(x) O.

3. The convergence rate of the proximal point algorithm. Let f: H- R U {c} be a
proper, closed convex function. Assume that X*, that is, f has minimizers. Let
{Aj}jI be a sequence of positive numbers with o-,-oe. Consider the proximal point
algorithm for minimizing f, with parameters {Ak}, starting at an initial point Xoe H.
We saw in 2 that the points xk generated by the PPA converge weakly to a minimizer

off Using Theorem 2.1, we have f(x,)-f* <= p(x, X*)2/(2r), which implies f(xn)-
f* O(o-21). We shall see in 5 that x, need not converge strongly to any minimizer
of f However, if x, does converge strongly to a minimizer of f, we can improve the
converge rate O(r1) above to o(crl).

THEOREM 3.1. Let {An}=l be a sequence of positive numbers and cr,-o. Let
f: H- R 12 {oe} be a proper, dosed convex function which has a minimizer. Consider the
PPA starting at x Xo and generating the points x, (X,_l).. If x, converges strongly
to a minimizer off, then the convergence rate estimate

f(x,) -f* o

holds, that is, o, f x, f* O.
Proof Suppose x, converges strongly to x* X*. For brevity, we denote that

Wk =f(xk)--f(x*)=f(xk)--f*. We can rewrite (2.5) as

(3.1) Wk-1-- W _--> ;lllx_l-xll2,
Substituting x* for u in (2.2), we obtain

f(x*) >=f(xk) + X ;l(xk_ xk,

=f(xk) + t;l(Xk-l--Xk, X*--Xk-1) "it-; IIx_-x 2

->f(xk) h ;11x_ x I1 x_ II.
X* --1Therefore IIx.--x.II w.llx_ Using this inequality in (3.1), we obtain

1
--X* -1)2w_ => w+(wIlx_

_A W2g=Wk 1+ WkX* X* 2

Inverting this inequality, we obtain

(3.2) W;! <-- W-’ (1 +
\
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We want to obtain a recursive inequality from (3.2). We have from (1.2),

1 1
f(xk =< f(xk + 77, x x_, ]]2 <f(x*) +-, x* x_, 2,

so that 0=< Wk/kl[X:g--Xk_l[[-2<. The function (1 + f)-i is convex for t>-l, hence
(1 nt- t) -1-< 1-2t/3, for te [0,1/2]. Using this fact, we obtain from (3.2) that

2A ) 2AWZ-,-< WZ’ 1
31lx,-, x* 112 Wk --W-1 3][Xk-1 X 2,

or equivalently,

(3.3) W’- W51 => 2Ak

This is the desired recursive inequality. Summing (3.3) for k 1,..., n, we obtain

which implies

3 1
(3.4) f(x,)-f(x*)=- W <-

_x$ -2"=2 Y=, llx-,

Multiplying (3.4) by o-, gives

3 1
cr,(f(x,) f(x*)) <-

X
--2"=2 r;’ 2k=l allx-,

Since II2 1"11 0, II2 x*ll -*. Therefore, using the Silverman-Toeplitz theorem
X

--2(see Dunford and Schwaaz [6]), 2 2= AllX_l also. Consequently,
f(x,)-f(x*)=o(’).

4. A fundamental estimate. Let A"HH be a maximal monotone operator.
Consider two proximal trajectories {x}o, and {}o. A remarkable estimate due
to Kobayasi, Kobayashi, and Oharu [8], [9] (see also Pavel [14]) gives an estimate for
the distance IIx-, between an arbitrary point x in the first trajectory and the point

on the second trajectory. This estimate can be used as the basis for the theory of
nonlinear contractive semigroups and nonlinear evolution equations in Banach spaces.
We shall use it in 5 to help settle a question posed by Rockafellar [17] on the strong
convergence of the PPA. Since Kobayashi’s estimate does not seem to be known in
the optimization literature, but is likely to have fuaher applications in optimization,
we develop a special version of it here which will be enough for our purposes. The
interested reader should consult Kobayasi, Kobayashi, and Oharu [9], or Pavel [14]
for the general version of the estimate.

We will use two simple lemmas, valid for any monotone operator (not necessarily
maximal).

LEMMA 4.1. IfA" H H is a monotone operator, thenfor any A > O, andy A(x),
1,2,

IIx,-x211 Ilxl-x2+ a (yl- y2)ll.

Lemma 4.1 follows from the application of (1.3) to the operator AA.
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LEMMA 4.2. If A is a monotone operator, then for any A,/x _-> 0, and Yi A(xi),
1, 2, the following inequality holds"

Proof We have

(4.1) tx(x+Ayl-Xz)-A(x2+txy2-x,)=(A +tx)(Xl-Xz)+Atx(yl-Y2).

By Lemma 4.1,

so that

( + )llx-x=ll II( + [-t)(Xl x2) --[’t (X1 +/Yl- X2)-/ (X2-/&Y2--

_-< X x2 +/xy2 X +/x X + Ayl

where the equality follows from (4.1). The proof is complete.
We now return to the PPA. In the remainder of this section we assume that a

maximal monotone operator A" H--> H is given, and that it generates the proximal
trajectory {Xk}k=o, with Xo x and parameters {’k}Ll"

LEMMA 4.3. For any u D(A), and k >-O,

(4.2) Xk U <--IlXo-- U +

Proof Let v be an arbitrary element of A(u). Since y=(xj_l-xj)/,jA(x), we
have Xj_l =x + Ajy. From Lemma 4.1,

(4.3)
Ilx ull -< IIx / Aj(yj v)][ Ilxj_,- u Ajvll

--< x_, u + j v

The lemma follows by summing (4.3) for j= 1,..., k and noting that vA(u) is
arbitrary.

Consider two proximal trajectories {Xk} k_-o, and {:l}-o. We will derive an estimate
for the distance Ilxk- :l]l for arbitrary k and I. This estimate will be obtained recursively.

We first prove some preliminary results. Denote the mesh of the first proximal
trajectory by d max__<k__<N Ik. Similarly, the mesh of the second proximal trajectory
is defined by a =maxl__= l" Also, we define Ogk.l=I/(,k-’l) and ilk,! 1--ak,1---
Ak/(Ak + .). Finally, we define

c,, ,/( ,) +d+

LEMMA 4.4. ak,lCk-, + [3k, lCk,l- <---
Proof We have

1/2{ 1/2 1/2[ 1/2
,C-l, + 3,c,- a, , c_,) + , , c,-l)

N/Olk, lC2k_l,1 "91- flk, lC2k,l_l,
where the inequality follows from the Cauchy-Schwarz inequality and the fact that
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ak, +/3k, 1. Therefore,
2 2(c,c_, + ]3,c,_l c,c_,+/3,c,_

k,l((k_,_ /)2+ d_, +

+ flk,l((k 1_1)2 +dk + dl_l)
k,l((k--l--k)2+ d(k--Ak)+
+ k,l((k 1 + /)2 +dk + d(l_ 1))
X,

(2c,,+Z-2Z(-G)-dZ)

k 2+ (c.,+X+2X,(- 6,)

2,, + z +, ((z d)+ (X,- d))

The lemma is proved.
THEOREM (Kobayashi) 4.1. Let u D(A) be an arbitrary point. en, for any

k=0,..., N and l=O, N,

II-, o- + o- lI+_,)2+d+ d,. IIA II.
Proof Observe that the coefficient of ]]Au]] in the desired estimate is simply c,.

The proof will be by induction. We sta by proving the theorem for the pairs (k, 0)
and (0, l). We have

IIXo- + o- + Au

o- uII + Ito- + .olAII,
where the second inequality follows from Lemma 4.3, and the last inequality follows
from the fact that G,o, which is easy to see. This proves the theorem for (k, 0).
By symmetry, the theorem is also true for the pair (0, l).

Suppose we have proved the theorem for the pairs (k- 1, l) and (k, l- 1). From
Lemma 4.2, we obtain

Noting that -1 +Y and x_ x + Ay, we have

+ .,lto- + Ito- + .,-,IIAII)

where the second inequality follows from the induction hypothesis, and the last
inequality follows from Lemma 4.4. The theorem is proved.
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Theorem 4.1 can be used to prove that as the mesh of the backward discretization
maxk_ Ak -* 0 in (1.6), the proximal trajectory converges to a (unique) discrete scheme
solution to the differential inclusion (1.5). It turns out that this solution coincides with
the usual solution u(t)- S(t)x (also called the strong solution) discussed in 1. See
Kobayashi [8], or Pavel [14, Chap. 1, 3] for more details.

COROLLARY 4.1. The following estimates hold:

(4.4)

(4.5) []S(t)x S(s)x[I <-It- s[ Ilaxl[.

Proof Choose o x and apply Theorem 4.1. As -0, the second proximal
trajectory converges to the continuous path S(t)x, and (4.4) follows. Estimate (4.5) is
proved similarly.

5. On the strong convergence of the proximal point algorithm. We noted in 2 that
the trajectory of the PPA converges weakly to a minimizer of a proper, closed convex
function, provided that X* and try-* c. In [17], Rockafellar posed the question
of whether weak convergence can be strengthened to strong convergence. This question
is also important for us since strong convergence has a bearing on the rate of conver-
gence ofthe PPA. By Theorem 2.1,f(xn) -f* O(tr) in the case ofweak convergence;
however, by Theorem 3.1 f(xn)-f*= o(o-) in the case of strong convergence. Of
course, in finite dimensions, weak and strong convergence are equivalent. There are
also cases (see, for example, [4], [5]) where we can show strong convergence.

In this section, we answer Rockafellar’s open question in the negative. In particular,
we prove that in 12 there is a function f such that given any positive bounded sequence
{Aj}j=, there is a starting point x D(f), and the PPA starting from x with xk+
(x)k+ converges weakly, but not strongly.

We proceed in the following way. A well-known result of Bruck [5] states that
S(t)x converges weakly to a minimizer of f Baillon [2], following a suggestion of
Komura, constructed a proper, closed convex function in 12 and a point x D(f) such
that S(t)x converges weakly, but not strongly, to a minimizer of f In [13], Passty
showed that the strong (respectively, weak) convergence of S(t)x is equivalent to the
strong (respectively, weak) convergence of a PPA trajectory under very restrictive
conditions. By using the special properties of the monotone operator Of outlined in
2, and the fundamental estimate of Kobayashi described in 4, we show the asymptotic
equivalence of the trajectory of a PPA and S(t) under the condition that the sequence
{hk}- is bounded.

DEFINITION 5.1. Let C be convex subset of H. A contractive evolution system
on C is a two-parameter family of maps { U(t, s): 0=< s _-< t} from C into C satisfying:

(i) U(t,t)x=xforallxCand t_->0,
(ii) U(t,s)U(s,r)x=U(t,r)xforallxC and0<-r<=s<=t, and
(iii) U( t, s)x U( t, s)yll <- IIx- yll for allx, yC and0<-s<-t.
DEFINITION 5.2. A contractive evolution system U(t, s) is asymptotically equal

to a contractive semigroup S(t) if, for all x C, we have
(i) limt_ u(t / h, s)x- S(h) u(t, s)xll o for all _-> 0, uniformly in h _-> 0, and
(ii) limt_ u(t + h, t)S(t)x S(t + h)xll 0 uniformly in h _-> 0. The system U

is called an asymptotic semigroup if there is a semigroup to which it is asymptotically
equal.

Intuitively, that U and S are asymptotically equal means the following: if we
follow one of the trajectories, say S, for a suiciently long time and arrive at the
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point S(t)x, then it matters little whether we follow S or U for any length of time h
in the future, because the two trajectories will be close to each other.

The concept of asymptotic equality is important because of the following result
proved in Passty 13].

LEMMA 5.1. Let A be a maximal monotone operator on H, and let S(t) be the
contractive semigroup generated by A on C. Let U( t, s) be a contractive evolution system
which is asymptotically equal to S(t) on D(A). Then the following are equivalent"

(i) S(t)x converges strongly (respectively weakly) as tc for all x D(A),
(ii) U(t, s)x converges strongly (respectively weakly) as -for all x D(A), and

s>--_O.

Remark 5.1. From the proof given in Passty [13], it can be seen that in proving
(i) implies (ii) in the lemma, only condition (i) of Definition 5.2 is needed. Similarly,
only condition (ii) of Definition 5.2 is needed for proving that (ii) implies (i).

LEMMA 5.2. Let {k(n)},__o be a sequence of strictly increasing positive integers,
where k(0) =0. Define O’-"2)(c)(m)+l hj, and I-I l-I(="k)(,,)+l Jxj. (Ifn<-m, we define
cr 0 and 1-I x x.) Then, for any n, p >= 1,

n+p

(5.1) S(cr,+P)x- rI x E S( O’mm- 1) X X
m=n+l m--1

(5.2) S(2+")x- x _-<
m=n+l

S(’t-l)S(’mn-1)X- H S(’nm-1)x
m--1

Proof We prove the lemma by induction on p. We first prove (5.1). It is evidently
true for p 1. Assuming it is true for p, we prove it for p + 1. We have

n+p+l

S(O’+P+I)x- H S( nq-p+l n-FP)x H X.+ )S(.
n+p

S(’n+pn+p+I)s(’+P)x- S(’n+P X

O’n+p X

n+p

<= S(+)x rI x n+p+l+ S( x
n+p

n+p

<-- 2
m=n+l

S(_,) x x
m--1

+ S(cr.+p x x
n+p

n+p+l

m=n+l

s(_,) x

where the second inequality follows since S(t) is contractive, and the last inequality
follows from the induction hypothesis. This proves (5.1).
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We now prove (5.2). The proof is again by induction on p. Equation (5.2) is clearly
true for p 1. Assuming it is true for p, we prove it for p + 1. We have

n+p+l

s(/*)x I1 x II II X--
n+p

<= x- II s(/)x
n+p n+p

n+p+l

+
n+p

S( n+p n+p+)x- S(+ )s(+p)x

<- x-S(+p)x + II s(
n+p

<---- S(o=-l)S(o=-l)X- H S(O’tn-l)Xn
m=n+l m--1

n+p+l

n+p

n+p+l

m=n+l

S(’m-1)S(’m-1) H S(o7-1)x
m--1

n+p+lwhere the second inequality follows since 1-In/p is contractive, and the last inequality
follows from the induction hypothesis. This proves (5.2).

Let the sequence { j}j=l of positive numbers be the parameters of a PPA such
that rn- 00. We define an integer-valued function n(t) for t-> 0 as follows: n(0)= 0,
and for > 0, n(t) is the integer satisfying

O’n(t)_ < -- O’n(t).

We are interested in the contractive evolution system U(t, s), defined for 0-< s _-<
"(’) J.)x, where we let (II,.= J.)x x. It is easy toby the formula U(t, s)x (1-Ii=,(s)+l

show that U(t, s) is a contractive evolution system using the fact that J is a contractive
mapping.

The following theorem is the main result of this section. This sharpens Theorem
1 in Passty [13] in the case where A Of in that our conditions on the parameters
{ k}k= are much more relaxed than Passty’s Our relaxed conditions are possible
because of the special properties of the operator A Of given in 2. However, Passty’s
Theorem 1 applies to an arbitrary maximal monotone operator.

THEOREM 5.1. Supposef: H - R [_l {00} is a closed convexfunction and assume that
A be a bounded sequence ofpositive numbers such that tr, - 00.fhas a minimizer. Let { j}j=

Then the contractive evolution system U( t, s) defined above is asymptotically equal to the
contractive semigroup 5;(t) generated by Of
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Proof By Lemma 5.1, we need to verify the conditions (i) and (ii) in Definition 5.2.
n(t) n(t)

+1 Aj, and Hs Hj-=n(s)/lFor the sake of simple notation, we define o-s
If < s, we let rt 0, and 1-I x x. Note that we also define o-, in Lemma 5.2. However,
no confusion should arise, since it will be clear from the context which definition is
intended.

Let us first verify condition (i) in Definition 5.2. Without loss of generality, we
may assume that s 0. Fix > 0. For an arbitrary h > 0, we have

U(t + h, O)x S(h) U(t, O)x x S(h) lI x
0 0

tIth (00 x) --S(o’tt+h)(ooX)l]

We first estimate the second term in the last expression above:

s(, x-S(h) x <-_1, x
0 0 0

O’n(
p(x,X*)

max {A,(,,
O’n( t)

p(x,X*)

A
<-p(x,X*),

O’n( t)

where A=maxj_<_ ,j. Here the first inequality follows from (4.5), and the second
inequality follows from (2.12) with x* replacing u, where x* is the element of X*
closest to x. The third inequality follows easily from the definition of tr’t+h. Since

rn(t- as t- , the last term in (5.3) can be made as small as desired by choosing
large enough.

It remains to estimate the first term:

The idea is to partition the interval [0, O’n(t/h) into subintervals and use Lemma 5.2
on each subinterval. The subintervals will be of the form [trki), rki/l], for i=

0,. , n +p, such that k(i) n(t) for some t, where we assume n(t) k(n) (note the
two meanings of n here) and n(t+ h)= k(n+p). We will impose more conditions on
the sequence k(i) later. We have
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n+p
<- 2
m=n+l

n+p

2
m=n+l

n+p

<-- 2
m=n+l

n+p
<- 2
m=n+l

s(,_) x
0

x/dmo-m_ X
o

o(x,X*)
O"o

S( O’m 1) X H X
rn-1

n+p O.m_<-_ ,/Xp(x, x*) y m-,
m=n+l O’0

where the first inequality follows from (5.1), and the second inequality from (4.4). The
third inequality follows from (2.12), with x* replacing u, where x* is the element of
X* closest to x. Here dm max=(m_,+, Aj. We are interested in making the term

n+p O.m_

m=n+l O’0

small. Clearly, if t- oe, then n(t)- oe also. Therefore, if we can ensure that

O.m_
2 m_---------7- <

O’0

we are done. There are many choices for k(i) which can accomplish this. For example,
if we choose k(i) such that

(5.4) O’k(i-i <
2 <---- O’k(i

we can easily check that

m-l<V,2m_l+A/(m_l)Z,/m-/o
and therefore the infinite series above converges. This proves (i) of Definition 5.2.

Next, we need to verify condition (ii) in Definition 5.2. We have

IIs(t/h, t)S(t)x-S(t/h)xl]- S(t)x-S(t/h)x

<- II s()x-S(, )s()x

+ IlS(cr:+h)S( t)x S(h)S(

The second term above can be estimated as follows:

Ils(:+)x-S(h)S(t)xll _< I:+-hi. Iles(t)xll

(5.5) <-_ I:+h- h]
p(x, x*)

A
<--p(x,X*),
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where the first inequality follows from (4.5), and the second one from (2.14). Therefore,
the last term in (5.5) can be made as small as desired by choosing large enough.

Finally, we estimate the remaining term:

’+h)S(t)x11 H S(t)x-S((T+P)S(t)x

n+p

m=n+l

S(o’_,)S((TT-’)S(t)x- H S((TT-’)S(t)x
m--1

n+p

2
m=n+l

S((T-,)S((TT-’ + t)x- H S(7-’ + t)x
m--1

n+p

<-- 2
m=-n-t-1

x/d,.(T" [[AS((T-1m-, + t)xll

n+p
x/d p(x, X*)

2 toO’m--1 m--1
m=n+l O" +

n+p k/O’m_<= v/-p(x, X*) Y m--1
m=n+l O’0 ik(n)

+p /(T mm<-_ ,/Xp(x, x*) 2
m=n+l (T0 -A’

where the first inequality follows from (5.2), the second inequality from (4.4), and the
third one from (2.14). If k(i) is chosen as in (5.4), it is easy to check, as above, that

+P x/ +P x/2m-l+AO’m_
-< Z --,0

rn--1
,:,,+ (To -A m:+ (m-1) -A

as n- oe. This proves (ii) of Definition 5.2. E!
COROLLARY 5.1. There exists a proper, closed convexfunction fin 12 such that given

A there exists a point x D(f) for which PPAany bounded positive sequence { j}j=l,
starting at x, Xk+l (Xk)k+, converges weakly, but not strongly to a minimizing point off

Proof By Baillon’s theorem [2], there exists a function f in H 2 and a starting
point x such that S(t)x converges weakly but not strongly to a minimizer of f By
Theorem 5.1, U(t, s), defined above, is asymptotically equivalent to S(t). Therefore,
by Lernma 5.1, there exists a point such that U(t, s) also converges weakly but not
strongly to a minimizer of f 171
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REALIZATION OF ACAUSAL WEIGHTING PATTERNS
WITH BOUNDARY-VALUE DESCRIPTOR SYSTEMS*

RAMINE NIKOUKHAH, BERNARD C. LEVY$, AND ALAN S. WILLSKY

Abstract. This paper examines the realization of acausal weighting patterns with two-point boundary-
value descriptor systems (TPBVDSs). Attention is restricted to the subclass of TPBVDSs that are stationary,
so that their input-output weighting pattern is shift-invariant, and extendible, i.e., their weighting pattern
can be extended outwards indefinitely. Then, given an infinite acausal shift-invariant weighting pattern, the
realization problem consists of constructing a minimal TPBVDS over a fixed interval, whose extended
weighting pattern matches the given pattern. The realization method that is proposed relies on a new

transform, the (s, t)-transform, which is better adapted to the analysis of descriptor dynamics than the
standard z-transform, since it handles zero and infinite frequencies in a symmetric way. This new transform
is used to determine the dimension of a minimal realization, and then to construct a minimal realization
by obtaining state-space representations for two homogeneous rational matrices in s and obtained from
the causal and anticausal components of the weighting pattern.

Key words, acausal weighting pattern, boundary-value descriptor system, realization theory, (s, t)
transform, McMillan degree

AMS(MOS) subject classifications. 93B15, 93B20

1. Introduction. There exists an extensive literature [1]-[4] on the state-space
realization problem for linear time-invariant causal systems, i.e., for systems which
admit an input-output description of the form

(1.1) y(k) E W(k- l)u(1),

where the impulse response (weighting pattern) W(.) satisfies

(1.2) W(k)=0 for k=<0.

However, for many physical systems, in particular when the independent variable is
space rather than time, the causality condition (1.2) does not hold. For example, if
we consider the temperature of a heated rod, there is no reason to assume that the
temperature at any point of the rod depends exclusively on the applied heat on one
side of that point. Weighting patterns that do not satisfy (1.2) are called acausal. The
objective of this paper is to develop a realization theory for acausal weighting patterns
in terms of two-point boundary-value descriptor systems (TPBVDSs) of the form

(1.3) Ex(k+l)=Ax(k)+Bu(k), O<=k<=N-1,

with boundary condition

(1.4) V/x(0) + Vfx(N) v,
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and output

(1.5) y( k) Cx( k), 0<= k <= N.

The motivation for considering this class of systems is that the discrete-time
descriptor dynamics (1.3) are noncausal, in the sense that they contain components
which propagate in both time directions [5]. The boundary conditions (1.4) are another
source of noncausality, since they are expressed symmetrically in terms of the system
variables at both ends of the interval [0, N]. Thus, TPBVDSs have a totally acausal
structure which is ideally suited to model noncausal systems [6]-[8]. Motivated by the
earlier work of Krener [9]-[10], and Gohberg, Kaashoek, and Lerer [11]-[13] for
boundary-value systems with standard nondescriptor dynamics, a complete system
theory of TPBVDSs has been developed in [14]-[18], including concepts such as
reachability, observability, and minimality. In this paper, we restrict our attention to
stationary and extendible TPBVDSs, namely TPBVDSs whose weighting pattern is
shift-invariant, and where the interval of definition [0, N] of the TPBVDS can be
extended outwards indefinitely, without changing the weighting pattern. This extension
process yields an extended weighting pattern W(k) defined for all k Z, where the
weighting pattern of the original TPBVDS and of all its extensions are restrictions
of W(k).

The realization problem that we consider can be stated as follows. Given a
weighting pattern W(k), construct a minimal TPBVDS over a sufficiently large interval
[0, N], which has W(k) as its extended weighting pattern. As for causal time-invariant
systems, where the z-transform plays a useful role in transforming the realization
problem into a state-space representation problem for proper rational matrix transfer
functions, it is shown that the TPBVDS realization problem can be formulated in the
frequency domain as a state-space representation problem for rational transfer func-
tions. However, instead of using the z-transform, we introduce a new transform, the
(s, t)-transform, which handles zero and infinite frequencies symmetrically, and is
therefore well adapted to the analysis of descriptor systems. Specifically, the (s, t)-
transform of a matrix sequence H(k) is defined as

(1.6) H(s, t)= _, H(k)t’-’/s k.

Because of its special structure, H(s, t) is strictly proper when viewed as a function
of both s and t, but not necessarily strictly proper in s and separately. When H(s, t)
is rational, this last observation leads us to construct minimal state-space representations
of the form

(1.7) H(s, t)= K(sD- tF)-’G,
where the descriptor dynamics appearing in (1.7) generalize the causal dynamics that
are usually employed for strictly proper rational matrices in z.

The (s, t) transform is used here to characterize the dimension of TPBVDS
realizations in terms of the McMillan degree of rational matrices in s and t, and to
formulate the TPBVDS realization problem as a state-space realization in the (s, t)-
domain. More precisely, if We(s, t) and Wb(s, t) denote the (s, t)-transforms of the
causal and anticausal parts of the weighting pattern W(k), and if

(1.8a)

(1.8b)

W(s, t)= Wf(s, t)+ Wb(S, t),

gr(s t)= Wf(s, t)Wb(S, t)], No(s, t)=
Wb(S, t)
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it is shown that minimal TPBVDS realizations of the extended weighting pattern W(
have dimension

(1.9) n=w+p-’,

where to, p, and " denote the McMillan degrees of Hr(s, t), Ho(s, t), and W(s, t),
respectively. We alsodevelop a minimal realization procedure, which relies on con-
structing minimal state-space representations of the form (1.7) for both Hr(s, t) and
Ho(s, t). The reason why it is necessary to construct state-space representations for
two rational matrices, instead of one for the causal case, is that the TPBVDS realization
problem requires finding descriptor dynamics (1.3) and boundary conditions (1.4),
which together realize W(k). It is the search for boundary conditions that makes the
TPBVDS realization problem significantly harder than the causal problem.

This paper is organized as follows. In 2, we review several results concerning
the stationarity, minimality, and extendibility of TPBVDSs that will be used later. It
is shown in 3 that the effect of the boundary conditions on the extended weighting
pattern of the system can be characterized completely by a single matrix, called the
decomposition matrix, which appears as a parameter of both the causal and anticausal
parts of W(/). This matrix simplifies significantly the presentation of our realization
results. In 4, we examine a direct but naive TPBVDS realization procedure consisting
in constructing separate minimal realizations of the causal and anticausal components
of W(k). Although the resulting realization is generally nonminimal, it is minimal
when the weighting pattern W(k) is summable. Furthermore, it yields necessary and
sufficient conditions for the realizability of acausal weighting patterns. The (s, t)-
transform is introduced in 5 and is used to formulate the TPBVDS realization problem
in the frequency domain. A method for constructing minimal state-space representations
of the form (1.7) for rational matrices in s and is also presented. Finally, 6 contains
the two main results of our paper, namely the characterization (1.9) for the dimension
of a minimal realization, and a minimal TPBVDS realization procedure in the frequency
domain.

2. Two-point boundary-value descriptor systems. In this section, we review several
properties of TPBVDSs, such as stationarity, minimality, and extendibility, that will
be needed in the development of our TPBVDS realization procedure.

2.1. Model description. Consider a linear time-invariant TPBVDS of the form
(1.3)-(1.5), where x and v are n-dimensional, u is m-dimensional, y is p-dimensional,
and/, A, B, and C are constant matrices. We assume that the length N of the interval
of definition satisfies N-> 2n, so that all modes can be excited and observed. In [14]
it was shown that if the system (1.3)-(1.4) is well posed, by left multiplication of (1.3)
and (1.4) with invertible matrices, we can bring this system to the following normalized
form, where there exists scalars a and/3 such that

(2.1) cE +a= I

(this is referred to as the standard form for the pencil {E, A}), and

(2.2) V/E N + vyaN I.

Note that (2.1) implies that E and A commute, that E, A, and the system have a
common set of eigenvectors, and that {E k, Ak} is a regular pencil for all/ _-> 0. Another

v is an eigenvector of the system if v0 and for some tr, (trE-A)v=O. r is called.an eigenmode of
the system; for descriptor systems r can be .
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consequence of (2.1) is that the space of matrices {AKEL; K, L>= 0} is spanned by the
n matrices {AkE"-l-k; 0<= k <- n-1}. This last result, which was derived in [14], is a
generalization of the Cayley-Hamilton theorem to matrix pencils in the standard form
(2.1). We assume throughout this paper that (2.1) and (2.2) hold.

As derived in [14], the map from {u, v} to x has the form:

N-1

(2.3) x(k) A’EN-%+ E G(k, l)Bu(l),
/=0

where the Green function G(k, l) is given by

Ak[A-EN-’(VA+wVyE)E’]Et-’AN--IF-, l>=k,
(2.4) G(k, I)=[EN_,[wE_A,(VA+ogVfE)AN_,]EA,_,_IF_I, l<k,

and where w is any number such that

(2.5) F ooE I+I AN+

is invertible.
The map from inputs u to outputs y specifies the weighting pattern W of the

system. Setting v 0 in (2.3), we obtain

N--1

(2.6) y( k) Y W( k, l)u( l),
/=0

with

(2.7) W(k, l)= CG(k, 1)B.

2.2. Stationarity. In contrast with the causal case, where time-invariant state-space
models have a time-invariant impulse response, the weighting pattern W(k, l) given
by (2.7) is not, in general, a function of the difference k-/. TPBVDSs that have this
property are called stationary.

THEOREM 2.1 [15]. The TPBVDS (1.3)-(1.5) is stationary if and only if
(2.8a) Os[ V, E]Rs 0[ V, A]R. O,

(2.8b) O[ Vy, E]R Os[ Vy, A]R O,

where [X, Y] denotes the commutator product ofX and Y

(2.9)

and

(2.10a)

(2.10b)

IX, v] =xy- Yx

Rs [En-BAEn-2B An-IB],

oT =[(E"-’)Tc T (AE"-z)TCT. (A"-)TcT].

The matrices Rs and Os in (2.10) are the strong reachability and strong observability
matrices of the TPBVDS. If they have full rank, the triplets (E, A, B) and (C, E, A)
are said, respectively, to be strongly reachable, and strongly observable (see [14]-[ 15]
for a detailed study of the properties of strong and weak reachability and observability).
The stationarity conditions (2.8a) and (2.8b) state that V and Vy must commute with
E and A, except for parts that are either in the left nullspace of R or the right nullspace
of O. Consequently, if R and O have full rank, i.e., if the TPBVDS is strongly
reachable and strongly observable, V and Vy must commute with E and A.
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It is easily verified that the weighting pattern of a stationary TPBVDS defined
over [0, N] is given by

CViAk-IE N-kB, 1 <= k <= N,
(2.11) W(k)= _CVsE_kAN+k_IB 1- S <- k<--O.

2.3. Minimality. Since our goal is to realize shift-invariant acausal weighting
patterns with stationary TPBVDSs, we need to be able to determine whether or not a
system in this class is minimal. This issue was examined in [15] and [18], leading to
the following definition and characterization of minimality.

DEFINITION 2.1. A TPBVDS is minimal if its state x has the lowest dimension
among all TPBVDSs having the same weighting pattern.

THEOREM 2.2. The stationary TPBVDS (1.3)-(1.5) is minimal if and only if
(2.12a)

(2.12b)

ViRs VyRs] has full row rank,

OVJ
has full column rank,

(2.12c) ker(O) cim (R).

It was also shown in Corollary 5.1 of [15] that Theorem 2.2 implies the following
corollary.

COROLLARY. Let C, V, V, Ej, Aj, N) withj 1, 2 be two minimal and stationary
realizations of the same weighting pattern, where {Ej, Aj}, j 1, 2 are in standard form
for the same c and ft. Then, there exists an invertible matrix T such that

(2.13a) B2 TB1, C2 C1T-,
(2.13b) 0( V- T-1 V?T)R 0( V- T-1 VT)R =0,

and

(2.13c) (A1- T-’A2T)R=(E,- T-’E2T)R=O,
(2.13d) O(A,- T-’AT)-- O(E1- T-1ET)=0,
where R and O are the strong reachability and observability matrices for system 1.

2.4. Extendibility. The concept of extendibility was introduced in 15] for station-
ary TPBVDSs. It was later extended to nonstationary TPBVDSs in [18]. In this paper,
we shall consider only the stationary case.

DEFINITION 2.2. The stationary TPBVDS (1.3)-(1.5) is extendible (or input-output
extendible) if given any interval [K, L] containing [0, N], there exists a stationary
TPBVDS over this larger interval with the same dynamics as in (1.3), but with new
boundary matrices V(K, L) and V(K, L) such that the weighting pattern WN(k) of
the original system is the restriction of the weighting pattern WL--K(k) of the new
extended system, i.e.,

(2.14) WN(k)= WK_L(k) for 1-N<-_k<-_N.

Our characterization of the property of extendibility for stationary TPBVDSs relies on
the notion of Drazin inverse of a matrix [19, p. 8].

DEFINITION 2.3. Let F be an arbitrary square matrix, and let T be an invertible
real transformation such that

(2.15a) F=T[M 0N] T-1
0
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where M is invertible and N is nilpotent. For example, the real Jordan form of F has
the above structure. The Drazin inverse of F is defined as

(2.15b) FD-" T[M-O 0]0 T-"
It can be shown that the Drazin inverse is unique and possesses the following

properties:
(i) F can be expressed as a polynomial of F, so that it commutes with F. Thus,

if a subspace is F-invariant, it is also F-invariant.
(ii) When F is invertible, F= F-1.
(iii) If /x is the degree of nilpotency of N, i.e., if N"-I# 0 and N" =0, then

for

(2.16) Fk+Fo-- Fk.

(iv) Let G be any matrix. Then, the condition

(2.17a) ker (F") ker (G)

is equivalent to

(2.17b) GFFD= G.

(v) If {E, A} is a regular pencil in standard form, we have [18, pp. 33-34]

(2.18) EE + AA-EEAA L

The extendibility property can then be characterized as follows.
THEOREM 2.3 [15]. A stationary TPBVDS is extendible if and only if

(2.19a) O,( V- ViEDE)Rs --O,

(2.19b) 0( Vy- VfADA)Rs O.

From conditions (2.19), by using the E-, A-, E D-, and AD-invariance of im (R)
[15] and the generalized Cayley-Hamilton theorem, it is easy to check that for an
extendible stationary TPBVDS, the weighting pattern (2.11) can be rewritten as

l <=k<=N,
(2.20) W(k)= _CVyAAD(EAD)_B l_N<=k<=O.

Given an extendible stationary TPBVDS over [0, N] with weighting pattern
Wu(k), it is of interest to ask whether it is possible to extend this TPBVDS in a
consistent way over intervals of increasing lengths, i.e., so that this progressive extension
process gives rise to a unique extended weighting pattern W(k) defined for all k. A
procedure to achieve this objective is given by Theorem 2.4.

THEOREM 2.4. An extendible stationary TPBVDS admits extendible extensions over
any interval Furthermore, the weighting pattern of these extendible extensions is unique.

Proof Given an extendible stationary TPBVDS (C, V, Vy, E, A, B, N), consider
the TPBVDS (C, V, Vs, E, A, B, M) defined over an interval of length M > N, with

(2.21) /= ViEN(ED)M, f-- VfAN(AD)M.
It is easy to check that this new TPBVDS is in normalized form, and by using the E-,
A-, E -, and A-invariance of im (R), that it is stationary and extendible. According
to (2.20), its weighting pattern can be expressed as

CEMED(AED)-’B, l <= k<= M,
(2.22) 4(k) _CAMAD(EAD)_kB l_M<=k<=O.
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Substituting (2.21) inside (2.22), and noting from N> n that we have E4+N(E)4
EN and A4+N(A)M= AN, we find

l <=k<=M,
(2.23) lore’a4 (k) _CVyANAD(EAD)_kB 1-M<=k<-_O.

This implies

(2.24) ff’4(k) WN(k) for 1 N <- k-< N,
so that the TPBVDS (C, V, Vy, E, A, B, M) specified by (2.21) is an extension of
C, V, Vy, E, A, B, N).

To prove the uniqueness of the extended weighting pattern ’ffC(k), observe that
if W4(k) is the weighting pattern of an arbitrary extendible extension of TPBVDS
(1.3)-(1.5) to an interval of length M > N, it can be expressed as (2.22), and satisfies
(2.24), so that it is uniquely specified on [1-N, N]. Since N> n, by applying the
standard Cayley-Hamilton theorem to matrices AE and EA in (2.22), we see that
W4(k) is also uniquely specified on [N + 1, M] and 1-M,-N].

Thus, we can associate to an extendible system a sequence of extendible systems
over progressively larger intervals, and with consistent weighting patterns. In this way,
we can construct an infinite weighting pattern, called the extended weighting pattern
of the system, which is such that the weighting pattern of the system and of all its
extensions are restrictions of this extended weighting pattern.

From (2.23), the extended weighting pattern of an extendible stationary TPBVDS
(1.3)-(1.5) is given by

f C( ViE N)ED(AED)-’B, k > O,
(2.25) W(k) -C[I-(VEN)]A(EA)-kB, k<=O,

where we have taken into account the normalization (2.2).

3. Internal description of a weighting pattern. The matrix VE N specifies entirely
the effect of the boundary conditions on the extended weighting pattern W(k) given
by (2.25). This motivates the introduction of the following concept.

DEFNITIOY 3.1. Let (C, V, Vs, E,A,B N) be a stationary and extendible
TPBVDS. Then P is a decomposition matrix of this system if

(3.1) OPRs O(ENVi)R.
The motivation for calling P a decomposition matrix is that the extended weighting

pattern (2.25) can be expressed as

cPED(AED)k-IB, k > O,
(3.2) W(k)= _C(I_P)AD(EAD)_kB k<__O.

Thus, if the identity matrix is decomposed into P and I- P, the matrices P and I- P
appear as parameters of the causal and anticausal parts of W(k). Also, by using (2.8),
(2.19), (3.1), and the fact that im (Rs) and ker (Os) are E- and A-invariant, it is easy
to check that a decomposition matrix P satisfies

(3.3a)

(3.3b)

(3.3c)

O(PA-AP)R O(PE-EP)R =0,

O(P-PEED)R =0,

O,[(I- P)- (I- P)AA]R O.

As is clear from Definition 3.1, one particular choice of decomposition matrix is

(3.4) P VE N.
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This choice is not unique in general. If P is a decomposition matrix, so is P + Q, where
Q is any matrix such that OsQRs equals zero.

The expression (3.2) for the extended weighting pattern W(k) motivates the
introduction of the following concept.

DEFINITION 3.2. A five-tuple (C, P, E, A, B) is said to be an internal description
of the acausal weighting pattern W(k) if it satisfies (3.2) and (3.3), and if {E, A} is in
standard form. Furthermore, (C, P, E, A, B) is minimal if it has the smallest dimension
among all internal descriptions of W(k).

Given an acausal weighting pattern W(k), a possible procedure for constructing
a minimal, extendible, stationary TPBVDS (C, V, Vy, E, A, B, N) that admits W(k)
as extended weighting pattern consists therefore in dividing the realization problem
into two steps. First, find a minimal internal description (C, P, E, A, B) of W(k). Next,
given a finite interval [0, N], find some appropriate boundary matrices V and Vy such
that the corresponding TPBVDS is extendible and stationary, and such that P is a
decomposition matrix associated to these matrices. The following result guarantees
the validity of this two-step realization approach.

THEOREM 3.1. Consider a weighting pattern W(k) with internal description
C, P, E, A, B). Then, for any interval length N, there exists matrices Vi and Vf such that
the TPBVDS C, Vi, Vf, E, A, B, N) is normalized, extendible, stationary, and has W(k)
as its extended weighting pattern. P is a decomposition matrix of the TPBVDS
C, V, Vf, E, A, B, N). Furthermore, this TPBVDS is minimal if and only if the internal

description (C, P, E, A, B) of W(k) is minimal.

Proof Let

(3.5a) V/= p(ED)N + trX(rE N -k-AN)-,
(3.5b) Vy=(I-P)(A)u +X(trE u +AU)-1,
where

(3.6) X I- PEED -(I- P)AAD (I- P)EED + PAAD- EEDAAD,
and where tr is any scalar such that crEN + AN is invertible. The second equality in
(3.6) is a consequence of identity (2.18). Relations (3.5)-(3.6) specify a TPBVDS
(C, V, Vy, E, A, B, N). By direct calculation, it is easy to check that V and Vy satisfy
the normalization (2.2), and that the stationarity and extendibility conditions (2.8) and
(2.19) for (C, V, Vy, E, A, B, N) are implied, respectively, by the relations (3.3a) and
(3.3b)-(3.3c) for (C, P, E, A, B). Noting that

(3.7) OsXR O,

we can also verify that the extended weighting pattern (2.28) associated to
(C, V, V, E, A, B, N) is equal to the weighting pattern W(k) given by (3.2). Finally,
taking (3.7) and (3.3b) into account, the matrix V given by (3.5a) satisfies

(3.8) OsViENRs OpEDER OPR,

so that P is a decomposition matrix of (C, V/, Vs, E, A, B, N).
If the internal description (C, P, E, A, B) is not minimal, there exists an internal

description (C’, P’, E’, A’, B’) of smaller dimension, and the above construction yields
an extendible stationary TPBVDS realizing W(k), of smaller dimension than
(C, V, Vy, E, A, B, N), thus showing that this last TPBVDS is not minimal. Conversely,
if the TPBVDS (C, V, Vy, E, A, B, N) given by (3.5)-(3.6) is not minimal, we can find
a lower-dimensional stationary TPBVDS (C’, VI, V, E’, A’, B’, N) that is a minimal
realization of W(k) over [0, N]. According to Corollary 5.2 of [15], this TPBVDS
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must be extendible and has W(k) for extended weighting pattern. Then P’= VIE ’u

is a decomposition matrix for this lower-dimensional realization, thus showing that
the internal description (C, P, E, A, B) is not minimal. [3

Given an internal description (C, P, E, A, B) of the weighting pattern W(k), the
following result shows that it is possible to characterize the minimality of this internal
description directly, without invoking minimality conditions for an associated TPBVDS.

THEOREM 3.2. The internal description (C, P, E,A, B) of W(k) is minimal if and
only if
(3.9a)

(3.9b)

Rw Rs PRs] has full row rank,

[ Os] hasfullcolumnrank,Ow= OsP
(3.9c) ker Os cim Rs ).

Proof According to Theorem 3.1, we can associate to (C, P, E, A, B) an extend-
ible stationary TPBVDS (C, V, Vy, E, A, B, N), which is minimal if and only if
(C, P, E, A, B) is minimal. This TPBVDS is minimal if and only if conditions (2.12)
are satisfied. Thus, we need only to show that conditions (2.12) and (3.9) are equivalent.
Suppose that conditions (2.12) are satisfied, but (3.9a) is not. Then, there exists v # 0
such that

(3.10a) vrRs =0,

(3.10b) v rPRs O.

But from (3.10a) and (2.12c) we can conclude that v r must belong to the row space
of Os. From (3.10b), we find

(3.11 v TpRs v TViE NR O.

Combining (3.10a) and (3.11) yields

(3.12) v rVyAURs O.

Since the system is extendible, we have

(3.13a) v TViEE OR vTVRs,
(3.13b) v TVIAADRs v TVIRs.
But, since Rs is E- and A-invariant, the range spaces of E NRs and ANRs coincide,
respectively, with the ranges of EEDRs and AADRs. Combining (3.11)-(3.13), we obtain

(3.14) v TVRs v TVyRs =O,

which contradicts the assumption that (2.12a) is satisfied. Thus, (3.9a) is implied
by (2.12). A similar argument can be used to show that (3.9b) is implied by (2.12).

To prove the converse, assume that (3.9) is satisfied and (2.12a) is not. Then, there
exists v # 0 such that

(3.15) vrViRs v rVfRs O,

which because of the E- and A-invariance of Rs implies

(3.16) vrVE URs v TVfANRs O.

This in turn implies

(3.17) IATRs =0,



REALIZATION OF ACAUSAL WEIGHTING PROBLEMS 429

SO that according to (3.9c) vT belongs to the row space of Os. Thus,

(3.18) v TviENRs v Tpus --O.

But (3.17) and (3.18) contradict (3.9a). Consequently, (2.12a) is implied by (3.9). A
similar argument shows that (3.9) implies (2.12b), thus proving the theorem. [3

In the following, by analogy with the weak reachability and observability matrices
that were introduced in 14] and [15], to characterize the concepts of weak reachability
and observability for a TPBVDS (C, V/, Vy, E, A, B, N), the matrices Rw and Ow
appearing in (3.9a) and (3.9b) will be called the weak reachability and weak observability
matrices of the internal description (C, P, E, A, B). As will be shown below, these two
matrices play a key role in the construction of a minimal internal description of the
weighting pattern W(k).

Theorem 3.2 implies that two minimal internal descriptions of a weighting pattern
W(k) can be related as follows.

COROLLARY. Consider two minimal internal descriptions Cj, Pj, Ej, Aj, Bj), with
j 1, 2, of the same weighting pattern W(k), which are in standardform for the same a

and. Then, there exists an invertible matrix Tsuch that relations (2.13a), (2.13c)-(2.13d),
and

(3.19) Os(P,- T-PT)R=O
are satisfied.

Proof According to Theorem 3.1, we can construct two minimal TPBVDSs
(C, V, VJ, E, A, B, N) associated to the two given internal descriptions of W(k).
Then, there exists an invertible matrix T such that relations (2.13) are satisfied.
Consequently, the strong reachability and observability matrices of systems 1 and 2
are related through

(3.20) R TRI, O 01T-From (2.13b) and (3.19), we can deduce that
2 2(3.21) O]VRI=O2V,R

which implies

(3.22) OVENR O2VER
or equivalently,

(3.23) OP,R=OPR
which proves (3.19).

4. Realizability conditions and separable realization. In 3, we have reduced the
minimal TPBVDS realization problem to the following problem. Given an infinite
weighting pattern W(k), find a minimal internal description (C, P, E, A, B) of W(k).

4.1. Realizability conditions. As a first step, we characterize the weighting patterns
that admit a finite-dimensional internal description.

THEOREM 4.1. A sequence W(k) admits a finite-dimensional internal description if
and only if there exists scalars ai, 1 <: <- ny and bi, 1 <- <- nb such that

(4.1a) W(nf +l)= aiW(nf +l-i) for all/>0,
i=1

(4.1b) W(--nb + l) biW(-nb + + i) for all <-_ O.
i:1



430 R. NIKOUKHAH, B. C. LEVY, AND A. S. WILLSKY

Proof Necessity is shown by applying the standard Cayley-Hamilton theorem to
matrices AED and EAD in (3.2). To prove sufficiency, consider the decomposition

(4.2a) W(k)= W(k)+ Wb(k),

(4.2b) IVy(k) W(k)l(k- 1), Wb(k)= W(k)l(-k),

of W(k) into its causal and anticausal parts, where l(k) denotes the unit step function,
i.e.,

1 for k>_-0,
l(k)=

0 fork<0.

Conditions (4.1a) and (4.1b) imply that IVy(k) and Wb(k) can be realized by finite-
dimensional causal and anticausal systems, respectively. Let (Cs, Aj.,Bs) and
(Cb, Ab, Bb) be such realizations, so that

(4.3a) IVy(k) CcA-IBy for k > 0,

(4.3b) Wb(k) CbA-’Bb for k<-0.

Then, it is clear that

(4.4b) E
0 Ab Bb

is an internal description of W(k), so that the theorem is proved.

4.2. Separable realization. Let us continue to analyze the realization obtained by
decomposing the weighting pattern W(k) into causal and anticausal components, and
then constructing minimal realizations for each of these components separately. Given
a finite interval [0, N], the internal description (4.4) yields the following extendible
stationary TPBVDS realization of W(k):

[I00]x(k+l)=[As O]x(k)+[B]u(k),(4.5a)
Ab 0 I Bb

(4.5b)
0

x(0)+ x(N)
vy

0 )b

(4.5c) y( k) C- Cb]x( k).

An interesting feature of this realization is that it consists of two decoupled subsystems,
which propagate, respectively, in the forward and backward directions. An extendible
stationary TPBVDS with this structure is called separable. Also, observe that in (4.5b)
the boundary matrices satisfy V P and Vy 1-P, regardless of the interval length.
Thus, in the separable case, there is no real distinction between internal descriptions
and minimal TPBVDS realizations.

Unfortunately, the separable realization (4.5) is not always minimal, as can be
seen from the following example, which is an adaptation of an example presented in
[20] for boundary-value systems with standard nondescriptor dynamics.

Example 4.1. Consider the weighting pattern

(4.6) W(k) {’ k->-l’
k=<O.
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Its separable realization takes the form

(4.7a) xs(k + l) xy(k)+ u(k), xs(O) vs,

(4.7b) Xb(k)=xb(k+l)+1/2u(k), Xb(N)=vb,

(4.7C) y(k) ys(k)+ yb(k).

However, this realization is not minimal, since W admits also the following one-
dimensional realization:

(4.8a) x(k + 1) x(k) + u(k),

(4.8b) y(k)=1/2x(k),

(4.8c) 2x(0) x(N) v.

In this case, the reason we can realize both the causal and anticausal parts of W with
a single one-dimensional system is that they have both the same mode,

In general, when the causal and anticausal parts of W share a common mode,
the realization approach consisting in constructing separately minimal realizations of
the causal and anticausal parts of W does not yield a minimal realization.

4.3. Summable weighting patterns. Nevertheless, the separable realization (4.5)
turns out to be minimal for the class of weighting patterns W(k) that are summable,
i.e., such that

(4.9) 2 W(/)II <

where II, denotes an arbitrary matrix norm. This class of weighting patterns is
important, since it corresponds to BIBO stable systems.

THEORE 4.2. When the extended weighting pattern W(k) is summable, the separ-
able TPBVDS realization (4.4)-(4.5) is strongly reachable and observable, and is therefore
minimal.

Proof. Since W(k) is summable, its causal and anticausal parts Wy(k) and Wb(k)
are also summable. This implies that the matrices As and Ab appearing in the minimal
realizations of Wy and Wb are stable, i.e., their eigenvalues are located inside the unit
circle. Consider now the matrix

(4.10) [sE_tAlB]=[sI-tAf 0 Bf]0 SAb- tI Bb

It is shown in Theorem 4.1 of [14] that if this matrix has full rank for (s, t) (0, 0),
the system is strongly reachable. But since Af and Ab are stable, the eigenmodes of
sI-tAf and SAb- tI are such that s < 1 and s > 1, respectively, so that these two
matrix pencils do not have any common eigenmode. Furthermore, since the state-space
realizations (Cf, Af, Bf) and (Cb, Ab, Bb) are minimal, the submatrices

[sI-tAf[Bf] and [SAb--tI[Bb]

have full rank. This implies that the matrix (4.10) has full rank, so that TPBVDS (4.5)
is strongly reachable. By a similar argument, we can show that

(4.11) [sE-tA]ISI-tAfc cfO SAbcbO1-tI
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has full rank and that the TPBVDS (4.5) is strongly observable. According to Theorem
3.2, the TPBVDS (4.5) is therefore minimal. [3

In the remainder of the paper, we will focus our attention on the general case
where W(k) is not summable. In this case, minimal realizations are usually not
separable. To obtain a minimal realization, two approaches are possible. One method
consists in starting from a nonminimal TPBVDS realization, say the separable realiz-
ation (4.5), and then using the procedure described in 15] for removing the components
ofthis TPBVDS that are not weakly reachable, not weakly observable, or simultaneously
not strongly reachable and observable. An alternative realization approach, that we
shall follow here, relies on the introduction of a new transform, the (s, t)-transform,
and on formulating the realization problem as a state-space representation problem
in the (s, t) domain.

5. The (s, t)-transform and state-space representation of rational matrices. One
difficulty associated with the use of the z-transform for analyzing discrete-time descrip-
tor systems is that since the dynamics of such systems are singular, infinite frequencies
cannot be handled in the same way as other frequencies [21]. This motivates the
introduction of the transform

(5.1) H(s, t)= Z H(k)t-’/s.

It can be expressed in terms of the standard z-transform H(z) as

(5.2) H(s, t) H(s/ t)/ t.

Relation (5.2) shows that the z-transform can be obtained from the (s, t)-transform
simply by replacing (s, t) by (z, 1), and conversely, the (s, t)-transform is obtained
from the z-transform by replacing z with s t, and dividing the result by t. From (5.2),
we see also that when H(s, t) exists, it has a particular type of homogeneity and is
strictly proper in (s, t) in the sense that

(5.3) lim H cs, ct) lim H s, t)/ c 0.

Note, however, that it is not necessarily strictly proper in s and separately, so that
the corresponding z-transform may not be proper.

In the following, we shall restrict our attention to the case when H(z) and H(s, t)
are rational Then, from (5.2), we see that the numerator and denominator polynomials
of all entries of H(s, t) are homogeneous, i.e., each such polynomial has the form

d

p(s, t)-- pisd-it i,
i=0

where d is the degree of p. Furthermore, from (5.3), we see also that the relative degree
in s and of all entries of H(s, t), i.e., the difference between the denominator and
numerator degrees is exactly one. Thus, the transformation (5.2) has the effect of
transforming rational matrices H(z), proper or not, into strictly proper homogeneous
rational matrices in the two variables s and with relative degree one. The analysis
of this paper will focus exclusively on this specific class of rational matrices. Note that
the idea of studying the structure at infinity of rational matrices in z through the
introduction of a homogenizing transform is not totally new. It has been considered,
for example, in [22, pp. 158-162, 182-187] and [23].

5.1. Formulation of the realization problem. In the causal case, the z-transform
plays an important role in the solution of the minimal realization problem. Specifically,
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given a causal weighting pattern W(k), the minimal realization problem is equivalent
to finding matrices (C, A, B) of minimal dimension such that the z-transform W(z)
admits the state-space representation

(5.4) W(z)=C(zI-A)-IB.

For the case of acausal weighting patterns, the situation is more complex. If
(C, P, E, A, B) is an internal description of the weighting pattern W(k), and if Wy(k)
and Wb(k) are the causal and anticausal parts of W(k), the (s, t)-transforms of Wy(k)
and Wb(k) can be expressed as

(5.5a) W(s, t)= Z CPED(AED)-IBt-I/s CPED(sI- tAED)-1B,
k=l

0

W(s, t)-- Y. -C(I-P)AD(EAD)Bt-/s

(5.5b)
C(I- p)AD(sEAD- tI)-lB.

Then, we use the matrix identities [19, p. 80]
/d, --1

(5.6a) (sE-IA)-’=EO(sI-IAED)-I-AD(I-EE D) Y, (sEAD)/I+1,
k=0

/A--

(5.6b) (sE- tA)-1= AD(sEAD- tI)-’ + ED(I-AAD) , (tAEU)/s+l,
k=0

where /-/E and /-tA denote the indices of the nilpotent parts of E and A, respectively.
Taking into account the properties (3.3a)-(3.3c) of the decomposition matrix P, we
obtain

(5.7a) W(s, t)- CP(sE- tA)-IB C(sE tA)-IPB,

(5.7b) Wb(S, t) C(I- P)(sE tA)-IB C(sE tA)-l(I P)B.

Note that W(s, t) and Wb (S, t) do not have, in general, the same regions of convergence.
However, by analytic continuation, it is possible to extend their domains of definition
to the whole plane while using the same notation. This yields the three representations:

(5.8) W(s, t)-- Wf(s, t)+ W(s, t)= C(sE tA)-lB,

(5.9) Hr(s, t) Wf(s, t) Wb(S, t)] C(sE tA)-I[pB (I- P)B],

W(s, t) C(I- P)

Since the specification of an acausal weighting pattern W(k) is equivalent to the
specification of Wy(s, t) and W(s, t), we see from (5.8)-(5.10) that the construction
of an internal description (C, P, E, A, B) of W(k) can be expressed as a state-space
realization problem for rational matrices in s and t. However, in contrast to the causal
case, the need to specify P and to achieve minimality implies that we must, in general,
obtain state-space representations for the three rational matrices W(s, t), Hr(s, t), and
Hb(s, t), instead of a single rational matrix for causal systems. Furthermore, since we
are considering acausal systems, the computation of any ofthese state-space representa-
tions requires an extension of known state-space realization techniques. We consider
this problem first in the next section.
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5.2. State-space representations of homogeneous rational matrices in s and t. The
above discussion motivates the following minimal state-space representation problem.
Given an homogeneous rational matrix function H(s, t) of relative degree one, find
matrices (K, D, F, G) of lowest possible dimension such that

(5.11) n(s, t)= K(sD- tF)-IG.

This problem is the counterpart of the minimal state-space representation problem for
a strictly proper rational matrix H(z), where we seek to find matrices (K, F, G) of
smallest size such that

(5.12) H(z)= K(zI-F)-G.

The difference .between (5.11) and (5.12) is that, as was noted earlier, the one-
dimensional rational transfer function H(z)=H(z, 1) associated to (5.11) is not
necessarily proper, so that the representation (5.12) is not applicable to this case.

An important feature of the minimal representation (5.12) is that it is unique up
to a similarity transform. For the minimal representation (5.11), even if we impose the
additional requirement that {D, F} should be in standard form, i.e., that there exists
a and/3 such that

(5.13) aD+ flF= I,

the matrices (K, D, F, G) are not unique. To ensure uniqueness, a and /3 must be
chosen a priori. In the causal case, i.e., when H(z) is strictly proper, this was done
implicitly in (5.12) by forcing D to be equal to/, which corresponds to selecting a 1
and/3 0. For the more general case that we consider here, any pair (a,/3) is acceptable
as long as

(5.14) H(a,-fl) < c.

This last condition can be viewed as an extension of the condition H(oo)<oo for
proper transfer functions.

THEOREM 5.1. A matrixfunction H(s, t) admits a state-space representation (5.11)
if and only if it is rational, homogeneous in s and t, and with relative degree one. Under
these conditions, if a, fl is a pair of scalars such that H , fl exists, H s, t) admits
a unique minimal representation, up to a similarity transform, satisfying (5.11 and (5.13).
The dimension r of this minimal realization, i.e., the size ofD and F, is given by

(5.15) r= d(H(az, 1 flz)),

where d(.) denotes the usual McMillan degree, and where H(az, 1-/3z) is a strictly
proper rational matrix in z.

Proof If H(s, t) admits a representation of the form (5.11), it is clear that it must
be rational, homogeneous in s and t, and of relative degree one. To prove sufficiency,
we need to construct such a representation. Let a and/3 be such that H(a, -fl) exists.
Then, consider the rational matrix H(az, 1-/3z). This matrix is strictly proper in z
because

(5.16) lim H(az, 1-/3z) lim H(a,-/3)/z 0.

It can therefore be realized as

(5.17) H(az, 1-flz) K(zI-F)-’G.
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Now, assume that a 0 (otherwise, reverse the roles of D and F), and let

t S
(5.18) w zat+s’ at+s"
In this case

az 1 -flz(5.19) s
W W

which implies that

(5.20) H(s,t)=wH(az, l-z)=wK(zI-F)-lG=K(sD-tF)-lG,

with

(5.21) D I-flF

Since there is a one-to-one correspondence between the representation (5.17) of
H(az, 1-/3z) and the representation (5.20) of H(s, t) with D given by (5.21), the
dimension and uniqueness properties of these two representations are the same. This
implies that minimal state-space representations of H(s, t) satisfying (5.20) and (5.21)
are related by a similarity transform, and have a dimension r equal to the McMillan
degree of H(az, 1- z). [3

COROLLARY. The state-space representation (5.11), (5.13) is minimal if and only if
(D, F, G) is strongly reachable and (K, D, F) is strongly observable. Furthermore, the
dimension of a minimal state-space representation is equal to the rank of the Hankel
matrix OsR,, where Os and R are the strong observability and reaehability matrices

associated, respectively, to (K, D, F) and (D, F, G).
Proof It can be assumed without loss of generality that a 0 in (5.13). Then, the

representation (5.11), (5.13) of H(s, t) is minimal if and only if the representation
(5.17) of H(az, 1-z) is minimal, or equivalently if and only if (K, F) is observable
and (F, G) is reachable, where observability and reachability are defined here in the
sense of causal systems. Since a 0, this is equivalent to requiring that (K, D, F)
and (D, F, G) are strongly observable, and strongly reachable, respectively (see [14,
Thm. 4.1]).

It was also shown in Theorem 5.1 that the dimension r of a minimal state-space
representation is equal to the McMillan degree of H(az, 1-z). But according to the
realization theory of causal systems, this McMillan degree is equal to the rank of the
Hankel matrix

(5.22) H=OR,

where O and R are the observability and reachability matrices associated to the pairs
(K, F) and (F, G), respectively. But with a 0, the nullspace of O coincides with that
of Os, and the range of R with that of R. This implies that the rank of H is equal to
that of OR, thus proving the corollary. [3

One relatively unsatisfactory aspect of Theorem 5.1 is that the dimension r of a
minimal state-space representation of H(s, t) is characterized in terms of the McMillan
degree of the one-dimensional rational matrix H(az, 1- z), and not directly in terms
of H(s, t). It turns out that it is possible to characterize r directly from H(s, t) by
extending the concept of McMillan degree as follows.
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DEFINITION 5.1. Given a homogeneous and strictly proper rational matrix H(s, t)
in s and t, the McMillan degree of H(s, t) is defined as the degree of the least common
multiple of the denominators of all minors of H(s, t).

Then, we have Theorem 5.2.
THEOREM 5.2. If H(S, t) is realizable, i.e., if it is homogeneous of relative degree

one, the dimension of a minimal state-space representation of H(s, t) is equal to its
McMillan degree.

Proof Consider the minimal representation

(5.23) n(s, t)= K(sD- tF)-IG.

Without loss of generality, it can be assumed that the pencil sD- tF is in Weierstrass
canonical form (see [24, p. 28]), so that

(5.24) g [K1 g2] D D 0
F F 0

G G
0 N 0 F2 G2

where N is nilpotent and D1 and Fe are invertible. The rational matrix

(5.25) H(s, t)= K(sD,- tF,)-’G
can then be expressed as

(5.26) H,(s, t) K,(zD, F,)-’ G,/ ff-I,(z)/ t,

where z-- s/t. Since there is a one-to-one correspondence between Hi(s, t) and H(z),
the dimensions of minimal representations of these two rational matrices must be
equal. But, H(z) is a strictly proper rational matrix in z, so that the dimension of its
minimal representation is equal to its McMillan degree, i.e., to the degree of the least
common multiple a(z) of the denominators of all minors of H(z). Also, since D is
invertible, is not a factor of the denominator of any of the entries, and thus of any
of the minors of H(t,s). Let p(s, t) denote the least common multiple of the
denominators of the minors of H(s, t). Since is not a factor of p(s, t), the degree
of p(s, t) is just the degree in z of pl(Z, 1) a(z). This shows that the degree of p(s, t)
equals the McMillan degree of H(z), which is in turn equal to the dimension of D
and F.

For the second block of the representation (5.24), we proceed similarly. Let

(5.27) He(s, t)= K2(sN- tF2)-1Ge,

and denote by p2(s, t) the least common multiple of the denominators of the minors
of H2(s, t). Since Fe is invertible, s is not a factor of p2(s, t). This implies that the
degree of p_(s, t) is just the degree in of P2(1, t), which, by analogy with the previous
case, is just the dimension of N and F2. Also, since N is nilpotent and (N, F2) is in
standard form, we have

(5.28) P2( s, t) det sN tF2) at "2,

where a is a constant, and n2 the dimension of N and F2.
Noting that

(5.29) H(s, t)= Hi(s, t)+ H2(s, t)

and the fact that p(s, t)and p2(s, t) have no common factors, we can easily deduce
that the least common multiple p(s, t) of the denominators of the minors of H satisfies

(5.30) p(s, t)=p,(s, t)p(s, t).
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The degree of p(s, t) is therefore equal to the sum of the dimensions of the blocks of
(5.24), which is the dimension of D and F. [3

Example 5.1. Consider the sequence

(5.31)
k =0,

H(k)= 1, k= l,
0 otherwise.

Its (s, t)- and z-transforms are, respectively,

1 1
(5.32a) H(s, t)

s

1
(5.32b) H(z)--l+-.

z

Already we can see the advantage of using the (s, t)-transform: H(s, t) has one mode
at zero and one at infinity, where H(z) has only a pole at z 0.

From Theorem 5.2, we see that the dimension of a minimal representation, simply
select a =/3 1, and perform the realization

(5.33) H(z,l_z)_l --=1 [1 1](zI-[00 0])-1[ 1]z 1-z 1 1

which implies that

(5.34) K=[1 ], D=
0 1

6. Minimal realization. In 5, it was shown that the specification of an internal
description (C, P, E, A, B) of a weighting pattern W(k) yields the three state-space
representations (5.8)-(5.10) for the rational matrices W(s, t), Hr(s, t), and Ho(s, t).
This suggests that the construction of a minimal internal description of W(k) can be
formulted as a state-space representation problem in the (s, t)-domain. It turns out
that the link existing between minimal state-space representations of rational matrices
and minimal internal descriptions is less direct than for causal systems, since an internal
description (C, P, E, A, B) can be minimal, even though none of the state-space
representations (5.8)-(5.10) is minimal.

6.1. Dimension of a minimal realization.
THEOREM 6.1. The dimension n of a minimal internal description of W(k) is given

by

(6.1) n co + p z,

where if d (.) denotes the generalized MeMillan degree introduced in Definition 5.1,

(6.2) co d(Hr(s, t)), p d(Ho(s, t)), z= d( W(s, t)).

Proof Let (C, P, E, A, B) be a minimal internal description of W(k). Then, W(s, t),
Hr(s, t), and Ho(s, t) admit state-space representations of the form (5.8)-(5.10), and
from the corollary of Theorem 5.1, co, p, and z are the ranks of the Hankel matrices
OsRw, OwR, and ORs, respectively. But, according to the minimality conditions
(3.9a)-(3.9b), Rw and Ow have full rank, which implies that co and p are the ranks of
the strong observability and reachability matrices O and R, respectively. From
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condition (3.9c), we can also deduce that the rank of OsRs equals the rank of Os plus
that of R minus n, so that

(6.3) z=p+w-n,

which implies (6.1).
Example 6.1. Consider the weighting pattern

(6.4) W(k) { akba k k<lk>--l’
where a and b are scalar parameters with a < 1. Using Theorem 4.1, it is straightforward
to check that W(k) is realizable. From Theorem 6.1, we find that the dimension of a
minimal internal description of W(k) is given by

n d ([_a_a ab )] s-at (1- b)a
s at s---at +d

-ab|
-d

s-at

s-at

={1+1-1=1 forbl,
1+1-0=2 forb=l.

When b 1, a minimal internal description of W(k) is

(6.5)

a 1
(6.6) C-l-b’ P-l-b’ E=I, A-a, B=I.

The causal and anticausal parts W(s, t) and Wb (S, t) of W have the same pole, namely
s a, which explains why they can be realized with a single eigenmode. The resulting
TPBVDS realization is strongly reachable, strongly observable, and nonseparable.

When b--1, a minimal internal description of W(k) is

(6.7) C=[a a] P=[; 00] E=I, A=aI, B=[ 1]1
This separable realization is not strongly reachable, and is not strongly observable.
Note that in the realization (6.6), the system matrices tend to oe as b 1. Thus, b 1
can be viewed as a singularity in the sense that the dimension of a minimal internal
description of W is two only when b is exactly equal to one.

6.2. Minimal realization procedure. One interesting aspect of Theorem 6.1 is that
as an intermediate step in the evaluation of the dimension n of a minimal internal
description of W(k), we obtain w and p, which are, respectively, the ranks of the
strong observability and reachability matrices of a minimal internal description. This
observation leads to the following procedure for constructing a minimal internal
description of W.

Step 1. Construct the minimal state-space representations

(6.8) Hr(s, t) Wf(s, t) Wb(S, t)] ((s/ t)-’[/f /b],

(6.9) No(s, t)=
Wb(S, t) db

where if a and/3 are such that Wf(a, -/3) and Wb(a, --1) are defined, the pairs { E, A}
and {E, A} satisfy the normalization condition (2.1) for the same a and/3. Since the
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representations (6.8) and (6.9) are both minimal, the sizes of the matrices {E, A}
and {/, } are equal, respectively, to w and p.

Step 2. Let

(6.10) /--/f +/b, (f + b-
From (6.8)-(6.9), we find

W(s, t)= W(s, t)+ W(s, t)
(6.11)

(s/- tfi)-l/ (s/ -t)-l/,
so that ((, E-, fi,/) and ((,/, ,/) are two state-space representations, in general
nonminimal, of W(s, t). The minimality of representations (6.8) and (6.9) implies that
(,/, fi,/) and ((,/, ,/) are, respectively, strongly observable and strongly reach-
able. By decomposing these two representations into strongly reachable/unreachable,
and strongly observable/unobservable components, respectively, we obtain

0 4 4 0

and

0 J4 0 4 2
In the following, it will be assumed that the representations (6.8) and (6.9) are in the
coordinate systems corresponding to (6.12) and (6.13), respectively.

Step 3. From (6.11), we find that

(6.14) W(s, t)= l(S/ tl)-ll-- d2(S/4 t4)-12,
where the representations (,/l,l,/) and (2,/4,,4,/2) are both strongly
reachable and observable. This implies that they must be related by a similarity
transformation, i.e., there exists a matrix T such that

(6.15) 1 d:T-1, /1 T/4 T-l, l T4T-l, BI-- T/:.
The matrix T is given by

(6.16) T=/A/(//flr)-1,

where M and M denote, respectively, the strong reachability matrices of (El, A1, B)
and (E4, A,B2). Furthermore, since the representations (6.14) are minimal, the
matrices El, A1, E and Aa have dimension r, where r is given by (6.2), and con-
sequently, the blocks {E4, A}, and {El, A1} in the decompositions (6.12) and (6.13)
have respective dimensions co-r and p-r.

Step 4. The matrices C, E, A, and B of a minimal internal description are now
selected as

(6.17a) E 0 E1 E_ A 0 A1 A2
0 0 E4 0 0 A4

(6.17b) C=[0 C1 C2], B= /l
0
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where * indicates an arbitrary block entry. The role of the similarity transformation T
is to guarantee that the component which is common to state-space representations
(6.8) and (6.9) is expressed in the same coordinate system. Note that (5.17) corresponds
to a four part Kalman decomposition of (C, E, A, B) into strongly reachable/unreach-
able and observable/unobservable parts, where according to (3.9c), there is no strongly
unreachable and unobservable component, since the internal description that we are
constructing must be minimal.

By using this last observation, we can immediately conclude from (6.11) that

(6.18)

If we denote

W(s, t)= C(sE- tA)-’B.

(6.19) Bf= / Cy=[(f *] 0 T-’ 0

0 0 I

from (6.8) and (6.9), it is also easy to check that

(6.20) IVy(s, t)= C(sE- tA)-IBs Cy(sE- tA)-IB.

Expanding Wy(s, t) in power series of s a and + fl in the vicinity of (s, t) (a, -/3),
noting that aE +flA= I, and matching the coefficients of (s-a)i(t+B) for all i,j in
(6.20) yields

(6.21 OR OfR,
where R and Os denote the strong reachability and observability matrices associated
respectively to (E, A, Bs) and (C, E, A).

Step 5. The matrix P is then obtained by solving the equation

(6.22) OPR, O,R.
The existence of a solution is guaranteed by identity (6.21), which shows that the row
and column spaces of the matrix on the right side of (6.22) are spanned by O and
R, respectively. The solution of (6.22) is generally not unique, since we can add to
any solution P a matrix Q such that OQR 0, i.e., a matrix of the form

(6.23) Q= 0 0 *

0 0 *

We must now prove that the matrices (C, P, E, A, B) given by (6.17) and (6.22)
specify an internal description of W(k). This requires showing that the state-space
representation identities (5.9)-(5.10) are satisfied, as well as properties (3.3). The
relation

(6.24) O,PR OR= OfR,
implies

(6.25) CPR CRZss, OsPB OrB,
so that from the Cayley-Hamilton theorem and (6.20), we have

(6.26) CP(sE- tA)-IB C(sE tA)-PB W(s, t).
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When combined with (6.18), this yields the representations (5.9)-(5.10). To prove
relations (3.3a), we use (6.24) and the fact that the reachability matrices Rs and R,
and observability matrices Os and O are constructed from the same matrices E and
A. Then, from the Cayley-Hamilton theorem, there exist matrices Ke and KA which
satisfy

(6.27a) ER RK, AR RKa,

(6.27b) ER= RK, AR RYKA,
i.e., the same matrices Kz and KA can be used to characterize the E- and A-invariance
of the range spaces of both R and R. Similarly, the E- and A-invariance of the
nullspaces of Os and O{ can be characterized by a single pair of matrices. Taking this
feature into account in (6.24), it can be checked easily that the constraints (3.3a) are
satisfied. To prove relations (3.3b) and (3.3c), we use identities (5.6a)-(5.6b). Substitut-
ing (5.6a) inside (6.26), and noting that the weighting pattern Wy(k) is causal, we find

(6.28) CPAD(I EED)(EAD)kB --0

for 0_--< k =< z- 1. Expressing the pencil {E, A} in Weierstrass canonical form, it is
then easy to check that (6.28) is equivalent to (3.3b). Similarly, to derive (3.3c), we
substitute (5.6b) inside the state-space representation

(6.29) Wb(s, t) C(I- P)(sE tA)-’B

and use the fact that Wb(k) is an anticausal weighting pattern. Thus, (C, P, E, A, B)
is an internal description of W(k). Since its dimension n obeys (6.1), it is minimal

Example 6.2. Let

-t
(6.31) Wy(s, t)= Wb(s, t)-

s(s-t)’ s-’
and according to Theorem 6.1, the dimension of a minimal internal description of
W(k) is

(6.32) n=2+2-1=3.

Since to =p 2, we can also conclude that the minimal internal description is neither
strongly reachable nor strongly observable. To obtain a minimal description, the first
step is to construct the minimal state-space representations

-t
=[1 1] sI-t(6.33a) [Wy Wb]=

s(s-- t) s-- 0 --1

--t

Wf s(s t) 1 1
sI(6.33b)

Wb 1 --1 0 0 1

s--t

which satisfy the normalization condition (2.1) with a 1,/3 0. This yields

(6.34) B C [1 0].

Then

(6.30) W(k)
1, k # 1.
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In this case, we can select T 1, and

(6.35)
1 0 * -1

C=[0 1 1], E=I, A= 0 0 0 B= 1

0 0 1 0

where * denotes an arbitrary entry. Finally, by solving (6.22) we find

(6.36) P= 0 1 *

0 *

The above realization procedure can be simplified significantly if the minimal
internal description is either strongly observable or strongly reachable, i.e., if the
integers w and p in (6.2) satisfy either co n or p n.

Strongly observable case (co n). In this case, only the state-space representation
(6.8) is needed, and we can select (C, E, A, B)= (C, E, A, B). Also, since Os has full
rank, (6.24) for P reduces to

(6.37) PRs RYe.
Strongly reachable case (p n). Then, only the representation (6.9) is needed, and

we can select (C, E, A, B)- ((,/, .,/). Furthermore, (6.24) for P becomes

(6.38) O,P 0{.
The previous realization procedure, or its simplification for the strongly observable

and reachable cases, is of interest only when it yields a minimal internal description
which is not separable, since in the separable case, the realization of 4 is minimal.
the following result provides a test for determining whether a weighting pattern admits
a separable minimal description.

THEOREM 6.2. W( k) has a separable minimal realization if and only if the minimal
dimension n given by (6.1) satisfies
(6.39) n d( Wf(s, t))+ d( Wb(S, t)).

Proof If we construct two minimal realizations of IVy and Wb, and combine them
to realize W(k) as shown in (4.4)-(4.5), we obtain a description of dimension
d W.(s, t)) + d Wb (S, t)). This description will therefore be minimal if and only if
(6.39) is satisfied, where n is given by (6.1). [3

7. Conclusions. In this paper, the minimal TPBVDS realization problem for
acausal shift-invariant weighting patterns has been examined. By restricting our atten-
tion to extendible stationary TPBVDSs, it was shown that the minimal TPBVDS
realization problem is equivalent to the problem of finding a minimal internal descrip-
tion for the weighting pattern W(k) of interest. Introducing the (s, t) transform and
Characterizing minimal state-space representations of homogeneous rational matrices
in (s, t), a frequency-domain approach was developed for finding the dimension of a
minimal internal description, and for constructing such a description.

Since the assumption that the weighting pattern W(k) is shift-invariant is restric-
tive, particularly for acausal systems, it would be of interest to extend the above theory
to the nonstationary case. Also, we have limited our attention here to deterministic
systems. Since there exists a complete and elegant stochastic realization theory for
causal systems [25]-[27], it is natural to ask whether a similar theory can be developed
for acausal stochastic systems. For the Gaussian case, some preliminary stochastic
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realization results have been presented in [28] for boundary value systems with standard
nondescriptor dynamics, and in [18] for TPBVDSs.
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THE DYNAMIC PROGRAMMING EQUATION FOR THE TIME-OPTIMAL
CONTROL PROBLEM IN INFINITE DIMENSIONS*

VIOREL BARBU?

Abstract. The existence and uniqueness of a viscosity solution for the Bellman equation associated
with the time-optimal control problem for a semilinear evolution equation in Hilbert space is provided.
Applications to time-optimal control problems governed by parabolic equations are given.

Key words, time-optimal control problem, minimal time function, Hamilton-Jacobi equation, viscosity
solution
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1. Introduction. In this paper, we study the time-optimal control problem

(1.1) inf { T; ::lu , y’+ Ay + Fy Bu in (0; T); y(0) Yo, Y(T) 0}

in a real Hilbert space H, where A is a linear self-adjoint positive-definite operator in
H, F is a nonlinear maximal monotone (single-valued) operator, and

(1.2) ?l={uLoc(R+; U); u(t)K a.e. t>O}.

Here U is a real Hilbert space and K is a closed convex and bounded subset of U;
0 K. B is a linear continuous operator from U to H and B* is its adjoint.

Throughout in the sequel we shall denote by land (’,’) the norm and the scalar
product of H, respectively. The norm of U will be denoted I" c and the scalar product
(., .). Further assume that the operator A+ F is maximal monotone. Then it is well
known (see, for instance, [1], [5]) that for every yo D(A+F) (the closure of the
domain D(A + F) of the operator A + F) the Cauchy problem

(1.3)
Y’ + ay + Fy Bu in (0, T),

y(O)=yo

has a unique weak solution y=y(t, yo, u) C([0, T]; H). (We have denoted by
C([0, T]; H) the space of all H-valued continuous functions on [0, T].)

For every Yo D(A + F) let us denote by 4(Yo) the value of problem (1.1), i.e.,

(1.4) b (yo) inf { T; =lu 07/, y( T, Yo, u) 0}.

The function th:D(A+ F)[0, oe] is called the minimal time function associated to
problem (1.1) and formally it is a solution to the stationary Hamilton-Jacobi equation
(the Bellman equation)

(1.5) h(-B*Dch(y))+(Ay+Fy, Dch(y))= 1 VyD(A+F)\{O},

(1.6) b(0)=0, b=>0 in D(A+F).

Here h :H R is the support function of K, i.e.,

(1.7) h(p)=sup{(p,u);uK} VpH.

We will prove here under appropriate assumptions on the evolution system (1.3)
that the minimal time function 4 is the unique weakly continuous viscosity solution
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to (1.5), which satisfies conditions (1.6). This result has been established in the
framework of the theory of viscosity solutions in infinite dimensions developed by
Crandall and Lions [8]-[11] (see also [12]) and could be viewed as an illustration of
this theory on time-optimal control problems. The verification of the general assump-
tions on distributed control processes governed by semilinear parabolic equations
contains much of the substance of this paper. For some related finite-dimensional
results we refer to [4]. We might expect to find significant applications of the theory
of viscosity solutions to other classes of optimal control problems.

Recently, Ttaru [17] has introduced a general notion of viscosity solution for
infinite-dimensional Hamilton-Jacobi equations with nonlinear unbounded terms
which cover equations of the form (1.5).

2. Existence and uniqueness of viscosity solutions. We begin by formulating the
main assumptions under which (1.5) will be studied.

(i) A is a linear maximal monotone self-adjoint operator in H with compact
resolvent. Denote by D(A) the domain of A and by V the space D(A1/2) endowed
with the norm IIxll- (lxl2 / [A1/2xl2)’/2.

(ii) F is a maximal monotone single-valued operator of the form F =0j where
j" H --> ]-oe, +ee] is a lower semicontinuous convex function. Moreover, F0 0, D(F)
H and

(2.1) (Ay, Fy) >= 0 Vy D(A) D(F) .
By Oj we have denoted the subditterential of function j.

(iii) The operator (I + A)-1F is locally Lipschitz from H to V, i.e., for every r > 0
there is L(r) > 0 such that

(2.2) [l(I + A)-’(Fy Fz)ll L(r)ly- z[ for lyl, Izl r.

(iv) The minimal time function 4’ is finite and weakly continuous on
D(A + F)= H.

It follows by assumptions (2.1) that A+ F is maximal monotone in H x H and
D(A+F)= D(A) f’ID(F)= H (see, e.g., [3, p. 129]). Moreover, A+F=Oj, where
f(y)=1/21al/2yl2+j(y). Recall (see, e.g., [1], [5])that -(A+F) generates a nonlinear
semigroup of contractions e-(a+F)t on D(A + F) H.

In particular, assumption (iv) holds if U H, B I (the unity operator in H)
and K {u e H; lu]-< p}. Indeed in this case we have (see [6])

ch(yo)-Ch(Zo)<--Olyo-zol Vyo, Zo D(A+ F)= H.

If {yS} is weakly convergent to Yo, then since by assumptions (i) and (ii) the operator
S(t)=e-(A+F)’ is compact for t>0, we have on a subsequence, again denoted
yS, S(e )y8 - S(e )Yo, and therefore

lim 4(S(e)yg)= &(S(e)yo).

Inasmuch as 4,(yg)<-_&(S(e)yg)+e, for all e >0, this yields

lim sup (h(yg) <-- e + p[S(e)yo-yo]+ &(yo).

Since e can be chosen arbitrarily small we may conclude that

lim sup &(yg) _-< b(yo).
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On the other hand, it is readily seen that the function b is weakly lower semicontinuous.
Hence limn_, 4(Y)= 4(Yo) as claimed.

We shall discuss in the next section other situations where these assumptions hold.
Consider the Hamilton-Jacobi equation

(2.3) E(y, oh, Dch)+(Ay+ Fy, Dch)=0 in f

where 12 is an open subset of H and E: 12 R H R is a continuous function.
DEFINITION 1. A strong viscosity solution to (2.3) in f is a continuous function

b C(f) provided for all 0 C1(12):
(a) If 4 q’ attains a local maximum at Yo 12 and Vq,(y)

c (y)(V ql(Y)+ 0(]Yl) sgn y) for all y 12, where 01 C1(12), 02 CI(R+) and c C(12)
are such that AVq,I C(f), a->0 in 12, q,(0) 0, q,(r)>0 for r>0, then

(2.4)
E(yo, ch(yo), V0(yo)) + ce(yo)(Yo, AVqI(yo)) + ce(yo)((I + A)-lFyo, (I + A)V ql(yo)) -<0

(b) If b-0 attains a local minimum at Yoef and VO(y)=o(y)(VOl(y)
0(lYl) sgn y) for all y e 12, where 01, 02 and a satisfy the above conditions, then

(2.5)
E(yo, ch(yo), Vq(yo)) + a(yo)((I + A)-lFyo, (I + A)Vd/I(yo))

+ a(yo)(Yo, AVbl(yo)) >- O.

This notion of solution is slightly stronger than that introduced by Crandall and
Lions 10], 11] for Hamilton-Jacobi equations in Hilbert spaces. In accordance with
this general concept of viscosity solution we say that 4 C(I)) is a viscosity solution
to (2.3) provided for all q C1(12):

(j) If 4-0 attains a local maximum at yo 12 and 0(y)= ql(y)+ (lyl), where
01 C1(12) and 1//2 cl(e+) are such that AV01 C(12), 2(0) 0, q(r) > 0 for r>0,
then

E(yo, qb(yo), VO(yo))+ (yo, AVOl(Yo))+((I + A)-IFyo, (I + A)Vtl(Yo) _--<0.

(jj) If b-0 attains a local minimum at Yo and 0(Y)= 01(Y)-02(lyl), where
02 are as above, then

E(yo, ch(yo), Vd/(yo))+(yo, AVOI(Yo))+((I + A)-IFyo, (I + A)VOI(YO)) >-O.

THEOREM 1. Let (i)-(iv) hold. Then there is a unique weakly continuous strong
viscosity solution to (1.5) on H\{0} which satisfies condition (1.6), namely, the minimal
time function 49.

If F is locally Lipschitz on H, Theorem 1 is implied by the general existence and
uniqueness results proved in 11].

Proof (1) Existence. By the dynamic programming principle we have for all > 0

(2.6) ch(yo)=inf{t+ch(y(t, yo, u)); u 07/}.

Note that for every yoD(A+F)=H,u?I and
wl’2([0, T]; H) {z L2(0, T; H); dz/dt L2(0, T; H)} and

T>0, tl/2Y( t, Yo, u)

d
(2.7)

at
y(t’ yo, u) + Ay(t, yo, u) + Fy(t, yo, u) Bu(t) a.e. (0, T).

Moreover, if u6 wl’2([0, T]; H), then t(dy/dt) L(O, T; H) and

d+
(2.8)

dt
y(t)+ay(t)+Fy(t)=Bu(t) Vt6(O, T).
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Let Yo H\{0} be a local maximum for 4- where is as in Definition 1. Then,
for any u o?/ and > 0,

(yo) 4(yo) ->- (y(t, yo, u)) 4(y(t, yo, u))
and for u(t)=-Uoe K it follows by (2.6) and (2.8) that

Io1 <= lim -1 (V O(Y(S, Yo, uo)), Buo Ay(s, Yo, Uo) Fy(s, Yo, uo)) ds

<-- (Uo, B*V q(yo))-(Yo, AVqq(yo))ce(yo)- (yo)((I + A)-IFyo, (I + A)V 4tl(Yo)),
and inasmuch as Uo is arbitrary in K the conclusion is now

h(-B*V(yo))+(yo, AVt(yo))c(yo)+((I + A)-Fyo, (I + A)Vt(yo))c(yo) <= 1,

as desired.
Assume now that yoO is a local minimum point for -p where V q(y)=

(V(y)- O(y) sgn y)ce(y). We have

(2.9) ch(yo)-ch(y(t, yo, u))<-q(yo)-q(y(t, yo, u)) Vu% t[0,6].

Let (y*,u*) be an optimal pair in problem (1.3), i.e., y*(t)=y(t, yo, u*) and
y*(4(yo)) =0. (The existence of a such a pair is an immediate consequence of the
compacity of the level sets {ye H; 1/2(Ay, y)+j(y)+lyl<-A} and follows by standard
arguments.)

Let y; e D(A)f3 D(F) be such that y;- Yo for e-0 and let y(t)= y(t, y;, u*).
Then, we have

y(t)y*(t) uniformly on [0, T] in H

and

O(y(t))-O(y) (70(y(s)), Bu*(s)-Ay(s)-Fy(s)) ds

>= (7q(y(s)), Bu*(s)) ds- (AVO,(y(s)), y(s)) ds

((+((s,(+-F(s s.

Letting e tend to zero, we get

O(y*(t))-(yo)e (VO(y*(s)), Bu*(s)) ds

(y*(s))(AV,(y*(s)), y*(s))

(*(s((+(*(s, (+-F*(s s.

Then by (2.6) and (2.7) we infer that

(Io1 +lim t- (B*VO(y*(s)) u*(s) ds
tO

(*(s(*(s,(*(ss

;o (*(s((+-F*(s,(+(*(ss o
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and therefore

a(yo)(AVd/l(yo), yo)+ cr (yo)((I + A)V 4,1(yo), (I + A)-lFyo)+ h(-B*VO(yo)) -> 1

as claimed.
(2) Uniquenes’s. Using a device due to Krukov [14] (see also [15]), we show first

that (1.5) can be reduced via the transformation 1- e- to the equation

(2.10) +h(-B*D)+(Ay+Fy, D)=I in H\{0}.

Namely, we have the following lemma.
LEMMA 1. If qb is a strong viscosity solution to (1.5) in H\{0}, then the function
1- e -4" is a viscosity solution to (2.10).
Proof Let O e CI(H\{0}) be as in condition (j) and let Yo be a local maximum

point for b- q,. This yields

(2.11) th(y)+ln (1-e+Yo(O(y)-O(yo)))<-qb(yo) rye B(yo)

where B(yo) {y H; lY Yol <-- to} is a sufficiently small neighborhood of Yo such that

2e(Yld/(y)- O(yo)l <-- 1 Vy e B(yo).

Consider a function q CI(H\O) such that
2q(Y) 0(Y) for y e B(yo), Ida(Y) qJ(Yo)l-<- x e- Vy e H.

Denote by X the function

X(Y) -In (1 ea(Y)(6(y)- 6(Yo)))
and since b is a viscosity solution to (1.5) we have by Definition 1

eYh(-B*VO(yo)) + (Yo, avq,(yo)) ey

+((I+A)-lFyo, (I+A)VOl(YO)) e+Y<= l

(yo) + h(-B*V4,(yo))+((I + A)-’Fyo, (I + A)VO,(yo))+(yo, AV qq(yo))-<_ 1

as claimed.
The case when Yo is a local minimum point for -q, and q, - 02(lYl) can be

treated similarly.
According to Lemma 1 to complete the proof of Theorem 1 it suffices to prove

that (2.10) has a unique viscosity solution which is weakly continuous and satisfies
the conditions

(2.12) 4(0) 0, 0 -< 4 -<_ 1 in H\{0}.

To this end, following a general method to prove uniqueness of the viscosity
solution developed in [9] and [10], consider the Hamiltonian

H(z,p, q)=h(-B*p)-h(B*q)+(ax+Fx, p)+(ay+Fy, q), z=(x,y).

Let bl, ff)2 be two viscosity solutions to (2.10) which are weakly continuous on H and
satisfy (2.12) and let w be the function

w(z) 6,(x) qb2(y), z (x, y) H x H.

For every e > 0 consider the function " H x H-> R defined by

(2.13) (x, y) p(lxl=+ly]=)+ C--1 (c4to -t" IIx- y ,) ’/=

where p > 0, w L2(1/x/-fi)+ 1 and 112112.=((I+A)-lx, x).
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Inasmuch as the function w- is weakly lower semicontinuous on H H there
is z (x, y) such that

(2.14) w(z)-(x, y) >= w(z) -(x, y) V(x, y) H H.

We have p(lxl+lyl)-)+ O(x, y) where

VxO(x, y) (ew)-’(I + A)-’(x- y)(e4+ [lx_ yll,),/2-,,
v,(x,y)=-v(x,y).

It is readily seen that

w+ H(z, Dw)=0 in (H{0}) x (H{0})

in the viscosity sense. Hence if x 0 and y 0, we have

w(z) + h(-B*(Zpx + VxO(x, y)))- h(B*(Zpy-Vx(x, y)))

+(ew)-l((i+A)-,(Fx_Fy),x_y)(e4+llx_Yll2.) 1/2--1

()-lllx _11 = 4 2 1/2--1

By assumptions (iii) this yields

W(Ze)--* (Ze). < CP 1/2 E-l( E4w + Ilx-yll 2,) 1/2w

(2.15) +()-’(L()lx-ylllx-yll.-lx-yl)
(+ IIx-f I1)/-+()-*( + IIx-y II)

because h(p) h(q) N c]p q] for all p, q e H.
On the other hand, we see by (2.14) that

(2.6) p([xl + [yl) 6,(x) .
Then after some calculation involving (2.15) we get the estimate

w(z)-(z) Cp’/

where C is a positive constant independent of p and e. Then by (2.14) we see that

(2.a7) ,(x) 2(x) cpl/2 + 2plxl= + x g.

Since p and e can be chosen arbitrarily small, it follows by (2.17) that & &2 in H.
If x =0, y =0, then again by (2.14) we have

,(x)- (x) 2olxl x H,

and so 1 2. Similarly, if x 0 and y 0 once again using inequality (2.14), we get

ply12+ -l(4w + ilyll ,/2,)
and therefore y 0.

Let us now assume that x # 0 and y 0. Then we have

(2. olxl+ -’(" + lxll /-,) Ne+(x)Nl+e

and therefore

llxll,((+).
Thus if x. 0 and y. 0, for a sequence e, 0 we have

x. 0 strongly in V* and weakly in H
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and therefore (Dl(Xen)-’>0 (because b is weakly continuous). (We have denoted here
by V* the dual of the space V endowed with the norm

Then again by (2.14) we have

)l(X) /)2(X) ff)l(Xen) -- 2p]x]2 + e. Vx H\{0}.

Hence bl (D2, thereby completing the proof.

3. The time-optimal problem for a semilinear parabolic equation. Consider the
distributed control system

Oy
---Ay+(y)=u inf(0, oo),
Ot

(3.1)
y(x, O) yo(X), x 1), y 0 in 01) (0, )

where is a bounded and open subset of R with a sufficiently smooth boundary 01
(for instance, of class C2), and/3 is a continuous monotonically increasing function
on r such that/3(0) =0 and

(3.2) I(v)-(z)l<=C(l+lvl+lzl)ly-z Vy, zR

where0Np=<2/NifN=>3,0=<p<l ifN=2, andp---1 ifN=l.
Let K {u LZ(l)); ]u(x)] =< a a.e. x f} and let b LZ(f) R+ be the minimal

time function associated with system (3.1),

(3.3) 4(Yo) =inf{T; Elu e L2(0, T; LZ(f)), u(t)eK, a.e. t(O, T); y(T, yo, u)=0}.

Here y(., Yo, u) C([0, T]; LZ(f)) is the solution to problem (3.1).
Let us check assumptions (i)-(iv) of 2 where H= LZ(f), A=-A, D(A)=

H(f)f3 HZ(f), V= H(f), V*= H-l(f), and (Fy)(x)= (y(x)) for almost every
x f, y D(F) where

D(F) {y 6 L2();/3(y) n2(a)},

H(fl), H2(f), and H-l(f) are Sobolev spaces on f.
Since assumptions (i), (ii), are obviously satisfied, we confine ourselves to checking

(iii) and (iv).
By the Sobolev imbedding theorem,

Ila-’(Fy- Fz)lla(n IlFy- Fzll-,(m <- Cll(y)-(z)]],( Vy, z L(f)

wherep=2N/(N+2) ifN_>-3, l<p-<2ifN=2, andp=l ifN=l.
Then by (3.2) we see that

respectively,

for N=2

for N= 1.

iiA-l(Fy_ fz)liHA( C(l + llyll/. 2/,N
>+ IIzll m) Ily zll <>,

IIA-’(Fy Fz)[[ n() C(1 + Ilyl[ L2(-)-) -lk" IlZII m)) Ily zll L2(,)
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Let us now prove that assumption (iv) holds in the present situation. We shall
first prove that any yoe L(f) can be steered to origin in finite time. To this aim
arguing as in [2], consider the feedback system

OY-Ay+fl(y)+asgny=O infxR+,
Ot

(3.4) y(x, O) yo(x) in ,
y 0 in 01) x R+

where sgn y yly1-1 if y # 0 and sgn 0= [-1, 1]. Recall that problem (3.4) has a unique
solution y C([0, T]; L2(’)) such that

t1/2y L2(0, T; H2(a) [’] H([-)), tl/20Y-- L(O, T; L2(f)) Vt > O.
Ot

Consider the function z Ilyoll (n)-at and note that

Oz
---Az+ a sgn z 0
Ot

in f x (0, a -111yoll

(3.5) z(x, 0)=

z -_> 0 in

Subtracting (3.4) and (3.5) and multiplying by (y- z)/, we get after some calcula-
tion that

d
)+ 2 <0 a.e. t (0, a -111yoll

Hence

and therefore

Hence

y(x, t) Ilyoll, (m-

[y(x, t)[--< Ilyo[[ ,(- at

VX a, (0, a-lllyollL(a))

V(X, t)a[0,

(3.6) d(yo)<=a-lllyollL(m Vyo L(a).

Let S(t) be the semigroup generated on L2() by the operator -(A+F), i.e.,
S(t)yo y(t) where y is the solution to boundary value problem

O--Y-Ay+(y)=O infxR+,
Ot

y(0)=yo in y=0 in0fxR+.

If z is the solution to the linear parabolic equation

OZ
---Az=O infxR+,
Ot

z(0) lyol in a z=0 in0fxR+,
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it follows by the maximum principle that

ly(x, t)l <- z(x, t) V(x, t) R+,
i.e.,

(3.7) Ils(t)yoll) < ct-l/llyoll Vt>O

because, as is well known,

(3.8) ’So(t)yoll,.) < ct-/211yoll. Vt>0

where C is a positive constant independent of Yo. (Here So(t) is the Co-semigroup
generated by -A on L2(f).) Then taking into account the obvious inequality

(3.9) ch(yo)<-ch(S(t)yo)+t Vt>0, yoL2(O),
we infer that b(yo)< oe for all yo L2(12). (As a matter of fact we may extend 4 on
all of Ll(f).)

Now let Yo L2(f) be arbitrary but fixed and let {y} c L2(f) be such that y Yo
weakly in L2(f) for n- oo. Since the function b is obviously weakly lower semicon-
tinuous on L2(f) (this is an immediate consequence of the fact that a time-optimal
controller exists and follows by standard arguments) it remains to show that

(3.10) lim sup th(y) <-- th(yo).
Keeping in mind inequality (3.9) and the fact that for each > 0 the operator S(t)

is weakly-strongly continuous on L(lq), without any loss of generality we may assume
that

(3.11) Y-Yo strongly in L().
Let Uo be such that y(to, Uo) 0 where to b (yo) and let y, be the corresponding

solution to problem (1.3), i.e.,

OY--2- Ay, + (y,) Uo in 12 x R+,
Ot

y,(0) yg in 1), y, 0 in 012 x R+.
By (3.6), (3.7), and (3.9) we have

b (yg) _-< q5 (yo) + b (y, (to))

(3.12) <- 6(yo) + 6(S(e)yn(to))+ e

<- 49(Yo) + e + Ce-U/-’llY,( to)ll (o.
On the other hand, it follows by (3.11) that yn(t)y(t) uniformly on [0, to] in the
strong topology of L2(f) where y(t)=y(t, Yo, Uo). Hence Ily.(to)[I (a--, 0 as n- o. f
in (3.12) we take e en such that

e,-O, eS/Zlly,(to)ll(a-o for n-oe

we get (3.10) as desired.
We note parenthetically that we have proved that the minimal time function b

for system (1.3) is weakly continuous on L2()) under the weaker assumption that/3
is a maximal monotone graph in R x R such that 0/3(0).

Thus Theorem 1 is applicable in the present situation.
COROIIARY 1. Under assumption (3.2) the dynamic programming equation of the

time-optimal control problem for system (3.1)
(3.13) allDch(y)lltl(m+(Ay+Fy, Db(y))= 1 in L2()\{0}
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has a unique strong viscosity solution satisfying conditions

(3.14) th(0) 0, b(y) =>0 Vy La(f),

namely, the minimal time function (3.3).

4. The time-optimal problem for boundary control of the heat equation. Consider
the boundary control system

Oy
-Ay=0 inlIx(0, o),
Ot

(4.1) y(x, O)= yo(x), x f,

y(x,t)=u(x,t) V(x,t)0x(0, eo)

where f is a bounded, open, connected set of R with C-boundary, and
u L(Of (0, oe)) are subject to constraints

(4.2) [u(x, t)] <_- a a.e. (x, t) 0a x (0, o).

The maximum principle for the time-optimal problem associated with boundary control
system (4.1), (4.2) has been obtained by Fattorini 13 ].

If we denote by A" L2(f)- L2(-) the operator -A with homogeneous Dirichlet
conditions, i.e., D(A)=H(f)flHa(f) and for uLa(f) we set 0-Bu, where
0 La(2) is the weak solution to Dirichlet problem

A0=0 inf,, 0=u in

we may write system (4.1) as

y’( t) + A(y( t) Bu( t)) 0

y(0) =yo.

Equivalently,

in R+,

z’(t)+Az(t)=Bu(t) in R+,
(4.3)

Z(0) A-lyo Zo

where z A-y.
Let 4" La(f) - R/ be the minimal time function corresponding to system (4.3), i.e.,

(4.4) b(Zo) inf { T; Eiu L(Of x (0, oe)), lul <__ a
a.e. in 0f x (0, o), z(T) 0}.

Let us first show that 4 is everywhere finite and weakly continuous on L2(I)). Indeed
by the results of Russell 16], 4 (Zo) < for all zo D(A).

Then, by the obvious inequality

(4.5) (Zo)<=dp(e-A’zo)+e VZo L2(a),

we infer that 4 < oo on L2(), as claimed. Applying Theorem 1 in [7], it follows that
the minimal time function 4 is continuous on L2(), and since the semigroup e -a’ is
compact for > 0 we conclude that th is weakly continuous on L2().
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Recalling that B* (the adjoint operator of B) is given by B*p =-(O/Ov)A-lp in
for p L2(f), we may write the Bellman equation associated with system (4.3)

(4.6) OA-IDqb(y)]]Ov
+ (Ay, Db(y))= 1 for

Applying Theorem 1, we find Corollary 2.
COROLLARY 2. The minimal time function ch is the unique weakly continuous strong

viscosity solution to (4.6) in L2(i))\{0} satisfying the conditions

(4.7) b(O) 0, 4) => 0 in Lz(I).

Now if q(y)= ch(A-y) is the minimal time function associated with system (4.1)
we see by (4.6) that, formally, it satisfies the equation

(4.8) + (Ay, DO(y)) 1.

Then Corollary 2 implies the existence and uniqueness of a viscosity solution
q’(D(A))*-. (0, c) for (4.8) in (D(A))*\{0}. (We have denoted by (D(A))* the dual
space of D(A).)

Acknowledgment. I am indebted to Professor P. L. Lions for some useful remarks
on an earlier version of this paper.
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EXISTENCE OF CONTROL LYAPUNOV FUNCTIONS AND
APPLICATIONS TO STATE FEEDBACK STABILIZABILITY OF

NONLINEAR SYSTEMS*

J. TSINIAS?

Abstract. The asymptotic and practical stabilization for the affine in the control nonlinear systems,
which extends the results of Artstein, Sontag, and Tsinias is explored. Sufficient conditions for the existence
of control Lyapunov functions are presented guaranteeing stabilization. The corresponding feedback laws
are smooth, except possibly at the equilibrium of the system.

Key words, control Lyapunov functions, state feedback, stabilizability.
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1. Introduction. Feedback stabilization of nonlinear systems is a problem of great
importance in control theory. Geometric, decomposition, and linearization methods,
Lyapunov and center manifold theorems, as well as sliding mode techniques have been
used by many authors to derive necessary and sufficient conditions for stabilization of
systems at a specified equilibrium. Regularity assumptions of the stabilizing feedback
near the equilibrium play an important role in the theory that has been developed
(see, for instance, [1]-[14], [16]-[19], [22], [23], [27]-[42]). Linear, smooth, almost
smooth, sliding mode, and piecewise-analytic controllers have been used in the pre-
viously mentioned works where the various types of regularity requirements lead to
many different notions of stabilization. In particular, in [3], [29], [31], [32], [37]-[39]
the corresponding necessary and sufficient conditions for stabilization are of Lyapunov
type, the proposed stabilizers are smooth except possibly at the equilibrium, and their
construction is based on the existence of an appropriate control Lyapunov function.

Our main purpose is to explore further the asymptotic and practical stabilization
problem for a wide class of affine in the control nonlinear systems. This class can be
characterized in terms of computable control Lyapunov functions, which in certain
cases depend directly on the dynamics of the system. The main techniques used to do
this are Lyapunov’s direct methods [15],[21],[26],[45] and the converse stability
theorems of Massera [24], Kurzweil [20], and Wilson [43], [44]. It will be useful to
recall here the precise definitions of the notions of stabilization, control Lyapunov
functions, and the most important results provided in [3], [31], [37], and [38], as well
as some further generalizations.

Consider the system

(1.1) =f(x)+ ] uigi(x)=f(x)+g(x)u,
i:1

where the state space is R and the control u =(ul,"" ", ut)’ takes values on R . We
assume that 0 Rn is an equilibrium for f The vector fields f, gl, , g are supposed
to be smooth (C).

We say that (1.1) is asymptotically stabilizable (at zero) by means of the feedback
law u k(x), if 0 R is an asymptotically stable equilibrium for the resulting closed-
loop system

(1.2) =/(x) + g(x)k(x).
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System (1.1) is said to be practically stabilizable (at zero) by means of the family of
feedback laws {kr, r > 0}, if for any sufficiently small r and for any Xo near the open
sphere S(0, r) of radius r around zero, the corresponding trajectory Xr(t, XO) of the
closed-loop system

(1.3) 2 =/(x) + g(x)kr(x)

enters S(0, r) after some time T< +Do and it stays in this region thereafter. We
note that the notion of practical stability is discussed by La Salle and Lefschetz [21].

DEFINITION 1.1. The system (1.1) satisfies the Lyapunov condition at zero (L.C.),
if there exist a neighborhood N of 0 R" and a real function :N R, which is at
least continuously differentiable on N, is positive definite, i.e., (0)=0 and (x)> 0
for x N-{0}, and such that for any x N-{0} the following condition holds:

(1.4) gi()(x) %r Dg,(x) O, 1,..., =f()(x) < O,

where D denotes the derivative of . A continuously diiterentiable real function
is called a control Lyapunovfunction, if it is positive definite and satisfies condition (1.4).

We say that the control Lyapunov function above satisfies the bounded control
property, if there exists a positive real function d:N R such that d is bounded on
N and for every x e N-{0} there exists a vector u e R satisfying the following
inequalities:

(1.5) Ilull<d(x),
(1.6) f()(x) + g()(x)u < O,
where g() %f (g(),..., g()) and is the usual Euclidean norm. If, in addition,
d (x)- 0 as x- 0, then we say that satisfies the small control property.

The next theorem was originally established in [3]. Versions and generalizations
of this theorem can also be found in [31], [37]-[39].

THEOREM 1.2. (i) The system (1.1) satisfies the L.C., ifand only ifit is asymptotically
stabilizable at zero by means of a feedback law u k(x), which is smooth for x 0 near
zero.

(ii) The corresponding control Lyapunov function satisfies the bounded control
property, if and only if there exists a stabilizer u k(x), which is smooth for x 0 near
zero and satisfies Ilk(x)ll < d(x), where d is defined in (1.5). It turns out that k is bounded
in a neighborhood of zero and if in addition, satisfies the small control property then
k(x)- O as x O.

We note that the smoothness property of the stabilizing feedback laws constructed
in [31] and [37] requires the smoothness of the Lyapunov function , since they
depend directly on the Lie derivatives f() and g(). In [3] the regularity properties
of the proposed feedback laws require only the ditterentiability of .

DEFINITION 1.3. The system (1.1) satisfies the practical Lyapunov condition
(P.L.C.), if there exist a family of continuously ditterentiable mappings

r:R"-R, (0)=0, r>0,

and compact neighborhoods N and N of 0 R" such that Nc S(0, r)c N, (I0 is
strictly positive for x outside N and for any sufficiently small r condition (1.4) holds
with and x Nr-Nr and further

(1.7a) min {(x), x ONr} > max {(x), x e S[0, r]},
where ON is the boundary of N. Moreover, for any sequences {r}c R/ and {x,}c N
with lim r 0 and lim Xr a as - +c, we have

(1.7b) limr(Xr,)=0 fora=0, and lim(x,)>0 fora>0.
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The corresponding family {CPr} of the mappings above is called control Lyapunovfamily.
We say that the control Lyapunov family {Pr} satisfies the bounded control

property, if there exist a positive real function d (x), which is bounded on a neighbor-
hood N of zero, and a family of positive real numbers {cr, r > 0} such that c--> 0 as
r-->0 and for any sufficiently small r conditions (1.6) and (1.7) hold with cp=cp,
X E N2r- Nlr and for some vector u R with

If, in addition, d(x)-->O as x->0, then we say that {cp} satisfies the small control
property.

The following theorem presents sufficient conditions for practical stabilization.
Its proof follows by using arguments similar for those of the proof of Theorem 1.2.

THEOREM 1.4. (i) If the system (1.1) satisfies the P.L.C., then it is practically
stabilizabte at zero by means of a family of smooth feedback laws {kr(x)}.

(ii) Moreover, if the control Lyapunov family {Pr} satisfies the bounded (small)
control property, then for any r the corresponding stabilizer k satisfies the inequality

(1.8) Ilkr(X)ll < d(x)-t- Cr,

for x near zero, where d and C are as given in Definition 1.3.
Obviously, if (1.1) satisfies the L.C., it also satisfies the P.L.C. Furthermore, as a

consequence of Proposition 4 of [38] and the corollary in paragraph 7 of Sontag [32]
we obtain the following result.

PROPOSITION 1.5. If the system (1.1) is asymptotically stabilizable by means of the
feedback u k(x), which is continuous in a neighborhood of zero, then it is practically
stabilizable by means of a family of smooth feedback laws.

In 2 we consider systems (1.1) of the form

22 \f2(xl, x2)/ g2(xl, x2)
(1.9)

x--(x,x’)’6R"’R "2, nl+n2=n, u6R
and we derive sufficient conditions for the existence of control Lyapunov functions
guaranteeing stabilization. We note that similar decompositions have been considered
by Vidyasagar and other authors [41], [42], [36], [10] but their methodology is quite
different. Let us explain briefly the main idea of 2 by the following interesting case.
Consider a single input system (1.9) with n2 1, namely, g2 is a real function. Let us
assume that there is a continuously ditterentiable map v b(xl) with th(0)=0, which
is the unique solution of the equation g2(xl, v)=0 and simultaneously asymptotically
stabilizes the system 21 =fl(xl, V), V R "2 at zero (see Example 4.3 of this paper).
Then the system (1.9) satisfies the L.C. and so by Theorem 1.2 it is asymptotically
stabilizable at 0 R". Indeed, consider a smooth Lyapunov function V(Xl) for the
closed-loop system 21-fl(Xl, b(xl)) and define

,(x) V(x) + 1/2(x- (x)).
Obviously, P is continuously ditterentiable and positive definite. Moreover, P is a
control Lyapunov function for (1.9). Indeed, for any x 0 with

g2(@)(x) (x2- ch(xl))g2(xl, x2) 0

it follows that x i)(Xl); therefore,

f(dp)(x) =f( V)(xl, x2)+ (x2- b (xl))f2(xl, x)(x- d/)(Xl))Db(xl)fl(Xl,

=L(V)(x, 4)(x)) < o.
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It turns out that (1.9) satisfies the L.C. and so by Theorem 1.2 it is stabilizable at zero
by mea0s of a feedback law Which is smooth for x 0 near zero. The previous discussion
is applicable to systems of the form

(n) (1) (n 1) (1) (n--l) (i) dix
x =f2(x, x,’’’, )+ug2(x, x,’’’, x ), xR where X-dt,,

or equivalently

)1 X2

)2 X3 +u f2(0) g2(0) 0.

The above system satisfies the L.C. provided that xn 4(xl, x2," , xn_l), 4(0) 0 is
the unique solution of g2(x)=0 and 0 R- is an asymptotically stable equilibrium
for the lower-dimensional system

)1 X2

22 X3

!_, (Xl, x,""", x._)

In 2 we extend the above analysis to more general cases. In particular, in
Theorems 2.1 and 2.2 we provide sufficient conditions for the existence of a control
Lyapunov function depending only on the stability behavior of the mappingsf and g2.

Special emphasis is given to asymptotic and practical stabilization for systems
(1.9), whose control term g2 is constant and have the form

f(xl, x2) + (x, x2) R", x R"2 u R’2.(1.10)
f2(x,x)/ u

Proposition 2.3 and Theorems 2.4 and 2.6 of this paper generalize some well-known
results of [23], [34], and [37] concerning the case (1.10).

Section 3 deals with the relationship between the Lyapunov conditions and the
position on the complex plane of the uncontrollable eigenvalues of the linearization
of (1.1) at zero. Finally, in 4 we illustrate the theory we develop by four numerical
examples.

2. Main results. To begin with, we state and prove a theorem, where the L.C. is
characterized in terms of suitable positive functions concerning the lower-dimensional
subsystems of (1.9):

(2.1) 2, =f(xl, v),

(2.2) 22 g2(Xl, X2) U, U R I.
THEOREM 2.1. (i) Suppose that there exist neighborhoods N and N1 of O G R and

0 R ’, respectively, and mappings r’N- g 1, dp’N - R n2, and W’N- R such that
b(0) =0, b is continuous, and W is continuously differentiable, and let us denote

M ={x6 N" x2= b(xl)}, S {x N: W(x) =0}, and

OW =0}.
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Assume that
(a) For any x--(x, x)’ near zero it follows that

W(x) >= O and Se SI M.

(b) The system (2.1) is asymptotically stabilizable at 0 Rn by means ofthefeedback
law v ((Xl).

Under the previous assumptions (a) and (b) the system (1.9) satisfies the L.C. Let
be the corresponding control Lyapunov function.

(ii) Let us further assume that r is bounded, qb and 0 W/Ox2 continuously differenti-
able, and

(c) There exist positive constants c and a <= 2 such that

(2.3) ger (x)

for x near 0
en, if a 1 the function satisfies the small control property, and if 1 < a 2 and in
addition O R" is an exponentially stable equilibrium for the closed-loop system 1
f(x, (Xl)), then the control Lyapunovfunction satisfies the bounded eontrol property.

Proof (i) Since 0 R"l is an asymptotically stable equilibrium for the system

(e.4) =A(x, 6(x))

then the converse Lyapunov theorem of Kurzweil [20] asses that there exists a smooth
Lyapunov function V: R "l R such that V(0) 0, V(x) > 0 and

DVL(x, 6(x)) < O

for x 0 near zero. Obviously, by assumption (a) the function

=V+W

is positive definite. Let f= (f,f)’ and g (0’, g)’. Then

OW
f()=L(V)+f(W) and g()=oxg.

For any x0 such that g()(x)=((OW/Ox)g)(x)=O it follows by assumption (a)
that x (x); hence,

and so

DW(xl p(xl)) O

f()(x) DVfl(x1, ((x1)) ( 0.

Therefore (1.9) satisfies the L.C. and V+ W is a control Lyapunov function.
(ii) Let us assume that (2.3) holds and let a =< 1. Define

q(x) -DVfl(Xl, 6(Xl)) + IIx2- 6(Xl)l[ e.
Clearly, q is positive definite. Since f and 0 W/Ox2 are continuously diiterentiable and
DW(xl, 49(xl))=0, there are positive contants cl and c2 such that

(2.5) IIDW(x)II <-- c111x=-
(2.6) IlOf(x)ll <= ce for x near zero.
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Let b(x)-c211DV(x,)ll/c, llf(x)ll/llx2-(x,)ll. Then by (2.3), (2.5), and (2.6)it
follows that

[(f(q)) + q)(x)]-<_ c2[[DV(Xl)l] [Ix2- 6(x,)ll / clllf(x)]] Ilx2- (Xl)11 / IIx2-
b(x)

b(x)llx2- (Xl)ll b(x)llx=- (x,)ll (Dgr)(x)
c

and, therefore,

f(*)+g()()}(x)-q(x)<0 for x O near zero.

Since r is bounded and b is continuous with b(0)=0, it follows that satisfies the
small control propey.

Let us finally assume that (2.3) holds with 1 < a 2, is continuously differenti-
able, and 0 R", is exponentially stable for (2.4). Since (0)=0, there is a constant

c3 > 0 such that

(2.7) I(x,) < c3[x, x near 0

and since f(0)= 0 it follows by (2.6) and (2.7) that

liT(x) c2(llXl]] + IIx211) c2(llx, + (xl)ll + Ilx2- (Xl)[I)
(2.8)

c2((c + 1)llx, + Ilx2-
for all x in a neighborhood of 0 R ". Exponential stability of 0 R, with respect to
(2.4) implies the existence of a continuously differentiable function V and a positive
constant c4 > 0 such that

(2.9) DVfi(x,, (x,)) -c4llXlll 2, and

(2.10) Ilov(xl)ll IIx,
for x near zero [15], [45]. Let

q(x) -fl(v)(xl, 6(x,))- DV f’ (x,, 6(x,))(x- (x,))
Ox2

f(W)(x)+kllx-(Xl)ll 2, k>0.

Then (2.5)-(2.10) imply that there are constants M, M2> 0 such that

q(x) c411xll 2- MIIxII IIx2- (2)11 +(k- M2)Ix2
and so q is positive definite, provided that k is a suitably large positive constant.
Finally, let L > 0 such that

(2.) IIf(x)-f(x (x))-fi(x (x))(x2-(x,))ll<LIIx2-(x)ll 2

OX2

locally around 0 R". From (2.11) and assumption (c), there is a positive constant
s > 0 satisfying

I(f(*) + q)(x)l [f(V)(x) +f(W)(x)-fi( V)(Xl, (xa))

-DV fl (x, (Xl))(22 (x,))-f(W)(x) + kilN2 (2)1121
Ox2

s
sllx2 (x,)ll --(g(,)r)(x)

c
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and so

for x 0 locally around zero. Since rs/ is bounded, satisfies the bounded control
property. ]

The next theorem is one of our main results and is a consequence of Theorem
2.1(i). It provides a control Lyapunov function that depends directly on the dynamics
of the systems (2.1) and (2.2) and its proof is based on the converse Lyapunov theorem
established by Wilson [43], [44].

THEOREM 2.2. Suppose that there exist neighborhoods N1 and N of O Rn and
0 R n, respectively, and mappings r N- R and d N1 - R2 such that r is Lipschitz
continuous, d is continuous with 4)(0)=0, the origin O6 R "l is an asymptotically stable
equilibrium for (2.4) and the set

M {x N" x2 t(x1), Xl N}

is asymptotically stable with respect to

(2.12) ()(1) %f ( 0 )(gr)(x)
x= (x, x’2) e R", x R".

Then (1.9) satisfies the L.C.
Proof Consider the system (2.12) evolving on X %f {x e R": xl N1}. Note that

the restriction of (2.12) to the space R "l gives 21 0 and so the region X is positively
invariant. According to [43] and [44], since M c X is asymptotically stable with respect
to (2.12), there exists a smooth Lyapunov function W: X--> R of M, namely, W(x) > 0
and (DW,)(x)<O for x eM, whereas W(x)=0 for x eM. It turns out that
((0 W/Oxz)g2r)(x) < 0 for x2 4(x) near zero and ((0 W/Oxz)gzr)(x) 0 if and only
if x 4(x). Therefore, the assumptions (a) and (b) of Theorem 2.1 are fulfilled and
the system (1.9) satisfies the L.C. 0.

Next we specialize Theorem 2.1 to the particular case of systems (1.10). In this
case without loss of generality we assume that f2 -= 0. Indeed, otherwise we apply the
smooth law u->-f+ u and the system (1.10) becomes

It is well known (see, for instance, [23], [34], [37]) that if (2.1) is asymptotically
stabilizable by means of the smooth feedback

V I])(Xl) ( (0) 0,

then (2.13) is also smoothly asymptotic stabilizable (hence there exists a control
Lyapunov function satisfying the small control property). If the smoothness require-
ments for the map 6 are relaxed, further generalizations are possible. For instance,
let us assume that 4 is continuously differentiable. Then, as in Theorems 3 and 4 of
[37], it can be shown that (2.13) admits a control Lyapunov function satisfying the
small control property. The following proposition asserts that the last statement is also
an immediate consequence of Theorem 2.1(ii).

PROPOSITION 2.3. Consider the system (2.13) and suppose that (2.1) is asymptotically
stabilizable by means of the feedback law v= d(x), b(0)=0, which is continuously
differentiable in a neighborhood of 0R"l. Then (2.13) satisfies the L.C. and the
corresponding control Lyapunov function satisfies the small control property.
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Proof Let V be a smooth Lyapunov function for (2.4) and let

W(x)- llx2- (Xl)ll

Obviously, W is nonnegative definite and 0W/0x continuously differentiable near
zero. Define r= (r,..., r)’ with r(x)=-sgn (x-4)(x)). Then

Ox2

r is uniformly bounded on R and so W satisfies the propeies (a) and (b) of Theorem
2.1. In paicular, (2.3) holds with a 1; therefore, the function = V+ W satisfies
the small control propeay.

In the rest pa of the paper we deal with the practical stabilization problem for
the system (2.13). We shall establish that under the only assumption that the stabilization
law v 6 for (2.1) is Lipschitz continuous, then there exists a control Lyapunov family,
which satisfies the small control propey of Definition 1.3. Therefore, in that case
practical stabilization is possible by means of a family of feedback laws {kr} satisfying
(.8).

TsogzM 2.4. Let us assume that (2.1) is asymptotically stabilizable by means of
the feedback law v 6(x) with (0) O. en

(i) If is continuous near zero, then (2.13) satisfies the P.L.C.
(ii) If is Lipschitz continuous, then (2.13) satisfies the P.L.C. and, further, the

corresponding control Lyapunov family satisfies the small control property.
In order to prove statement (ii) of Theorem 2.4 we need the following lemma.
LEMMA 2.5. Let 6 R e be a real map that satisfies a Lipschitz condition on a

compact neighborhood U of 0 R, and (0)= O. en there exist a neighborhood Q of
0 R, a constant K > 0 and a family of smooth mappings Q Rm, e > 0 such that
for every suciently small e the following hold:

(e.5) 6(0) =0,

Moreover, for any sequences {e}c R+ and {x}c Q such that eO andxx Q, as
+, there exist subsequences {e’i} and {x} of {ei} and {xi}, respectively, and a positive

constant 0 1 satisfying

(e.7) 6(x;) 6(x).

Proo Let Q be a compact neighborhood of zero, which is contained in the interior
of U and let p R R be a smooth real map such that p(x) 1 for x Q and p(x) 0
outside U. We define 6 p6 and consider its Sobolev’s regularization

h(x) 1,

where a,(x) s a(s-llxll), a being any positive smooth mapping such that a(llxll) 1,
a(llxll) 0 for Ilxll and I a(llxll) dx . sing standard arguments (see, for instance,
[25]), we can easily establish hat, since 6 is continuous and has bounded support,
the sequence h converges to 6 p6 6 as s 0 uniformly with respect to x Q, and
fuher h is smooth for every s. Since p is smooth having bounded suppo in U and
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h is Lipschitz continuous on Q, it follows that 4 P4 also satisfies a Lipschitz condition
in S(Q, 1), namely, there is a positive constant c such that

C

For each xl, x= m Q, 1 > s > O, and u < s we have x, , x= u s(o, and so

h(x=)II a(u)ll(x,- u)- g(x=- u)ll duIlhs(x,)

2 lull<

Smoothness of h, and the previous inequality imply that

IDh,(x)l < c, and

Ilhs(x)llcllxll+llh,(O)ll Vx Q and 0<s<l.

Consider, finally, a smooth real function satisfying O(x)= 1 for Ilxll
for llxll < , and O(x)N 1 otherwise. Let L>0 such that IID(x)II < L for every x R",
and let s s(e) e satisfying ll&(x)- h(x)]l < e for all x e Q. We define

(1)= ()h(x)
and K=Lc+L+e. Obviously (x)=h(x) for each xeQ-S(O,e) and (0)=0;
hence, (2.14) and (2.15) are satisfied. Moreover,

therefore,

cllxll + hs(O) ll) + c,

otherwise

and since Ilh(0)ll I1(0)- h(0)ll < the above inequality implies (2.16). Finally, for
any sequences {ei}c R+ and {xi}c Q with e--> 0 and x->x it follows by the uniform
convergence of hs(,) to that h,(,)(x) (x)_ Since is uniformly bounded on
there exist subsequences {e}c {e} and {x}c_x} and a constant 0== 1 such that
(x/e) . Therefore (x)(x) and so (2.17) is fulfilled.

We are now in a position to prove Theorem 2.4. We shall establish only statement
(ii). The proof of the first pa of the theorem follows using similar arguments and is
left to the reader.

Proof of eorem 2.4 (ii). Suppose that the system (2.1) is stabilizable by means
of the Lipschitzian feedback law v= (x) and (0)=0. Then there is a smooth
Lyapunov function V defined on a compact neighborhood U of R "l and a positive
and strictly increasing continuous function c:R+ R+ such that c(0)=0 and

f( V)(xl, 49(xa)) <- -c(llxall)
for any x e U [24]. Let K > 0 and Q c U as defined in Lemma 2.5, where is the
above Lipschitzian stabilizer, which is defined on U and it takes values on R n2. Consider
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positive constants L, and L2 such that II(x,)ll L,/2 for x, Q and IIDf,(x)ll L2
for every x belonging to

N de__f {x R n"
xl Q, Ilxll

For any r > 0, such that the sphere S(0, r) of radius r around 0 R is contained to
N, consider a positive l(r)< such that the region

N, {x R x, Z, x211
is contained to S(O, r). Let e e(r) with e <1 and

L
e<min {]]OV(xl)]l-lc(JJXl[]) X

2

According to Lemma 2.5 there exists a smooth map such that (0)= 0,

(.19) IID(x,)ll < K x, Q.

Then for any x, Q with [[x[] >l we get

L( V)(x, (x,)) IL(V)(x,, (x,)) -L( V)(x, O(x,))l +L(V)(x, O(x,))

(2.20) Lz][DV(x)]] (x)- (x)]-

We define

(2.21) (x)= V(x)+[[Xz-(x)]] (e= e(r)).

Obviously, r is continuously differentiable and positive definite for x N. Similar to
Theorem 4 of [37], we consider smooth functions h,...,
such that

L( V)(x,, ) -L( V)(x, x) Z (- x),h,(x,, , x)

and let mr" N R" be a real map with components

’D()f(x,, x)- h(x, (x), x2)- (x2- (x,)) for x , ]]x]] > l,

D()y(x,, x)- h,(x,, (x,), x)-(x-

(mr(X)), L( V)(x,, O(X,))
]x2- (x)]] 2 (x2- (x,)) forx Nl, ]]x]] l,

0 for x N.

Note that for x N-N and ][x]] <l it holds that IIxli> 2Kl and by (2.19) that

(x)[[ < Kl;.therefore,

lix- x,)ll I111- Iix, > m 0.

For each x N-NI we find

(f( -ix- (x,) 2, IIxll l,
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Consequently, by (2.20) it follows that

(f(tYPr) + g(tYPr)mr)(X < 0 VX E N- Nt.
Since fl, hi, and b are continuously differentiable, vanishing at zero, and because of

(2.18) and (2.19), there is a positive constant M which is independent of r, satisfying

Ilmr(x)ll < llxll + r, VX e N,
where

If,(W)(x,, 6(x,))l },cr sup IIx- 6(Xl)ll
,x N- N,, IIx, <

Note that

If,(V)(x,, (x,))l <L(_ + K)IIDV(x,)II IIx, < L (1 +-)IlOV(x,)llx (x,)ll x -/ x, II-
for x E N-Nl and IIx, ll<t. Since OV(x,)is continuously vanishing at zero and
lim l(r) lim e(r) 0 as r - 0 it follows that Cr 0 as r - 0. Finally, for every sufficiently
small r, condition (1.7a) holds. Indeed, otherwise there would exist sequences {Xr,} c ON
and {Yr,} C S[0, ri] such that Xr,-- X (X, X’2)’ ON and r,(Xr,) <-- tri(Yri). Since e(r) - 0
it follows from (2.17) that there exist subsequences {X’r}= {Xr,} and {y’}c {Yr,} and
real constants tr and r2 satisfying

2V(/1)-- 1/2[]X2 O" (D(X1) 2 lim (ri(Xri) lim @r,(Yr, V(O)+ -cr2llch(O)l] z O,

and so Xl x2 =0, a contradiction. Similarly, we can show (1.7b). We conclude that
{@} as defined in (2.21) is a control Lyapunov family, which satisfies the small control
property and so the proof of Theorem 2.4(ii) is completed.

The following theorem is a consequence of the theory that we have developed
and summarizes some useful properties concerning the stability behavior of (2.13).

THEOREM 2.6. Consider the system (2.13) and suppose that (2.1) is stabilizable by
means of the feedback law v 4,(x), 6(0)=0.

If ch is continuous, then (2.13) is practically stabilizable at zero.
(ii) Furthermore, if is Lipschitz continuous, then (2.13) is practically stabilizable

at zero, where the corresponding family of the smooth stabilizers {k} satisfies (1.8).
(iii) If, in addition, ch is continuously differentiable, then (2.13) is asymptotically

stabilizable at zero, by means of a feedback law, which is smooth for x 0 near zero and
continuous at zero.

3. Lyapunov functions and uncontrollable eigenvalues. In this section we examine
the relationship between various types of Lyapunov conditions and the position on
the complex field of the uncontrollable eigenvalues 1 of the linearization

(3.1) (A, B) (Df(O), g(0))

of (1.1) at zero.
It is well known that a necessary condition for stabilization by means of a

differentiable feedback is that the real parts of the uncontrollable eigenvalues of (3.1)
are nonpositive:

(3.2) Re 1, _<- 0.

If the differentiability assumptions for the stabilizing feedback are relaxed, the previous
statement is no longer true [37], [38]. It turns out that, in general, the existence of a
control Lyapunov function does not imply (3.2).
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Next we establish that (3.2) is a necessary condition for the existence of a control
Lyapunov function satisfying the small controlproperty and further there are positive
constants kl and k2 such that for any x near zero there holds

(3.3) k, I[x[[ 2 =< (x) _-< k2[[x 2.

Similarly, condition (3.2) is necessary for the existence of a control Lyapunov family
{r} satisfying the small control property and, in addition, there are constants k and
k2 such that for any x near zero we have

(3.4) k, llxll<- .r(X) <-__ kllxl[ , r>0.

Note that (3.3) is fulfilled, if for instance we assume that is smooth and the
matrix D(0) is positive definite:

(3.5) D20(0) > 0.

Indeed, since 0 R" is a local minimum for , we have

(x) x’D2(O)x+ O(xZ), x near zero

IO(x2)l/l[xll 2- 0 as x-* O,

which in conjunction with (3.5) implies (3.3).
Moreover, we note that if there exists a control Lyapunov function, which satisfies

(3.3), then (1.1) is strongly asymptotically stabilizable [38], namely, the solution x(t, Xo)
of (1.2) satisfies the additional property

(3.6) [[x(t, Xo)[[<-_m[lxo[[, tn=x/k2k- VtO.

Similarly, the existence of a control Lyapunov family which satisfies (3.4) implies
strong practical stabilization. That means there is a family of constants er> 0 with

er 0 as r 0 such that the trajectory Xr(t, XO) of (1.3) satisfies the additional property

Xr t, xo) --< m Xo / V => 0.

The following theorem generalizes Proposition 7 of [38].
TIqEOREM 3.1. Assume that the system (1.1) is strongly asymptotic stabilizable by

means of the feedback law u k(x), and there exists a strictly increasing continuous

function c R+ R+, c(O) 0 such that

(3.7) [[(B- g(x))k(x)l <-_ [Ixllc([lxll)

for x near zero. Then all the uncontrollable eigenvalues l, of (A, B) have nonpositive real
parts. The same conclusionfollows ifwe assume that (1.1) is strongly practical stabilizable
by means of the family offeedback laws { kr} such that for almost all r and for x near
zero there holds

[[(B-g(x))kr(x)]] <-I[xll(c(llxll)+ Cr),

where c R+- R+, c(O) =0 is a strictly increasing continuousfunction and {cr} is afamily
ofpositive constants converging to zero as r O.

Outline of the proof. Suppose that (1.1) is strongly asymptotic stabilized by the
feedback k, and let us, on the contrary, assume that the claim is not true. Then there
is a linear change of coordinates such that the closed-loop system becomes

(3.8)
2. 0 A3 x 0 F2(x, k(x))]’
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where A1, A2, A3, and B1 are constant matrices, all the eigenvalues of A3 have strictly
positive real parts, and therefore there exist constants L and p > 0 such that

(3.9) e-A3t <= L e -p’ V >- O.

Furthermore, (3.7) is invariant under any linear change of coordinates; hence, there
are positive constants M. and M satisfying

(3.10) [IF2(x, k(x))[[ < Ml(llxl] 2 q-[Ixllc(Mllxll)).
The second equation of (3.8) is 22= A3x2+ 2(x), 2(x)= F2(x, k(x)) and its solution

is written as

xa(t, X2O)=eA3tx2o+ eA3(t-X)z(X(S, Xao)) ds

+ +-- e-A3s2(X( X20)) ds)eA3t( x20 (fO f,+) S,

By (3.6) and (3.10) it follows that

(3.al)

and therefore it can be easily established that the integral

I(Xo) e-A3s2(X(S XO) ds

exists. In paicular, (3.9), (3.11), and stability imply that there are positive C and C2
such that

[lI(xo)]] c,I Xoll 2 + c2llxoll e-’c(M=mllxoll) ds <

Let

0(X20)-- X20nt- e-A3s(x(s, Xo) dSlxlo=o.
Then, similar to Proposition 7 of [38], condition (3.11) implies that O(x2o)SO for

X2o 0 near zero, but on the other hand by (3.9) and the fact that

0<-- X2(l, X20 eA3to(x20) e-A3s72(x(sm Xo)) ds as -
we have O(xo)-O, a contradiction. The rest of the theorem follows by applying a

similar argument as before and as those given in Proposition 7 of [38].
The previous result leads to the following theorem.
THEOREM 3.2. Assume that (1.1) satisfies the L.C. (P.L.C.) and the corresponding

Lyapunov function (r, r>0) satisfies condition (3.3) ((3.4), respectively). Then all
the uncontrollable eigenvalues l, of (A, B) have nonpositive real parts provided that, in

addition, one of the three following assumptions hold:

(A1) The Lyapunov function (Pr, r > O) satisfies the small control property.

(A) The Lyapunov function (pr, r > O) satisfies the bounded control property and
there is a real constant c > 0 such that IIB g(x)ll c x , for x near zero,

(A3) The control term g is constant.
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Proof Suppose that is a control Lyapunov function and, in addition, one of
the assumptions (A1), (AT), and (A3) holds. Then by Theorem 1.2 there exists a stabilizer
k(x) which is smooth for x 0 near zero and further k(x) k(O)=0, if (A1) holds,
and k(x) is bounded locally around zero, provided that (AT) is satisfied. Then it is
straightforward to see that there exists a nonnegative continuous real function e:R
R, Cl(0 =0, such that II(B-g(x))k(x)ll < Ilxllc(x) for x near zero. Therefore (3.7) is
fulfilled with c:R+- R+, c(0)=0 being any strictly increasing continuous function
such that el(x) <-- c([Ix]}) for x near zero. Hence by Theorem 3.1 all the uncontrollable
eigenvalues of (A, B) have nonpositive real parts. [3

Another important situation arises if we assume that there exists a control
Lyapunov function satisfying the following strong type of L.C.

Assumption 3.3. Suppose that there exist a neighborhood N of 0 R n, a positive-
definite smooth function :N- R and positive constants rl and r2 such that for each
x 0 near zero there is a vector u R satisfying the inequalities

f()(x) + g()(x)u < -r2llxll 2.

THEOREM 3.4. The following statements are equivalent:
(i) The system (1.1) satisfies Assumption 3.3.
(ii) All the uncontrollable eigenvalues of (A, B) have strictly negative real parts:

Re/u <0.
(iii) The system (1.1) is (locally) exponentially stabilizable by means of a linear

feedback.
Proof (i)(ii) Assumption 3.3 and smoothness of ,f, and g imply that for any

x 0 near zero there is a vector u such that Ilull < rllxll, which satisfies

D(x)(A+ Bu) =f()(x)+ g()(x)u + DCb(x)(A-f(x)) + D(x)(B g(x))u

_-< r=llx IIz / O(x < 0;

therefore, the pair (A, B) satisfies the L.C. Invoking Theorem 5 of [38] it follows that
Re lu <0. The implications (ii)(iii) and (iii)(i) are well-known consequences of
the last inequality (see, for instance, [38], [18]). [3

4. Numerical examples.
Example 4.1. Consider the system

(4.1) 2 W2

3 0
"- (W1- W2) //1 + //2.

0

The above system has the form (1.9), where XI=W1, X2=(W2, W3) t, X=(Xl,X2),
f(x) w3-Wl(wz+w3),f2(x)=(wz, 0)’, u=(u, u2)’, and

(w -w )3o
Let r= (1, --W3-1t- W1)’. Then the set

(4.2) M {x R3, x2 b(xl)} where )(Xl)-- (X

is asymptotically stable with respect to (2.12). This follows easily by evaluating the
time derivative 9 of the Lyapunov function
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along the trajectories of (2.12). Indeed, we find

r(X)-- --(W W2)4- (W W3)2 < 0 Vx C: M.

Moreover, W(x) 0 for x M and W(x) > 0 otherwise; therefore, M is asymptotically
stable with respect to (2.12). Finally the law v b(xl), where b is defined in (4.2),
asymptotically stabilizes (2.1) Indeed, let V(xl)= e

Xl. Then we find

4(xl) DV(xl)f(xl, (xl))=-xl < 0 Vxl O.

Therefore (4.1) satisfies the assumptions of Theorem 2.2 and according to Theorem
1.2 it is asymptotically stabilizable at zero. Note that its linearization at the origin is
uncontrollable and contains a positive eigenvalue; hence, it cannot be stabilized by a
smooth law. Moreover, it is straightforward to see that according to Theorem 3.1 the
system (4.1) cannot be strongly stabilized.

Example 4.2. Consider the planar system

(4.3)
22 0

which has the form (2.13) withfi(xl, x2) xl + x32. Note that the system 21 =fi(xl, v)
xl + v is stabilized by the continuous law v--(2xl) /3. Therefore, by statement (i)
of Theorem 2.6 the system (4.3) is practically stabilizable at zero by means of a family
of smooth feedback laws. The system cannot be locally stabilized by a smooth law
since its linearization contains a positive eigenvalue. It cannot even be strongly stabil-
ized, since its control term is constant (Theorem 3.1).

Example 4.3. Consider the system 5i+(x, 2)+u(2+2(x))=O, x,uR, or
equivalently,

(4.4)
)2 l(Xl, X2)

1- U
X2 "-- 2(Xl)

where we have assumed that xl lb2(Xl)> 0, for any xl 0 near zero Obviously, the
system (4.4) has the form (1.9), and the function (xl,x2)=x2+(x2+qb2(xl))2 is a
control Lyapunov function for (4.4), whereas the law v=-2(x) asymptotically
stabilizes (2.1) at zero. Therefore, by Theorems 1.2 and 2.1(i) the system (4.4) is
asymptotically stabilizable by means of a feedback law which is smooth in a neighbor-
hood of 0 R2, except possibly at zero. Note also that (2.3) is fulfilled with a- 2,
r -1, and W (x2 + bz(xl))2; therefore, the function satisfies the bounded control
property provided that Dqb2(O) O. In that case zero is exponentially stable with respect
to (2.4), and according to Theorem 2.1(ii) the system (4.1) is asymptotically stabilized
by a bounded feedback law.

Example 4.4. Consider the system

(4.5) w w2w -[- )-[- (w -[- w) -- u,12 32+ (W W2 W3
2

k2 0

The above system has the form (2.13), where Xl (wl, we)’, X2--- W3, X--(X, X2)’ and
2A(X) (--W13 W32-t W1W2(W "JI- W2) "-[- W3(W -- W)) t. Let

W1W2
2

2(x,)= -2w2 (wl+w) forxl0,

0 forxl =0.
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The map b is differentiable for X # 0 and, in addition, its derivative is uniformly
bounded on R2; hence, 4 satisfies a Lipschitz condition on R2. Furthermore, if we
apply the feedback law v 4 in (2.1), the resulting system is

(4.6)

and obviously 0 R2 is asymptotically stable with respect to the above system. This
follows easily if we compute the time derivative of the Lyapunov function V(x)=

2wl+ w along the trajectories of (4.6). Therefore, according to Theorem 2.6(ii) the
system (4.7) is practically stabilizable at 0 R by means of a family of smooth feedback
laws satisfying (1.8).
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SECOND-ORDER HAMILTON-JACOBI EQUATIONS IN INFINITE
DIMENSIONS*
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Abstrnet. Some second-order Hamilton-Jacobi equations connected to stochastic optimal control prob-
lems for infinite-dimensional systems driven by a white noise are studied. A direct method to prove existence
and uniqueness of mild solutions is developed. Then this solution is identified as the value function of the
related stochastic control problem, and a feedback formula for optimal controls is derived.

Key words. Hamilton-Jacobi equations, stochastic optimal control, dynamic programming, viscosity
solutions, white noise, infinite dimensions
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1. Introduction. Second-order Hamilton-Jacobi equations in infinite dimensions
have been studied by several authors in connection with the stochastic optimal control
of distributed parameter systems; see [Lecture Notes in Mathematics, Vol. 1390,
Springer-Verlag, Berlin, 1989] and the references quoted therein. Most of the works
on this subject concern systems governed by stochastic partial differential equations
driven by a Hilbert space-valued Wiener process. In this paper, we focus our attention
on the case of stochastic systems that are driven by a white noise. For such problems
fewer results are available in the literature.

In order to explain the context we have in mind, let X be a separable Hilbert
space, and consider the problem of minimizing:

{fT" 12 }(1.1) J(t,x; z)= [g(y(s))+-glz(s)l ds+ch(y(T))

over all controls z Mw(t, T; X) satisfying Iz(s)l <- R almost surely for all s t, T].
Here e, R, and T are given positive numbers and g, b:X- R are bounded uniformly
continuous functions. In (1.1), y is the mild solution of the stochastic differential
equation

dy(s)=(Ay(s)+F(y(s))+z(s)) dt+/-[ dW(s), t<-_s<= T,
(1.2)

(t) x,

where W is a cylindrical Wiener process (or white noise) on a probability space
(l), o, P). Moreover, M(t, T; X) denotes the space of the X-valued processes x(s)
that are adapted to W and satisfy

Ix(s) ds <.

As is well known, the dynamic programming approach to problem (1.1), (1.2) consists
of studying the value function V, defined as

(1.3) V(t,x)=inf{J(t,x;z)’zM(t,T;X),lz(s)l<=Ra.s. Vs[t,T]}.
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The function u (t, x) V T- t, x) is related to the Hamilton-Jacobi-Bellman equation

Tr(u,x)+(Ax+F(x),u,)-H(ux)+g(x) in]0, T[xX,
(1.4) at 2

where

u(O, x) 4(x),

Ipl if Ipl R,
H(p)

R2

RipI-- if IPl ->-R.

The main goal of this paper is to develop a direct method of solution for equation
(1.4). By "direct method" we mean a method that makes no use of the control theoretic
interpretation of problem (1.4). More precisely, we will solve the above problem as
an initial value problem for a semilinear parabolic equation. Then, after having
identified the direct solution of (1.4) as the value function (1.3), we can transfer
information from a partial differential equation context into a variational setting, by
deriving a feedback formula for optimal controls.

We now explain the main ideas of our method. As in finite dimensions, we first
consider the linear problem

Tr(ux)+(Ax, u) in]0, T[xX,
(1.6) at 2

u(O,x)=(x)

whose solution can be represented by the probabilistic formula

(1.7) u(t,x)= d e’ax+x/- e(’-)a dW(s) =: (Ttb)(x).

Indeed, when A is self-adjoint, strictly negative and A- is nuclear, it is shown in [7]
that (1.7) is the unique classical solution of problem (1.6). This result is recalled and
improved in 3 of this paper, by proving the uniform convergence of some finite-
dimensional approximations of (1.7).

Then, we define a mild solution of (1.4) as a solution of the integral equation

(.a u(,-= r,+ r,_((F, u(s, .)-g(u(s, .+g s.

We solve (1.8) by fixed-point arguments in a space of functions which are C in x for
> 0 and satisfy a suitable blowup condition in zero, (see 4).

In order to apply the above result to problem (1.1), (1.2) we have to identify the
function u(T-t, x) as the value function V(t, x). This could be done by standard
verification techniques, computing the It differential du(T-t,y(t)), if u were
suciently smooth and the covariance of W had finite trace. To overcome this diculty,
we study a suitable finite-dimensional approximation of (1.4), for which the smoothness
of the solution u is well known. We then apply the Itg formula to u and pass to the
limit as n . To make this procedure rigoro,us, it is essential to show that u converges
to u, uniformly on the bounded sets of[r, T]xX for all 0< < T (see Theorem 4.5).



476 p. CANNARSA AND G. DA PRATO

The techniques of this paper could be easily arranged to study the equation

Ou e
Tr(Quxx)+(Ax+F(x),ux)-H(u)+g(x) in]0, T[X,

(1.9) Ot 2

u(O, x)= 4(x),

where Q is a self-adjoint positive nuclear operator in X. This problem is related to
the optimal control of a system driven by a "genuine" Wiener process. Unlike (1.4),
for which no other result seems available in the literature, equation (1.9) has been
considered by several authors. In 1 ], problem (1.9) is studied with F 0 and assuming
g and & to be convex. In [9], the case of A =0 is treated by the theory of abstract
Wiener spaces. Note that, even though the equation considered in [9] looks like (1.4),
it is indeed equivalent to (1.9). The general equation (1.9) is solved in [5] by using a
probabilistic formula like (1.7). In this case, however, we do not get C regularity, but
only differentiability in some special directions related to Q.

We conclude this Introduction by recalling that several results on viscosity solutions
are available today for Hamilton-Jacobi equations in infinite dimensions (see [4] for
first-order equations). Second-order equations have been treated by Lions in 10]-[ 12].
In this theory, the existence of solutions to (1.9), for weakly continuous data, is usually
obtained by variational methods based on the representation formula (1.3).

2. Preliminaries. Let X be a separable Hilbert space, with norm I. For any R > 0,
we set

BR {X6 X; Ix[ R}.

For any x, y X we denote by x(R)y the operator defined by

x(R) y z (y, z)x.

Let Y be another Hilbert space. We denote by Cb(X, Y) the Banach space of all
bounded uniformly continuous mappings 4: X- Y endowed with the sup norm I1" 11o.
Likewise, Cbh(X, Y), h 0, 1, 2,. ., endowed with the natural norm I1" I1, is the set
of all the mappings b" X- Y which are h times Fr6chet differentiable and such that
the kth derivative b (k is uniformly continuous and bounded for all k -< h. Moreover,
we set Chb(X, R)= C(X).

For any & Cb(X) we denote by w6 a continuity modulus of b, i.e., continuous
function w6:[0, ee[-[0, oe[ satisfying w+(0)=0 and such that [b(x)-&(y)] -<

o+(Ix-yl) for all x, y X. It is well known that any function b Cb(X) possesses a
concave continuity modulus.

Lip (X, Y) is the space of all Lipschitz continuous and bounded functions from
X to Y, endowed with the norm

"bl’ sup { ’b(x) b(y)’ }[x_y
;x,yX;xCy /11 11o,

Throughout the whole paper we fix a complete orthonormal system in X, denoted
by {ek}u. We define the projection 17, of X onto the span of {el, e2," "’, e,} as
follows:

(2.1) 1-In e (R) e Vn N.
k=l

Indeed, set w(t) sup {[b(x) 4’(Y)I; Ix- Yl =< t}. Then o) is a nondecreasing subadditive continuity
modulus for b. So we can check that the concave envelope of w has the required properties.
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Now, let {Ck} be a sequence of positive real numbers. Then there exists a unique
self-adjoint operator A in X such that Aek =--ckek. As is well known, A is densely
defined and closed with domain

D(A) x e X" Y ak(X, ek)2 < oo
k=l

Moreover, since A is negative, A generates an analytic semigroup e ta in X and

(2.2) etax , e-tk(x, ek)
k=l

for all x X.
Consider now a complete probability space {f, , P} and a sequence {/3k} of

standard one-dimensional Brownian motions, mutually independent. We denote by
Wn(t) the n-dimensional Brownian motion given by

(2.3) W"(t)= flk(t)ek
k=l

for all -> 0. We set

(2.4)

(2.5)

W(t)= ek e-"kt-) dk(s),
k-=l

IoWA(t) k ek e-(t-s) dflk(S).
=1

We note that W(t) is the stochastic convolution

IoWnA( t) e(’-’)A dW’(s).

In general, (2.5) is meaningless since the series in the right-hand side may not converge.
The following proposition shows that it becomes meaningful, under some restrictions
on the sequence {Ck}.

PROPOSITION 2.1. Assume that

(2.6) 2
1

k=l

Then, the series in (2.5) converges in L2(), if, P; H) for all >- O. Moreover, Wa( t) is a
Gaussian process with mean zero and covariance operator Qt given by

1 e
(2.7) Qtx E (x, ek)ek, x X.

k=l 2Cek

Proof For all 0, we have

[IoE V e-"(’-) d(s) e-2" as Z
k=l =1 k=l

which is finite in view of (2.6). Therefore, the series in (2.5) converges in X for all
> 0 almost surely to a Gaussian process Wa(t). In order to prove (2.7) it suffices to

remark that, for all x, y X, we have

IoW( t), x)( W( t), y) 2 (x, e)(y, e) e-(’-’ ds.
k=l
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Remark 2.2. If (2.6) is fulfilled, we write the stochastic convolution (2.5) as
follows:

WA( t) e(’-s)A dW(s),

where W(t)= k=l ekk(t) is usually interpreted as a white noise.
In order to show that WA(t) has continuous trajectories, we will strengthen (2.6),

assuming

2o’-1(2.8) Y ce < oo

for some cr ]0, 1/2[. We set

1 e-2kt
q(t)--

k= 20k
We note that (2.8) yields

(2.9) q(t)-Mt20.

for all 0 and some constant M 0.
PROPOSITION 2.3. Assume (2.8). en WA(t) has a-Hlder continuous trajectories

for all a ]0, [.
Proo Since {k) are independent, we have

lWa(t)- WA(S)I===, e-"(t-o) d(p) +
:,

e-%-) d(p)

-2 Z e-"(’-) dill(p) e-"(’-) dill(p)
=1

=Z e-2"0 ++ e-2"p +-2
=1 =1 =1

for all s 0. Now, by changing the variable p with + s 2p, we obtain

(2.10) glWA(t WA(S)12=q(t)+q(s)+2[q(7) -q()]
for all tsO.

Next, note that, since q(t) q(s) q(t- s), (2.9) yields q e C2([0, m[). Therefore,
there exists C > 0 such that

From (2.10) it follows that

1( (1 c(+- .
Since W(t)- W(s) is a Gaussian process, W(t)- W(s)lm C’l-xm for all
t, s 0 and a suitable constant C’. The Kolmogorov test yields the conclusion.

PROPOSITION 2.4. Assume (2.8). en, for all T> O,
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Proof We use the factorization method as in [6]. Set

Y(s) 2 ek (S- r) e-k(s-r) dk(r),
k=l

for all s _-> 0. Then, by a straightforward computation,

(2.13) WA()
sin o (t- s)- e(’- g(s) s,

(2.14) W(t)
sin

(c-s)- e(’-Y(s) ds,

where An AIIn. Therefore,

(2.15)

where

w(t) w2(t) n.(t) + c.(t),

sin
Bn(t) | (t--s)-I[e(’-)A--e(t-s)A"]y(s) ds,

.o

ioCn(t)
sin ro

(t-s)-1 e(t-’A"[Y(s) Yn(s)] ds.

We will estimate B(t) and C(t) separately. After some computations we obtain

(2.16) l g(s)l2= 2 e-2ak(s-r)(s r)- drN ko 2 1_2
=: kl

k=l J0 k=l k

for some constant ko> 0. Since Y(s) is a Gaussian process, (2.16) implies that, for all
mN,

(2.17) lY(s)lk
for some constant k > 0. Now, by H61der’s inequality and (2.13) it follows that

sup WA(t)l2m S
2m(-l)/(2m-1) ds 1 g(s)lm ds.

OtT 0

Moreover, we conclude that

sup IBn(t)2m s2m(-l)/(2m-1)]]esA--eSAl2m/(2m-1) ds
kONtT

g(s)lm ds.
0

Now, since the semigroup e" is analytic, lie- e’ll 0 for all s > 0 as n . Thus,
in view of (2.17), the dominated convergence theorem yields

(2.18) lim (o,rsup IB.(,)Im) =0

provided that (1-)2m/(2m-1)<l. We will now estimate C(t): we have

g(s)- g(s)= e-(’-(s- r)- dr
k=n+l

N ko _"
k=n+l k
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for some constant kln>O such that limn kin--0. Since Y(s)- Y,(s) is a Gaussian
process, (2.19) implies that, for all m N,

(2.20) l Y(s)- Yn(s)l2m cm(kln)

for some constant Cm > 0. NOW, by H61der’s inequality we conclude that

( ) (si7)2m(ff0T )2m-1sup [C,(t)[2m S
2m(-l)/(2m-1) ds

kOtT

g()- gn(s)lm d.

Hence

(2.21) ,-lim (, 0__< ,__<
[C,(t)l2m) =0,

which, along with (2.18), gives the conclusion, lq

3. Linear parabolic equations. In this section we study the linear problem:

Ou e
Tr(u)+(ax, u) in [0, T]X,

(3.1) Ot 2

u(O, x) 4(x),

where e is a given positive number and h C(X). Here A:D(A)=X-X is a
self-adjoint negative operator in X satisfying, for all k N,

(3.2) Ae -ce,

with ce > 0. In (3.1) the subscript x represents Fr6chet partial derivative with respect
to x and Tr denotes the trace; i.e.,

Tr (u) 2 (Uxe, e).
k=l

The following result, proved in [7], states that, for any 4 C(X), problem (3.1)
has a unique classical solution given by

(3.3) u(t, x) g(ch(e’Ax +x/- Wa(t)))=: Td)(x),

where WA(t) is the process defined in (2.5). The method of [7], based on a procedure
of Galerkin type, uses the following sequence of semigroups which is proved to converge
pointwise to the semigroup defined in (3.3):

(3.4) (qb(etAI-[nXq"r W(t)))=: (TTqb)(x)

for all b C,(X). In this paper we improve the result of [7], by showing that (T’;4)(x)
converges to (Ttch)(x) uniformly. We will use this convergence result in 5. In the
following we denote by etaQf the bounded operator defined by

2ak e-tk
(3.5) e

,AQ- ek -2,,k ek, k N.
1-e

PROPOSaqON 3.1. Assume (3.2) and (2.6). Then, for any r ]0, T[,

(i) lim T’ 6)(x) (Tt4)(x),

(3.6)
(ii) lim (T’6)x(x) (T,6)x(x)
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(3.7)

(3.8)

(3.9)

(3.0)

where

uniformly on the bounded sets of r, T] X. Moreover, the function
u :[0, oo[ X ---> R, u( t, x) Tt6 )(x)

is continuous. Furthermore, u( t, C(X) for all > O, u(., x) C(]O, oo[) for all
x D(A) and

u,,(t, x) =v/7 (e*AQ-[ WA(t)cb(etAx +v/7 WA(t))),

U(t, X)= e(etAQ-[ W(t)(R)etAQ-[ WA(t)cb(etAx +v/7 W(t))),

lu( t, x)l <- ,/7 p(t)ll,/, IIo,
ITr [u(t, x}]l--< (t} IIo,

(3.11) 20ek e-2tck
/92(t) Z 1 e-2t%k

Finally, (3.1) .is fulfilled for all x D(A) and > O.
Proof First, we note that formulas (3.7) and (3.8) are derived in [7]. We will give

a detailed proof of the uniform convergence in (3.6). The proofs of the remaining
statements will be only sketched for the reader’s convenience.

From (3.3) and (3.4) we obtain

I( T,cb)(x)-( T74,)(x)[ <- g149(etAx q-x/7 Wa(t))- p(etAI-[nx +x/7 W.(t))[

(3.12) _--< o(le tAx e’al-l,x[ +,/7 WA(t) WA(t)I

<--oo(le’Ax-e’ArI.xl+,/7 l Wa(t)--

where to, is a concave continuity modulus for qS. Now, since e ’A is compact for > 0,

(3.13) lim [etax etaIInX[ --0

uniformly for (t, x) e r, T] x BR, R > 0. Moreover,

(3.14) gl Wa(t W"A(t)l <-- 4- ,/l Wa(t) WA(t)I 2.

Thus, (3.6)(i) follows from (3.13) and (3.14), in light of Proposition 2.1. Equation
(3.6)(ii) follows by a similar argument, using formula (3.7) for ux(t, x). Next, we have

[(Ux(t.x) e)12=ee_2,%( 2ak )2 fO
2

1_e-2,%
g e-2(’-*% dk(S)Ch(e’Ax+ WA(t))

(3.15)
<= e e_2,. ( 2a ) 2 Io’ 22

1 e-2’%
g e-2’-)% d/3g (s) b Iio

and (3.9) follows taking the sum over k. Similarly, (3.8) yields

!
I(ux( t, x)e e} e-2’ I

\ 1--e-2t%]

12-2(t--s)ak d[k(S dp(e’Ax+ W(t))

8 e -2tak
2ok

1 _----2,% I111o,

which in turn implies (3.10).
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(3.17)

where

Remark 3.2. Under the stronger Jcondition (2.8), we have

2 (20lke--tak)2e-2tak --t‘L(t)<_-sup qt)<_-- q),
k 1--

(3.18) L=4max e_2,.0 1

Hence, estimate (3.10) and (2.9) yield

(3.19) ITr [lgxx( t, X)] t2_2c

4. Semilinear parabolic equations. Let T> 0 and consider the Cauchy problem

Ou
--=-Tr(uxx)+(Ax+F(x),ux)-H(ux)+g(x) in [0, T]xX,

(4.1) Ot 2

u(O,x)=6(x),

where we assume the following, in addition to (3.2) and (2.8),

(i) 6, g Cb(X),

(4.2) (ii) H Lip (X), H(0)= 0,

(iii) F Cb(X; X).

Obviously, the requirement H(0)-0 implies no loss of generality, as we can replace
g by g-H(0). We will solve problem (4.1) in the Banach space

5; {v Cb([O, T]X)" v) C(]0, T]X; X), vx B(]O, T] x X; X)},

i[vll,.-sup{lv(t,x)l/ltl-vx(t,x)l (t, x)@ ]0, r] xX},

where er is defined in (2.8) and B(]0, T] x X; X) denotes the space of all bounded
X-valued functions defined in ]0, T] x X.

DEFINITION 4.1. A function u Z is called a mild solution of problem (4.1) if u
is a solution of the integral equation

(4.3) u(t,’)=Tt6+ Tt_,((F, ux(s,.))-g(u(s,.))+g)as Vt[O,T],

where T, is the semigroup defined in (3.3).
LZMMA 4.2. Assume (2.8) and let q" ]0, T] x X- R be such that
(i) qt Cb([% T]xX) for all ’6 ]0, T],
(ii) It 1-’O(t, x)[ <- K for all (t, x) ]0, T] x X and some constant K > O.

Set

(4.4) f(t, )= Tt_s(tP(s, )) ds Vt ]0, T].

Then f 2,.

Proof Step 1. f Cb([O, T] x X). Fix e > 0 and let - ]0, T] such that K" =< ere.

Let (t,x), (t’, x’) [0, T]xX.
We shall consider two cases separately.
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Case 1. t, t’ [0, r]. Then we have, obviously,

[f(t,x)-f(t’,x’)[<= ITt_,(sl-4,(s,.))(x)ls*-1 ds+ IT,_s(s-4,(s,.))(x’)]s- ds

<= 2K s-1 ds <- 2e.

Case 2. It/2, T[, t’ [r, T]. Then we have

If(,x)-f(’,x’)l<-2e/ r,_,(O(s, .))(x) ds- r,,_,(4,(s, .))(x’) ds
r/2 r/2

In view of (ii), standard continuity properties of the integral in the right-hand side
imply that there exists 8 > 0 such that, if It t’ + Ix x’ < a, then

_(4,(s," ))(x) ds- ,,_(q,(s,. ))(x’) ds < .
To conclude the reasoning, set 6’=min {6, r/2}. Then, from the above analysis it
follows that ]f( t, x) f( t’, x’)l <= 3e provided ]t-t’l+lx-x’]<6. This proves that
f6 Cb([0, T] X).

Step 2. t-fx (t, x) is bounded on ]0, T] X. First, note that, by (3.9), (2.8), and
Remark 3.2, we obtain

CoK(4.5) ](T,_sq,(s,. )) <- 0< s < t,--(t__s)l-O-sl-Cr,

where Co V’eLM, L and M being defined in (3.17) and (2.9), respectively. Hence,
fx(t, x) exists for all t> 0 and x e X. Moreover, by (ii),

(4.6) It’-fx(t,x)l<-t’-CoK (t-s)-’s-’ ds.

On the other hand, (4.6) yields the conclusion of Step 2 since

22(-)
(4.7) (t- s)-’s-I ds t2-’fl (o", o’) _<- 2-1,

where/3 is the Euler beta function.
Step 3. fx C ([ to, T] x X; X) for all to e ]0, r[. Fix to e ]0, r[ and to --< _-< t’ _-< T,

x, x’ e X. Then

Ifx(t,x)-fx(t’,x’)l

(4.8) [( T,_.,(s,. ))x(X)-( r,,_,q,(s,. ))x(X’)] as

"( Tt,_,,lp(s, ))x(X) ds

Moreover, recalling (4.6), we obtain

(4.9)
"

T,,_,b(s, ))(x) ds <-- CoK (t’--s)-ls- ds <- Co-- to (t’- t).
O"
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On the other hand, for all r/> 0 there exists - ]0, to/2] such that

(4.10)

[(:r,_q(s, .))(x)-(T,,_sO(S, .))x(X’)] as

----<27+ [(r,_,O(s, "))x(X)-(t,_,O(s, .))(x’)] ds

Indeed, it suffices to take " so that

Finally, the conclusion follows from (4.8)-(4.10) and the uniform continuity of the
mapping (s,t,x)->(Tt_sO(S,’))x(X) on {(s,t,x):to<=t<-T, ’<-_s<=t-", x6X}. The
proof of the lemma is thus complete.

THEOREM 4.3. Assume (3.2), (2.8), and (4.2). Then problem (4.1) has a unique
mild solution.

Proof Suppose first that T is sufficiently small, i.e.,

1
(4.12) (1 + 22(1-a)Co) IIFIIo+ IlHIll T

_
(r 2’

where Co x/eLM, L and M being defined in (3.17) and (2.9), respectively. Define a
map F on E as follows"

(4.13) (Fv)(t, .)= Ttch+ T_.((F, vx(s, "))-H(vx(S, "))+g) ds

for all [0, T]. From Lemma 4.2, it follows that F" E-* E. Moreover,

(4.14) I(rv)(t,x)-(rz)(t,x)l IlFll+llslll Tllv-zll,

(4.15) tl-l(rV)x(t, x)- (rZ)x(t, x)] Co( Ell0 + g II,)(, )TII v- zll,

where/3 is the Euler beta function. Since fl(cr, O’) =<22(1-)/O", (4.13)-(4.15) imply that
F is a contraction in E and the conclusion follows by the contraction mapping principle.
Finally, condition (4.12) can be removed by a finite number of iterations of the previous
fixed-point argument.

In the sequel we will consider the following "finite-dimensional" approximation
of (4.1):

OUn
(4.16) Ot

E
Tr(un,xx)+(AHnx+HnF(Hnx) Unx)-H(unx)+g(IInx)

Un(O X)"-- I(HnX),

which has the integral form

(4.17) u,(t, .) T’4 II, + TT_s((FHn, un,x(S,.))-H(un,x(S,.))+gHn)ds.
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THEOREM 4.5. Assume (3.2), (2.8), and (4.2) and let u and un be the solutions of
(4.1) and (4.16), respectively. Then, for all " ]0, T[,

(i) lim ]u(t,x)- u,(t,x)] =O,
(4.18)

(ii) lim lu,(t, x) u.,,,(t, x)] 0

uniformly for ’, T] and x in bounded sets of X.
We first prove the following lemma.
LEMMA 4.6. Assume (2.8) and let 4’,, : ]0, T] X. R, n N, be such that
(i) On, qCb([’, T]xX) forallz]O, T]
(ii) It’-q(t,x)l=<K, It’-q(t,x)l=<Kforall (t, x) ]0, T] X and some constant

K>0.
(iii) lim,_.oosup{Itl-((t,x)-q,,(t,x))l: t[0, T],lxl<-R}=O for all R>0.

Set

f( t, T,-sO,)(s, ds,

Then, for all R > 0

f( t, Tt_O)(s, ds.

(4.19) lim If( t, x) f( t, x)l O,

(4.20) lim tl-lL,x(t, x) -fx(t, x)l 0

uniformly for [0, T] and Ix[-<- R.
Proof First, we note that fn, f Z in view of Lemma 4.2. Now, fix R > 0 and let

6 [0, T], ]x _-< R. We have

If( t, x) f,( t, x)l <= T,_f qt(s, p.(s, .)] ds

(4.21)
+ [Tt_,- T,_,]O(s, ds

We claim that

(4.22) !im T,_ T,"__]O(s, ds 0

uniformly for t[O, T], Ixl <-R. Indeed, fix >0 and let re]O, T[ be such that
(K/er)" <r/. Then, if 0=< t-< r,

(4.23) T,_ TtQ]O(s, ds

On the other hand, if r < =< T, then

t[ T_s TT_]q(s, ds

(4.24) +

<----27+ T,_- T’/_,]q(s, ds
/2

t-r
Tt-- T’_s]O(s," ds

=<4*7+ Tt_ Tt"__,]O(s," ds
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and (4.22) follows from (3.6). Next, let us show that

io(4.25) !iIn T_.[O(s, ")-O,(s, ")] as =0

uniformly for [0, T], [x[ _-< R. Recalling (3.4), we obtain

T_[O(s, )-,(s, .)](x) [O(s, e(t-)alI,x+v/- Wa(t-s))
(4.26)

-O,(s, e(’-)aHnx+ W%(t-s))].

Moreover, Proposition 2.4 implies that there exists a random variable C, such that

(4.27) [e(’-s)aHnx + W2(t- s)[ N R + C
for n N, 0 N s N N T and Ix[ N R. So, in light of hypothesis (iii),

lim sup [O(s, e(’-s)anx+ W(t-s))
n [x[R,zst

(4.28)
-,(s, e(’-n,x+ w2(t-s))[=o

almost surely for all z ]0, T]. Hence, by the dominated convergence theorem, for all
z ]0, T].

(4.29) i T,[O(s, ")-O(s, .)](x) ds =0

uniformly for IxlR and r ]0, T]. Now fix >0 and choose r so that (K/)r < .
Then

(4.30) T,,[O(s, ")-O(s,-)](x) ds N2+ T,,[O(s, ")-O(s, .)](x) ds

and (4.25) follows from (4.28). Finally, (4.21), (4.22), and (4.25) imply (4.19). Next,
we prove (4.20). For all t ]0, T], x N R we have

-lL(,xl-L,(,xl- (rr_s[(s,.l-(s,.l]lxS

(4.31)
+ 1- ([ Tt-,- Tt%s])(s," ds

Now, fix > 0 and let z 6 ]0, T[ be such that 8CoKt <, where Co eLM, L and
M being defined in (3.17) and (2.9), respectively. Then, by (4.5) and (4.7) we conclude
that, if 0 T,- ([r_,-T_,]O)(s,.)ds 2CoK-
On the other hand, if < N T, we obtain, as in (4.24),- ([ T,_ T_.]O)x(s ds

(4.32)
+- ([ r,_, rL,])(s,. s

So, by (3.6)(ii),

(4.33) lim 1- ’([ T,_ TT-])xO(S, ds =0
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uniformly for ]0, T] and [x[ _-< R. Next we prove that

Io(4.34) lim t- (T’_[O(s,.)-O,(s,.)])ds =0

uniformly for t ]0, T] and Ixl-<-R. From (3.7) it follows that

T_[(s,. )- o/.(s,. )])x (x)

(4.35) x/-- {e(’-)AQ-ll-I,,WA(t--s)[qt(s,e(t-)AII,x+xf- Wa(t-s))

6,(s, e’-Arl.x +,/7 W"(t- s))]}.

Recalling (4.28) and (2.11), we conclude that, if >_- -, then

lim sup le(’-)AQ,5 II,WA(t-s)[-b,]
(4.36)

(s, e(t-)AII,x+x/- W"a(t-s))[=O
almost surely for ]x] =< R, ’/2 =< s =< ’/2. Now, arguing as above, we can prove (4.34)
and so (4.20).

Proof of Theorem 4.5. Set

G,(x, p) (F(1-I,x), p)- H(p) + g(II,x),
(4.37)

G(x, p) (F(rlx), p)- H(p) + g(rlx)

for all x, p e X and

(4.38) (Fv)(t,.)= r;4+ r,_,G( ., v(s,.)) ds Vve.

From Lemma 4.2 it follows that F maps into ;. Arguing as in the proof of Theorem
4.3 it follows that

(4.39) IIr.- r,z[I, <- 11- zll,.
provided that T satisfies (4.12). Therefore, F, has a unique fixed-point u,, which is
the unique mild solution of (4.16). Moreover,

(4.40) [[u,- F ," (0)11,. -<_ 21-"(Tllgllo + b 11o),
where F," denotes the/x-iterate of F,. We claim that for all/x N and all R > 0,

(4.41) lim F(0)(t, x)= F"(0)(t, x)

uniformly for [-, T] and Ix[-<_ R. In fact, (4.41) is true for/x 1, in view of (3.6)(i).
Now, suppose that (4.41) holds for/x N. Then the functions

(4.42) q(t,x)=G(x,F"(O))x(t,x), ,(t,x)=G(x,F(O))x(t,x)

satisfy the assumptions of Lemma 4.6. Consequently, by (4.19)

(4.43) lim Fn+l(0)(t, x)= F"+i(0)(t, x)

uniformly for [0, T], ]x] _--< R. Therefore (4.41) holds for all kt N.
Finally, to prove (4.18)(i) note that for all , n N

]U(t,X)--U,,(t,X)
(4.44) <-_lu(t,x)-F(O)(t,x)l+lF’(O)(t,x)-F.(o)(t,x)l+lF.(o)(t,x)-u.(t,x)l

--<- 22-"( Yllg [[o +
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Fix r/>0 and let/x, N be such that 2=-,(TIIgll0+ I111o)< 7. Then, (4.44)yields

(4.45) lu( t, x) un( t, x) _-< 2r/+ IF", (0)( t, x) F, (0)( t, x)l.

Now, (4.18)(ii) can be easily derived by minor modifications of the above argument
(using (3.6)(ii) instead of (3.6)(i) and (4.20) instead of (4.19)). Therefore, the proof
is complete.

5. Application to stochastic optimal control. Let {, , P} be a complete probability
space and {ilk} a sequence of standard one-dimensional Brownian motions, mutually
independent. For any s 0 let be the -algebra generated by {k(S)" k 1, 2,’’’
0 s t}. Let M(t, T; X) denote the space of the X-valued processes x such that
x(s) in -measurable for all s T and

Consider a stochastic system governed by the state equation

(5.1) y(s)=e(-’x+ e(’-r[F(y(r))+z(r)]dr+ W(t,s), stO,

where x X, A is a self-adjoint operator satisfying (3.2) and (2.8), F Lip (X, X),
2z M w(t, T; X), and W(t, s) is defined by

(5.2) W(t, s)
k=l

Equation (5.1) can be regarded as the "mild" form ofthe stochastic differential equation

dy(s)={Ay(s)+F(y(s))+z(s)}ds+dW(s), tsT,
(.3)

y(t)=x,

where W(t) is a cylindrical Wiener process (see Remark 2.2).
We now prove the existence of solutions to (5.3) as well as a Galerkin approxima-

tion result.
POPOSTION 5.1. Assume (3.2), (2.8) and let F Lip (X, X). en, for all z

M(t, T; X), equation (5.1) has a unique solution y(.; t, x, z), which is continuous with
probability one.

2Proof Let A= {v Mw(t, T;X):
on A as follows"

(5.4) a(v)(s)=e(S-t)Ax+ e(X-r)A[F(v(r))+z(r)] dr+ WA(t,S), tNS

From Proposition 2.4 it follows that Wa(t," )@ m. Hence, 1"A A. Moreover, is a
contraction provided that T-t<I/[[FII and the conclusion follows by standard
fixed-point arguments.

POPOSON 5.2. Assume (3.2), (2.8) and let F Lip (X, X). Let y,,(. t, x, z) be
the solution of

dy,,(s)= {AH,y,,(s)+H,F(H,y,,(s))+H,z(s)} ds+ dW"(s),
(5.5)

y,,(t)=Hx, tNsN T,
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where z MZw(t, T; X) and Wn(t) is defined in (2.3). Then,

(5.6) n-limg(t__<_=rsup [y(s; t, x, z) y,n(s; t, x, z)[) O

for all x X.
Proof Let A be the space defined in the previous proof and define a map Ann on

A as follows:

An(V)(s)= e(s-t)Al-Inx + e(s-r)arln[F(I-[nV(r))+ l-Inz(r)] dr+x/ I-[nWA(t, s),

t<_s<_T.

Then, hn is a contraction in A uniformly with respect to n N, provided that T-t <
1/[I F[]I. Moreover; Proposition 2.4 implies that

lim( sup [An(v)(s)-A(v)(s)l)=O
for all v M(t, T; X). The conclusion then follows by the contraction mapping
theorem depending on a parameter.

We will now study the following stochastic optimal control problem.
Given R > 0, minimize the cost functional

(5.7) J(t,x; z)= g(y(s; t,x,z))+glz(s)l ds+(y(T; t,x,z))

over all controls z M(t, T; X) satisfying [z(s)[R almost surely for all s[t, T].
The value function of problem (5.7) is given by

(5.8) V(t,x)=inf{L(t,x; z)" zM(t, T; X),[z(s)[R}.
The corresponding Hamilton-Jacobi-Bellman equation reads as follows:

(5.9)
--+-Tr(vxx)+(Ax+F(x), vx)-H(v)+g(x)=O
Ot 2

in [0, T] x X,

v(T,x)-(x),
where H is defined by

(5.10) H(p) - IP if Ipl R,

R
RIp I----f- if [pl--> e.

From Theorem 4.3 we obtain the result below.
THEOREM 5.3. Assume (2.1), (2.8), (4.2)(i) and let F Lip (X, X). Then problem

(5.9) has a unique mild solution, which coincides with the value function V. Moreover,
for any t, x) [0, T] x X, there exists an optimal controlfor problem (5.7). Furthermore,
any optimal control z* is related to the corresponding optimal state y* by the feedback
formula

(5.11) z*(s)=-h(OVOx (s,y*(s))), t<s<T,=

where

(5.12)
p if lpl=R,

h(p)= pR

-1 iflP[>=R"
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Proof First, we note that the existence and uniqueness of a mild solution v to
(5.9) follows from Theorem 4.3, since the function H defined in (5.10) fulfills (4.2)(ii).

Let us show that v V. We claim that v satisfies the dynamic programming
principle below: for any ]0, T[, x X and z Mw(t, T; X) such that ]z(s)l <= R
almost surely, we have

(5.13)
{Iz(s) + v(s, y(s; t, x, z))[:-x(v(s, y(s; t, z, z))-n)} ds

g(y,(s; t, x, z))+-lz(s)l d+ 6(y(T; t, x, z))

where l’(a)= 0 if a <= 0 and x(a)= a if a >_-0.

Indeed, let un be the solution of problem (4.16) with H given by (5.10) and set
Vn(t, X) U,( T- t, x). We claim that v, is regular. To show this fact let ’(t, xl, , x,)
be defined as (t, xl,...,x,)=v,(t,xe+...+xne,), for all (t,x,...,x,)
]0, T[ Rn. Then sr is a classical solution of the problem

-+ A- E Ea,x,-(F(x, el +... + x,en), ei)]
Ot i=1 OXi

el+...nt-
OXn en) + g(xe +. + x,en) O,

( T, x ,. ., Xn) (Xlel +" + X,en).

So, we can use the It6 formula to differentiate vn(s, y,n(s)) where y,n(s) y,,(s; t, x, z).
Thus, we obtain

dn(S, y,(s))=--(s, y,n(S))ds+(dY,n(S), Un,(S, 7,n(S))>+ Tr (u,(s, yn(S)))as.

Now, recall (4.16) and (5.5), integrate on [t, T] and take expectation to obtain

Vn(t,x)___ c_ {ll-Inz(S)+Vn,x(S, y,n(S))12-X(lVn,x(S, y,n(S))l-e} ds

g(y,(; t,x,z+ylnz(s)l d+(y,,(T; t,x,z)

By Proposition 5.2 and Theorem 4.5, we obtain (5.13) in the limit as n ee. Next, we
note that the following inequality holds:

(5.14) Iz(s)+v(s,y(s; t,x,z))12-X(V(s,y(s; t,x,z))-R)>-O.

Thus, from (5.13) and (5.14) it follows that v(t,x)<= V(t,x).
To prove the reverse inequality, let us consider the closed-loop equation

y(s)=e(S-t)Ax+ e(’-r)A[F(y(r))-h(vx(r,y(r)))] dr+x/ WA(t,s),
(5.15)

T> s_-> t->0,

which can be solved by the Schauder fixed-point theorem (see, e.g., [13, Cor. 2.3]).
Indeed, from (2.8) it follows that e ’a is compact for >0. Let y* be a mild solution
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of (5.15). Taking

(5.16) z(s) :-h(vx(s, y*(s))),

we have the equality in (5.14), and so v(t,x)>= V(t,x) for all t< T. Moreover, the
choice (5.16) provides an optimal control at (t, x). Finally, the feedback formula (5.11)
follows from (5.13) and the fact that v(t, x)-- V(t, x).

Example 5.4. Let X L2(0, 7r) and define

D(A) H2(0, 7r) f3 H(0, 7r),

02x(5.17) ax :- Vx D(A),

F(x(: =f(x(, g(x (x(, :, 4,(x) (( ,
where f Cb(R), o, 1 Cb(R). By inspection, F, g, and 4 fulfill the hypotheses of
Theorem 5.3. As for operator A, (3.2) is satisfied by k, and so (2.8) holds true
for any cr ]0, 1/2[. Therefore, the results of this section apply to the following stochastic
optimal control problem.

Minimize

(5.18) J(t,x; z)= V a(y(s, ))+-lz(s, c)12 d6ds+ fi(y(T, )) d

over all controls z M2w([t, T]; L(0, r)) satisfying Iz(s, :)12 d:-<_ R2 almost surely
for all s It, T], where the state y is subject to

dy(s, ()= -xy(s, ()+f(y(s, ())+z(s, ) ds+x/ dW(s),

(5.19)
y(s, 0) --y(s, 7r) :0, s[t, T],

y( t, x( ).

Remark 5.5. Let us consider the same problem as in Example 5.4 for an N-
dimensional parabolic state equation, i.e., taking X--L2([0, 7r] N) and Ax Ax, with
Dirichlet or Neumann boundary conditions. Then, Theorem 5.3 does not apply. In
fact, we can show that q(t)= tl-N/Zo(t) (see [7]) and (2.6) is not satisfied. However,
if we consider the iterated Laplace operator Ax=(-1)’-(-A)"x, (with Dirichlet
boundary conditions), we have q(t) -N/zm O(l) and Theorem 5.3 applies if N < 2m.

Remark 5.6. Using Theorem 5.3 and the variational technique of [8] we can
characterize the value functions of deterministic optimal control problems as limits,
as e $ 0, of the mild solutions u of (4.1). For example, consider the following problem.

Given R > 0, minimize

(5.20) J(t,x; z)= g(y(s;t,x,z))+-g[z(s)l2 ds+dp(y(T; t,x,z))

over all controls z L2(t, T; X) satisfying Iz(s)l <= R.
Here y(.; t, x, z) is the mild solution of the state equation

y’(s) Ay(s) + V(y(s)) + z(s), <-_ s <-_ T,

y(t)=x.

Define the value function of problem (5.20) as

V(t, x) inf {J(t, x; z): z LZ(t, T; H), ]z(s)]-< R}.
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Then, for all (t, x) [0, T] x H, we can show that

(5.21) lu(T-t,x)- V(t,x)l<=

where tog (respectively, to) denotes a concave modulus of continuity for g (respectively,
4) and

C x/q(T) q(t) e
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CALMNESS AND EXACT PENALIZATION*
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Abstract. The notion of calmness, which was introduced by Clarke and Rockafellar for con-

strained optimization, is considered. An equivalence to the technique of exact penalization due to
Eremin and Zangwill is established. It is then shown that calmness is satisfied on a dense subset of
the domain of the optimal value function.
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1. Introduction. The notion of calmness was originally formulated by Rock-
afellar and first appears in the literature of Clarke [3]. Since its appearance it has
been recognized as a fundamental concept in optimization theory and consequently
many variations on the original definition have been proposed and studied (e.g., see
Rockafellar [6]). In general terms, calmness can be described as a basic regularity
condition under which we can study the sensitivity properties of certain variational
systems. On the other hand, the term "exact penalization" refers to a reduction
principle in constrained optimization wherein we replace a constrained optimization
problem by an unconstrained optimization problem whose objective is finite-valued
on the domain of the original objective function and which under various conditions
possesses a common local minimum. The particular reduction technique for exact
penalization discussed herein originates in the papers of Eremin [4] and Zangwill [8]
(also see Pietrzykowski [5]). We shall establish an equivalence between the notion of
calmness and the viability of the Eremin-Zangwill exact penalization procedure for
the constrained optimization problem

(7:’) minimize f(x)
subject to g(x) E C,

where f is a mapping from the normed linear space X into tA {+}, g is a mapping
from X into the normed linear space Y, and C is a nonempty closed subset of Y. In
order to make this statement precise we give the following definitions.

DEFINITION 1.1. Let f, g, X, Y, and C be as in the statement of 7v and consider
the perturbed problems

(P) minimize f(x)
subject to g(x) C + u,

where u Y. Let X and Y be such that

g(g) eC+gand gedom(f):={xeX:f(x) <+oc}.
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The problem P is said to be calm at -2 if there are constants _> 0 and e > 0 such
that for every pair (x, u) e X Y with IIx- -211_<_e and g(x) e C + u, we have

(1.1)

Here we use the notation IIzll for the norm of z. The constants and e are called the
modulus and radius of calmness for P at -2, respectively.

Remarks. (1) Definition 1.1 varies from the definition given by Clarke [2, Def.
6.4.1] in that the variable u is not required to satisfy Ilu-ll _< e in order for inequality
(1.1) to hold. In 2, we show that the restriction on the perturbation u is redundant.

(2) Observe that if P is calm at -2, then -2 is necessarily a local solution to P.
DEFINITION 1.2. Let f be a mapping from the normed linear space X into

{+oc} and let S be a subset of X. Let e > 0. We say that -2 E S is an e-local minimum
of f on S if

f (-2) <_ f (x)
for all x E S with x -2 + elt where is the closed unit ball in X, i.e., {v X
Ilvll__<l}, and-2+ eI := {-2 + ev’v e I}.

The main result of this paper can now be stated.
THEOREM 1.1. Let -2 X and Y be such that

and -2 dom(f).

Then P is calm at -2 with modulus - and radius e if and only if-2 is an e-local
minimum of

P,a(x) f(x) + a dom(g(x)lC + ),
where we define

dist(zIC + ):= inf{Ily +- zll’y e

Proof. (=) Let 5 > 0. Givenx -2+eI, set ux := g(x)-yx, where yx C
satisfies

Note that g(x) C + ux and

I1 - ull dist(g(x)lC + ) + .
Thus, if a _> , we obtain from the calmness hypothesis that

f(-2) + a dist(g(-2)lC + g) f(-2)
<_ f(x) + c llg- uxll
< f(x) / dist(g(x)lC / /

Since 6 > 0 was chosen arbitrarily the implication is established.
() Let u Y and x -2 + eI be such that g(x) C + u and x dom (f).

Then
f()<_f(x) +- dist(g(x)lC + )

f(x) +- inf {IlY +- g(xDIl’Y C}
<_ f(x) + - inf {IIY + u g(xDI + u mll y e c}

f(x) + - dist(g(x)lC + u) + -llu Ell
f(x) + II.
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Hence P is calm at
Remark. The function Pu,a defined above is a familiar tool in the mathematical

programming literature [2],[4],[5],[8]. For example, in the case where X "= R’, C
]_m C ]m y, and Y is endowed with the 11 norm, we have

m

f(x) +
i--1

where g and u are the ith components of g and u, respectively, and z+ := max{0, z}
for every z E .

In the case where Y is finite-dimensional and g(x) is Lipschitz continuous, Clarke
[2, Prop. 6.4.3] has shown that the calmness of P at 5 implies the existence of a
constant > 0 such that 5 is a local minimum for the function P,m (x) for all m__>.
However Clarke’s result does not reveal the full extent of the relationship between
calmness and exact penalization. In particular, it does not describe the relationship
between the parameters and as given in Theorem 1.1.

As previously stated calmness is an important tool in the sensitivity analysis for
P. In this regard Theorem 1.1 can be used to study the sensitivity of P to changes
in u and to establish multiplier rules for :P. These results and others are pursued
in Burke [1]. In the remainder of this note we briefly explore two topics directly
related to the definitions of calmness and exact penalization as they are employed in
Theorem 1.1. In 2 we compare Definition 1.1 to the definition for calmness used by
Clarke in [2, Def. 6.4.1]. We conclude in 3 by providing a result that is in the spirit of
Clarke’s generic calmness result [2, Prop. 6.4.5] indicating the robustness of the notion
of calmness.

2. Another formulation of calmness. According to Clarke [2, Def. 6.4.1] in
order for P to be calm at 5 we require that inequality (1.1) be satisfied whenever

IIx- 5]l__<e and I]u- ]l__<e. In the next proposition we show that if g is continuous
at 5, then no advantage gained by placing this further restriction on the choice of
perturbation u.

PROPOSITION 2.1. Let f,g, C,X, and Y be as in the statement of problem 7).
Let (5, ) X x Y be such that g is continuous at 5 and g(5) C + . If there is an- > 0 and an > 0 such that

f + > f

for every pair (x,u) e X x Y with I[u- [I <- , x -511 <_ , and g(x) e C + u,
then there is an with 0 <

_
such that -2 is an -local minimum of P,(x), and

consequently, 7) is calm at -2 with modulus- and radius .
Proof. Let 5 e (0, ) and a _> . Since the function (x)"= dist(g(x)lC + )is

continuous at 5, there is an " e (0, e] such that 0 <_ (x) <_ whenever IIx- 511 _< ’.
Now given x -2 + e, set ux "= g(x) yx where yx C satisfies

IlY +- g(x)]]

_
dist(g(x)lC) + 6.

Then g(x) e C + ux and Iluz [I -< e. Hence, by hypothesis,

P,a(5) f(5)
<_ f(x) + allux
<_ f (x) + a dist(g(x)[C) +
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Taking the limit as 5 $ 0 yields the result. El
Calmness can also be defined independent of the existence of a solution to P.

This is done by considering the value function for P, V X - U {+ec}, given by

V(u) "-inf{f(x)’g(x) e C + u}

if {x "g(x) E C + u} and +oc otherwise. P, is then said to be calm at 7/if

(2.1) lim inf
V(u)- Y() > -oc.

In this connection we have the following straightforward extension to Clarke [2, Prop.
.4.].

PROPOSITION 2.2. Let f,g.C,X, and Y be as in the statement of , and let
Y. If (2.1) holds at , then for any solution to ,P is calm at .
3. Calmness is a dense property in finite dimensions. In the case where

P, has the representation

minimize
subject to

 0(x)
fi(x) <_ ui, i= 1,...,rn
and x E D,

where f I’ ---, I is locally Lipschitz for each 0, 1,...,m and D C In is a
nonempty closed set, we can employ the results of Clarke [2, 6.4] to show that if P
has a finite value for every u near some Im, then for almost every u near (in
the sense of Lebesgue measure) Pu is calm at u. In the spirit of this result we give
the following proposition.

PROPOSITION 3.1. Let f,g, C,X, and Y be as in . Furthermore, assume that
Y is finite-dimensional, f is lower semicontinuous, and g is continuous. If Y and
3‘ > 0 are such that V is bounded on + 3‘I, then Pu is calm on a dense subset of
+ 3‘.

Proof. With no loss in generality we assume that 0. Let u Y be an element
of the interior of 3‘ and e > 0. We must show that there is a u0 u + e such that

Po is calm. Define 0"[0, 3‘- Ilull] by

0(p) := inf {f(x) g(x) e C + u + p}.

The boundedness of O(p) on [0,3‘- Ilull] fonows from that of V on 3‘I. Since 0 is
nonincreasing on [0, 3‘- Ilull], 0 is differentiable at almost every p [0, 3’- Ilull] (in
the sense of Lebesgue measure) by Ward [7]. Let po be a point of differentiability for
0 such that 0 < po < min {e,3’- Ilull}o From the definition of 0 there is for each
n {1, 2,...} a u, u+ poB such that

(3.1) V(un)
1 <_ O(po).
n

Let u0 be a cluster point of the sequence {Un}. Now since f is lower semi continuous
and g is continuous, we have that V is also lower semicontinuous, hence, by (3.1), it
must be that V(uo) O(po). We now show that Pu is calm at u0.

Since 0 is differentiable at p0, there is a (0, 3’- Ilull- p0) and an a > 0 such
that

O(p) O(po) >_ -c]p Pol
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whenever Ip-p01 < 5. Let s0 e (0, min{5, min{s, 9,-Ilull}-p0}), and let w e u0+s0B.
Then

(3.) v(w) V(o)O(ll wll) O(po)

1 I1 wll- pol.

Now if II II <_ p0, then (II II) _> 0(p0) so that

v()- V(o) >_ 0 _> -o11,- o11.

On the other hand, if Ilu- 11 >_ p0, then

and hence
V(w) V(o) >_ -11,, oll

by (3.2). Therefore
V(w) + o11 oll >_ V(o)

for all w E u0 + soB. Consequently, T’u is calm at u0. El
The conclusion of Proposition 3.1 is weaker than that of Clarke [2, 6.4] since we

do not show that P is calm for almost all u near g. On the other hand, our result is
valid for more general constraints than those considered by Clarke.

Acknowledgment. Just before the final version of this article was sent to the
Publisher, we became aware of an important reference on this topic. The reference
is Thibault [9]. In this thesis, Thibault establishes certain equivalences between the
notions of calmness and exact penalization. These results, although similar to our
own, are somewhat different. The results of Thibault are complementary to those
presented in this paper.
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Controllability of Nonlinear Discrete-Time Systems:
A Lie-Algebraic Approach*
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As stated, Corollary 5.3 is false. The indices are missing in the statement. The
correct version is as follows.

COROLLARY 5.3. If an analytic system with connected U is forward accessible from
x in k steps (that is, int A-(x) 9)), then

dim L-(y) n for any y A-(x).

Similarly, if it is backward accessible from x in k steps, then

dim L-(y) n for any y A(x).

Proof The first statement follows directly from the first inclusion in Proposition
5.2 and the inclusion

J Orb (x) = Orb (x).
k>l

The second statement follows analogously. [3
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A NUMERICAL ALGORITHM FOR OPTIMAL FEEDBACK GAINS IN
HIGH DIMENSIONAL LINEAR QUADRATIC REGULATOR PROBLEMS*

H. T. BANKS," AND K. ITO’

Abstract. A hybrid method for computing the feedback gains in linear quadratic regulator problems is
proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the
Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently
compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid
method is particularly appropirate when used with large dimensional systems such as those arising in
approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-
differential and partial differential equations). Computational advantages of the proposed algorithm over
the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of
the efficacy of these ideas is presented.

Key words, linear quadratic regulator (LQR) problems, feedback gains, distributed parameter systems,
computational algorithm, Chandrasekhar system, Newton-Kleinman scheme, Smith method

AMS(MOS) subject classifications. 65H10, 93B40, 93C20

1. Introduction. A great deal of effort in recent years in control of distributed
systems has focused on approximation techniques (for example, see [1]-[6], [8],
[11]-[14], [16], [18], [21], [22], [24], [26], [32]) to reduce inherently infinite-
dimensional problems to (large) finite-dimensional analogues. Relatively little attention
has been given to the development of efficient computational methods for the resulting
large but finite-dimensional control problems. In this paper we consider such questions
for one classical formulation of the feedback control problem, the well-known linear
quadratic regulator (LQR) problem.

There are several approaches we can take in such an endeavor. With the emergence
of new computer architectures (vector and parallel), one exciting possibility involves
the development of new algorithms to be used with nonsequential computers. While
we are currently investigating ideas in this direction, our presentation here reports on
some of our efforts to develop better algorithms for use with conventional serial
computers.

As is well known, the LQR problem can be reduced to the solution of a matrix
Riccati equation in order to construct the feedback gain matrix. The most widely
available method for solution of the Riccati equation is the Potter method [30], which
is based on obtaining the eigenvectors and eigenvalues of an associated 2n x2n
Hamiltonian system when the underlying dynamical control system is of dimension n.
A related, but improved, version involving computation of Schur vectors for the system
was proposed by Laub in [27]. While both of these "eigenvector" methods can be
used satisfactorily (for a discussion of real advantages offered by the Laub-Schur
approach over Potter’s method, see [27]) for systems with n relatively small, say

Received by the editors November 19, 1986; accepted for publication (in revised form) June 6, 1990.
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n < 100, the computational effort (and time) grows like n3and becomes prohibitive for
large systems. More recently, the idea of using Chandrasekhar systems ([9], [20], [33,
p. 304-310], [36]) when the number of states is large compared to the number of
control inputs (exactly the situation in a number of cases where one approximates a
distributed system) has been suggested by a number of authors [33, p. 309], [7], [8],
[17], [31]. However, as we shall discuss below, there can be numerical difficulties in
using the Chandrasekhar approach. On the other hand, it is known that iterative
methods such as the Newton algorithm as formulated by Kleinman in [23] can be
quite efficiently implemented (even for some large systems) if good initial estimates
are provided and if we can efficiently solve the resulting Lyapunov equations. In this
presentation, we discuss the formulation and numerical testing of a hybrid method
that represents an attempt to combine the good features ofthe Chandrasekhar approach
(growth like n in computational effort) with those of the Newton-Kleinman (quadratic
convergence when good initial estimates are provided) along with innovative use of
the Smith algorithm for solution of Lyapunov equations.

We expect these ideas to be quite useful in design of control laws for some of the
models currently being investigated in connection with large flexible structures as well
as in some ofthe population dispersal and control studies that we are currently pursuing
with biologists and ecologists. Some of the large flexible structures involve rather
sophisticated distributed parameter models (e.g., see [4], [34]), especially when we
wish to include complicated damping mechanisms involving time or spatially related
hysteresis [6], [34] or nonlinear effects [19]. For such models, the computational tasks
can be rather demanding whether one is carrying out parameter identification [3] or
feedback control calculations with traditional eigenvector based methods (the authors
of [6] have indicated experiences with runs requiring nine hours of VAX time when
using the Potter method for an approximation system with dimension equivalent to
n 238).

Our intention is to introduce a problem-oriented algorithm that can be used for
large-scale but structured problems within a conventional computational capability
rather than to develop a general purpose method for solutions of LQR problems. More
precisely, we are interested in computing solutions of the approximating LQR problems
for systems governed by partial differential equations. In such a case the dimension n
of the states tends to be large while the dimension m of the inputs is fixed under
approximation, and moreover the resulting system matrices (A, B) are, in general,
sparse. Our hybrid method can be most efficiently carried out for such cases. Of course,
this does not imply that our algorithm does not work for general problems, but it
simply may not be efficient in some situations.

For our presentation, we assume that one has used his or her favorite approximation
scheme (finite-elements, spline, spectral, etc.) to reduce the problems of interest to an
LQR problem with a finite-dimensional system. More precisely, throughout our dis-
cussions we consider the following LQR problem: minimize the cost functional

(1.1) J(u)- {[Cx(t)l+lu(t)l} dt

subject to the state dynamics

( t) Ax( t) + Bu( t), x(O) Xo.

Here A Rnn, B Rn’, and C Rpn. (We have, without loss of generality, for our
discussions here normalized our problem so that the control term in the cost functional
(1.1) appears with a weighting matrix I.) We will assume that (A, B) is stabilizable
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and (C, A) is detectable [25], [38]. Then the optimal feedback control for the LQR
problem involving (1.1) is given by

u(t) --BTpx(t),

where P is the unique nonnegative symmetric solution of the algebraic Riccati equation

(1.2) AT"P + PA PBBP+ CC O.

In this paper we propose an algorithm which leads to direct calculation of the feedback
gain matrix K B’P without computation of P. In addition to providing substantial
savings in computational time over eigenvector methods, our algorithm requires much
less storage and can easily be implemented to take advantage of special structures
(e.g., sparsity) in the system matrix A.

To outline the steps in our algorithms, we first recall that the optimal feedback
gain K is given by the limit K lim K (t) as -o of solutions of the Chandrasekhar
system [9], [20]

I(t) -BTLT"(t)L(t), K(0) =0,
(1.3)

L(t)=-L(t)(A-BK(t)), L(0)= C,

where KER and LERpn. In fact (see [20], [37]) P=limLT"(s)L(s)ds as- -. The first step in the proposed hybrid algorithm involves a numerical integration
of (1.3) backward in time on an appropriate interval [-ty, 0]. For the second step, the
value K(- ty obtained through this numerical integration ofthe Chandrasekhar system
is then refined by use of the Newton-Kleinman algorithm [23], if we use K(-ts) as
an initial value Ko for the Newton method.

To motivate our effort in these two steps, we note that the convergence K(t)- K
as -- can be very slow when the eigenvalues of A- BK lie close to the imaginary
axis. Moreover, L 0, K arbitrary are solutions in the asymptotic limit sense to (1.3).
That is, if we denote by f(K, L) the right side of system (1.3), then K arbitrary and
L=0 are solutions off(K,L)=O. Hence K(t)K, L(t)O as t--o does not,
in general, have a unique limit numerically. Thus, as is pointed out in [33, p. 316-318],
if we are to use the Chandrasekhar approach alone, we need a very accurate numerical
solver for (1.3). This can be quite expensive computationally if we are dealing with a
large system and/or a stiff system. Hence, we propose to use a second order semi-implicit
scheme (described in 2) for the Chandrasekhar component of our algorithm and take
the resulting numerical solution K (-ts) as a start-up value for the Newton iterations.
If this estimate from the Chandrasekhar step is a sufficiently good initial guess, then
we can expect to meet the Newton-Kleinman requirements that A- BKo be a stability
matrix and to obtain quadratic convergence in this second component of the algorithm.
Thus, the role of the Chandrasekhar step is to provide a good start-up value for the
Newton-Kleinman method, not to produce a very accurate solution.

The first step of our hybrid method requires the solution of n(m +p) simultaneous
equations, while each iteration ofthe usual Newton-Kleinman step requires the solution
of a Lyapunov equation for the n x n symmetric estimates of P. However, as we will
see below, we can use factorization ideas [20] and the Smith method [35] for Lyapunov
equations to reformulate the Newton-Kleinman method as a direct iterative method
for the m n gain K, thereby providing additional computational advantages. To speed
up our calculations and improve convergence in the Smith algorithm, we propose a
variable stepsize Smith method to solve the Lyapunov equations as described in 4
below. In 2 we outline a numerical scheme for the Chandrasekhar system, while the
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reformulated Newton-Kleinman iterative procedure to compute directly the gain K
is detailed in 3. Finally, in 5, we further discuss some advantages and disadvantages
of the proposed algorithm and, to illustrate the feasibility of our hybrid approach,
report on our experience with two of the several numerical examples on which we
have tested the method.

2. Numerical solution of the Chandrasekhar system. We return to consider more
closely the Chandrasekhar system

(2.1) I(t) -BrLT(t)L(t), K(0) =0,

(2.2) [_,(t) -L( t)(A- BK (t)), L(0) C,

where A Rn", L, C RPn, and K, B T Rmn. We first observe that the second
equation (2.2) is linear in L. In cases where A arises from a discretization or approxima-
tion of partial differential equations, equation (2.2) tends to be a stiff system and thus
it is advisable to use an implicit numerical scheme. Here we propose the second order
Adams-Moulton algorithm [10, p. 235]. A second observation is that the right-hand
side of equation (2.1) is independent of K and thus an explicit scheme is appropriate;
we propose the second order Adams-Bashforth algorithm [10, p. 226].

These observations leads us to propose the following algorithm for the
Chandrasekhar system (2.1), (2.2): Given a step size h >0, approximations Ki and
Li to K(-ih) and L(-ih) are generated by

..o. L, 1/2BTLL,L,_,),(2.3) h,+,: K,+ h(BTLT

(2.4) (o)Ki+,/2-" (li+,-l- Ki)/2,

h
i+1/2),(2.5) Li+l Li q-- (Li+I -- Li)(A- BK()

h
(2.6) K,+, Ki +- (BTL,L,+, + BTLTi L,),

where Ko 0 and L_ Lo C.
Several remarks may be useful at this point.
Remark 1. The stiffness of the matrix A dictates the choice of stepsize h.
Remark 2. Subtraction of the expression in (2.3) from that in (2.6) yields that the

(o). and the corrected values Ki+l satisfypredicted values K

Ki+l- K()- h h r d2
,+, - BT(L.T,+, Li+,-2LTi Li + Lf_,L,_I) - B - (LTL)

and this relationship can be used for stepsize refinement, i.e., to give local bounds
depending on stepsize which can be used in error control.

Remark 3. The formula (2.5) can be rewritten as

Li+l= Li I-I-- Ai I- Ai
(2.7)

=2Li I-- A Li,

where A A- +,/. Defining H=I-(h/2)A we have that I-(h/2)A=
nxm (0). mxnH+(h/2)BK(%..whereBRi+,/ and K +,/. e R Thus by the Sherman-Morrison-

Woodbury formula [29, p. 50] (used frequently when updating an n x n matrix by rank
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m matrices)

(2.8) I- Ai H-1--2 H-IB I +- K(i+/2,,u-B K+/(.,2H-,

where I + (h/2) ..(o). 2H- Rmxm z(o) --1hi+l/ B The matrix "Xi+l/2"" in (2.8) can be computed
by

,+,/2H- KH + BTLLH--1 BTL_L_H-I

2
(2.9)

K,+H- K,H-+ (BTL(+,L+,H- + BTLL,H-).
Hence we see from (2.7)-(2.9) that the step (2.5) only involves the operation LH-(o) B.plus inversion of an m x m matrix I + K+/H- Thus the step (2.5) can be reformu-
lated so that it requires only an m x m matrix inversion plus matrix-vector multiplica-
tions if the LU decomposition of H I-(h/2)A is computed a priori. This procedure
can be most advantageous computationally when m and p are small compared to n.

Remark 4. For some problems we might wish to use a completely implicit scheme
in place of (2.3)-(2.6) to enhance stability and reduce sensitivity to step size choice.
Then we might consider iterations K (j)+a, +(J) generated by

h(J) L + ((J + L)(A- BKj-),i+1 i+1 i+1/2

h
(2.10) Kj K+ (BT(j J) + BTLL),i+1 i+1i+1

KJ/ (K,+ + K)/2
and thus produce iterates with limits (as j)K+, L+ satisfying

h
L,+ L+ (L+ + L,)(A- B(K,+ + K,)/2),

(.1)
K,+ K,+ (LSL,+ + L(L,).

3. An itertive metho8 for eompting the optimal feeSbek gin K. A widely used
iterative method for finding the nonnegative solution of the algebraic ccati equation
(1.2) is Newton’s method as modified by einman [23]. We show that this method
can be reformulated so that, when combined with a factored form of the well-known
Smith method [35], we can compute directly a sequence of iterates K for the feedback
gain K.

First we recall the Newton iterative algorithm as formulated by Kleinman:
(1) Choose a gain matrix Ko so that A- BKo is stability matrix (i.e., Re < 0 for

all eigenvalues of A-BKo);
(2) Update K by K+ BTp where P is the solution of the Lyapunov equation

(A- BK,)TP + P(A- BK,) +KK+ cTc =0.

It has been shown in [23] that 0 P+ P for any i, and P lira P where the
convergence is quadratic. This algorithm can be viewed as an iterative method for the
gain K, i.e., K =lira K where K+ F(K) with F(K)= BTp and P is the solution
of the Lyapunov equation

(3.1) (A-BK)Tp+P(A-BK)+KTK+CTC=O.
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Thus, in order to calculate F(K) we must solve the Lyapunov equation (3.1) for the
symmetric matrix P. However, we can form an alternative version that allows us to
directly calculate F(K) using the Smith method for a Lyapunov equation in X of the
form

(3.2) sTx + XS + DTD O,

where S R is a stability matrix and D R P".
To this end, we replace step (2) in the Newton-Kleinman method by the following:
(2’) For i>_-1, update Ki by Ki+l Ki-BTZi where Z= P-I-P is the solution

of the Lyapunov equation

(3.3) A BKi TZ + Z A BK, + DfDi 0

with D =-- Ki Ki-1.
The method with (2’) offers several advantages over that using (2). The Lyapunov

equation in (2’) has fewer inhomogeneous terms than does the one in (2) and the term

D has rank rn which depends only on the number of inputs (controls) to the system.
In the proposed modified Smith method described below, we are able to compute
directly the m x n update matrix Ji= BrZ without computing Z (see (3.12) below).
Since Zi- 0 as i- oe is expected, choosing the start-up value J 0 in the factored
Smith algorithm (where J= BrZi is computed as the limit as k- oe of a sequence J,)
is a natural as well as convenient choice.

Note that the step (2’) requires that we have Z1 Po-P1 in hand and hence we
must start this procedure with Po, P1 (and Ko, K1) given whereas (2) requires only
that we start with Ko given. Then K1 is computed by K1 B rPo with Po the solution of

(A- BKo) Tpo + Po(A BKo) + K’[Ko+ cTc O.

Since our Smith algorithm below is formulated to solve Lyapunov equations of the
form (3.2), we can, to maintain this form, initially solve the equation twice. That is,
if we .solve for Zo the solution of

(3.4) (a BKo) T20 -4- o(a BKo) + K{Ko 0

and for o the solution of

T(3.5) (A BKo) Zo + 2o(A BKo) + CTC 0,

then we can obtain K1 by K1 BTo+ BTZo Since the Smith method as formulated
here actually returns BTx where X is the solution to (3.2), we thus will use this Smith
algorithm twice (with S A-BKo), once with DTD KKo, once with DTD cTc,
and then simply add the solutions to obtain

We turn next to the desired factored form of the Smith method as applied to
equation (3.2). Let Xo be an arbitrary n x n symmetric matrix and let a sequence {X}
of n x n symmetric matrices be generated by

(3.6) Xk+l uTrXkgr + Yr,

where r is a positive constant (the Smith stepsize) and

(3.7) Ur (I- rS)-l(I + rS),

(3.8) Yr 2r(I- rsT)-DTD(I rS) -1.
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Then we can argue [33] that {Xk} converges to X, the solution of (3.2). The method
and its analysis is based on the observation that for any positive constant r, the equation
(3.2) is equivalent to

X UrXUr + Yr
which can be used to define a contraction map in the obvious manner [33].

We modify this standard formulation of the Smith method to suit our particular
needs here (computing BTX instead of X). From (3.6) we have

X,,+, X,, U(X,, X,_) Ur, k >- I.

Hence, if Xk- Xk-1--MM, (i.e., if we have a factorable difference), then

Xk+,--Xk UTr MMkUr (MkUr)T(MkUr).
If the start-up value Xo is zero, then we can write

(3.9) X1-Xo 2rMr M,, M, D(I- rS) -1.

By induction on k, (3.6) is then equivalent to

(3.10) Mk+l-- MkUr,

(3.11) Xk+, Xk + 2rM+,Mk+l.
In this manner BTX can be obtained as the limit of Jk B rX, where Jk is generated
by

Jk+ Jk + 2rBTM[+Mk+

Thus, the update step (2’) is carried out by the following Smith algorithm:

(3.12) (i)

(3.12) (ii)

(3.12) (iii)

Set Si A- BKi and D Kg- Ki-1

Choose a positive constant r and form Ur and M1 by (3.7) and (3.9)
with S=S; put Jo=0 and J=Jo+2rBTMM;
Iterate for k= 1,2,..., on

Mk+l

Jk+ Jk + 2rBTM[+aMk+I.
In summary, we have described in this section a Newton-Kleinman scheme

combined with the Smith method for the resulting Lyapunov equation at each step in
the Newton-Kleinman. We have reformulated the Newton-Kleinman iteration and
factored the Smith algorithm so as to result in algebraic savings in computing directly
the gain estimates Ki.

4. The Smith method and variable stepsize. As is well known, the rate of conver-
gence in the Smith method discussed in the last section depends upon the choice of
the acceleration or step parameter. (See [33, p. 291-297] for several discussions. Note
that our parameter r is the negative reciprocal ofthe parameter in Russell’s discussions.)
To increase speed in convergence, we may employ the accelerated Smith method [33],
[35] which can yield quadratic convergence as compared to the linear convergence
obtained with (3.6). However, unlike (3.6), the accelerated Smith method is not
self-correcting [33] and here we propose to speed up convergence in an alternative
way which has proved both reliable and efficient in some of our numerical tests.
Specifically, we propose to use a succession of acceleration parameter values r (much
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in the spirit of other well-known iterative methods such as alternating directions [15],
[28]) to accelerate convergence in the basic Smith method. Our formulation of this
"variable stepsize" Smith method is based upon the observation that for fixed r > 0
and k-> 1, the Smith algorithm can be written as

(4.1) sTx,+X,S+DTD=G,, Ek=-(I+rS)rMMk(I+rS),
where Mk is defined by (3.9) and (3.10). To see this, we note that from (3.6) we have

(I- rs)Tx(I rS) (I + rS) rXe_l(I + rS) + 2rDrD
or

(I + rST)X,(I + rS) (I- rs) Tx,(I rS) + 2rDrD
(+ s)(X x_)(+ rS).

Hence, from (3.11) we obtain

2r(STx, + XkS + DrD)= 2r(I + rS)TM[M(I + rS),
which implies (4.1). Moreover, from (3.9) and (3.10) we have

(4.2) E Uf)DrD( U), k 1.

Thus, if we use the iteration (3.6) with acceleration parameter r for ka iterates, we
obtain an iterate X() and equation error E(> satisfying

(4.3) sTx(1)+ X(1)S

Let us define the difference (1= X_X( where X is the sought-after solution of
(3.2). Then it is readily seen that E(1 satisfies a Lyapunov equation similar to that of
(3.2):
(4.4) Sr+ZS + E( 0.

If we next apply the iteration (3.6) k times with acceleration parameter r to the
residual equation (4.4) we obtain

(4.5) SrX(+

where X(2) is the final iterate using r2 and the equation error E(2 is given by

E()= U)E(’)( U)k.
If we proceed to define the difference (2) X- (X() + X(2)), then from (4.4) and (4.5)
we see that () satisfies a Lyapunov equation

sT+S+E(2)=O.

We continue this procedure, using a sequence of acceleration values {r} along
with corresponding iteration counts {k} to produce a sequence {X} of nonnegative,
symmetric matrices. For 1, we have

(4.6) sTx(i) + X()S + E
(4.7) E (’)= Ur)k,E(i-’)( Ur,) k’, E() DTD.

X(), then satisfiesThus, if

4.8
and hence X and

_ , j 1.
Using arguments similar to those in [33, p. 291-294] we can show that for 0 <

r R, with , R positive constants, there exists a constant , 0< < 1, depending
only on and R, such that for < p < 1,

vl , 0, ,...,
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where M(p) is independent of r. Thus, if_r<= ri -< R, then for any O< e < 1, there exists
an integer k(e) such that for ki => k(e), -> 1,

(4.9) urk,’l 1 e.

Hence, using (4.7) we have

so that E (j 0 as j - and therefore
For the hybrid method proposed in this paper, we have combined the variable

stepsize method just outlined with the reformulated Smith method of (3.12). We then
obtain the following algorithm for solving for the feedback gain Ki:

ALGORITHM 4.10. Set S A- BKi, D1 K- K-I and Jo 0. For given accelera-
tion parameters rl, r2,... and iteration count indices kl, k2,’’" we iterate on
j 1, 2,..., in the following steps"

(4.10a) Compute Urj (I- rSi)-l(I + )S) and

MI D I rS, -1,

J1 Jo + 2t)BTMM1.
(4.10b) Iterate for k= 1, 2,..., k-I in

Mk+ MkUrj

Jk+l Jk + 2BTM+IMk+I.
(4.10c) Compute Dj+I Mkj(I + rjSi) set J0 Jkj and return to (4.10a) withj =j + 1.

The steps in Algorithm (4.10) are to be repeated, i.e., iteration through r, r2, ,
until some convergence criterion is met. In performing the steps in (4.10b), we can
use the Sherman-Morrison-Woodbury formula in a procedure such as that outlined
in (2.7)-(2.9)in 2.

Remarks. (1) The convergence of our hybrid method is guaranteed if (i) A- BKo
is stable where Ko is obtained through a numerical integration of the Chandrasekhar
equation by Algorithm (2.3)-(2.9), and (ii) the iteration counts k’s in the variable
stepsize algorithm Algorithm (4.10) are chosen sufficiently large. Condition (i) can be
met if the stepsize h is chosen sufficiently small and the integration is carried out on
a sufficiently large interval [-ty, 0] so that the norm of L at -ty is smaller than a given
small constant, say e > 0.

(2) The efficiency of the method may rely heavily on a choice of the acceleration
parameters rl, r2," ", rl. If we follow the guide provided by ADI methods (see [15,
p. 37]), we might choose a set of values r to be used in some cyclic order. The best
choices of values for the r often depend on the eigenvalues of S =A-BK. For
example, consider the case where Si has only real eigenvalues A, each with multiplicity
m, j 1, 2, , m. Then a choice of r -1/h and m in the algorithm produces
convergence in a finite number (m) of steps. That is, this choice yields E(’)-0 in
(4.8). Of course, the complete eigenstructure of Si will not be known (nor do we suggest
that any sophisticated analysis along these lines be included with each use of Algorithm
(4.10) to obtain the gains K).

For the case where the problem is obtained from an approximation of an LQR-
problem for systems governed by PDE’s, a good approximation method preserves the
property of solutions to the orignal LQR-problem; e.g., the distribution of closed-loop
eigenvalues. Thus, depending on the type of PDE’s we consider, we can have an a
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priori knowledge of bounds on the closed loop eigenvalues for the approximating
system. For example, in Example 2 of 5, we consider a boundary control problem
for the one-dimensional heat equation. In this case, we know that the closed-loop
eigenvalues are contained in a sector S={h C: [arg(h-p)[<=(/2)+O, p>-_O and
0 > 0}. Thus we can choose the parameters ri systematically as shown in Table 5.3.

(3) For the full matrix case, the following are rough operation counts. For the
Chandrasekhar step, we have

n
--+ t--f (pn2+4mpn),
3 h

where ty is the terminal time and h is the stepsize. For the Newton-Kleinman step
with variable stepsize Smith, we find

1 n3_[ cl(kl q- k2+’" .--k kt)[pnZ+4mpn+ c2(mn2+4m2n)],
3

where is the number of acceleration parameters ri, cl is the number of cycles of
Algorithm (4.10), and c2 is the number of Newton iterations. When A is sparse, the
operation counts n3/3 for the LU-decomposition of (I-rA) and pn2 for computing
L(I-rA)- can be significantly reduced using a Gauss-elimination procedure for the
matrix A.

In closing this section, we note that the analogies of our variable step Smith
method with the ADI methods used to solve partial differential equations can be made
a little more precise. Briefly, in ADI splitting methods [28, p. 146-148], we attempt to
solve a discretization of the evolution equation

dp=A+f
when A >- 0 can be Written A A + A2 with A =>0 (for example, factored into com-
ponents corresponding to spatial discretizations in the x and y directions, respectively,
for an equation in a two-dimensional spatial domain). This can be shown [28, p. 150]
to lead to an iterative scheme

(4.11) I +- A1 I +-A *+ I --A I -- A2 + hf

where the index j is related to time stepping. On the other hand, if we consider the
Smith method (3.6)-(3.8) for

sTx + xs--- F
and choose r--hi2, we obtain the iteration

(4.12) I-- Sr X I-- S I +- Sr X I +- S + hF.

In these iterations we may identify the n x n matrix X [x, , x,], x R and the
n vector column [x, , x]. If we then identify AI with -SrX (i.e., A -I (R)
S r) and A with -XS (i.e., A=-S(R)I), we can immediately see the equivalence
between (4.11) and (4.12).

5. Summary remarks and numerical examples. In the preceding sections we have
presented an algorithm that offers some definite advantages in computing directly the
feedback gains K for high dimensional LQR problems such as those arising in
approximating partial or delay differential equation control problems. As we will see
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with several numerical examples in this section, it can substantially outperform standard
eigenvector methods on such problems. As we have pointed out, a fundamental
algebraic operation (in both the Chandrasekhar update (2.6), (2.7) and in the reformu-
lated Smith methods (4.10b)) involves computation of

(5.1) L(I-r(A-BK))-1,

where L and K are p n and m n matrices, respectively. Our algorithm uses the
Sherman-Morrison-Woodbury formula which can provide significant computational
savings when rn and p are small compared to n. For systems involving sparse matrices
A a frequent occurrence in many approximation schemes), the needed calculations
can be carried out quite efficiently.

We further note that that Chandrasehkar and Newton-Kleinman-Smith com-
ponents as formulated in our algorithm lead to ready estimates between the true gain
K and the iterates Ki in terms of equation errors in the steps being performed.

One component (the variable step Smith) of the algorithm is most effectively
carried out if we possess some a priori knowledge of bounds on the closed loop
eigenvalues. If the closed loop eigenvalues lie close to the imaginary axis, then
convergence in the Smith method can be very slow. Eigen or Schur vector methods
[27], [30] are less sensitive in this regard. For low order systems, the Schur vector
approach is more reliable and less expensive computationally than our algorithm.. Our
hybrid algorithm depends critically on a number of choices (e.g., stopping criteria in
the Newton-Kleinman and Smith components, stepsize sequence {r} and iteration
count sequence {kj} in the variable step component) to be made by the user, and the
"best" choices are heavily problem dependent. Hence we can expect our hybrid
algorithm to require more experimentation and fine tuning than other more standard
methods. However, as we will demonstrate with examples, for the case where n is
large compared to rn and p, it can offer considerable computational savings with no
loss in accuracy over the methods mentioned above.

We have tested (and are continuing our efforts in this direction) our hybrid
algorithm on several numerical examples. We will report on just two of these here to
illustrate our findings.

In Example 1, our algorithm is tested for the ill-posed LQR-problem reported
in [27].

In Example 2, we will demonstrate various aspects of the proposed algorithm,
using the approximate LQR-problems via Galerkin approximation of a boundary
control problem for the one-dimensional heat equation. All our computations were
carried out in double precision on an IBM 3081 at Brown University. We gratefully
acknowledge the assistance of Yun Wang in our carrying out of the extensive computa-
tional studies reported for the boundary flux control in the diffusion equation problem
of Example 2 below.

Example 1. As one of our examples, we considered an example (Example 6 of
[27]) which Laub used to test his Schur based methods. The system is the n-dimensional
system of (1.1) with

0 1 0 0

0 1 0

A=
0 1

0

B= :^ C=[1 0 0],

which leads to an ill-conditioned Riccati equation. This problem corresponds to one
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in which n integrators are connected in a series with a feedback controller to be applied
to the nth integrator in order to stabilize the system. Only deviations of Xl from the
origin are penalized in the cost functional. The true optimal gain is an n vector
K (gl,...,/n) and for this example we can argue that/1= 1. In [27], Laub used
his Schur techniques to study this example and reported difficulties with loss of accuracy
at a relatively low value of n, n--21. We carried out runs with our hybrid algorithm
and obtained quite favorable performance. Some of our findings included the following:

(a) For n =40, we used the Chandrasekhar component to integrate to tf= 100
and produce an initial estimate K .99041, which, when used in the Newton-Kleinman
(fixed step size r .5 in the Smith), produced the estimate K 1.0rain a total of 2.93
seconds ofCPU time. When we used a cruder solution in the Chandrasekhar component
(tf 200 but with step size twice that in the first run) to produce K .9394, followed
by the N-K (r --.5, r2 1.0 in the variable step Smith) we obtained K 1.0mall in
2.39 seconds.

(b) For n 50, we produced K .9224745 at ty 220 and after the N-K-Smith
(fixed step r .5 in the Smith) obtained K5 1.0000000003820 in a total of 4.44 CPU
seconds. For the same runs with variable step (rl .5, r2 .7) Smith we obtained a K5
as above with 3820 replaced by 3817 in a total of 4.31 seconds.

(c) We compared runs with the Chandrasekhar component only against the Potter
method for n 10, 21, 40. Obtaining essentially the same estimates for n 10 and 21
(at n =40, the Potter degenerates numerically to produce useless estimates) we had
CPU times of CHn=lo .753 seconds, POTTn=lO --.188 seconds, CHn=21 1.52 seconds,
POTTn=21--1.22 seconds, CHn=4o =4.35 seconds, POTTn=4o= 6.81 seconds.

We also implemented the Laub-Schur method using the HQR3 and EXCHNG
routines of Stewart [37]. Our implementation was exactly the same as suggested in
[27] except that the stable and unstable blocks are separated by their absolute values
along the diagonal. For the two examples we considered here, we did not observe any
significant difference between Potter’s method and Laub’s method, either in perform-
ance or CPU times.

We found for this example that the eigenvector methods are best for small n, but
as n grows, the Chandrasekhar alone, and, even more so, the hybrid method will out
perform the Eigen-Schur methods in both accuracy and CPU times. A more striking
demonstration of this behavior will be given in the next example.

Example 2. We consider the following linear quadratic regulator problem: minim-
ize the cost functional

;o(5.2) J(u)- (ICz(t)l+lu(t)l) dt

subject to the partial differential equation
0

z(t, x)= z(t, x),
(5.3) Ot Ox2

(o, x) =,(x)
with boundary conditions

0
(5.4) z(t, O) u(t) and

Ox

and

Cz( t) c(x)z( t, x) dx,

x6 (0, 1),

0
z(t, 1) =0

Ox

where c(. is square integrable on [0, 1].
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We can discretize or approximate (5.3)-(5.4) using the standard Galerkin method [2];
i.e., the approximating solution zN(t,x) to (5.3)-(5.4) is given by

N

(5.5) zN(t,x) , wi(t)li(x), wi(t)R 1,
i=0

where li 1 is the first-order spline defined by

N x

x
N

otherwise

and zN (t, x) satisfies

(i-1)<__x<__--
N N

(i+1)
--X
N N

IO10q zN _N

(5.6)
t, x)O (x) dx --Ox z --Ox dx u( t) (0)

for all qN ezN =span {l, l,..., l}.

Then, (5.6) leads to the nth-order (n N+I) ordinary differential equation for
W
N =col (Wo,

(5.7) (t) -H w t) n u( t),

where

HN--N

with O lilj dx,

0

0

-1

1

with Hij -x -x l dx,

and

BN--cOl(1 0 0).

For computational convenience, we change coordinates (for fixed N) in the system
(5.7) by x QNwN to obtain the approximate system

) --HN oN)-lx-- BNu.

Thus, in (1.1) we have A----HN(QN)-1, B---BN and C= CN(QN)-1 where CN is
the vector with components c=1o c(x)l(x) dx, 0<= <-- N.
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For the problem in this example, the approximating optimal feedback operator
KN is given [2] by

fokNK Nz (x)z(x) dx,

kili(x) and K (ko, kN) is the optimal feedback solution inwhere kN (x) i=
the problem for (1.1) with A, B, C chosen as indicated above. We note in this case
that for any N-_> 1, A has only one unstable eigenvalue (zero), (A, B) is stabilizable,
and (A, C) is detectable.

For the special case when c(x)= 1, we find C =(1,..., 1) Rlx(N+) and hence
CA 0. It is thus easy to see that the desired solution (K (t), L(t)) to the Chandrasekhar
system (1.3) is given by

K(t)= k(t)C, L(t)= l(t)C,

where k, are scalar functions satisfying, k(0) 0,

l=-lk, l(O) 1.

Therefore we find /k+ ll---0 so that k2(t)+ 12(t)= 1. We thus find in this case that
k(t)- 1 as t-- and hence K =lim K(t)= C. For this case, the Chandrasekhar
system for the infinite dimensional LQR problem (5.2)-(5.4) can also be analyzed [17],
[36] and exactly the same argument as above shows the optimal feedback gain operator
is given by

Kz 1. z(x) dx.
o

These analytic solutions can be used to test software packages and approximation
schemes before more interesting, analytically intractable examples are considered.

Remark. The form (5.7) of system equations appears frequently in applications.
Thus the critical computational factor (5.1) can be modified so that we can avoid
computing A. For example, in this case it has the form

(5.8) L(I- r(-HQ-’-BK))-= LQ(Q+ rH+ rBKQ)-1,
where Q + rH is a symmetric, tridiagonal, positive matrix. Thus we can readily use the
Cholesky decomposition algorithm for computing LQ(Q+ rH)- and combine this
with the Sherman-Morrison-Woodbury formula (see Remark 3 of 2) to efficiently
compute the critical expression (5.8).

We carried out extensive computations for this example with c(x)= 1 +x. We
compared our hybrid method to the Potter algorithm and to the use of the
Chandrasekhar system alone. We also used the Laub-Schur method on this example
but, as in Example 1 above, found essentially no significant difference between Potter’s
method and the Laub-Schur, either in performance or CPU times. (Analysis and
computational experience indicate that the Potter method and the Laub-Schur method
are both O(N3) with the latter method about twice as fast as the Potter method.) We
required, whenever feasible, the same level of accuracy in computation of feedback
gains and compared relative CPU times.

In studying our hybrid scheme, we tested numerous sets of Smith acceleration
parameters {r}, {kJ}, stopping times t in the Chandrasekhar component and error
stopping criteria in both the Chandrasekhar and Newton-Kleinman-Smith com-
ponents. We summarize some of our findings to date.
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In Table 5.1 we present comparative CPU times for the hybrid scheme versus
Potter as we increase N. Recall that the corresponding finite-dimensional approximation
scheme has system with dimension n N+ 1. In all of the runs reported in Table 5.1,
the feedback gains for the hybrid and Potter calculations agreed to nine decimal places
so both schemes provided accurate solutions. In these runs, the hybrid scheme calcula-
tions used ty= 2.2 (corresponding to h .1) with IL(-ty)[- 10-3 in the Chandrasekhar
component. The Newton-Kleinman component converged after four iterations (i.e.,
at K4) and we used acceleration steps ra- 1, r2 10-a, r 10-3, r4-- 10-5. Each Smith
iteration was allowed a maximum of kj 50 per value of r although in most cases the
iteration satisfied a convergence criterion before this maximum was attained. Careful
consideration of Table 5.1 reveals that the hybrid scheme is clearly O(N) while the
Potter is O(N3); both rates are to be expected from our earlier observations about the
methods. Note that at N 80 the hybrid scheme is more than 25 times faster than the
Potter scheme (with comparable accuracy, of course).

We also ran the hybrid scheme with N= 80 and a number of different fixed
acceleration values r in the Smith component. The same Chandrasekhar component
parameters as reported above were used. Table 5.2 contains relative CPU times as well
as an indication of the N-K iterate for which convergence was achieved.

In Table 5.3 we list some CPU times when different sets of acceleration parameters
{ rj} were used. Again these runs were for N 80 with the same Chandrasekhar solution
as above. All of the converged Newton-Kleinman iterates were after six steps (i.e., K6).

Finally, we made runs (for N 80) to find the best results that the Chandrasekhar
algorithm alone (i.e., accurate integration until K(t)- K, L(t) 0) could produce. The

TABLE 5.1

N Hybrid (CPU sec.) Potter (CPU sec.)

10 .17
20 .31
30 .56
40 .74
50 .91
60 1.09
70 1.26
80 1.43
100 1.76
120 2.10
140 2.45
160 2.80

.14

.81
2.45
5.49

10.71
18.09
27.97
41.56

5

10-1

10-2

10-3

10-4

10-5

TABLE 5.2

CPU (sec.)
Converged
N-K Gain

5.10
6.52
6.27
7.40

10.10
12.06
10.07

K6
K4
K4
K4
K4
K5
K4
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TABLE 5.3

CPU (sec.)

(10-1, 10-2) 6.25
(1, 10-1, 10-2) 4.88
(1, 10-1, 10-2, 10-3, 10-4, 10-5) 1.98
(1, 10-1, 10-3, 10-5, 10-6, 10-7) 1.61

best results we were able to achieve yielded an accurate value of K for K(-ty) with
ty= 3.22 with IL(t)[- 10-6 obtained in 5.85 CPU seconds.

Based on our computational findings for the above two examples and our
experience with several other examples for infinite-dimensional systems (e.g., beams
with tip bodies, etc.), we are quite confident that the hybrid scheme we propose in
this paper can be profitably used with a number of large scale LQR problems. We are
currently developing a rather general software package that implements the hybrid
scheme in a manner so that a broad range of problems can be treated in the context
of the ideas presented here.
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ON CONSTRUCTING NONLINEAR OBSERVERS*

ANDREW R. PHELPS?

Abstract. Two algorithmic approaches to constructing nonlinear observers currently exist. Here one of
these is improved by finding an explicit solution to the partial differential equations describing the change
of state coordinates, thereby avoiding expensive bracket computations. This simplifies the algorithm and
has implications for system identification.
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observer algorithm, Macsyma, coefficient compatibility
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1. Necessary and sufficient conditions for observer normal form. We consider an
uncontrolled affine control system

(1) =f(), y h(),

where f is a given vector field and we are operating in the neighborhood of a point
sc= :(0). The problem is to estimate the state R based on the measurement y Rp.
If we move beyond the special case where f is linear, this estimation problem is not
very well understood. This paper takes up one of the current approaches to this problem
and solves a certain set of differential equations not hitherto known to be solvable.
This yields some amelioration of the algorithmic problems for computation of some
nonlinear observers.

The observer normal form approach to nonlinear observers involves nonlinear
transformation of the state and output coordinates to provide for observer design with
linearized error dynamics.

To do this, we introduce new observer (state estimator) dynamics

In this expression " R" is the observer, where f "adjusts" f We consider the error
estimate e :-’, seeking to dampen the error exponentially as a function of time.

To get the observer, we separate the influence of the inputs and outputs so as to
get a system of the form (1). We then employ two particular normal forms, observable
and observer forms. Nonlinear observable form, generally speaking, will be attainable
under a wide range of conditions, whereas nonlinear observer form is more problematic.
Attaining observer form means that we have found a coordinate system for the system
(1) which makes it possible to "read off" the dynamics of the observer. This is the
practical motivation underlying the use of these normal forms.

In the linear case, these forms are:

Observable form
Observer form

s/: Asc -Base, y C,
2 Ax- aCx, y yCx.

For clarity of notation, we use (sc, y) for generic state coordinates and reserve (x, 37)
for observer form state coordinates.
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Here, A, B, and C represent Brunovsk3 canonical form [2] matrices in prime
form [16]. Thus, we assume we have observability indices 11 <="" <- lj <=... <= lp, with

p
j=l/ n. A is an n x n block diagonal matrix where the jth block is an lj x lj upper
diagonal matrix made up of l’s. C is a p x n block diagonal matrix where the jth block
is a 1 x/ matrix [1 0 0]. B is the n p "pseudocontrol" matrix corresponding to
Cmblock diagonal with the jth block being a/ x 1 matrix [0. 0 1]. For example,
in the case where n 3 and p 1, Brunovsk form would give us

0 1 0 0

A= 0 0 1, B= 0, C=[1 0 0].
0 0 0 1

Also, a and 3’ are constant matrices of the appropriate dimensions.
In the nonlinear case, locally we can define (nonlinear) observability indices: In

a neighborhood of the operating point o, we have l’s, 1 =<j =< p, as above, such that

dim span {L)-h(sc) 1_-< i-</ and l<-j<-_p}=n.

Using the above, we have nonlinear normal forms

(2) Observable form =A- Ba(), y C,

(3) Observer form 2=Ax-a(Cx), y= y(Cx).

Note that the a of nonlinear observable form is different than that of the corresponding
observer form. See [12] for a more detailed exposition.

We can achieve nonlinear observable form generically. Two approaches, involving
different sets of conditions, have been developed for putting a system in nonlinear
observerform. See, for instance, [1], [4], [8]-[10], [12]-[15], [17], and [18]. We describe
the computational implications of their algorithms.

For the following, we annotate systems as follows. We write /, 1 =<j <-p, for the
jth observability index, corresponding to the output y, and f for the (/)th derivative
of y, as it appears in observable form. We label the state coordinates with double
indices j" k, for 1 -<j _-< p and 1 _-< k _-</. Thus, : Y and j:k is its (k 1)th derivative.
The unit vector in the sC:l direction is Bj, from the prime B matrix above. We annotate
observable form coordinates with a bar when the output 37 is the particular output
associated with observer form (see 2). These state coordinates are given by so; their
observable form polynomials are given by f.

The approach adhered to in this paper was developed in [13] and [14]. This
algorithm is determined by the conditions required for conversion of a system (1) to
observer form (3). These conditions are:

Observable form. Must be able to convert system to observable form (2);
Output coordinate change. Must satisfy differential equation (d.e.) for y= y(37);
Polynomial degree. Polynomials f() (the entries of-Ba() in observable form

(2)) must have degree _-</, for 1 _-<j _-< p;
Bracket vanishing. Brackets of elements in {ad_-ylB 1 _-<i_-</.} must vanish.
Examining this algorithm computationally, we may break it down into the follow-

ing steps"

Bracket Vanishing Algorithm (Krener-Isidori-Respondek).
Transform to observable form.
Verify degree condition.
Solve differential equation for 37(y).
Change to observable form coordinates corresponding to 37 output coordinates.
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Compute ad_y Bj, 1 <_- =</ 1, 1 <-j -< p.
Check bracket vanishing condition.
Find observer coordinates and injections.
Compute Jacobian O(/Ox.
Find observer.

A distinct approach has been developed in 1 ], [4], and 15]. It has been developed
only for the case where p 1 and does not address the problem of changing output
coordinates. (It does, however, incorporate the time-varying case.) It calls for the
existence of observable form (2), but not its computation, and replaces the last two
conditions above with a single requirement, as follows:

Observable form. Must be able to convert control system to observable form;
Output coordinate change. Must satisfy differential equation for y y(37);
Bracket spanning. We must have d(adlfB) span {dh} (expressed in observer

coordinates), modulo a slight technical adjustment on the last coordinate.
This algorithm breaks down computationally as follows:

Bracket Spanning Algorithm (Bestle-Zeitz-Li-Tao).
Check observable form rank condition.
Verify observable form has single output index.
Compute adk.rB 0 <- k <-_ I.
Get da/dy in observer coordinates.
Get differential expression h() (not described here), to adjust check for at.
Check bracket spanning condition.
Recursively compute x x(:).
Backsolve for = (x).
Compute observer.

Experience shows that to solve a general system using the bracket vanishing or
bracket spanning conditions appears to be somewhat difficult. The n 2 case was
completely worked out independently by authors using each method, but the solution
for dimension three, in the single output case, has been published incorrectly [14],
while dimensions four, five, and further get increasingly complicated to compute. We
initially tried to implement this computation as a Macsyma program. Our results
suggested to us a way through this difficulty, which is described below and developed
in the succeeding sections.

The particular difficulty of both these algorithms is their requirement of extensive
Lie bracket calculations. In 2, we develop a substitute for the bracket vanishing
condtion which obviates the necessity for these calculations.

Coefficient compatibility. Observable form polynomials must evaluate to certain
integrals of differential expressions in injection terms (the entries of a(Cx) in (3)).

In 3, we further develop the coefficient compatibility condition algorithm by
finding a direct formula for the integrals in general observable form coordinates. Section
4 is a summary with concluding remarks.

2. Polynomial coefficients in standard coordinates. We seek to simplify the compu-
tations for nonlinear observer form.

1This condition improves this algorithm, which in its orginal form neglected the issue of change of
output coordinates.
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The polynomial degree condition means that the observable form functions f()
must be polynomials with coefficients being functions in the observed states
l<=j<-p.

The bracket vanishing condition and the bracket spanning condition provide
processes for verifying the convertibility of an observable form polynomial into non-
linear observer form. They do not, however, give us a clear and explicit idea of the
restrictions on the coefficients that are necessary and sufficient for the existence of this
transformation. They give us enough machinery to arrive at a solution recursively,
while leaving us subject to a "bewildering" complexity of computation in all but the
simplest cases. We must compute iterated brackets and we end up with complicated
and unsuggestive expressions. (See, however, the work of Grossman, e.g., [6], for one
approach to improving this situation.)

Suppose we try to find a direct solution of the change of state coordinates x x().
We compute the d.e.’s stemming from the relationship 37 37(y) and the successive Lie
differentiations of the output terms.

So doing, we get

Y(.9) Y(X),

= , =J(x-,),
(4) (3=2=J x3--(x-) +(x-),

f(() 6, J -al-
aft

(x2- 1) +’’" +’" ",

where J is an abbreviation for dy/dy. Note that the expressions on the right-hand side
of (4) exhibit a cascading complexity of terms in higher derivatives of J’s, recurring
in repeated backsubstitutions of their lower order versions.

However, we might assume that J 1, that y is actually the "correct" output
coordinate function , given by the output ordinary differential equation (o.d.e.) 2. In
this case, the equations (4) do indeed become more tractable.

The assumption J 1, or J Ip (the identity matrix) in the general case, means,
in effect, that we are using the paicular observable form for our system that is given
by using the special output fi gained from the output d.e. and repeated Lie differenti-
ations of it. We call the coordinate system thus derived standard coordinates, annotated
by .

In these coordinates, the d.e. expansion (4) becomes, y x,

3 2 X3-- Lya, ,
()

l--1

i=1

i=l

In the bracket spanning condition, this assumption is the starting place for the calculation. Here,
however, we have reduced it to a convenience with which we Will eventually dispense ( 3).
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First, we give some notation. We let

p rj

j=l k=l

be a general monomial in f.(:). Let

a:...(f) := a:......:+,...,:+......()
e: imes

())

denote the coefficient of . Here, e: is the exponent of this contribution to the term,
rj is the number of contributions by different time-derivatives of : y, and i: is the
degree. The p 1 vertical bars separate the contributions of each set of time derivatives,
with "[l" showing an empty contribution from the corresponding :’s, for 1 k r.
(Note that we use "ij: + 1" instead of "i:" because the degree ij: is one less than
the subscript.) We write e== ej., e== e. We also need the total degree

= t: e..
Now, it turns out that the differential equations (5) are readily solvable in standard

coordinates, with the proof to be established by a simple induction. Here is a low-
dimensional example of how these d.e.’s solve.

Example 2.1. Change of state coordinates, single output, dimension three. The
differential equation for f f(y) is

ex ( a23 du

It solves to

a23 d*l dr.y exp
0

To get the change of coordinates sc (sc), we iteratively substitute our solutions
for the first j-1 variables sol, sj_l in the equation for , etc. We get

IyY (1; )a23 d*l dr,exp
o

dy 1
3 (3-- a23)

The function f() is written as

(a)

applying the polynomial degree condition. The d.e.’s (5) then become

==x, = =x-,

d
3 2 23- 2- 2,

d d d
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We see that we can read off the ci coefficients and we have, in fact,

dee2 dZcel
i1 --Of3’ 12 d)7 122

d2

d

Plainly, we can backsolve for the a’s by integration.
In general, and in fact whenever the observability indices are all identical, we can

read off the solutions to the polynomial coefficients in terms of the injection
functions. The coefficients are those that arise naturally from tree structures stemming
from paitions in graded differential algebras [5]. We get Theorem 2.2.

THEOREM 2.2. Suppose that all observability indices are equal, i.e.,
p. en the polynomial coefficient :...(y) is given by

(9)
fl2fl.= e:. .

Proo Outline. We use induction on 1. We make a counting argument with com-
binatorics to trace the typical coeNcient of a monomial term.

Body of proo Let m, N m N p, be fixed. First of all, if 1, then the system
degenerates to m.=f(=fm(). Thus, am:l=f()=-a.(), where we take
a: :=-f. But this matches formula (9).

Note that the result of Example 2.1 also corresponds with formula (9). The
derivation shown there illustrates the pattern we use for our induction.

As induction hypothesis, we assume that formula (9) holds for l= . We target
the coecients in the expansion for m.,- x., in the case + 1 that are the source
via Lie differentiation of the coecients of fm we seek to evaluate.

But, when we examine the p.d.e, expansion (5), we find the same expression,
-Q L-am., for :,-xm., in the expansion with l= + 1, as we find for fm in
the expansion with . This means that the induction assumption will enable us to
know those "target" coecients, which, when Lie differentiated, give contributions to
the expansion for fm in the case when the multi-index is + 1. These coecients
evaluate to nothing but the coecients of the terms off in the case (given by induction
assumption) that the multi-index is .

An expression that under Lie differentiation by f can give a term such as (6),
with coecient am may have two forms.

Case 1. It may have no increment in the exponent e;.1 of :, for 1Nj N p.
In this instance, it will come from Lie differentiation of a term of the form

By induction assumption, (10) has a numerical coecient that calculates back
from our projected coecient for (6) as

Here we take

nt- 1 if/’-o:k-1 /’r:k- 1
e*: :=

1 otherwise.
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The differentiation process contributes an extra factor of e*. Thus, the partial numerical
contribution from this term is

In this case, the "c" part ofthe coefficient is carried through unchanged. Moreover,
it was already of the required form, since e has not been altered by adding and
subtracting 1 in (10).

Case 2. It may have an increment in the coefficient of :2 for j r.
The source of the terms of this type is partial differentiation of the "c" coefficient

by )sn. This will give an additional factor of ::2, while not affecting the numerical
coefficient. The prior exponent of :2 will have been e:l- 1.

Therefore, the monomial term prior to Lie differentiation was *. By induction
assumption, its numerical contribution was

Its paial numerical contribution is therefore

(12) t,.l en:l ()
since t. 1 t. when j .

Note that in this case the e, increments by 1, so that the "" term adjusts as
prescribed by formula (9).

These two cases exhaust the possibilities. The "" coefficients are as required.
And, combining (11) and (12), we get a total contribution to the numerical coefficient
of a factor of

: e: 1,
j= =

which is also as required. S
The case where not all the observability indices are equal occasions an additional

computational process. In this case, we may successively extend the systems, by
prolongation, to systems with more indices equal. Thus, if there are three unequal
observability indices l < l < 13, we prolong to a system with two observability indices
equal to l and one to 13, of dimension 21 + 13, and then to another system with three
observability indices, all equal to l, of dimension 3/3. So doing, we may prolong a
given system with arbitrary observability indices to a system with all observability
indices equal that is, equivalent" in the sense that the solutions for y y() and (.
can be pulled back trivially to the original, lower dimensional system. This amounts,
in effect, to an algorithm for computing the relations between the coecients and
the injection functions.

The key to this process, is the following lemma. It was originally stated by [14],
but the proof there is flawed. The version given here was first proved by Phelps in
[17]. The proof is technical and somewhat tedious, and is left for the Appendix.

Note that the lemma is stated in superfluous generality for the purposes of this
section. This is so it can also be used to sustain some results of 3.

LEMMA 2.3. Suppose an uncontrolled system S, given in observableform coordinates
(, y) (2), has two distinc multi-indices l, l of multiplicities p, p and, further, that S
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may be transformed by change of output coordinates y =y() and change of state
coordinates (x) to observer form coordinates (x, fi). Then S can be prolonged to a
system S’, also given in observableform (2), having multi-indices A1 := 11 + 1 and A2 := 12,
of the above multiplicities. Furthermore, the transformation y y(y) and the function
or(. ), as given in observerform coordinates, prolong trivially to functions which will take
the prolonged system S’ over into prolonged observer form.

We now describe the recursive algorithm for computing polynomial coetticients
from injection functions, in the case where the observability indices are not all identical.
Lemma 2.3 enables us to prolong a system with two distinct multi-indices 11 < 12 to a
system Pl dimensions higher by increasing the dimensionality of each of the ll-
dimensional output subsystems to 12 dimensions, using in the process 12-11 iterations.
The algorithm assumes that this has been done, and computes its effect on the functions
f(:) for pl + 1 <=j<-p +P2. If there are more than two distinct multi-indices, we do
this process for the lowest two, then for them, taken together, plus the next lowest
one, etc.

Arrange the p observability indices into r sets of distinct multi-indices, where
Pl k and Pi ki ki-1 for 2 -< -< r. We have Algorithm 2.4.

ALGORITHM 2.4 (Coefficient Prolongation Algorithm). When we have arbitrary
observability indices l, , lp, the following steps enable us to compute the coefficients
of the polynomials f(:), for 1 _-<j-< p"

1 Compute the polynomials fj(:) for 1 or ki-1 + 1 <-j <- k and 1 -< -< r, according
to the formula ofTheorem 2.2, as applied to systems with k observability indices
equal to Ik,.

2 The first Pl of the/j’s, those that are equal to l, correspond to valid fj’s.
3 Suppose that for the first ki of these /’s, we have adjusted to get valid fj’s,
where <_- r. We adjust the next Pi+l of them.

4 Substitute LS-1./y for :tj+s where 1 -<_ s -<_/k,+l-/j and Pi + 1 <-_j <= Pi+l, eliminating
the g’s in f, gained by prolongation.

5 Backsubstitute the solutions for the f’s, where 1-<j-< Pi.
6 The coefficients of the monic monomials in f, ki+l<=j<-k/ extend our

coefficient solutions to cover the variables indexed by 1-<j---ki+.

Proof. This is just a restatement of Lemma 2.3 as an algorithm.
We formulate the Coefficient Prolongation Algorithm as a theorem, and establish

that the relations thus given can be backsolved for the a injection functions.
TI-IEOREM 2.5. Suppose we have arbitrary observability indices l,. lp. Then
(i) We may derive the coefficients tim:...(fi) in terms of the cr() injection terms by

application of the Coefficient Prolongation Algorithm.
(ii) We may solve these equations for the injection terms t,:.(37) by integrating an

expression in ak:l and the coefficients ak:...() of the "linear" monomials k:j, 2<--j <- lk,
belonging to fk(), for 1 <-- k <- m.

Proof. Outline. Part (ii) requires a somewhat extended argument. We employ the
Coefficient Prolongation Algorithm 2.4 and use a double induction on the index
and the time derivative level j, 1 <-j <- lm. In each situation we keep track of the sources
of the coefficients and their possible forms.

Body ofproof. (i) This has already been done in Theorem 2.2 for the case where
all observability indices are the same. The Coefficient Prolongation Algorithm enables
us to extend this result inductively whenever lh < lh+l for 1 <- h -< p 1.

(ii) This, too, is immediate from Theorem 2.2 when all observability indices are
equal. The coefficient of the "linear" monomial :,,:g is matched to the injection term
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Olin:Ira_j+1, with lm. being matched to Olm.lm. The coefficients of the other monomials
follow directly by differentiating and/or integrating and/or multiplication by an integer.

Suppose not all observability indices are equal. The as:.’s for 11 Is solve as
in the one multi-index case.

Now suppose, by induction hypothesis, that we have successfully solved for ak:.
by integrating the tik:...’S for 1 N k N m 1 < p. If l_ l, we may exploit the symmetry
of the construction to integrate for the a..’s. Thus, we may assume we are in a
prolongation-type situation, and develop the induction step for k m.

Let us again inspect the paial differential equation (p.d.e.) expansion in (5),
with j m. Consider the expansion at the monomial m:lm_j+l, 1 j 1 1, of fm. The
coefficient :...1 -+1. can be represented as an expression (). The Coefficient

Prolongation Algorithm provides that this expression may involve (a) a:.’s and their
Lie derivatives and (b) expressions deriving from the fk()’S, for 1k m-1 and
their Lie derivatives. By induction assumption, the type (b) expressions are of the form
desired.

Now, we establish a second induction on j, where we solve the expressions l(fi)
for : by (at most) a simple integration of a derivative.

For j 1, the coefficient of m:lm is just -Oam:/O, so that the solution is trivial.
For j <lm, the expression () is of the form

Oam: (),
0,,

where g:(:P) is another expression involving only partials of a,,.,..., a,,:j_l and
expressions of type (b) above. Hence, it too may be solved by a simple integration of
a derivative. Finally, -a,,: is an isolated term in the expression for ti,,:, so that we
may solve for a,,: trivially without benefit of integration, given the induction assump-
tions.

Hence, we may compute the a’s as functions of the ti’s, as required.
A consequence of Theorem 2.5 is that in standard coordinates , the polynomial

f,,() will not actually achieve degree lm. Thus, we will come to view the attainment
of degree lm to be "linked" to the transformation :(:), and hence to 29 fi(y) (see

3). We have Corollary 2.6.
COROLLARY 2.6. In the standard coordinates, the polynomials f, (), 1 <- m <-p,

are of degree at most l,- 1.

Proof In the p.d.e, expansion (5) and the general expansion for fm(), each of
’Sthe aj 1 <j < p, undergoes the most Lie differentiations, at 1,,- 1 times.

Successive Lie differentiations of any a will increase the degree of the resulting
expression by (at most) one each time. Even if we have l < lm, and we eventually hit
a contribution from f(), it will only increase the degree by (at most) one. Hence, the
(theoretically possible) coefficients of the monomials of degree Ira, in f,, () must vanish,
as required.

The Coefficient Prolongation Algorithm 2.4 provides a process for computing
coefficients in the general case. An explicit formula could surely be developed, but it
would be quite complicated. The next corollary to Theorem 2.2 treats the simplest case
where not all the observability indices are identical, viz., the generic case, with n 0
(mod p).

COROLLARY 2.7. For the generic case of two different multi-indices of size A and
A2 := A1 + 1 and multiplicities Pl and p:, the coefficient ti,:...()5) is given by

(13) P I-I 9 i;: v9..k ofi’ off, off1’l-Ij=l k=l ej’k" k. Ofip Oyep,
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In particular, ti,,,:...()7) is given by Theorem 2.2for l<=m<-pl andfor degree -->A1 when
pl+l<=m<-p.

Proof Again, consider the expansion (5). We need to do exactly one prolongation,
where we substitute in effect fl(sc) for the "quasi variable" sol:t2 in the prolonged version
(which is identical to the expansion (5)).

That is, take

(14) f(--)=- 2 L)-iolj:i
i=1

in the multi-index (abusive) notation. The "quasi coefficient" of the "quasi variable"
sol.12, gained from prolongation, satisfies the relation

002:1(15) ti:121 0371

Now, employ the substitution

(16) 1:12 L(7).

The monomial sc1:12 has degree 12-1. By Corollary 2.6, this is the maximum degree
possible permitting a term in f2() to have a nonzero coefficient. Hence, this is the
only monomial we must replace in the prolongation by a substitution.

Now, consider a monomial in f2. Its coefficient may receive contributions from
(a) the substitution above for the "quasi variable" 1:12 and (b) directly from the
expression in the right-hand side of formula (14). Thus, evaluating (14) using (15) and
(16), we get that the contributions (a) and (b) correspond exactly to the first and
second terms (respectively) in (13), as required.

These results imply that we have a third way of formulating necessary and sufficient
conditions for the existence of observer form coordinates for a system. That is, the
necessary change of state coordinates sc sO(x) exists precisely when the relationship
between the a coefficients and the a injection functions prescribed by Theorem 2.5
can be arranged. In other words, there are certain dependencies which must be obtained
in order for the coefficients to be mutually compatible. We formulate coefficient
compatibility below.

CONDrrION 2.8. (Coefficient Compatibility Condition). The coefficients of the
polynomials f,,(), for 1 _-< rn <-p, given in standard coordinates, satisfy the injection
relations defined by Theorem 2.5. In particular, the coefficients must be compatible
with the dependencies given by these relations.

Summing up, we have Theorem 2.9.
THEOREM 2.9. The observableform, output coordinate change, andpolynomial degree

conditions, together with the Coefficient Compatibility Condition 2.8, are necessary and
sufficient for an uncontrolled system to be transformable to nonlinear observer form.

Proof This is immediate, since if the first three conditions are satisfied, we can
always convert to standard coordinates.

Let us now examine various examples ofthe relations that arise from the Coefficient
Compatibility Condition.

We express the a’s in terms of the a’s for simplicity’s sake. Note that, according
to Corollary 2.6, the coefficients of monic monomials of total degree lm in fm () vanish.
Hence, they are omitted from these examples.
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Example 2.10. Change of state coordinates, single output, dimension four. We have

do

d3Cel
a222 dy3

d2a da2
a23 =--3 d)7’ a3 dy’ a4 dy

[-1

We exhibit the three examples where p 2 and 1 3.
Example 2.11. Change of state coordinates, 11 12 3. Here, the observability

indices are equal, corresponding to Theorem 2.2. We have

001:2 002:2
a’l 0 a2:l 0

020fl:l 020f2:1a,.== ay a..== oy
OOfl:2 002:2
0)71 0371

001.1 002:1
I1:31 --, I2:31037

a20l.1 020f2:1
1:212 -2, 2:212 -2

OYlOY2 OYlOY2

001:1 002:1
1:13 --, 12:13 --" [’]

Example 2.12. Change of state coordinates, 11 2, 1= 3. This is a generic case
with two distinct observability indices, corresponding to Corollary 2.7. We have

002:1
al:l --01:2, a2:l 01:2 02:3,

0C1:2 011.1 02:1 002:2
i1:12 _, l2:]2

OY2 OY2 OYl

020f2.1 0202:1
2:221-- 0)712 i2:212 -2

0370.f2

0202:1 002:1
a2:122-- 0y22 a2:13----
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Example 2.13. Change of state coordinates, 11 --1, /2--3. This is the simplest
nongeneric case, and corresponds to our general Theorem 2.5.

3. Polynomial coefficients given in observable form coordinates. We found explicit
coefficient solutions in the case of standard coordinates. It would be preferable to get
explicit solutions in the general observable form case, so that no change of state
coordinates will be required. It turns out that this can be readily achieved.

The main adjustment will come from expressions in the parameters of the d.e.’s
for change of output coordinates. We will have more degrees of freedom in the choice
of polynomial coefficients available to us.

We can convert the results in standard coordinates (, 37) to observable form
coordinates (, y). For instance, when p 1, we have the change of output coordinates
formula

(17) 37= oeXp --’ oa2t(r/) dn dr.

Repeated Lie differentiations (with backsubstitutions) enable us to compute explicitly
the relation sc ().

Using Macsyma, this can be done economically for < 10, or so. Let us consider
the difficulties in this calculation. We again write J for the change of output coordinates
function dy/ dy.

Example 3.1. = () calculation, dimension three. We extend the calculation
given in Example 2.1 to obseable form coordinates . Sta with the expansion (7),
time differentiate 3, and substitute into (8). With some work, we get

d2a =-Ja3, a2=-J dy’
d2o 1 da23 1 a3,a22 -J
dy2 a222

3 dy 9

a3 -J dcel
ely

Also, the x’s solved for :’s come out as

a23 dq dr,Xl exp
o

X2 J-l2- a3 dr+ oe
x=J- 3-a3-a3 oad+"

Space problems preclude the exposition of the controlled case (1). In general, we
find that the expansion (4) extends naturally to this case. We use this to get results
akin to Theorem 2.2, etc. (see [17]).
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However, it is also possible to find a formula for the a coefficients directly.
The expansion (4) is quite complicated, as expressed in the sc coordinates. But,

once we have worked out the expansion to the (j- 1)th time derivative, we find that
computing from there the jth time derivative is not so complicated. Thus, we have the
following theorem.

THEOREM 3.2. Suppose a single-output system is given in observableform coordinates
(, y), with .index I. Then the polynomial fl() decomposes to

(18) q,()-JPl(),

where Pl() is (the negative of) the formal polynomial of degree l-1 in , having the
same coefficients as those of fl(), given by Theorem 2.2, and ql() derives from the
recursion relations

(19)
q,() =0,

a21qj() Lfqj_,() +-- (s2( q_,)).

Observe that q() is an abuse of notation, since this polynomial depends formally
on also.

Proof Outline. The right-hand sides of the expansions in (4) for f(:) when j-
and for + Lcs when j < differ only in the value of the constant and in the
presence, when j < l, of the term Jxj+. We do a simultaneous induction on these two
expansions and perform the appropriate backsubstitution. The result matches the
recursion relation given by (19).

Body ofproof Note that

(20) tfpj() Pj+I(:) a+,(y) forj < I.

This construction is formally identical to the corresponding construction for f and
p(sc) under these conditions. First, suppose j 2. Direct calculation, using repeated
Lie differentiation, gives us

c- Xl, J-l2 x2- al(y),

2=J(x2-pl()),

using pl() a(sc) a(y). Moreover, using the o.d.e, for J and backsubstituting the
previous relation, we continue and get

f() Lfl(xz-p()) + J(-a2(y) -pz(sc) + az(y))

a2 2(J(xz-pl()))-Jp2(),
2

a2

_
jpz(sC).

2

A similar calculation for the case j 2 and > 2 gives us, likewise,

a21
3 ---- (+ J(x3-P2()).

Thus, we evaluate

a21q:z() --[- .
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Since ql(s)=0, we see that the relation (19) holds for the case j=2. Assume the
expansions (4) evaluate to (18) for j and simultaneously to

q:() + J(x+, -p,())

for j < l, where q:(sc) satisfies the recursion relation (19).
We calculate (assuming, first, that j- l-1)

+1 qj() + J(xj+l -p:()),

Lf+ Lfq:() + LfJ(xj+ pj() + J(Lfxj+ Lfpj()

a21
Lfq:()+--[- sc2(J(x:+,-pj(sc))) + J(-a:+l(y)-p:+,(sc) + a+,(y))

a21
Lfqj()+-- 2(+l-qj())-JP+l().

From this we extract the homogeneous polynomial of degree and get

(21) qj+l() Lfq()+--[- sC:e(+, q(sc)).

Finally, if j<l-1, an analogous calculation establishes the relation (21), as
required. 71

Along the lines of the notation used in 2 above, we use ik, ek, r, e, and w to
describe the monomials

ik+l
k=l

of f,(sc).
In addition, we write P(m) for the partitions of the integer m. We write a partition

of e- 1 by

e-l= cnj,
j=l

where the n’s are a set of natural numbers in strictly increasing order. We define
c :== c to be the number ofpieces of the partition. For notational convenience, we
also write dael(y)/dy as a synonym for a21(y).

COROLLARY 3.3. For the case of a single index l,
(i) For monomials of degree less than l, the polynmial coefficient a...(y) of is

given by

(W’)deal_w(y) dy
(22)

[I-_ e i !e dye dy

(ii) For monomials of degree l, the polynomial coefficient a...(y) of sc* is given by

( w,,e 1,, a21 Y)
(23) Y

TraP(e--I) Hk=l ek! ik !e Hj=I Cj !YIj ! j=l dyS-

Proof. Part (i) is immediate from Theorem 3.2.
(ii) We apply the coefficient relation (19).
Example 3.4. The homogenous polynomial qj(), for l_-<j_-<4, and l>-j. These

are readily generated by direct computation using Macsyma, or from formula (23).
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We have, writing a2 for a21(y), etc.,

a21
ql=O, q2 =-- :22

a21 (da21 ldcl2,’
q3 3 23+

dy dy ] ’
a! a21 (1 da alq4=ae4+3+6,1 dy
1 d a 3

a da

We conjecture that Theorem 3.2 can be readily extended to the case where p > 1.

4. llefis eelss. We do not have a comprehensive understanding
of nonlinear obseers. The normal form approach was improved on here and brought
closer to effective computability. The primary implication of the coecient formulas
which govern change of state coordinates for nonlinear observers is that these calcula-
tions are more susceptible to numeric algorithms than heretofore supposed.

Let us go back and review the bracket vanishing and bracket spanning algorithms.
Using the Jacobi identity enables us to reduce the calculation of brackets of elements
in {ad)q" 1 < i<}= to the calculation of brackets of the form [ad_-q, q], for
1 N N 21 2, with indices numbered so that j N k This is a massive saving, but it does
not obviate the need for extensive bracket computations in the bracket vanishing case.
Similarly, the bracket spanning case (if and when it is extended to the multi-index
situation) will likely require bracket calculations to the order of the indices.

One solution would be to write algorithms for bracket calculation that will make
these calculations faster. Grossman and Larson [6] have made some progress with
this. Another solution to this is to provide the explicit solutions to the change of state
coordinates differential equations, as provided here. For instance, the author has written
a Macsyma program, Nonlinear Observer," described in [17], which computes the
obseer abstractly and in the general case when p 1 and is extendable to the multiple
output case. A third approach (see [7], [11]) now being tried involves approximate
normal forms." All these advances indicate that numeric algorithms now seem to be
more closely at hand.

Another point wohy of note is that the coecient compatibility approach implies
a corresponding parameter estimation problem [3]. Suppose we have a system which
we presume can be put in nonlinear observable form (as is generically the case).
Suppose it satisfies the degree condition (this depends on the type of system under
consideration). Then the system can be estimated by estimating the a(y) coecients.

If the system admits nonlinear observer form, then Theorem 2.5, as postulated to
extend to the general case for output coordinates, says that the polynomial coecients
for the observable form polynomials are all derivatives of the (y) injection functions.
That is, the injection functions may be found by integration of a ceain subset of the
a(y) coecients. Either way, the system is determined by a (small) finite set of
parameters.

In the dimension three example (2.1), the system is determined by the parameters
a(y), a(y), and a3(y), which are the coecients of the ane terms. The incorporation
of the change of outputs coordinates (Thin. 3.2) gives us one additional parameter,
the a(y) coecient that determines the o.d.e, governing this coordinate change. (Note
how the parameters in nonlinear observer form extend those of the linear case)
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The number of parameters is affected by increasing the number of output coordin-
ates p, since then the a’s become functions of more variables.

In short, there is room to develop a theory of parameter estimation and state
identification for systems which may be put into observer normal form.

It is important to do research in and to develop a full account of nonlinear
observers. We have not attempted to go that far, but hopefully this contribution will
provide some new impetus and direction for pursuing this goal.

Appendix A. Proof of the prolongation lemma. We present the proof of Lemma
2.3. First, we require Proposition A1.

PROPOSITION A1. For a system with arbitrary indices, it is necessary that Oy/Oi =:

J 0 when l > li.
Proof The proof is immediate. See [14] or [17] for details.

Proof of Lemma 2.3. Outline. Essentially, we add a new multidimension, by way
of the coordinate 1:,. The solution to S is to be prolonged to the hyperplane

(24) 21., =0.
We set up the prolongation relations and verify that S’ may be attained.

Body of proof We exhibit the prolonged system S’ in observable and observer
forms. By abuse of notation, we are using yj, j 1, 2, to represent pj-vectors. We do

78,likewise for the / s, ’s xj ’s, c9:. f s, the prolonged coordinates (L 35), etc. We
have

:17 Yj "17

(25) .k-- j:k+l, Xj.k-- j:k+l- Oj:k(),

withj=l, 2and 1-<_k=<A-l.
Here we are taking

(26)
:k := ’Ot 1., :-- O,

whenj 1, 2 and 1 -< k _-< 1,

y)=

j: j:l J)(x1:2- o11.1)-- J(x2:2- o12:l),

(28) j:3 @j’2 Jj Xk:3- k:2- (Xr:2- r"
= r= Or "

g )+’’" +’’"
= r= 0

-2

with additional terms depending on j.

"sc, x" and "J" notation appropriately and get

so that

(27) xl:, =0

holds.
To set up the remainder of the prolongation relations, it is advisable to look at

the defining p.d.e.’s for S and see how they must be "adjusted" for the prolongation
to S’.

Thus, we continue the theme expressed in formula (4), extracting p.d.e.’s relating
observable form (2) to observer form (3). We now exhibit that expansion for the two
multi-index case under consideration. We arrange the dimensionalities of the "a," "f,"
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(29)

(30)

The completion of (26) for j 1 goes as follows.
CLAIM. We can prolong fl by the relations

I:A1 :-- Jll.a +fl(),
jll() := Yl "2(Jl)- l:al -m) + .k-

j=l k=l

We may match the continuation of (28) to its prolonged version. We have

( Oal:/l-1 )(31) fl()--l.l,--Jll __Oll.l,__ (Xr:2__Ogr. ).qt_... .3t_...
r=l OYr

.1

and

I.A1 I.AI--1

J 21:11- OI.AI_ (2r: O --]-... +.
r=l Ofir

"1

Recall that Proposition A1 establishes that J =0.
Now, assuming the paial prolongation (26), we may compare (31) (using and

2 for and x) with the corresponding equation (32). We get

whence (29).
For our prolongation to be possible, we must have l:a, =(). Differentiating

(29), and recalling that }l-a, 0 (27) and J 0, we get

OJ1(33) I’A, l:2l:al+ 2 E f’;a:’"
Oy = =

does notFinally, we take
vanish locally, we may do this, and the claim follows.

The completion of (26) for j=2 is somewhat more intricate. This is due to
"twistings" induced in the p.d.e.’s for the higher time derivatives of y2 by the (formal)
introduction of

Extending (28) for the j 2 case, we have

2-/1+1 2"/1

(+, + J -:,l- (x:2- +" +"
k= r=l Ofi "

2:,,+2 d.,,+l

J(x2:,,+ + 2:,1+,) + (Xr r’,) X:
r=l

"2 /l+l

(34) k=l r=l OYr
Xr. 2 Og _t_ .qt_

2:12 2:12_ J@(x2.12- 52:12_1 -3

k=l r=l OYr
Xr. 2 Ol. -II-’’" "t-

f2() d:,2
0,:12_1

=1 r= OYr
(Xr:2--ar:)+’’" +’’’.
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What occurs when we introduce the new variable 21; as in (25)? We redo (34),
this time using "checked" coordinates and 2. By abuse of notation, we write "sc2;j,
ll + 1 _-<j -< 12, to denote the expression given by the corresponding right-hand side in
(34), with 2’s replacing x’s.

We may now take

2:Al :-- S0l:A1 -[- 2:/1+1

2:11+ := (L,yc_aSo-i- S1))l:11 - 2:11+2,

(35) 2"2 := --a Sff Xl:l +

=0

Here, 2-a is f in the 2 coordinates, with being in Brunovsky canonical form. a,
by abuse of notation, represents the prolonged (n + 1)-vector

1:1

ff2:l.

2:ha

The s’s, 0NNh2-h + 1, are polynomials in 2 with functions in for coefficients.
(Note that the coefficients of 2., will be of degree 1 if 2h- 1.)

S’ is now defined by formulas (26), (27), (29), (30), and (35).
Finally, consider the hyperplane (24) given by 2. =0. Restricted to this hyper-

plane, the equations for S and S’ are identical, with the same a’s and transformation

Y =Y(fi). Thus, the solutions are the same, and S’ prolongs N as required for the
lemma.
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ASYMPTOTIC BEHAVIOR OF STOCHASTIC SYSTEMS POSSESSING
MARKOVIAN REALIZATIONS*

S. P. MEYNt AND P. E. CAINES

Abstract. Markovian stochastic systems of the form (I)k+ F(k, Wk+l) are considered, where w is an
independent and identically distributed process and t} is a Markov chain, both evolving in Euclidean space.
A condition called weak stochastic controllability (w.s.c.) is introduced, which is a generalization of the
concept of controllability in linear system theory. Two different formulations of stability (boundedness in
probability and boundedness in probability on average) are presented, and it is shown that these conditions
are equivalent under the w.s.c, condition. These results are related to the ergodic behavior of t} by a set of
results that includes the following: if is bounded in probability and w.s.c., then (i) sample path averages
of functions of the state process converge for every initial condition, and (ii) if the stability is uniform then
state process probabilities converge to a periodic orbit of probabilities. Finally, if the origin of an undriven
system is globally attracting, the linearized system is controllable, and some technical conditions hold, then
it is shown that is w.s.c.

Key words, nonlinear systems, accessibility, stochastic systems, Markov chains.

AMS(MOS) subject classifications. 60J05, 93B05, 93E03, 93E15

1. Introduction. The ergodic theory of Markov chains is a natural tool to apply
in the analysis of nonlinear stochastic systems under feedback control. Such techniques
can be found in the pioneering studies of stochastic stability [Kushner, 1967], [Kushner,
1972], and [Wonham, 1966], and there has recently been a resurgence of interest in
their application in such work as [Kushner and Schwartz, 1984], [Kumar, 1985],
[Aloneftis, 1987], [Meyn and Caines, 1987], [Meyn and Guo, 1990], Chapter 11 of
[Caines, 1988], [Fernandez-Gaucherand, Arapostathis, and Marcus, 1988], and
[Arapostathis and Marcus, 1990]. This is partly because the complexity of the feedback
systems arising in stochastic control (in particular in stochastic adaptive control) often
makes exact analysis impossible, so we seek techniques that will give overall qualitative
measures of behavior.

Ergodic theory provides one such approach for stochastic systems once a
Markovian state process has been constructed for the controlled output process. In
the case where an appropriate form of stability holds together with other technical
conditions, we may deduce (i) the existence of an invariant measure r for the process,
and (ii) the convergence almost surely of the sample averages of a function of the
state process (and its expectation) to its conditional expectation with respect to the
sub r-algebra of invariant sets.

In the ergodic theory of Markov chains’ most general setting, it is not possible to
establish the desired ergodic properties unless the initial condition of the process lies
in a set of full measure with respect to the invariant probability r. A central issue in
this paper is generalizing such results to the case of arbitrary initial conditions.

Received by the editors May 17, 1988; accepted for publication (in revised form) March 8, 1990. This
work was conducted at the Department of Electrical Engineering, McGill University; the Department of
Systems Engineering, Australian National University; and the Coordinated Science Laboratory, University
of Illinois. This research was supported in part by Natural Sciences and Engineering Research Council of
Canada and National Science Foundation grant ECS8910088.

? Department of Electrical Engineering and the Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign, Illinois 61801.

Department of Electrical Engineering and the Canadian Institute for Advanced Research, McGill
University, Montr6al, Qu6bec, Canada H3A 2A7.

535



536 S. P. MEYN AND P. E. CAINES

An example. To motivate the discussion and definitions that follow, consider the
Gaussian Markov process generated by the recursion

(1) Ok+l AOk + BWk+I,

where and w evolve on R and RP, respectively; A and B are, respectively, n x n
and n x p matrices; W={Wk: k >-- 1} is an independent and identically distributed
Gaussian stochastic process on P with Wk N(O, I) for all k; and the deterministic
initial condition on is given.

Suppose that the eigenvalues of A fall strictly within the unit disk in C. Then
many of the asymptotic properties of (1) are determined by its unique invariant
probability 7r. The probability r is the Gaussian distribution N(0, F), where F is the
unique solution to the Lyapunov equation

F AFA-r + BB-r.

If the pair (A, B) is controllable then an analysis of the asymptotic properties of is
straightforward. If f is any positive Borel function on , then by the Strong Law of
Large Numbers for Markov chains [Doob, 1953], for almost every initial condition
0=x "[r],

(2) u-lim--N1 f(O)=l =ffdzr a.s.[P],

and by a simple computation,

(3) lim E[f(O)] f fdTr.

By conditioning at time n, where n dim , (2) may be generalized to arbitrary initial
conditions by using the fact that P"(x,.) is absolutely continuous with respect to
which is implied by the controllability assumption. Hence if (1) describes a stochastic
system operating under feedback, and f is a loss function on the state process
then by (2), (3) the infinite horizon performance is determined by the invariant
probability

On the other hand, if (A, B) is not controllable then (2), (3) does not hold for
such a general class of functions in general. Because the covariance matrix F is not
full rank in this case, the invariant probability 7r is supported on the controllability
subspace L=" whose dimension is strictly less than n. Hence (2), (3) may not hold
unless f is continuous on L. (Take, for example, f to be the indicator function of the
set L.) To establish (2), (3) even for continuous functions requires extensive exploitation
of the linear structure of (1). Motivated by such considerations our objective in this
paper is to generalize the notion of controllability to analyse nonlinear stochastic
systems operating under feedback.

Methodology and previous results. The principal tools applied (such as Harris
recurrence) come from the theory of irreducible Markov chains; see for example
[Nummelin, 1984]. It turns out that some form of stochastic controllability condition
is precisely what is needed to obtain irreducibility for the state process , and then a
crude stability hypothesis implies the ergodic theorems of interest. In general, when
no controllability hypothesis is satisfied, it is natural to search for a restricted class of
functions (say, continuous bounded functions) for which (2), (3) hold. However, with
the exception of the results for the class of regular Markov chains as presented in
[Feller, 1971] that are extremely difficult to apply since a general verifiable criterion
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for regularity is not available, and the theory presented in [Foguel, 1973] that concen-
trates on the structure of the state space rather than stability and ergodic theory, there
is no alternative framework available that is suitable for the analysis of stochastic
control systems.

The present paper may be compared to [Kliemann, 1987] (see also [Ichihara and
Kunita, 1974]), where diffusions possessing hypoelliptic generators are considered.
However, the so-called crucial use of continuity of the samples paths of the processes
under consideration, and use of the resolvant operator of the process, make these
results meaningless in a discrete time setting. The techniques of the present paper
extend naturally to the nonsmooth case, and may also be used to considerably strengthen
the results now available in the continuous time Markov process literature.

Generalizations of some of the results of this paper to the case of discontinuous
dynamics, and to continuous time processes with discontinuous sample paths (including
Hunt processes) has begun in [Meyn and Tweedie, 1990a,b].

Overview of results. The paper is organized as follows. In 2 we begin with
definitions of weak and local stochastic controllability, discuss further formulations
of controllability for a freely evolving system, and present some stability criteria for
Markovian systems including boundedness in probability, and an averaged formulation
of this condition. The main results of the paper are then presented: if is bounded
in probability and w.s.c., then (i) sample path averages of functions of the state process
converge for every initial condition, and (ii) if the stability is uniform, then state
process probabilities converge to a periodic orbit of probabilities. Finally, if the origin
of an undriven system is globally attracting, the linearized system is controllable, and
some technical conditions hold, then it is shown that is w.s.c.

In 3 some general results concerning the topological structure of the state space
are derived and then applied to establish limit theorems for weakly stochastically
controllable systems and hence the proofs of the main results.

2. Markovian systems. In this paper we consider input-state stochastic systems
possessing Markovian realizations (which we call Markovian systems) of the form

(4) k+l F(k, Wk+l), k 7/+,

where for all k, k e X an open subset ofR", Wk Rp, and F X x Rp X is smooth
We assume that the initial condition o and the distrubance process w satisfy
A1. (o, w) are random variables on the probability space (f, -, P*o);
A2. o is independent of w;
A3. w is an independent and identically distributed process;
A4. The distribution/Xw of Wk, k 7/+, possesses a density that is lower semicon-

tinuous.
A function f:Rp is lower semicontinuous if the set {x P’. f(x) > t} is open

for each . The Vitali-Carath6odory Theorem implies that anyf L1(p, (Op), dx)
may be approximated in L by lower semicontinuous functions, and hence any distribu-
tion that possesses a density may be approximated in total variation norm by distribu-
tions satisfying condition A4.

Condition A4 implies that Xw possesses a density that is strictly positive on an
open set w c P and zero elsewhere.

Markovian systems will be obtained from input-state-output systems by the choice
of time invariant feedback control laws. To obtain the ergodic properties of interest
for it will, of course, be necessary to verify that each particular feedback law generates
a system satisfying the appropriate hypotheses.
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The crucial property of that permits us to obtain these ergodic properties is
that it possesses stationary Markovian transition probabilities pk, k Z+, satisfying
the defining property

E[f(d,+k) I.] fx pk(,, dy)f(y) a.s. [P*0]

for all bounded Borel measurable functions f on X. Because F is a continuous function
of its arguments, the Markov chain has the Feller property.

2.1. Controllability. The extended transition map sk’kPx of the Markovian
system (4) is defined inductively for k Z+, x X, and z (zl, , Zk)v pk by

S(z) F(Sx-’(z,, _,), z), k >= 1,

S= x.

The extended transition map is so named because for all k 7/+,

= S(wl, w) whenq0=x.

Ntehstie controllability. Here we introduce two useful formulations of stochastic
controllability. Given two measures u and /x on N(X) we say that u is absolutely
continuous with respect to /z (denoted u</x) if u{A}=0 whenever /x{A}=0. The
measures u and/x are called equivalent (denoted u /z) if u </x and/x < u. Throughout
this paper we let IMx denote the measure defined for B N(X) by (l/x){B} __a/x{A VI B}.

DEFINITION. (i) The Markovian system (4) is called locally stochastically control-
lable (1.s.c.) if for each initial condition x e X there exists T T(x) _+ and an open
set ff X such that pT(x,. ) 1 ffx/_ Leb.

(ii) The Markovian system (4) is called weakly stochastically controllable (w.s.c.)
if for each initial condition x e X there exists T T(x) 77+ and an open set ff X
such that pT(x, > lex/z Leb.

If (4) is 1.S.C. then the probability pT(x, ") possesses a density that is strictly
positive on an open set ff and zero elsewhere. Similarly, if (4) is w.s.c, then the
Radon-Nikodym derivative of the probability pT(x,’) (with respect to Lebesgue
measure) is strictly positive on ff.

One consequence of these definitions may be roughly described as follows" If (4)
is weakly or locally stochastically controllable, and if starting at a point y X it is
possible to reach a point z fly at time T, then at time T all points in some neighborhood
of z are reachable from y. In fact, under assumptions AI-A4 and the smoothness
condition made on F, it is easily verified that with the disturbance sequence w viewed
as an input, the forward accessibility condition of [Jakubczyk and Sontag, 1989] is
equivalent to weak stochastic controllability. The terminology may also be motivated
by the fact that if F- X xP - X is linear then the notions of local stochastic controllabil-
ity, weak stochastic controllability, and controllability in the usual sense are equivalent.

For yX and a sequence {z" zRP, k7/+} let {A,,B," k7/+} denote the
matrices

Ak=At,(Y, Zl,

Bk=Bk(y,z, "’’,zk+)a-[Ozl
(Sy,z+)
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k Ck(zl, Zk) denote the generalized controllability matrix (along theand let Cy= y

sequence z)
(5) CyA [ak_ aBolak_ AzB,I Iak_lBk_21Bk_].

We remark that if F is of the form

F(y, z) ay + Bz,

then the generalized controllability matrix becomes the familiar controllability matrix

[AT-1BIAT-2BI IABIB].
Note that all quantities in the matrix (5) are deterministic.

Here we give necessary and sufficient conditions for local and weak stochastic
controllability in terms of the generalized controllability matrix defined above. Alterna-
tive conditions for weak stochastic controllability involving the dimension of a certain
Lie algebra and substantially stronger conditions .on the function F may be found in
[Jakubczyk and Sontag, 1989].

Let wT denote the T-fold Cartesian product of w (recall that w is the open set
that supports w, defined at the beginning of this section).

THEOREM 2.1. Suppose that p is of the form (4) and that conditions A1-A4 hold.
Then

(i) The Markovian system (4) is l.s.c, if and only iffor all initial conditions x X
there exists T >: 1 such that

(6) rank CT(A) n for all h Tw\Zx
where Z f3 Tw has zero Lebesgue measure.

(ii) The Markovian system (4) is w.s.c, if and only iffor all initial conditions x X,
there exists T >- and h Tw such that

(7) rank cT(A) n.

(iii) If rank cT(A) n for some h Tw, then there exists c > 0, and open sets ,
x containing x and sT(A), respectively, such that

(8) pT(y,A)>-- c/xLeb{A CI }

for all A 3 (X) and y ll
The proof of Theorem 2.1 is given in 3. We remark that (6) is equivalent to the
condition that the random matrix

is full rank almost surely, and (since Cf is smooth) (7) is equivalent to the condition
that this matrix is full rank with positive probability.

Equation (8) may be written in the symbolic form

pT (.,.) >_ cl ou(" )(1 /.tCb){ }.

A set and measure p satisfying

(9) pT(., .)--> clo(.)q{.}

for some c > 0 are called, respectively, a small set and a small measure [Nummelin,
1984]. It is the existence of open small sets together with the Feller property that allows
points of the state space to be connected together. Once it can be shown that the state
process enters some small set infinitely often with positive probability, it follows
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that every trajectory of probabilities eventually dominates the small measure q and
Harris recurrence (or a generalization as in Theorems 2.2 and 2.3) follows easily. Most
of the stability conditions introduced in this paper will be used to show that an open
small set is attracting in this sense.

From the fact that the state space may be covered by open small sets we may
deduce that a certain stochastic kernel possesses continuous components, allowing an
application of the results of [Tuominen and Tweedie, 1979]. However these results
are not needed in the present paper.

By Theorem 2.1 it follows that, in many problems encountered in signal processing
and adaptive control problems, the notions of local and weak stochastic controllability
are equivalent.

COROLLARY 2.1. If conditions A1-A4 hold and the function F defined in (4) is a
real-analytic function of its arguments, then is 1.s.c. if and only if it is w.s.c.

Controllability to a fixed state. Given a Markovian system of the form (4) and a
point w* [P we will call the deterministic system

(10) dk+l F(dk, w*), k 77+
with initial condition do X the freely evolving system.

A5. There exist w* e NP and d* e X such that

k=0

for every initial condition x e X.
Observe that if condition A5 is satisfied then in particular, (11) holds with initial

condition d S(w, , w"). Hence for all x X and N 7/+,

d* S(w*, w*) U Sx(W*, w*
k=0 k=N

It immediately follows that

t* Cl U S(w*... w*)
N-----0 k=N

and hence condition A5 is equivalent to the condition that d* is an w-limit point of
the system (10) for every initial condition (see [Saperstone, 1981]).

By replacing the function F(.,.) used in (4) with F(.+ d*, .+ w*)-d* and
translating the state space X we may replace the constants w* and d* with zero. So,
we henceforth assume that

0X, w*=0, and d*=0.

We say the Markovian system (4) satisfies condition GA if 0 is globally attracting
for the freely evolving system. That is:

GA. For each initial condition x X,

lim dk lira sk(0, ", 0) 0.
/coo koo

Hence if the disturbance sequence w is replaced by (0,..., 0,... in (4) then 0
as k - oo for all initial conditions. It is easily verified that condition GA implies condition
A5.
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For example, the controlled random parameter AR(p) system examined in [Meyn
and Caines, 1987] satisfies condition GA when o’2 < 1, and it is shown in [Meyn, 1989]
that a linear system under nonlinear control satisfies condition GA under extremely
general conditions.

The following result greatly simplifies the task of verifying weak stochastic con-
trollability.

PROPOSITION 2.1. Suppose conditions A1-A5 hold, and that O supp tXw. Then the
following statements are equivalent:

(i) is w.s.c.;
(ii) the controllability matrix C(A) is full rank for some T 7/+ and A w;
(iii) for open sets O and , T 7/+, and a constant c > O,

Pr(x,A)>=Clou(X)txLeb{Afq 7/’} for all xX and A Y3(X).

The following corollary follows immediately.
COROLLARY 2.2. If conditions A1-A4 and GA hold, and O supp tXw then is

w.s.c, if the pair (Ao(0), Bo(0)) is controllable in the usual sense.

Proof of Corollary 2.2. Under the given assumptions 0 is a fixed point of the
dynamical system (10). Hence if (A, B)_a_ (Ao(0), Bo(0)) is controllable, it follows that

C(0)--[An-lBI ]ABIB] is full rank.

Since 0 supp/Xw w and the matricial function C(. is continuous, it follows that
C(A) is full rank for some h w sufficiently close to 0. Hence condition (ii) of
Proposition 2.1 holds. [3

Before proving Proposition 2.1 we must establish the following lemma.
LEMMA 2.1. Suppose that the Markov chain is generated by the Markovian system

(4) satisfying conditions A1-A4, and that O supp tXw. Then for each x X, and every
open set c X containing the origin,

(i) if condition A5 is satisfied then

sup pk (x, ) > O;
k=>O

(ii) if condition GA is satisfied then

pk(x, ) > 0 for all sufficiently large k 7/+.

Proof Fix x X, and let 07/ satisfy the hypotheses of the lemma. If condition A5
holds we may choose k 7/+ such that

(12) sk(o, 0) 6 ,
and by continuity there exists a 8 > 0 such that

S(z, z) ,
for all (z,..., Zk) {B(O)}, where Ba(O) is the open rectangle of width 6 centered
at the origin. It follows that

P(x, 07/)> E[lllw, ll<.., lllwkll<]
(/xw{B(O)}) > O.

If condition GA holds then (12) is satisfied for all k sufficiently large, and so by
the same argument as before, pk(x, q-l[)> 0 for such k. [3

Proof of Proposition 2.1. By Theorem 2.1, condition (i) of Proposition 2.1 implies
condition (ii), which implies condition (iii). To complete the proof we will show that
condition (iii) implies condition (i).
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Suppose condition (iii) holds. Fix xX and choose an integer k for which
pk(x, //)> 0. This is possible by condition (iii) and Lemma 2.1.

Then for any A (X),

Pk+(x, A) f Pk(x, dy)Pr(y, A) >- cP(x, 0)/zLeb{A (-1 o}.

Since cpk(x, ?/) > 0, we conclude that lC[.lbLeb<pT+k(x, .), and hence is w.s.c. [3

Remark. It is easy to see that condition A5 may be considerably relaxed. The
following weaker condition (implied by asymptotic controllabilitym see [Sontag, 1983 ])
may be used to replace condition A5 in all of the results of this paper:

For each x X and e > 0, there exists N Z+ and a deterministic sequence { w’" 1 <-
k_-< N} lying in ffwN such that

(13) IsN (w w) < e.

Hence conditions GA and A5 are useful because they imply that the deterministic
system (4) (with the disturbance w considered as a deterministic input) is controllable
to the origin.

2.2. Stability. Here we introduce some useful stability conditions, and then in
Proposition 2.2 we give necessary and sufficient conditions for (4) to be bounded in
probability on average.

DEFINITION. (i) The Markovian system (4) is called bounded in probability if for
each deterministic initial condition x X and each e > 0 there exists a compact subset
C c X such that

lim inf pk x, C) >= 1 e.
k-

(ii) The Markovian system (4) is called bounded in probability on average if for
each deterministic initial condition x e X and each e > 0 there exists a compact subset
C c X such that

lim infl pk(x C) >-- 1 e.
Noo N k=

(iii) The Markovian system (4) is called uniformly bounded in probability if for
each e > 0 there exists a compact subset C c X such that

lim inf P(x, C) _>- 1 e

for all x X.
For example, if X Nn and

lim sup Ex[lkl2] < oe for every x e X,

then is bounded in probability, and if for some fixed constant J <

lim sup Ex[lk[2] <= J for every x X,

then is uniformly bounded in probability.
In stochastic control theory we are often concerned with showing that the perform-

ance criteria

1 rv 1Loo----a lim sup " y2k + pU2 and J--a lim sup - E[yk + pU2k]
Noo =1 Noo k=l
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are uniformly bounded for all initial conditions. If this is the case, then it often follows
that is bounded in probability on average but it does not necessarily follow that it
is bounded in probability. However if (4) is w.s.c, we will find that the two notions of
stability are equivalent. This is one of the main results to be presented below.

Here we state a necessary and sufficient condition for the second form of stability.
PROPOSITION 2.2. The Markovian system (4) is bounded in probability on average

if and only if for each deterministic x X there exists a nonempty, tight collection of
invariant probabilities I-Ix such that

1 N weakly

E pk(x, ") IIx.(14)
Nk=l

Proof Fix x e X, let [.1k ---pk(x," ), and suppose (4) is bounded in probability on
average. In this case the collection of probabilities {(1/N) k= [k, k -> 1} is a precom-
pact subset of the space of all probabilities on (X), and it is a routine exercise to
show that any weak limit point is invariant. For each initial condition x e X, the set
of invariant probabilities obtained in this way is tight under the conditions of Proposi-
tion 2.2 because the set of limit points of a precompact set is compact. The proof of
the converse is straightforward, and so we omit it.

2.3. Main results. Here we state the main results of the paper. We begin by
presenting some definitions from the theory of Markov chains on general state spaces.

Let A:X (X)[0, 1] denote the function

(15) /A(x,A) a-APx{entersA}=Px (3 {dPk e A}
k=0

A set A (X) is called absorbing if it is nonempty and P(x, A)= 1 for each x A.
An absorbing set H is called a Harris set if there exists a probability /x such that
A(x, A) 1 for all x H whenever {A} > 0. If the state space X is a Harris set, then

is called Harris recurrent.
If a Harris set H exists, then there exists a unique, up to constant multiples,

invariant measure 7r that is supported on H. When 7r is finite, then H is called a
positive Harris set, and in the case where H X, we call positive Harris recurrent.

We will only consider positive Harris sets in this paper, and to simplify the
terminology we will henceforth drop the adjective "positive."

Harris sets are periodic: There exists a maximal integer h called the period of H,
and disjoint measurable sets {Ei: 1 <_-i -< h} such that H t_J E and

P(x, Ei+I) 1, x E (mod A);

when A 1 we call H (or in the case where X H) aperiodic.
Our interest in Harris sets comes from the following result. Let II, I1, denote the

total variation norm, defined on the space of finite signed measures on 3 (X).
PROPOSITION 2.3. is positive Harris recurrent if and only if there exists a unique

invariant probability 7r and an integer A such that the following limits hold:

(16) lim --1 E f(k)= fdTr a.s. [Px],
N-e N k=l

(17) lim
1
E pk+i(x, ")- =0

k- -- tv

for every initial condition x X, and every function f LI(x, (X), -rr).
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Proof It is shown in [Athreya and Ney, 1980] that if is positive Harris recurrent
with invariant probability r, then (16) holds for every initial distribution, and in fact
a generalization of (16) holds even in the null recurrent case (when the invariant
measure r is not finite).

Conversely, if (16) holds for every initial condition, then it is obvious that
A(x, A)= 1 for every set A of positive r-measure, and hence is positive Harris
recurrent.

A proof of the equivalence between Harris recurrence and the limit (17) may be
found in [Nummelin, 1984]. [3

Stability, controllability, anl ergolicity. The following result is a direct con-
sequence of Theorem 8.2 and the corollary to Theorem 9.1 of [Orey, 1971]. The
hypotheses of these theorems are satisfied since if is w.s.c, then for each x X the
probability

y 2-’-lPk(x,
k=0

is nonsingular with respect to Lebesgue measure.
We remark that Proposition 2.4 also follows from (9) and the Decomposition

Theorem of [Tuominen and Tweedie, 1979] by constructing a suitable continuous
component.

PROPOSITION 2.4. Suppose conditions A1-A4 hold and that is w.s.c. Then there
exists a countable (possibly empty) index set I, a collection of disjoint Harris sets

{Hi: I}, and corresponding invariantprobabilities {ri: I}. Furthermore, there exists
at least one finite invariant measure tz if and only if I is nonempty, and in this case it
has the form tz Y qir for a summable sequence { qi: I} c +.

The following functions will be of great use in studying the asymptotic behavior
of with arbitrary initial conditions. Recall from (15) that A(x, A) Px{ enters A}.
ForxXand iIlet

(18) ,(x) A(x, H,), (x) Y ,(x).
iI

Of course, if the index set I is empty, then we have a---0.
Although there may be more than one Harris set associated with one of the

invariant probabilities r i, the definition above does not depend on the Harris set
chosen. Since Hi and U Hi are absorbing

lim P’(x,U Hi).ai(x) lim pk(x, Hi) a(x)
k--,ookeo i

In the following result weak stochastic controllability is used to establish the
equivalence ofboundedness in probability and its averaged formulation, and the Strong
Law of Large Numbers for Markov chains [Doob, 1953] is generalized to arbitrary
initial conditions.

If a(x)> 0 we define the invariant probability rx by

1
(19) rx- , a,(x) rr

O(X)

TWEOREM 2.2. Suppose that conditions A1-A4 hold. If (4) is w.s.e, then thefollowing
are equivalent:

(i) (4) is bounded in probability;
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(ii) (4) is bounded in probability on average;
(iii) a(x)= 1 for all x X;
(iv) for each x X and f6 LI(Xg+, (Xg+),

LI(xg+, (Xg+), Px) such that
there exists f

lim
1 k f(fk,tk+l, ")=f(0, 1,"" ")

N- N
a.s. [Px];

(v) for each x X,

1 pk(x,.)_.rrx-k=l tv

as N c, uniformly for x in compact subsets of X.
The precise form of the random variable f used in (iv) is easy to guess. On the event

N{ enters Hi} the limiting behavior of (I/N)Yk=lf(k, dk+l,’" ") is determined by
zr with probability one. Hence

(20) f= 1{-<} E 1{.6 Ht,}E[f(dPo, dP 1,...)],
kI

where r is the first entrance time into the set H U il Hi:
r=min {kZ+:k H}.

The relevance of (iii) is greater than might first appear. To see how Theorem 2.2
may be applied to a specific control problem, consider the controlled system of [Meyn
and Caines, 1987]. A direct stability proof for the Markovian state process of that
system is difficult, but the existence of an invariant probability zr is relatively easy to
establish and it is then obvious that the state process enters the open set that supports
7r almost surely. Hence by Theorem 2.2 the system is bounded in probability and in
particular (iv) and (v) hold for that example.

The following corollary immediately follows.
COROLLARY 2.3. Suppose that (4) is w.s.c. Then is positive Harris recurrent if

and only if it is bounded in probability and possesses exactly one invariant probability.
We now strengthen the stability hypothesis on to obtain correspondingly stronger

limit theorems.
THEOREM 2.3. Suppose that conditions A1-A4 hold, and that is w.s.c. Then

is uniformly bounded in probability if and only if it is bounded in probability and the
index set I is finite. If this is the case, then there exists A 7+ such that

-k=l tv

uniformly for x in compact subsets of X.
THEOREM 2.4. Suppose that conditions A1-A4 hold, O supp IZw, and is w.s.c.

and bounded in probability. Then
(i) if A5 is satisfied then a unique invariant probability 7r exists, and hence is

positive Harris recurrent;
(ii) if GA is satisfied then is aperiodic and positive Harris recurrent, and in this

case pk(x, A)-* 7r as k- uniformly for A (X) and x in compact subsets of X.
The proofs of these results will be given in 3. We now show how these results

may be related to Lyapunov function theory.

On the properties of Lyapunov functions. One of the difficulties in deterministic
as well as stochastic stability studies is that stability is a property of the entire process,
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viewed from time 0 to oe, while any useful test should make use of only a finite amount
of data, e.g., values of the process at specific (finite) times, or the relationship between
values of the process at different finite times.

Lyapunov’s second method or its stochastic generalizations [Kushner, 1967],
[Has’minskii, 1980] are among the most successful approaches to this problem that
meet these requirements.

One specific example of a stochastic generalization of Lyapunov’s second method
may be found in the stability proof of [Goodwin, Ramadge, and Caines, 1981]. The
methodology ofthat paper may be very roughly described as follows. A positive adapted
stochastic process { Vk} is constructed satisfying the super martingale property

(21) [v+ ]_-< v,
where ofk is the o--algebra generated by past and present values of q,
(22) k =_a o-{o, , },
and @ denotes a state process for the closed-loop system under consideration.

From the fact that {V} is a convergent super martingale and other specific
properties of this process we may deduce mean-square stability and, in some sense,
optimality of the performance of the closed-loop system.

This approach will fail in the case of a w.s.c. Markovian system in many cases of
interest. For example, if V V() for a continuous function V:XR+, then @
converges to a level set of the function V. If is bounded in probability and w.s.c.,
then by Theorem 2.2 the set of limit points of the sequence {k: k e +} is equal to

iet l{entersS} supp rr almost surely. By weak stochastic controllability, the support
of any invariant probability has nonempty interior, which implies that the function V
must be flat over suitably large regions of the state space. For example, this rules out
real-analytic functions. Since in many examples the function V is in fact a rational
function of its arguments, it may be seen that weak stochastic controllability rules out
a large class of test functions of the form (21).

However the following alternative stability test has already been of great use in
a number of examples (see [Guo and Meyn, 1989], [Meyn and Guo, 1990] and [Meyn,
1989]) and has great theoretical potential. As before, let { V} be a positive adapted
stochastic process, and suppose that for some 0 < a < 1, L > 0,

(23) [V+I1 _-< a V + ,
which in the degenerate case 1, L=0 becomes (21). Under this condition and
certain technical assumptions that include weak stochastic controllability, it may be
shown that the underlying distributions of converge to an invariant probability at
a geometric rate, and that the central limit theorem holds for functions whose square
is dominated by { V}. Some of these results may be found in [Meyn and Tweedie,
1990a,b], and in [Meyn, 1989] where processes that are not w.s.c, are also considered.

3. Proofs of the main results.
3.1. Proof of Theorem 2.1. To prove Theorem 2.1 we will need the following

lemma. For xeN" and e >0, let Be(x) denote the open rectangle

B(x) a={yN’: [x-yl<e for l <-_i<-m}.

LZMMA 3.0. Let 7/U1 c Nn, gTI c Nm, and o be open and suppose G: 7/’ x ga x, (w,x,y)z, is smooth, and that the matrix OG/Oy is full rank at some
(Wo, Xo, Yo) tg’ x gg x . Then

(i) there exists an open set

7g" x a x gl 7g’ x T x containing Wo, Xo, Yo)
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such that the measure ,(w, defined for A (Rn) and w by

u(w, A) I f 1G(w,x,y)eAdxdy

is equivalent to Lebesgue measure on an open set w;
(ii) there exists c> 0 and open sets li and U containing Wo and G(wo, Xo, Yo),

respectively, such that

,(w,. -> clou(w)(l/x Leb) for all w.

Proof of Lemma 3.0. Consider the function G* 71 x 1 R"+’+" defined
for (w,x,y) 7r x x by

G*(w,x,y)& x

G(w,x,y)

Under the conditions of Lemma 3.0 the function G* is smooth, and its derivative is
full rank at (Wo, Xo, Yo). By the implicit function theorem there exist open sets

IR"xR’xR" and 7’xx ClX,lXO,ff

with (Wo, Xo, Yo) 7/2 x x o, and a smooth function H* - 7/2 x x such that

and

= x w6 TU, x,y
G(w,x,y)

H*(G*(w, x, y))= (w, x, y)

for (w, x, y)e W xx . Applying a projection to the function H* we may find a
smooth function H: - for which

H(w,x, G(w,x,y))=H(G*(w,x,y))=y
for (w,x,y)e Wxx .

Since H is smooth and

is full rank, we may assume that

(24) --> ho

for all (w, x, z) e .
We now construct a density for the kernel

,(w,A)= [- [ 1(....y)eAdxdy,
by a change of variables and Fubini’s theorem:

,(w,a)= f{f IA(Z) detO--zHI dz} dx
w,x,

1A(Z) I(W, X, Z) det dx dz.
[n
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Hence for fixed w o/g., the function p .n_+ defined for z n by

(25) p(w, z)& f l(w, x, z)det 0-7--H[ dx
OZ[

is a density for v(w,. ).
Fix w 7K, and let w c " denote the open set

w & {z" (w, x, z) for some x W}.

Then by (24) and (25) it is easy to show that p(w,.) is strictly positive on w and
zero elsewhere. Hence v(w,.) is equivalent to Lebesgue measure on w and this
proves (i).

Since is an open neighborhood of (Wo, Xo, Zo), there exists a nonempty open
rectangle

Wo, Xo, Zo)

Hence by (24) and (25),

p(w, z) >- ho [ lo(W)lo(X)o(Z) ax

hoeb{toIo(W)lo(Z).
It follows that

u(w,a)>--(hotxLeb{{o})lo(W)(lotxLeb){a} W

and this establishes (ii).
Proof of Theorem 2.1. Fix a point x e X, T;+, and let Z,, Z,,(T) denote the

closed subset of Npr,
Z,,- {A PT" rank cT(A)__< n- 1}.

Proof of (ii). Suppose that rank cT(A) < n for all Z e ffT. By Sard’s theorem, the
set S={sT(A)" A e ffr} has zero Lebesgue measure. Hence in this case Pr(x, .) is
supported on S, and it is therefore singular with respect to Lebesgue measure. This
shows that the rank condition (7) is necessary.

TTo prove sufficiency suppose (7) is satisfied for some ,o e 7\Z. Let p denote
the density for x, and p the density defined for (Zl,"" ", zr)e R rP by

p(zl, ZT) & pw(zl) pw(zT).

Since )toe ffr and Pw is lower semicontinuous we may find po> 0 and an open rectangle
B (,o) such that

Hence

(26)

p(A)_->po for all A B(Ao).

pr(y,.)=I ls, .p(A)aA

dA for allyX.>Po lSy"
B, (AO)

Using the rank condition on Cr, we may find integers {il," in} for which

[os2det L-/,l’"lO-/jo 0.



ASYMPTOTIC BEHAVIOR OF STOCHASTIC SYSTEMS 549

This allows us to apply Lemma 3.0. By defining the function G in terms of Sr
appropriately, all the conditions of that lemma are satisfied, and by reducing the size
of if necessary, open sets 0-//o and //’ containing x and So, respectively, an open
set Xo, and a constant c > 0 exist such that

(i) [ I{Sr. } d,X 1 Leb
B(Xo)

(27)
(ii) I{S.} dclo(y)(lob) for all yX,

n(Xo)

T Leband B(Ao) = wZ. Combining (26) and (27)(i) shows that P(x,. )> 1o and
this proves (ii) of the theorem.

To prove (iii) observe that under the given hypotheses (26) and (27) hold and hence

Pr(y, cpol o(y)(1oLeb)
for all y X.

Proof of (i). Suppose that Leb{z }> 0, where Z is the set on which the
matrix C[ is not full rank. By Sard’s theorem the set S {S[(A)" A Z} has zero

Lebesgue measure. Fuhermore,

pT(x, S) I{S. S} d# T #{Z} > 0,

and it follows that P(x,.) is not absolutely continuous with respect to Lebesgue
measure. This shows that. the rank condition (6) is necessary.

ZxUnder (6) and proceedin as above we may find for each ff an open set, and )0 suCh that (27)(i) holds. We may assume that is so small tha for some
po0,

Zx,P())Po for allB() and B()ff

where the constant Po may depend on A.
Define the set x by

x {Sx(a)" w\Zx}.
This set is open since it may also be written

x U
,Xw\Zx

The union of a family of open sets in N is equal to the union of some countable
subfamily, and hence for constants 6i, and open sets i we have

x U i, T(w\Z, IJ B,,
=0 =0

with (26) and (27)(i) holding for each i 7+.
Hence I,t.tLeb<pT(x,’) for all i67/+, and it follows that lcx/x
On the other hand,

Leb . pr(x,. ).

Pr(x,. <-_ , l{Sxr. }p(A) dZ
=0

=0 Bi
since p is strictly positive on



550 S.P. MEYN AND P. E. CAINES

|i/Z
Leb

i=0

1 x Leb.

Thus pT(x, 1 fi/Leb. [3

3.2. Some technical lemmas. In this section we describe basic topological proper-
ties of the state space of locally and weakly stochastically controllable systems. These
results will be used to establish limit theorems for the state process and its underlying
distributions, and then the proofs of the main results of the paper in 3.3.

Throughout the remainder of this paper we assume that conditions A1-A4 hold and
that t is w.s.c.
Let Si denote the support of r i, x and V will denote open sets satisfying

(28) Pr(y,A)>--_cxtzLeb{AVx} A (X), y,

with x x, c > 0, and 0-// and V will denote some particular choice of /, and V
with x S. When I is nonempty, the existence of these sets is guaranteed by Theorem
2.1.

that

LEMMA 3.1. IfA is closed and absorbing then T’x c A for all x A.
Proof Let x A. Since A is absorbing, P(x, A) 1, and since A is closed it follows

supp P (x, A.

By weak stochastic controllability and (28) we have Pr(x,. )>= c(lx/xLeb){" }, and it
follows that T’x c supp pT(x," ). This shows that T’ c A. [3

LEMMA 3.2. For each i I, the set, A-I{0}{y6X: A(y, )=0} is closed and
absorbing.

Proof Since 0//i is open, the function A(., a//) is lower semicontinuous [Cogburn,
-11975] and it follows that A {0} is closed.

It is a standard fact and easy to prove that A-I{0} is absorbing [Nummelin,
1984]. [3

LEMMA 3.3. For each I and x X,
(i) 1% ].Leb < T
(ii) a// S for all but possibly one j I;
(iii) S V S for all j i.

Proof. Result (i) follows from the fact that is a small set of positive ri-measure
[Nummelin, 1984] (see the discussion below (9)).

Result (ii) also follows from (i) since if for some x X,

/x Si and , S ; then 1 x/z
Leb . 3T i, 3./.j.

This is impossible since r and r are mutually singular.
Finally, by (ii) and since x , if ij,

Ss % S7,

and this proves (iii). [3

LEMMA 3.4. For each compact set K X, S K for all but a finite number of
integers L
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Proof The collection of open sets { //x: x K} cover K. Let { 0//1,.. ", 0N} be a
finite subcover. By Lemma 3.3 each i intersects at most one of the sets {Si: I} and
so no more than N of these sets intersect K.

LEMMA 3.5. For each I, Si does not contain any proper closed absorbing subsets.
Proof First of all, if A is an absorbing subset of Si, then the function 1A is super

harmonic. That is, P(x, dy)lac(y)<=lac(X) for all xX. By Proposition 3.13 of
[Nummelin, 1984] it follows that 7ri{A} is equal to zero or one.

If A is also closed then by Lemma 3.1, x c A for every x A and hence

which shows that in fact 7ri{A} 1. Since Si is the smallest closed set that has full
7ri-measure, it follows that Si A.

LEMMA 3.6. For each x X,

{d enters Hi} { i i.o.}-- {irn A(k, 2/i)= 1}

modulo P,-null sets.

Proof By a result of [Orey, 1971],

(29) lim A(k, -/i)--l{,,ou, i.o.} a.s. [P]

and so only the first equality requires verification. However this follows from (9),
which expresses the fact that i is a small set of positive zri-measure [Nummelin,
1984].

3.3. Asymptotic behavior. We now investigate the sample path properties and the
asymptotic behavior of the underlying distributions of (4) under the weak stochastic
controllability condition.

The following two results concern the asymptotic behavior of the Markov chain
restricted to one of the absorbing sets Si. They are interesting in themselves and

will also be useful for establishing limit theorems for arbitrary initial conditions.
If a set A (X) is absorbing then for every initial condition x A, almost every

[P] sample path lies in Az+. Hence we can replace the state space X with A if we are
only interested in such initial conditions.

The Markov chain restricted to an absorbing set A is called positive recurrent
if a Harris set H c A exists and for each x A,

P{ enters H} > 0.

PROPOSITION 3.1. Suppose conditions A1-A4 hold and d is weakly stochastically
controllable. Then for each I, the restriction of to Si is positive recurrent. If in
addition is bounded in probability, then Si is a Harris set.

Proof Let i, 7/’i, and A-I{0} be defined as in 3.2, and observe that by Lemma
3.2, A--{0} fq Si is closed and absorbing. Since 7ri{-gi}> 0 it follows that

Px{ enters //i} 1 for all x

Hence A-I{0} = H and it follows that 7ri{Ai-{0}} 0. So by Lemma 3.5, A-{0} fq Si b.
This implies that for every x

(30) P{ enters i} > 0.

We have, since 1 < 7r i,
(31) P{ enters Hi} > sup Pk+(x, Hi)>= sup cP(x,

k:+ k;+
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and combining (30) and (31) gives

Px{ enters Hi} > 0 for all x

which shows that restricted to Si is positive recurrent.
Suppose now that is bounded in probability. By Lemma 3.6,

is positive Harris recurrent if and only if

(32) lim A(k, ?/i)= 1 a.s. [Px]

for all x
Let C c Si be compact. By (30) the open sets

{x x: A(x, %) > 1/k} k _-> 1

form an open cover of C, and by compactness it follows that there exists k0 7/+ such
that

(33) A(x, i)> 1/ko for all x e C.

If the limit in (29) is zero then enters C only a finite number of times by (33). Since
C is arbitrary, eventually leaves every compact set in this case. By stability, this can
only happen on a Px-null set and hence (32) holds.

LEMMA 3.7. Suppose conditions A1-A4 hold and that d# is l.s.c. Thenfor each x S,

Pr(x,") < 7r i,
where T T(x) is the integer used in the definition of local stochastic controllability.

Proof. Let T T(x), x, Zx, o//., and o-// be as in the proof of Theorem 2.1, and
recall from Theorem 2.1 that

(34) (?x --a U Sxr(A) U 7/’x.
XeVw\Zx

By Lemma 3.3 (i),

I r/[Z
Leb " 7r for all x Si and h T

Since the union of a family of open sets in X is equal to the union of a countable
subfamily, it follows from this and (34) that

pT(x," ) 1x/.
Leb < 7/"i. ["]

The following result follows immediately.
PROPOSITION 3.2. If conditions A1-A4 hold and is l.s.c, then Si is a Harris set

for each L
Proof By Lemma 3.7 and the fact that 7ri{Hi} 1, it follows that Pr(x, Hi) 1

for all x Si, which by conditioning at time T and using the Markov property implies
the desired result.

We now show how the underlying distributions of w.s.c. Markovian systems exhibit
asymptotically periodic behavior.

PROPOSITION 3.3. If (4) is W.S.C. then for each initial condition x X, the resulting,
trajectory {[.6k pk(x, )" k 7/+} may be written

(35) /Xk nk + . ai(X)tXk,
iI

where { nk" k 7/+} is a sequence of subprobabilities for which

1 N vaguely

nk O,(36)
N k-_l
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andfor each I, the sequence ofsubprobabilities {tx i"
k. k 7/+} converges in total variation

norm to a periodic orbit; that is, there exists a periodic orbit {Tk" k 7]+} such that

( sup I/x{a}- 3,{a}l) 0.lim
k->c \A(X) /

Proof. The proof of Proposition 3.3 will be completed in two steps.
Step 1. We show that for each I, the sequence of subprobabilities

A{tXk=(1/ai(x))lH, lZk: k7/+}

converges to a periodic orbit whenever ai(x) O.
Fix i I. The Harris set Hi may be written as a disjoint union

H= t.J EU A, where 7ri{A}=0,
j=l

and the cycle {E: I =<j-< A} has the invariance properties

P(y, E+,)= 1 for y E (rood , ),

and

PX (y, Ej)= 1 for y Ej.

So, defining flk+ by flk &-- lim_ P"X(x, Ek) we have ai(x)==1 ilk.
If we let dk A 1E 7r i,

1 x
(37) To-- ai(X) =1 flkdk, and 7k ToPk

then T {Tk: k 7/+} is a periodic orbit.
Since E) is an aperiodic Harris set for the A-step Markov chain {dkx:k 7/+}

(Proposition 3.14 of [Nummelin, 1984]) we have by Proposition 2.3

lim sup IIU-4Ul=O,
k-o B(X)

lim sup
k->oo B(X)

It follows that

and further that for each j 7/+,

1
1., lXkx {B}- 7o{B}

01. i(X
=0,

1
lim sup IH. 7j{B} O.
k-> B(X) ai(X)

,/zkx+/{B}-

Hence {/x k" k 7/+} converges in total variation norm to the periodic orbit 7.
Step 2. We are left to show that with H (_J ii Hi, and nk

a__ lHt.tk,

1 N vaguely

--E n >0.(38)
Nk=l

The set of all subprobabilities on N(X) is sequentially compact with respect to
vague convergence. Hence (38) will hold if every vague limit point of the set of
subprobabilities

(39) nk" N e 7/+
=1
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is zero. Let n be a vague limit point of (39) so that for some subsequence {Ni} of 7/+,

(40)
k J fdnk a=lim

1
limi_x gi io -i k=l

Ex[f(dPk)lHc(dPk)]

whenever f Cc. By choosing a further subsequence if necessary, we may assume that
a subprobability/x exists such that

1 Ni vaguely

/tZk /z as i-o.
Ni k=l

It is easy to show that/z_-> no (it is obvious that fdn <-fd for all f Co) and
by a proof similar to the result in [Foguel, 1969] we may show that/x is invariant.

Since every finite invariant measure is supported on U Si, it follows that

We now show that noo{U Si} 0. From (41) it will follow that n 0, completing
the proof.

Let i I, x Si, and 0 as before. If does not enter Hi then from Lemma 3.6
it follows that enters finitely often and so,

(42) lim lHc(fk)--lHc(tk)l(tk)=O a.s. [Px].
kx

Letf Cc be any function which vanishes on . By (40),

ffdn lim
1 N

S E[f(dPk)lH(dpk)
Ni =1

lim
1 N,

i-->oo k1Ex[f(k)lu(@k)lH(@k)]
by (42) and the Dominated Convergence Theorem

--0.

Since the function 1% is the pointwise limit of an increasing sequence of such
functions f, it follows that n{}--0. Furthermore, since Si is contained in the union
of a sequence of sets from {" x S} it follows that n{S} 0. We conclude that

n{X} n{U S,} + n{N S} O. ]

Observe that by Proposition 3.3, if (4) is w.s.c, then for each x X

1 N vaguely
c(x)r,(43)

N =1

where, for a(x)#0, the invariant probability 7rx is defined in (19). If a(x)=0 then
(43) still holds with 7rx =0.

The following result illustrates the sample path properties of w.s.c. Markovian
systems.

Ifdn
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PROPOSITION 3.4. Suppose that conditions A1-A4 hold and that is w.s.c. Then
for any x X andf L(X+, (X+), P=x),

lim
1

2 f(tk, (I)k+l, foo(O0, 1, __--> a(X)Px
N-ooNk=l

where foo LI(xz+, (XZ+), P,) is defined in (20).
Proof As before, let z denote the first entrance time to H, and let ff denote the

sigma algebra of events before time z.

By Proposition 2.3, for each n I, and f LI(x+, (X+), P=-),

Po lim --1 f(Ck, (I)k+l, E-[f(CPo, (I)l, 1
N- N k=l

for any initial condition distribution/o for wich/o{H) 1. From this and the strong
Markov property it follows that for any x X,

E,, Px lim --1 f(dpk, (i)k+l ")=f(o, (I)l, .)lff 1<
N-cx N k=l

E,, Px lim 2 f(tk, (I)k+l,’’’)=f(CP0, CPl,’’’)[- 1<
No N k--’+l

E P. lim f(cb, +,...)=f(o, ,’’’)
N-eo g k=l

Px{’r < o}= a(x).

Hence

f(k, (I)k+l,""") ---fco((I)0, (I)1,""") C(X). [-]
N->oo N

3.4. Proofs of Theorems 2.2-2.3. We begin with the proof of Theorem 2.2.

Proof of Theorem 2.2. We will proceed by establishing that (ii) implies (iii), and
that (iii) implies (i). This is sufficient since it is obvious that (i) implies (ii), Propositions
3.3 and 3.4 show that (iii) implies (iv) and (v), and it is easy to see that (iv) and (v)
each imply (ii).

The proof that the convergence in (v) is uniform on compact sets will be given
in Proposition 3.5 below.

(ii) (iii)
Let e > 0, x X and C c X be a compact set for which

liminf
1 P(x, C)> 1-e.

By Proposition 3.3 we have

N

a(x) a(X)x{C}= lim --1 pk(x C),
N@ N k=l

and since e was chosen arbitrarily, this implies a(x)= 1.
(iii)(i)
Let x X, e > 0. Then by condition (iii) and Proposition 3.3

k ai(X)k+nk, where (x)= (x)= 1.
iI iI
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MChoose M 7/+ so large that i--o ai > 1 e, and choose a compact set C c X such that

yk{C}>l--e, for0_--<i=<M, and l<-_k<-_h i.

Then by Proposition 3.3

M

liminf/z{C}=>liminf Olijbik{c} -[- nk{C}
k-c kcx i=1

M(44) => Z Oi mkin Y,{ C}
i=1

_>(l-e)2.

Hence (4) is bounded in probability. [3

We now present a strengthening of Proposition 3.3 and show that the probabilities
{Trx} are continuous functions of x X.

A set A (X) will be called uniform if

lim sup - (x,.) 7rx(" O.
N xA =1 tv

The following result is taken from [Cogburn, 1975].
LEMMA 3.8. Suppose that conditions A1-A4 hold, and that @ is bounded in probabil-

ity and w.s.c. Then for each I, every compact subset of S is uniform.
This will be used to obtain the following proposition.
PROPOSrrION 3.5. Suppose that conditions A1-A4 hold, and that is bounded in

probability and w.s.c. Then every compact subset of X is uniform.
Proof Under the conditions of Proposition 3.5, cq(x)= A(x, S), and since S is a

Harris set and i Si has positive 7h-measure we have

(45)

Let C X be compact and e > 0. Define the functions hN" X R+ for N Z+, and
xXby

{NN }h(x)= P U U {dp e T,/’}
k=l i=0

By the Feller property, the function hN is lower semicontinuous, and for each x X,
hN(X) a(x)= 1 as N- c by (45). By Dini’s theorem the convergence is uniform on
compact subsets of X.

Since the sets {Si} are absorbing, this implies that there exists an integer No 7/+
such that

{ No}Px l[ No U S _-->hNo(X)> 1-e
i=0

for all x e C.
By the Feller property, the map x--> PUo(x,.) that takes X to M, the space of

probabilities on N(X), is continuous with respect to weak convergence on M. Since
the continuous image of a compact set is compact, the probabilities {PN(x," )" X C}
are tight. Hence for some compact set K X,

(46) P o K fqS >l-e
i=

for all x C.
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For all k 7+, and x X,

No+ k
P(x, )-zrx("

,v
=sup

No+ k =, P(x, dy)f(y)- Zrx(dy)f(y)

where the supremum is taken over all measurable f"X [-1, 1]. Hence by (46) we
have for all x C,

No+k P(x,’)-Zrx(’),
sup f PN(x, dz)

1 f fPi(z, dy)f(y)- "rrz(dy)f(y)
i=1 No+ k

sup Z PN(x, K f"l Sj) sup
j=0 K fqSj

z, dy)f(y)- f z(dy)f(y)

No
sup sup

j--O zKf3Sj
1 fpi(z, dy)f(y)_f ,rrz(dy)f(y

i=1

=< o sup pi(z, "rrz("
j= zKSj

;
i=1

+e.
No+ k

Applying Lemma 3.8 to the inequality above shows that

No +e
No+ k

No+ k

[[1 N

lim sup sup - pi(x,. )- 7rx("
Nc xC i=1

Since e is arbitrary, this proves the proposition. U
The following result shows that when satisfies the conditions of Proposition

3.5, the map x rx that takes X to M is continuous in total variation norm. In particular,
the kernel II r(.(. has the strong Feller property.

COROLLARY 3.1. Suppose that conditions A1-A4 hold. If is bounded in probability
and w.s.c, then for each e I, the function ai(x) is a continuous function ofx X.

Proof Fix i I, and let f be a continuous function for which 0 =<f-< 1, and

1 if X Si;
f/(x)=

0 ifxSj, ji.

It follows from Theorem 2.2 and the definition of 7rx that

a (x) f f, N-lim 1N g=l f Pk(x’ dy)f(y),

where the convergence is uniform for x in compact subsets of X. The corollary follows
from these facts since for each N 7/+, the function

N k= f Pk(’’ dy)fi(y)

is continuous.
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Proof of Theorem 2.3. Suppose that is uniformly bounded in probability, and
let C c X be a compact set for which

lim inf pk(x, C) >-- 1/2 for every x X.
k-c

By Proposition 3.3, for each x X,

lim
1 k pk(x, C)= x{C},

N->cx) N

i{and hence 7r C} => 1/2 for each L However by Lemma 3.4

7.j. { c } ,.t-l. { c (-] Si } 0

for all but a finite number of I and this shows that I is in fact finite.
Conversely, if I is finite and is bounded in probability then Proposition 3.3

shows that the distributions of converge cyclically. Since in this case the collection
of probabilities { 7rx: x X} is tight, it follows that is uniformly bounded in probability.

To prove that the distributions of converge uniformly on compact sets, use the
proof of Proposition 3.5.

Proofof Theorem 2.4. The main idea of the proof of Theorem 2.4 is that condition
GA or A5 ensures that the support of every invariant probability contains the origin.
Under the weak stochastic controllability hypothesis, the supports of distinct the
invariant probabilities {7r i} are disjoint, and hence Harris recurrence is an immediate
consequence. The idea of replacing a random disturbance by a deterministic sequence
lying in its support has previously been used to determine the support of a diffusion
process (see [Stroock and Varadhan, 1972] and [Kunita, 1976]).

To prove (i) we observe that the conditions of Theorem 2.2 are satisfied and hence
by Corollary 2.3 it is enough to show that there is exactly one invariant probability.

Let 7r be one of the invariant probabilities {Tri}, and 7/V any open set that contains
the origin. By Lemma 2.1, the sets

D, {x X: P’(x, 7/V) > 0} n 7/+

cover X, and hence for some n7/+, 7r{Dn}>0. This implies that
o, P" (Y, 7g’)Tr(dy)> 0, and since 7/" is an arbitrary open set containing the origin, it
follows that 0 supp 7r. By Lemma 3.3 the supports of zr and 7r are disjoint for C j,
and this proves (i) of the proposition.

To prove (ii) suppose that a cycle E exists with period A, let 7r denote the unique
invariant probability for , and let and 7# be open sets that satisfy condition (iii)
of Proposition 2.1.

Let dk &AlEkTr. Since the sets in the cycle E are disjoint, dk and dj are
mutually singular for kj (modA). However by Lemma 2.1 we have dk{R}
Pk(x, ll)do(dx)> 0 for all k sufficiently large, and this implies that dk > lr/-t, Leb for

all large k. Since {dk: _-< k_-< A} are mutually singular, this implies that

4. Conclusions. In this paper we have presented a stability theory for nonlinear
stochastic systems operating under feedback. Among the consequences of this theory
are the following:

(i) If a Markovian system of the form (4) is bounded in probability and w.s.c.
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then the limits

(47)

lim
1 N- 2 f() =f a.s. [P],

k=l

lim
1 N

k=l

exist for every initial condition x X, every A g(X), and for a very large class of
functions f that includes all positive Borel measurable functions. This result is sharp
because in the case where F(.,. is linear but not controllable there may exist Borel
sets A and bounded Borel functions f for which (47) does not hold.

(ii) If (4) is uniformly bounded in probability and w.s.c, then the probabilities
{pk: k 7/+} governing the state process converge cyclically for any initial condition.
For example, this implies that there exists a A 7/+ such that

lim P{tkX+i A}
k-o

exists for every Borel measurable set A c X and every i 7/+.
(iii) Under a mild stability condition on the undriven system, periodicity is ruled

out and a unique invariant probability 7r may be shown to exist. Hence, for example,
the limit above holds with A 1.
These results have significant implications in stochastic system theory and, in particular,
to the control of stochastic systems that vary randomly in time.

To illustrate what can go wrong with stochastic controllability, consider a single
input single output ARMAX system under the mean-square optimal control law

B(z)u(z) [A(z)- C(z)]y(z),

and define

k+l (Yk,""", Yk-,,, Uk-d,""", Uk-,2, Wk, Wk-,3)-.
Suppose that the zeros of the polynomials B and C lie outside the unit disc in C. It
is easily shown that the closed loop system is bounded in probability in this case and
that

(48) lim (Yk Wk) 0 a.s. [P,o]
k-

for all initial conditions o.
By (48) we have Yo Wo almost surely [Pr] for the (unique) invariant probability

7r, and hence 7r is supported on a hyperplane in n. Consequently, this system is not
w.s.c, because 7r is singular with respect to Lebesgue measure. Similarly, the stochastic
gradient algorithm of [Goodwin, Ramadge, and Caines, 1981] does not give rise to a
w.s.c, system because the gain r converges to zero almost surely.

However one active research area in stochastic control theory today is the adaptive
control of time varying stochastic systems (see for example [Chen and Caines, 1985]).
It is in this area that the ideas introduced in this paper will be very useful. For example,
the Markovian system of [Meyn and Caines, 1987] is 1.s.c., and this fact was crucial
in establishing many of the results in that paper. Furthermore, an ARMAX system
controlled by a gradient type algorithm gives rise to a w.s.c. Markovian system under
mild conditions [Meyn and Guo, 1990].

There is much room for future research. For example, the asymptotic behavior of
Markovian systems that are not w.s.c, is not well understood. We have already noted
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that in the linear case, (I)k+ --Ak q-BWk+l, there are two extreme cases when A is
asymptotically stable and the disturbance w satisfies condition A4. If (A, B) is control-
lable then is positive Harris recurrent and hence the law of large number holds for
every positive Borel function on the state space and every initial condition distribution.
If (A, B) is not controllable then this is not the case except in trivial situations (when
A and B are both zero, for instance). However the law of large numbers does hold
for continuous functions with arbitrary initial distributions.

There is evidence to suspect that this result may be generalized to arbitrary Feller
Markov chains that are bounded in probability and possess exactly one invariant
probability: By Proposition 2.2, for any such Markov chain and any bounded and
continuous function f on the state space X we have

v-,oo - =,f(Ok)= fdTr.

This suggests that it may be possible to remove the expectation operator "Ex" to
establish the law of large numbers for the class of bounded and continuous functions.

One approach to the problem is to search for stronger stability assumptions on
that allow an approximation with a w.s.c. Markov chain .
Another possible approach is to use some nonlinear version of the controllable/un-

controllable decomposition theorem used in linear system theory. By applying the
results of this paper to the controllable part of , it may be possible to achieve the
desired ergodic properties.

For example, a result of [Jakubczyk and Sontag, 1989] shows that if a fixed point
exists (a state x X with the property that F(x, w)= x for some w supp/Xw) then
under general conditions an invariant submanifold xYc X exists on which the
restricted system is w.s.c. Applying the results of this paper, it is easily shown that if
such a system is bounded in probability then an aperiodic Harris set containing x
exists. This allows an analysis of the asymptotic behavior of , at least in the case
when o x. Some ideas along these lines, and extensions to arbitrary initial conditions
were begun in [Meyn, 1989].
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Abstract. The model matching equation T(z)= P(z)M(z) induces constraints upon the multivariate
zero structures of P(z) and M(z); the nature of the constraint is best explained by extending the usual
notion of zero. In particular, the extended F-zero module of P(z) must contain as a submodule the module
Zr of matching F-zeros, which depends only upon T(z) and M(z); and the extended l)-zero module of
M(z) must contain as a factor module the module Za of matching -zeros, which depends only upon T(z)
and P(z). Essential solutions, in which the constraint is by module isomorphism, are possible if and only
if the nullity of P(z) does not exceed the nullity of T(z), on the one hand, or the co-nullity of M(z) does
not exceed the co-nullity of T(z), on the other. Both the matching zero modules and their finitely generated,
torsion partsmwhich have state-space interpretationmcan be given concrete, intuitive interpretation in terms
of short exact sequences, though the former is less involved than the latter. Moreover, in the case of the
latter, a natural notion of essential solution is not available, in marked contrast to the situation for poles.

Key words, zeros, zero modules, extended zeros, model matching
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1. Introduction. We begin by considering the linear transfer function equation

(1.1) T(z)=P(z)M(z),

over the field k(z) of rational functions in z having coefficients in a base field k. If
R(z), U(z), and Y(z) are the vector spaces, then (1.1) may be seen either in terms of
the commutative diagram of Fig. 1.1 or that of Fig. 1.2, depending upon whether T(z)
and M(z) are given and P(z) is sought, or T(z) and P(z) are given and M(z) is sought.

The problems of Figs. 1.1 and 1.2 arise naturally in various applications. For
example, in the theory of codes for reliable communication, P(z) has to do with the
decoding process, while M(z) is associated with code design see [1] for additional
discussion). Again, in the theory of feedback control for solutions to servomechanism
problems, P(z) may represent the plant and M(z) the open-loop equivalent of pre-
compensation and feedback; or M(z) may represent the plant and P(z) the open-loop
equivalent of post-compensation and feedback (for illustrations, see [2]).

n(z)

M( (z) M(z)// (z)

/
V(z)-- --,- r(z) U(z) . r(z)

P(z) P(z)
FIG. 1.1 FIG. 1.2

* Received by the editors August 8, 1988; accepted for publication (in revised form) June 26, 1990.

" Department of Electrical and Computer Engineering, University of Notre Dame, Notre Dame, Indiana
46556. The work of this author was supported by The Ohio State University’s Distinguished Visiting
Professorship, by the University of Notre Dame’s Frank M. Freimann Chair in Electrical Engineering, and
by National Science Foundation grant ECS-84-05714.

Department of Mathematics, The Ohio State University, Columbus, Ohio 43210.
Energy Controls Division, Allied-Bendix Aerospace, South Bend, Indiana 46620.

562



EXTENDED MATCHING ZEROS 563

In feedback theory, (1.1) has come to be known as the model matching equation.
Accordingly, Figs. 1.1 and 1.2 represent two versions of the model matching problem.
The model matching problem has been a central issue of abstract control theory at
least since the seminal work [3] of Wang and Davison in 1973. For a sample of
technically and historically important papers in this area, see also [4]-[6]. Unfortu-
nately, the diversity of language and points of view in this area makes a useful survey
and comparison of results very difficult, and we cannot undertake a thorough survey
in this already long and technical paper. Nevertheless, later in this Introduction, we
discuss briefly the differences in outlook between the present paper and some previous
work.

If nothing is required of the unknown mappings P(z) in Fig. 1.1 and M(z) in
Fig. 1.2 beyond their existence as k(z)-linear transformations, then almost trivial
necessary and sufficient conditions are well known. In Fig. 1.1, given T(z) and M(z),
then there exists a k(z)-linear map P(z) completing the diagram if and only if the
nullspace ker M(z) is a subspace of ker T(z). In Fig. 1.2, there exists a k(z)-linear
map M(z) completing the diagram if and only if the image T(z)R(z) is a subspace
of P(z)U(z). If these basic conditions are satisfied, then in general the solutions are
not unique, and the interesting problems center around constraints describing the set
of possible solutions. In this Introduction we discuss the constraints which arise in
Fig. 1.1, although both diagrams are discussed in the paper.

Given T(z) and M(z), assuming the kernel condition above, what mappings P(z)
can occur as solutions? We approach this problem by trying to find out what poles
and what zeros are required in any solution mapping P(z), and we call these minima
the fixed poles and the fixed zeros.

The problem of fixed poles in this context was discussed by Conte, Perdon, and
Wyman [7], building on earlier work in [8] and [9]. For a solution P(z), we denote
the pole module of P(z) by P(P(z)). By this we mean that P(P(z)) is the state space
of the minimal realization of P(z) considered as a module over the polynomial ring
k[z] in the usual way. In [7] a new module

(1.2) P( T, M) M-’ U[z]/{M-1 U[z] ("l T-1 Y[Z]}

was introduced, and the first basic result there established that P(T, M) must appear
as a submodule of P(P(z)) for any solution P(z). Now the module P(T, M) is a
finite-dimensional vector space with a dynamics matrix arising from the module action,
and the eigenvalues of that matrix give the numerical values of the poles, so we know
numerically what poles must exist in P(z). A module inclusion result gives substantially
deeper additional information about multiplicities and Jordan structure of the space
of poles. Furthermore, "essential solutions" satisfying exactly P(P(z)) P(T, M) can
be constructed; and the module P(T, M) can be given a precise and attractive descrip-
tion in terms of the pole and zero modules of T(z) and M(z). Finally, this method is
not limited solely to the study of finite poles and zeros, but by replacing the polynomial
ring by the ring of proper rational functions or suitable more complicated rings,
conclusions can be drawn about causal or causal and stable solutions by considering
poles and zeros at infinity. One of the chief dividends of the present algebraic approach
is its ability to attack varying problems (such as causality and various kinds of stability)
by simply changing the rings involved. The polynomial ring can be replaced by the
ring of proper or proper and stable rational functions. Alternatively, a solution to the
model matching problem is causal if it has no poles at infinity, and it is causal and
stable if it has no poles at infinity or in the designated unstable region of the complex
plane. For further discussion of this philosophy, see 9 herein.
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The present paper considers the problem of "fixed zeros" of the desired solution
mappings P(z). The goal is to construct a module, say Z(T, M), which would appear
as a submodule of the transmission zero module of any P(z). However, the theory of
zeros is much more complicated than the theory of poles; and the results obtained
must be expressed in module language, having in general no adequate numerical
version. The major source of the difficulties is in fact the nullspace of T(z), which
creates an infinite-dimensional space of "generic zeros" which can nevertheless affect
the lumped or finite-dimensional zero spaces of P(z).

At this point it will be helpful to discuss the differences in outlook between the
present work and that part ofthe model matching tradition represented by the important
paper [10] of Emre. Emre considers the problem T(z) P(z)M(z) as in Fig. 1.1 above,
where M(z) and T(z) are given and P(z) is sought. This problem is called the exact
model matching problem (EMMP), and the "generalized EMMP" adds a causality
requirement. The solution in 10] is quite explicit, supplying algorithms and parameter-
ized families of solutions. On the other hand, [10] is primarily concerned with the
pole structure of the solutions, generalizing [8] in a way different from the results in
[7]. Work on zeros in this spirit can be found in 11 which, however, does not discuss
model matching explicitly (see also the classic [12]). We are grateful to the referees
for references to the closely related dynamic cover problem. See [10, p. 157] and
Antoulas’ paper [13]. We should point out that there is a close relationship between
model matching, zeros, and the geometric control theory. This is evident, not only in
[7]-[9], but also in [14], which gives an explicit map between the zero module and
spaces of the form V*/R*. Finally, we mention that the zeros of a composition
P(z)M(z) of two given k[z]-linear maps received earlier attention in [15] and [16].
Neither of these, however, addresses model matching.

We hope that the present work makes a new contribution to the diversity of
approaches to the model matching problem. The technical results on fixed zeros are
new, but perhaps difficult to relate to earlier work. We hope that this paper motivates
some reader to prepare a comprehensive survey of all these competing points of view.

Finally, we supply a "roadmap" to the results in this paper. Section 2 is a review
of the basic ideas surrounding the pole module and the finite-dimensional zero module
of a transfer function. In 3 these ideas are generalized to ideas involving certain
(possibly infinite-dimensional) extended zero modules which arise inevitably in the
study of transfer functions which fail to be injective and surjective. In 4, the heart
of the paper, new modules describing the "matching zero structures" associated to
Figs. 1.1 and 1.2 are introduced. For example, the relevant matching zero module for
Fig. 1.1 (defined in (4.5) below) is

(1.3) Zr T-’ Y[z]/{ T-’ V[z] M- U[z]}.

Although this module appears very similar to the P(T, M) defined above for the fixed
pole problem, it is in fact much more complicated. If T(z) is not one-to-one, the
module Zv may contain an infinite-dimensional part (which is actually a divisible
module.over k[z]) coming from the nullspace of T(z). The results obtained in this
paper indicate that this phenomenon cannot be ignored. The central result of 4 states
in this case (Theorem 3(2)) that Zv appears as a submodule of the (possibly infinite-
dimensional) extended zero module Zv(P(z)), so that we must consider Zv as the most
natural module of "fixed zeros" for the problem. Section 5 contains an extensive
analysis of Zv in terms of more familiar and intuitive concepts. Section 6 investigates
the problem of"essential solutions," seeking solutions P(z) such that Zv exactly equals
Zr(P(z)), concluding that they do not in general exist. Theorem 6 gives necessary and
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sufficient conditions for the existence of essential solutions. Sections 7 and 8 discuss
the complications which arise when we try to prove a corresponding theorem for the
finite-dimensional matching zero spaces and the finite-dimensional transmission zero
module. Although elaborate and detailed results are obtained here, it is hard to imagine
discovering and proving them directly in terms of matrix theory and finite-dimensional
lumped zero theory. We are convinced more than ever that the module-theoretic
approach to zeros, including now the infinite-dimensional part of the theory, gives the
"correct" approach to problems of the type considered here.

Although this Introduction has considered only the form of the problem arising
from Fig. 1.1 and leading to divisible modules of extended zeros, the problem formula-
tion of Fig. 1.2 is alsoexamined in the paper. This version requires infinite-dimensional
free modules of extended zeros and a matching zero module with possibly a free part.
We remark that it is in principle possible to handle Fig. 1.2 by a sophisticated dualization
of Fig. 1.1. Our experience in looking at this approach leads us to conclude that it
increases technicality without saving space in a comparable way. Moreover, it reduces
the possibility of giving intuitive interpretations to the building blocks of these modules.
We have therefore chosen a parallel treatment.

2. Finitely generated, torsion poles and zeros. We set the following conventions.
For a field k, let k[z] be the ring of polynomials in z with coefficients in k, and let
k(z) be the induced quotient field. Recall that a "transfer function" in k(z) is an
equivalence class, and note that the customary representative of a class is a pair
(n(z), d(z)) of polynomials in k[z], with d(z) nonzero and the pair relatively prime.
In applications, the ratio n(O)/d(O) is also of interest, when it is defined, and is
designated as the "gain" K of the associated class. More generally, we can represent
a transfer function in the manner (Kzn(z), d(z)) or (Kn(z), ztd(z)), where there is
the additional condition that n(0) d(0) 1. For the purposes of the investigation in
this paper, any unit in k[z] will serve just as well as any other. With these understand-
ings, we refer to elements in k(z) as transfer functions.

For a discussion of poles and zeros in the multivariable sense, it is necessary to
have in hand a concrete representation of polynomials and transfer functions in a
vector sense. Intuitively, we do this by "multiplying" the scalar version of the quantity
in question onto the vector of interest. More precisely, let R, U, and Y be finite-
dimensional vector spaces over k; and note that k[z] and k(z) are also k-vector spaces.
Then we employ the k-bilinear tensor product to form k[z]-modules

(2.1) R[z] k[z]@,R, U[z] k[z]@, U, Y[z] k[z]@, Y,

and k(z)-vector spaces

(2.2) R(z) k(Z)@kR, U(z)= k(Z)@k U, Y(z)= k(Z)@k Y.

If M(z):R(z)-+ U(z) is a k(z)-linear map, we wish to describe its poles and zeros in
a precise, technical sense. For the elementary class represented by (n(z), d(z)), this
is done easily and intuitively with the k[z]-modules k[z]/d(z)k[z] and k[z]/n(z)k[z].
For M(z), greater elaboration is needed.

The pole module P(M(z)) associated with a k(z)-linear map M(z) is defined to
be the k[z]-factor module given by

(2.3) P(M(z)) R[z]/{R[z] CI M-1 g[z]},

where M-1 is the inverse image function of M(z), defined on U[z] by

(2.4) M-1U[z] {r(z): r(z) e R(z) and M(z)r(z) e U[z]}.
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As a k[z]-module, P(M(z)) is finitely generated, because R[z] is finitely generated;
it is a torsion module because every element in R[z], even if not in M-1U[z], can be
made so by scaling with a suitable polynomial p(z) in k[z].

Finitely generated, torsion modules over k[z], such as the pole module P(M(z)),
can be understood as traditional state spaces of finite dimension over the field k.
Considered as a k-vector space, P(M(z))= Xp, the usual state space of a minimal
realization of M(z); and the scalar module action z:P(M(z)) P(M(z)) defines a
k-linear dynamics map A, :Xv X, in the realization. On the system level, it may be
observed from the definition (2.3) that the input signals of interest are polynomial
vectors in R[z], but not those which produce output vectors which lie entirely in U[z].
In terms of classical realization theory [17], entries in R[z] may be understood as
finite sequences of inputs starting in the past and ending at the present. An output
contained entirely in U[z] corresponds to a sequence all of whose future values are
zero. From an engineering point of view, we may think of exciting the system with
inputs which do not have poles, but which lead to outputs which do have poles.

In a quite realistic sense, we may regard the pole module P(M(z)) as a generaliz-
ation of the "denominator polynomial" d(z). The use of a module such as (2.3) permits
us to carry information about the poles of M(z) in a capsule form. The module
describes, simultaneously, the dimension of the state space and the spectral character
of its associated dynamics.

It is sometimes convenient to make use of isomorphic forms for the pole module
(2.3). For example, we can write

(2.S) e(M(z)) MR[z] U[z] f"l MR[z]},

as a k[ z]-module. To develop such an isomorphism, we can begin with the commutative
diagram of Fig. 2.1, in which rows are natural inclusions and columns are restrictions
of M(z). If r(z) represents an element in (2.3), then column two of Fig. 2.1 induces
the desired isomorphism by the action

(2.6) r(z) - M(z)r(z) mod MR[z] f-] U[z].

The pole module of M(z) maintains its basic character, being finitely generated and
torsion, even when the kernel, ker M(z), of M(z), or the cokernel, coker M(z), of
M(z) is nonzero. It turns out that this is not the situation for k[z]-zeros of M(z).
However, there is a fundamental module containing the zeros of M(z) which are
finitely generated and torsion. These zeros, of course, will be the most familiar because
they resemble poles.

The finitely generated, torsion zero module Z(M(z)) associated with a k(z)-linear
map M(z) was defined by Wyman and Sain [8] in 1981 to be the k[z]-factor module

(2.7) Z(M(z)) {M-1U[z]+ R[z]}/{ker M(z)+ R[z]}.

M

M(z) M(z)

MR[z] f3 U[z] MR[z]
FIG. 2.1
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From the fact that R[z] and U[z] are finitely generated, together with the fact that
elements are equivalent modulo ker M(z), we have that (2.7) is finitely generated. It
is torsion because any element in M- U[z] can be scaled by a polynomial p(z) in
k[z] so that the result lies in R[z]. From the.definition, it is clear that the module
Z(M(z)) has to do with inputs in R(z) which lead to outputs in U[z], but not
polynomial vector inputs in R[z] and not inputs in ker M(z). Intuitively, then, we are
talking about system excitations which contain poles, but which produce nonzero
responses without poles. In the sequel, when we use the term zero module, we will
have in mind the finitely generated, torsion module (2.7), or one of its isomorphic
forms. Two such forms are given by

(2.8) Z(M(z)) M- U[z]/{M- U[z] f"l (ker M(z) + R[z])}

(2.9) { U[z] fq MR(z)} U[z] fq MR[z]};
and explicit isomorphisms corresponding to (2.8) and (2.9) can be determined from
the commutative diagrams of Figs. 2.2 and 2.3, respectively.

In a manner analogous to poles, the zero module permits a state-space interpreta-
tion. As a k-vector space, Z(M(z)) Xz, which is of finite dimension. Also, the scalar
module action z’Z(M(z)) -> Z(M(z)) defines a k-linear map Az" Xz Xz. The space
Xz is not the usual state space; and the map Az is not the usual dynamics map. In
order to distinguish the cases, we can think of Xp as a space of pole-states and of Xz
as a space of zero-states. Then Ap becomes the pole-state dynamics map, while Az is
the zero-state dynamics map. It should be noted that the terminology "zero-state" is
not in reference to any initial conditions. Rather, we are speaking of two distinct state
spaces which are associated with the same k(z)-linear map. One of these spaces is for
poles, while the other is for zeros.

The module Z(M(z)) is a generalization of the elementary notion of "numerator
polynomial" n(z), even as the module P(M(z)) generalizes d(z). The algebra of these
modules is somewhat more intricate than that of the ring k[z], however, and involves
commutative diagrams and exact sequences. Moreover, for the study of the problem
in this paper, other types of k[z]-zeros have an important role to play. Some of these
zeros are of torsion type, but not finitely generated. Others are finitely generated, but

M-1U[z] f"l (ker M(z) + R[z]) - M-1U[z]

ker M(z) + R[z]
FG. 2.2

r.- M-1U[z] +/[z]

FIG. 2.3

M-1U[z] f"l (ker M(z) + R[z]) - M-U[z]
M(z) (z)

U[z] fq MR[z] U[z] gl MR(z)
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are not torsion. We have, therefore, to extend the notion of zero; and this is the content
of3.

3. Extended zeros: divisible and free. In 2, we discussed k[z]-zeros of a k(z)-
linear map M(z): R(z)--> U(z). These zeros were finitely generated and torsion; and,
accordingly, they possess a natural interpretation of state-space type. Such zeros, which
have received almost all the attention in the systems literature, are most familiar because
of their resemblance to poles. For systems having one input and one output, this
concept of zero is entirely adequate. When multiple inputs and multiple outputs are
considered, however, zeros appear which are not ofpole-type. Some ofthese are torsion
zeros, but not finitely generated; in the context of realization theory, these may be
classified as zeros of output type. Others are finitely generated, but free; and these
have an analogous classification as zeros of input type. It is possible to extend the
idea of zeros in such a way as to embrace both the zeros of pole-type, as in the previous
section, and zeros of output or input type. The development of these notions, as well
as their interrelationships, is the goal of this section.

3.1. The F-zero module. We begin our discussion of extended zeros in such a way
as to address the zeros of output type. Consider the k[z]-factor module

(3.1) Zv(M(z)) M- U[z]/{R[zJf-I M- U[z]}.
This module is torsion. Indeed, observe that M- U[z] is a submodule of R(z), from
which we have for every representative r(z) of a class in (3.1) a polynomial p(z) in
k[z] such that p(z)r(z) is in R[z] and is therefore equivalent to zero. If ker M(z) is
not equal to zero, however, (3.1) is not finitely generated. We shall call (3.1) the F-zero
module of M(z).

When ker M(z) is zero, Zr(M(z)) is identical to the form (2.8) and so is isomor-
phic, as a k[z]-module, to the zero module Z(M(z)) of 2. Note that this statement
holds whether or not M(z) has a nontrivial cokernel. When ker M(z) is not zero, the
nature of the F-zero module can be studied by means of the commutative diagram in
Fig. 3.1, where rows and columns are natural inclusions. By the action

(3.2) r(z) r(z) mod (ker M(z) + R[z]) fq M- U[z],
this diagram induces an epic, k[z]-linear map a(z) from Zv(M(z)) onto the isomorphic
copy (2.8) of Z(M(z)). The kernel of a(z) is isomorphic to

(3.3) F(M(z)) ker M(z)/{R[z]fqker M(z)}.
Thus we have the short exact sequence

(3.4) 0--> r(M(z))-. Zr(M(z)) ); Z(M(z))-->O,
if we identify (2.8) with Z(M(z)).

The module (3.3) is both torsion and divisible. To see the latter, observe that
scalar multiplication p(z):ker M(z)--> ker M(z) is an epimorphism of k[z]-modules
whenever p(z) is nonzero in k[z]. Then F(M(z)) inherits this same property. As a
divisible module over k[z], F(M(z)) is injective; and so its image under injection into

/[z] M-1U[Z] M-U[z]

FIG. 3.1
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Zr(M(z)) is a direct summand. It follows that

Zr(M(z)) r(M(z)) (R) Z(M(z)).

We will refer to r(M(z)) as the divisible zero module of M(z), and to Zv(M(z)), the
F-zero module of M(z), as an extended zero module. In view of (3.5), we see that the
notion of F-extended zeros includes both F(M(z)) and Z(M(z)) as special cases.

Realization theory also makes use of a torsion, divisible module. Indeed, let

(3.6) M#(z) =pM(z)i
be the k[z]-linear composition of the natural inclusion i: R[z]- R(z), M(z), and the
natural projection p: U(z) U(z)/U[z]. Me(z) is the restricted input/output map
corresponding to M(z). The output module of Me(z) is torsion divisible, and is often
denoted by F U. From the commutative diagram of Fig. 3.2, of natural inclusions, we
can induce a monic, k[z]-linear map on Zr(M(z)) into FR. Then we can think of
Zr(M(z)) as a submodule of FR. Accordingly, we employ the subscript F and regard
F-zeros as being of output type.

3.2. The ll-zero module. Next we examine zeros of input type, by forming the
k[z]-factor module

(3.7) Za(M(z)) U[z]/{ U[z] f’) MR[z]}.

Module (3.7) is finitely generated, because U[z] is finitely generated. Not every
equivalence class in (3.7) is torsion, however, because not every u(z) in U[z] can be
brought into MR[z] by means of scalar multiplication. If the image, im M(z), of M(z)
is equal to U(z) on the k(z)-level, then the isomorphic form (2.9) of Z(M(z)) is equal
to (3.7); and so we see that Za(M(z)) differs from Z(M(z)) when coker M(z) is
nonzero. We call (3.7) the f-zero module of M(z).

R[z] f’l M-1U[z] .M-U[z]

R[z] . R(z)
FIG. 3.2

When coker M(z) is nonzero, we observe that form (2.9) is a submodule of (3.7).
Identifying (2.9) with Z(M(z)), we have a natural inclusion of Z(M(z)) into
Za(M(z)), with cokernel isomorphic as a k[z]-module to

(3.8) I(M(z)) U[z]/{ U[z] f"l MR(z)}.

Thus there is a short exact sequence

(3.9) O-> Z(M(z))--> Za(M(z))--> YZ(M(z))--> O

of k[z]-modules and k[z]-linear maps. The module (3.8) is torsion-free. To determine
this, suppose the contrary. Then there is a nonzero u(z) in U[z] and a nonzero p(z)
in k[z] such that

(3.10) p(z)u(z) M(z)r(z), r(z) R(z).

But then it follows that u(z) is in M(z)R(z) and must be equivalent to zero in (3.8).
As a finitely generated, torsion-free module over the principal ideal domain k[z],
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(M(z)) is a free module. From the exactness of (3.9) at.l(M(z)), it then follows that

(3.11) Z(M(z)) (M(z))@Z(M(z)).
We will call (M(z)) the free zero module of M(z). Like Zr(M(z)), then, Z(M(z))
is an extended zero module, this time of -type. Note from (3.11) that extended
-zeros include (M(z)) and Z(M(z)) as particular eases.

From the viewpoint of realization theory, the inputs to M#(z) lie in R[z], which
is often denoted R. As a factor module of fU, Z(M(z)) may be thought of in terms
of zeros of input type; and this motivates the subscript

3.3. Relation between Zr(M(z)) and Z(M(z)). The presence of Z(M(z)) in both
the F-zero module, as a factor module, and the -zero module, as a submodule,
suggests that there may exist a relationship between F-zeros and -zeros. Indeed, this
is the case; and a convenient way in which to state this relationship is provided in the
following theorem.

THEORE 1. Let Zr(M(z)) be the F-zero module of M(z), and let Z(M(z)) be
its l-zero module. Then there exists an exact sequence

(3.12) 0- r(M(z))- Zr(M(z)) - Z(M(z)) - (M(z))- 0

of k[z]-modules and k[z]-linear maps.
Proof We establish a k[z]-linear map from Zr(M(z)) into Zn(M(z)) by inducing

from the restriction of M(z) to M-U[z]. The existence of the desired map is a
consequence of the commutative diagram of Fig. 3.3, where rows are natural inclusions
and columns are restrictions of M(z). The kernel of the induced map is given by

(3.13) M-I(MR[z] f’l U[z])/{R[z] f"l M-1 U[z]},
which is isomorphic as a k[z]-module to F(M(z)). The image of the induced map is
form (2.9); and so the cokernel is f(M(z)), as asserted.

R[z] M-U[z] . M-1U[z]

MR[z] f U[z] U[z]
FIG. 3.3

Remark. It is interesting to consider what happens in Theorem 1, with respect to
its exact sequence (3.12), when the k(z)-linear map M(z) has special features. For
example, when ker M(z) is zero, so that its matrix representation would have full
column rank over k(z), then (3.3) indicates that F(M(z)) is zero and (3.5) shows that
Zr(M(z)) is isomorphic as a k[z]-module to Z(M(z)). Thus this special case of (3.12)
becomes identical to the corresponding special case of (3.9). In like fashion, if the
matrix of M(z) has full row rank over k(z), then gl(M(z)) becomes zero; and the
corresponding specialization of (3.12) is identical to the associated specialization
of (3.4).

Remark. It should be noted that Zr(M(z)) and Za(M(z)) will not be isomorphic
unless the matrix of M(z) is both square and invertible. For instance, it is quite possible
for Za(M(z)) to have finite dimension as a vector space over k while Zr(M(z)) is
infinite-dimensional. This occurs when the matrix of M(z) is right invertible over k(z),
but not invertible.

In this section, we have discussed extensions of the classical idea of zero to include
divisible or free zeros. These extensions were expressed, respectively, in terms of the



EXTENDED MATCHING ZEROS 571

F-zero module Zv(M(z)) and the O-zero module Za(M(z)) of a k(z)-linear map
M(z):R(z) U(z). The F-zero module has received prior study in [14], where it has
been shown to be closely related to the concept of zero signal generation. The f-zero
module does not seem to have received prior attention. Both F-zeros and O-zeros play
a central role in studying fixed zeros in model matching problems. We call such fixed
modules "matching zeros," and discuss them in the following section.

4. Matching zeros. Suppose that the dimensions of R, U, and Y are each equal
to unity, and consider the scalar equation

(4.1) t(z) =p(z)m(z),

with all entries in k(z). If we express these transfer functions in relatively prime form

(4.2) t(z) (nt(z), dt(z)), p(z) (rtp(Z), dp(z)), re(z) (rim(Z), din(z)),

then we obtain

(4.3) p(z) (n,(z)d,,(z), d,(z)nm(z)),

which.is useful when re(z) is given, and

(4.4) re(z) (nt(z)dp(z), d,(z)np(Z)),

which is useful when p(z) is given. From (4.3), we see that the zeros of p(z) consist
of those zeros of t(z) which are not zeros of re(z), together with those poles of m(z)
which are not poles of t(z). From (4.4), we have that the zeros of rn(z) are zeros of
t(z) which are not zeros of p(z), together with poles of p(z) which are not poles of
t(z). This idea for determining fixed zeros in solutions to (4.1) is direct and intuitive;
and we may well inquire if there exists a suitable extension to the multivariable case.
Unfortunately, as we will later demonstrate in detail, such a generalization is not
really available when we restrict our attention to k[z]-zeros which are finitely generated
and torsion. But, if we permit the use of extended zeros, as explained in 3, then we
can obtain statements which are quite close in spirit to those above.

In order to capture in a more precise way the intuitive ideas of the preceding
paragraph, we introduce the notion of a matching zero module. The matching F-zero
module is denoted by Zv and defined to be the k[z]-factor module

(4.5) Zr T- Y[z]/{ T- Y[z] I"l M- U[z]},

where T(z) R(z) - Y(z) is a k(z)-linear map. The matching f-zero module is denoted
by Za and defined to be the k[z]-factor module

(4.6) Za {PU[z]+ TR[z]}/ TR[z],

for P(z):U(z)- Y(z) a k(z)-linear map. The algebraic character of matching zero
modules of F-type and of 12-type is settled by the theorem which follows.

THEOREM 2. Let Zv and Za be the matching zero modules of F-type and 12-
type, respectively, for k(z)-linear maps M(z) R(z)- U(z), P(z): U(z)- Y(z), and
T(z): R(z) - Y(z). Define k[z]-factor modules

(4.7)

(4.8)

(4.9)

(4.10)

Z.= T-1y[z]/{T-’ Y[z]f-I (ker T(z)+ M-’ U[z])},

F ker T(z)/{ker T(z) f-I M-’ U[z]},

Z’a {nU[z] f-I rR(z)}/{nU[z] f-I TR[z]},

12 nU[z]/{nU[z] f-I rR(z)}.
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Then

(4.11) Zr-F@Z,
where F is torsion divisible and Z- is finitely generated and torsion; and

(4.12) Za D( Z’a,
where f is finitely generated and free while Z’a is finitely generated and torsion.

Proof We begin by discussing the matching l)-zero module. Because R[z] and
U[z] are finitely generated, we have also from (4.6) that Za bears the same propey.
However, not every element in Za is a torsion element. Consider the torsion submodule
of Za. If y(z) represents a torsion element, then there exists a nonzero polynomial
p(z) such that

(4.13) p(z)y(z) T(z)r(z), r(z) R[z].
But (4.13) implies that y(z) T(z)R(z). Conversely, if y(z) T(z)R(z), then (4.13)
can be satisfied for appropriate choices of p(z) and r(z). Thus the torsion submodule
of Za is given by

(4.14a) [{PU[z]+ TR[z]} TR(z)]/TR[z]= {PU[z] TR(z)+ TR[z]}/TR[z]
(4.14b) {PU[z] TR(z)}/{PU[z] TR[z]}
(4.14c) Z.
Using the isomorphic form (4.14a), we can inse Zh into Zn and produce a cokernel
which is isomorphic to

(4.15)
{PU[z]+ TR[z]}/{PU[z] TR(z)+ TR[z]}

eU[z]/{eU[z] r(z)} .
We claim that is a torsion-free module. To see this, suppose that y(z) represents a
torsion element; then

(4.16a) p(z)y(z) T(z)r(z), r(z) R(z),
for some nonzero polynomial p(z). Consequently, there is a polynomial q(z) such that

(4.16b) (q(z)p(z))y(z) T(z)(q(z)r(z)), q(z)r(z) R[z].
But this means that y(z) is equivalent to zero in Za, as desired. As a finitely generated
module over a principal ideal domain, is also free. We thus have a sho exact sequence

(4.17) 0 Z[ Za 0;

and, because is free, and a factor module of Za, we obtain (4.12). Next we turn to
the matching F-zero module. If r(z) is an element of T- Y[z], and if the equation
p(z)x(z) r(z) has a solution x(z) in T- Y[z] for each p(z) in k[z], then

(4.8) r(z)(r(z)/p(z)) g[z]

for all nonzero p(z). But this cannot be true unless r(z)eker T(z). It follows that
ker T(z) is the divisible submodule of T- Y[z]. Consequently, F is divisible and is
isomorphic to the divisible submodule of Zr. There exists an epic, k[z]-linear map
from Zr onto Z[., with kernel isomorphic to F. Thus we can write a sho exact sequence

(4.19) 0FZrZ0,

and infer (4.11) from the exactness of (4.19) at F, together with the fact that F is
divisible. The torsion character of F and Z follows, of course, from that of Zv; and
the torsion character of Zr is a result of the fact that

(4.20) M(r-1 [z]) = U().
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Remark. It is evident from Theorem 2 that Zr is a module having the same
character as a module of extended F-zeros. In the same way, Zn has a structure of
the same type as a module of extended -zeros.

Remark. Observe that F in (4.8) vanishes when the matrix of T(z) has full column
rank over k(z). In this case the. matching zero module of F-type is finitely generated
and torsion. In similar fashion, we can say that 12 in (4.10) becomes zero when the
matrix of T(z) has full row rank over k(z). Then the matching zero module of 12-type
is finitely generated and torsion.

Remark. It is worth pointing out that a k(z)-linear map, such as T(z), may be
onto while its restriction to polynomial vectors may not. It is precisely this fact which
makes the study of zero properties possible for matrices. Thus, when we speak of the
row rank or the column rank of a matrix, it is important to make clear whether we
are regarding it as a linear map over k[z] or k(z).

So as to justify the use of the term "matching zeros" in connection with the
modules Zr and Za, we will show that they appear naturally as submodules and factor
modules of the appropriate extended zero modules associated with solutions M(z) or
P(z) to the model matching equation of 1.

THEOREM 3. Suppose that Zr and Za are the matching zero modules of F-type and
-type, respectively, and let T(z) R(z) Y(z) be a k(z)-linear map.

(1) If P(z) U(z)- Y(z) is a k(z)-linear map whose image contains that ofT(z),
and if M(z):R(z)- U(z) is a k(z)-linear map which satisfies the equation T(z)=
P(z)M(z), then there exists an epic, k[z]-linear map

(4.21a) (z) :Z(())- z,
so that Zn is isomorphic to a factor module of the -zero module ofM(z).

(2) IfM(z) R(z) - U(z) is a k(z)-linear map whose kernel is contained in that of
T(z), and ifP(z) U(z) Y(z) is a k(z)-tinear map which satisfies the equation T(z)
P(z)M(z), then there exists a monic, k[z]-linear map

(4.21b) r(z) Zr Zr(P(z)),

so that Zr is isomorphic to a submodule of the F-zero module of P(z).
Discussion of Theorem 3. From (4.5), Zr depends upon T(z) and M(z), but not

upon P(z); accordingly, the constraint indicated by (4.21b) holds for all solutions
P(z) to the model matching equation. Likewise, (4.6) shows that Z depends only
upon P(z) and T(z); and so (4.21a) is a feature of all solutions M(z).

Proof of Theorem 3. Recall from 3.2 the definition (3.7) for the 12-zero module
of M(z). From the commutative diagram of Fig. 4.1, which is made up of natural
inclusions and restrictions of P(z), we can induce the map/3n(z), which is epic because
the restriction of column two is epic. We remark that row two of Fig. 4.1 induces an
isomorphic copy of Zn, which is employed for convenience. Next, consider the

U[z] VI MR[z] U[z]

PU[z] TR[z] PU[z]

FIG. 4.1
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commutative diagram of Fig. 4.2. The second row of the diagram induces ZF(P(z)),
in accord with definition (3.1), 3.1, while the first row induces Zr, as given in (4.5).
Columns one and two are restrictions of M(z). Map fir(z) of the theorem can be
induced from this diagram. The calculation of its kernel gives

(4.22) {M-I(P-1Y[z]("I U[z]) f] T-1y[z]}/{T-1y[z]fflM-1U[z]},

which vanishes as desired.
Remark. Theorem 3 has a number of features which occur in special cases. From

Theorem 2, for example, we know that Zn becomes a finitely generated, torsion module
when T(z) is an epic k(z)-linear map. The question arises about whether the solution
M(z) of (4.21a) will have extended zeros of -type. It is easy to see that any nonzero
element of Z(M(z)) must either be a torsion element or lie in the kernel of/3n(z).
But we know that the module (M(z)) contains no nonzero torsion elements. Thus,
the question of whether a solution M(z) has zeros of -type can be related to whether
fin(z) has a kernel. We will see in 7 that this kernel can be made to vanish by
requiring that the kernel of P(z) be zero. Accordingly, if the matrices of T(z) and
P(z), considered as k(z)-linear maps, are of full row rank and column rank, respec-
tively, then the unique solution M(z) has no extended zeros of -type. Moreover, the
finitely generated, torsion zeros of M(z) arise from the resulting, finite-dimensional
matching zero module Zn. Related remarks can be made if T(z) is a monic k(z)-linear
map. In this case Zr is finitely generated and torsion; and the center of attention is
the cokernel of fly(z). The extended F-zero character of solutions P(z) can be elimi-
nated by assuming that M(z) has zero cokernel. Thus, if the matrices of T(z) and
M(z), considered as k(z)-linear maps, are of full column rank and row rank, respec-
tively, then the unique solution P(z) has no extended zeros of F-type. For brevity, we
leave the details of this second argument to the reader.

The constructions of (4.3) and (4.4) constitute a direct and intuitive way to
characterize the zeros of solutions p(z) and re(z) to the model matching equation
(4.1). In a generalization of those ideas to cases in which the dimensions of R, U, and
Y are not equal to unity, we have replaced the elementary notion of polynomial with
that of the more powerful and versatile module. One basic reason why we advance
this point of view has to do with the fact that solutions P(z) or M(z) need not be
unique, as they are in (4.1). We have to deal, then, with the module of zeros which is
somehow a part of the zero module of any possible solution. The matching zero
modules Zr and Zn play this role, for the two possible cases; and containment has to
be understood either in terms of a submodule or in terms of a factor module.

However, an even more fundamental reason for introducing the matching zero
modules has to do with generalizing the interpretations of (4.3) and (4.4), which follow
those equations. It turns out that the analogous statements for higher-dimensional R,
U, and Y must be made in terms of extended zeros. Because extended zeros are
transparent in the familiar polynomial-matrix theories, it becomes both necessary and

-Iy[z] M-1u[Z] T-1

P-Y[z] U[z] P-1Y[z]
FIG. 4.2
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(5.2a)
(5.2b)

(5.2c)
(2) If

prudent to make use of the module-theoretic method in order to give them a careful
accounting. The section following provides further detail.

5. Significance of Zr and Za. We have seen in 4 that the matching zero module
Zr is isomorphic to a direct sum of divisible zeros with zeros of finitely generated,
torsion type. From 2, we see that the latter type of module appears both in representa-
tions of poles and in representation of zeros. The former type of module, however,
has appeared in 3, which deals with extended zeros. In an analogous way, the
matching zero module Za is isomorphic to a direct sum of free zeros with zeros of
finitely generated, torsion type. Once again, the second class of module appears also
in descriptions of poles, while the first type has been employed to discuss extended
zeros. If, therefore, we are to generalize the conclusions which follow (4.3) and (4.4),
we may anticipate that the term "zeros" will be replaced by the term "extended zeros."
We might also hope to represent Zv in terms of F-zeros of T(z) and of M(z), together
with poles of T(z) and of M(z), and to represent Za with l-zeros of T(z) and of
P(z), as well as with poles of T(z) and of P(z). These intuitions turn out to be true
in great part.

The difference which arises has to do with the treatment of M(z), in a discussion
of Zr, and with P(z), in a treatment of Za. Basically, we must pair these maps with
T(z), in place of letting them stand alone. Thus, for Zr, we study T(z) and the pair
(T(z), M(z)); for Zn, we take T(z) and the pair (T(z), P(z)). This section shows just
what conceptual modifications have to be made. The main result is Theorem 4,
following.

THEOREM 4. Let Zr and Za be the matching zero modules of F-type and f-
type, respectively, for k(z)-linear maps M(z) R(z) U(z), P(z): U(z)- Y(z), and
T(z) g(z)- r(z).

(1) If IT(z) P(z)]: R(z) U(z)- Y(z) is the k(z)-linear map with action

(5.1) IT(z) P(z)](r(z), u(z)) T(z)r(z)+P(z)u(z),
then there exist k[z]-modules Z and P, together with appropriate k[z]-linear maps,
such that the following three short sequences are exact:

0- P(T(z)) - P([ T(z) P(z)]) - P1 O,
0--) Z ---) za( r(z))- Z([ r(z) P(z)])- O,

O Z1 -Z P1 - 0.

(5.3a) [ T(z)]lM(z)
R(z)- r(z) U(z)

is the k(z)-linear map having action

(5.3b)
M(z)

(r(z)) (r(z)r(z), M(z)r(z)),

then there exist k[z]-modules Z2 and P2, together with appropriate k[z]-linear maps,
such that the following three short sequences are exact:

(5.4a) 0- P2 P
M(z)

P(T(z)) 0,

(5.4b) O Zr M(z)
Zr(T(z)) & 0,

(5.4c) 0 P2 ZF/20.
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Discussion of Theorem 4. The module P1 is described in (5.2a), on a module-
theoretic level, as "the poles of IT(z) P(z)] which are not poles of T(z)." Note that,
in the case (4.4), this reduces to the poles of P(z) which are not poles of T(z), as
desired. The pole module of T(z) P(z)] has generalized "the poles of P(z)" for this
situation. In the same way, from (5.2b), we see that the O-zero module of T(z) has
generalized "the zeros of T(z)," while the O-zero module of T(z) P(z)] has general-
ized "the zeros of P(z)." Note that, in the situation (4.4), Za(T(z))= Z(T(z)), and
Za([T(z) P(z)])= Z([T(z) P(z)]). With the nature of Z1 and P1 established, (5.2c)
shows that Za has a submodule Z, and a factor module P containing those zeros of
Z, which are not zeros of Z. The explanation of (5.4) proceeds in a corresponding
manner. Relative to (4.3), the F-zero module of T(z) replaces "the zeros of T(z),"
while the F-zero module of (5.3) replaces "the zeros of M(z)." The polemodules of
T(z) and of (5.3) replace "the poles of T(z)" and "the poles of M(z)," respectively.
Once again, in the case (4.3), Zr(T(z))= Z(T(z)), and so forth.

Remark. In (5.2b) and (5.2c), it is apparent that none of the modules in the
sequence will be extended of f-type if we assume that T(z) is epic as a k(z)-linear
map. This has already been discussed for Za(T(z)) and Z,. It follows for the right
member in (5.2b) because IT(z) P(z)] is onto when T(z) is onto, and for the left
member in (5.2b) and (5.2c) because Z1 is a submodule in each case. Similar comments
follow in (5.4b) and (5.4c) when T(z) is monic as a k(z)-linear map. For these cases,
Theorem 4 is for zeros a result corresponding to that obtained for fixed poles by Conte,
Perdon, and Wyman [7]. The work in [7], however, required only the concepts of
finitely generated, torsion poles and zeros. As we will see in 7 and 8, the intuitively
pleasing character of Theorem 4 is not carried over to the features of finite-dimensional
zeros.

Proof of Theorem 4. We begin with the first part of the theorem and form a
commutative diagram of natural inclusions, as in Fig. 5.1. Observe that column two
has a cokernel which is Za, as in (4.6). Next consider the k(z)-linear map

T(z) P(z)]:R(z) U(z) - Y(z),

with action (5.1). The pole module of the map (5.5) is given by the isomorphic form
(2.5) to be

(5.6)
T P](R[z]O) U[z])

P([ T(z) e(z)])
Y[z] f’) T P](R[z]O) U[z])’

which we recognize as the quotient module induced from row two of Fig. 5.1. Row
one, of the same diagram, on the other hand, induces a quotient module

TR[z]
(5.7)

Y[z] f3 TR[z]
P( T(z))’

the pole module of T(z). The diagram, moreover, induces a monic k[z]-linear map
on P(T(z)) into P([ T(z) P(z)]), with a cokernel that we have denoted by P1. Return

Y[z] f3 TR[z] TR[z]

Y[z] f {PU[z] 4- TR[z]} PU[z] 4- TR[z]
FIG. 5.1
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now to the composite map (5.5), and form the f-zero module

(5.8)
V[z]

za([ T(z) P(z)])
Y[z] T P](R[z] U[z])"

Next calculate the O-zero module of T(z) in the manner

(5.9) Za(T(z))=
Y[z]

Y[z] TR[z]"

Bythe inclusion TR[z] c TR[z]+ PU[z], there is an epic, k[z]-linear map on Za(T(z))
onto Za([ T(z) P(z)]), with kernel isomorphic to

(5.10)
Y[z] f"l TR[z] + PU[z])

Y[z] fq TR[z]

In Fig. 5.1, however, see that (5.10) is just the cokernel of column one, which we have
denoted by Z1. Equation (5.2c) then follows. Next we consider the second part of the
theorem. A useful beginning point is the commutative diagram of Fig. 5.2, in which
once again both the rows and the columns are natural inclusions. From the second
row, we can induce Zv(T(z)), while from the first row we obtain

(5.11) Zr([ T(z)

by the analogous process. The diagram of Fig. 5.2 then induces a monic, k[z]-linear
map on the module (5.11) into Zv(T(z)), with cokernel Z2 as in (5.4b). The cokernel
of column two is Zv, by the definition (4.5). Because the cokernels of columns one
and two, together with that of the induced monomorphism, fit into a short exact
sequence, we have (5.4c) if P2 is defined to be the cokernel of column one. This last
cokernel can be related to certain pole modules. Recall definition (2.3), and form the
pair of pole modules

(5.12) P
M(z) R[z] Ci T-’ Y[z] f-) M-1U[z]’

(5.13) P(T(z))=
R[z]

R[z] ffl T-1 Y[z]

Clearly, R[z] fq T-1Y[z] fq M-1 U[z] is a submodule of R[z] fq T-1 Y[z], and so there
exists an epic, k[z]-linear map from the module of (5.12) onto the module of (5.13).
The kernel of this epimorphism is isomorphic as a k[z]-module to

R[z] f-I T-’ Y[z]
(5.14)

R[z] (-’l T-1 Y[z] (q M-1 U[z]’

which is P in (5.4a).

T-1r[z] M-1U[z] f’l n[z] T-1r[z] M-1U[z]

r-g[] c [1 ; r-g[l

FIG. 5.2
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Because the pole modules of (5.3) and of (5.5) are finitely generated and torsion,
we have from the exactness of (5.2a) at P1 and from the exactness of (5.4a) at P2 that
these modules have the same character. On the other hand, Z1 and Z2 may display
behavior which is in part free or divisible, respectively. We conclude this section by
giving an explicit description of these features.

Consider the module Z, as given in (5.10). Finitely generated, Z has a torsion
submodule. Suppose that y(z) in Y[z] represents a torsion element. Then there is a
nonzero polynomial p(z) in k[z] such that p(z)y(z) is in TR[z], which means that
y(z) lies in TR(z). The converse is also true, and so

(5.15) Y[z]f-I(TR[z]+PU[z])f’) TR(z)= Y[z]f){TR[z]+ TR(z)PU[z]}

represents the torsion submodule Z of Z. We can then set up a short exact sequence

(5.16) 0Z’ - Z1 -f - 0,

in which f may be taken as

Y[z] fq (T[z] + VU[z])
(5.17)

Y[z] f) TR[z]+ PU[z]) N TR(z)"

Now fl is torsion-free, because any representative which can be annihilated by a
polynomial must already stand for the zero element. It then follows that Z1 is isomorphic
to a direct sum of f and Z. Next, we refer back to Fig. 5.2, where the cokernel of
the induced monomorphism has been defined to be Z2. Note that the image of the
monomorphism is

T- Y[z]fq M-I U[z]+ T- Y[z]fq R[z]
(5.18) T-1y[z] fq R[z]

so that we have the form

(5.19) T-1 Y[z]/{ T- Y[z] (-I M-1 U[z]nu T-’ Y[z] f’) R[z]}

for Z2. A torsion module, (5.19) has a divisible submodule given by

(5.20) F2= ker T(z)/{ker r(z)(’q{T-1r[z]("lM-1U[z]+ r-lr[z](-]R[z]}}.
If we establish a short exact sequence

(5.21) 0 r2 z2- z- o,
then Z can be taken to be

(5.22) T-1Y[z]/{ker T(z)+ T-Y[z]M-U[z]+ T-Y[z]fqR[z]},

which is finitely generated. We summarize the discussion in the next theorem.
TqEOREM 5. Let Z be the extended zero module of 1)-zeros of T(z) which are not

O-zeros of (5.5), and let Z2 be the extended zero module of F-zeros of T(z) which are
not F-zeros of (5.3). Then there exist k[z]-modules f and Z, 1"2, and Z’2, such that

(5.23a) Z1 )Z,

(5.23b) z2r2@z,

where Z’, i= 1, 2, are finitely generated, torsion modules, 121 is finitely generated and
free, and F is torsion divisible.

Proof The details have been provided in the prelude to the theorem. Z and Z
were discussed in (5.15) and (5.22); f and F are given by (5.17) and (5.20).
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Remark. As remarked after the preceding theorem, fl or l-’2 vanish if T(z), as a
k(z)-linear map, is epic or monic, respectively.

6. Essential solutions. We have seen in Theorem 3 that the modules Zr and Za
of matching zeros represent zero constraints which must hold for all solutions to the
model matching equations. In particular, suppose that T(z)" R(z)- Y(z) is a k(z)-
linear map. When P(z)" U(z) Y(z) is a k(z)-linear map whose image contains that
of T(z), then Za is a factor module of the O-zero module of every k(z)-linear solution
M(z)" R(z) U(z) to the equation T(z)--P(z)M(z). Or, if we regard M(z) to be
given, with kernel included in that of T(z), then Zr must be a submodule of the F-zero
module of every solution P(z). The mechanism for the constraint is embodied in the
k[z]-linear maps/3a(z) and fir(z) of (4.21). In this section, we examine initially the
conditions under which the solution may have an extended zero module isomorphic
to a matching zero module. This question is, of course, fundamental because the
solution zero structure then achieves its limiting constraint. When Za(M(z)) Za, we
refer to M(z) as an essential solution to the model matching equation. Likewise, when
Zv(P(z) Zv, we call P(z) an essential solution. Necessary and sufficient conditions
are given for the existence of essential solutions. A number of other types of related
behavior occur; some of these are discussed in the next section. It should be noted
here that the situation for essential solutions in regard to zeros differs concretely from
the corresponding scenario for poles. It has been shown by Conte, Perdon, and Wyman
[7] that essential solutions for poles always exist in the model matching problem. We
shall see momentarily, however, that for zeros they need not exist.

Refer once again to Fig. 4.1, which induces the k[z]-linear map a(z)’Z(M(z)) -Za. The kernel of this map is given by

(6.1a) ker/3a(z) { U[z] f"l P-I(PU[z] f"l TR[z])}/{ U[z] f"l MR[z]}

(6.1b) { g[z] f"l (MR[z] + ker P(z))}/{ g[z] f"l Me[z]}.

A solution M(z) is essential, therefore, when

(6.2) U[z]f’l (MR[z]+ker P(z))= U[z]f-1 MR[z].

On the other hand, from Fig. 4.2, we may determine that the image of flr(z)’Zr
Zr(P(z)) is

(6.3a) imr(z)={M(T-1y[z])+P-IY[z]f3 U[z]}/{P-Y[z]f3 U[z]},
so that the cokernel is given by isomorphism as

(6.3b) cokerClv(z)P-Y[z]/{M(T-Y[z])+P-Y[z]f’l U[z]}.

In this context, then, a solution P(z) is essential when

(6.4) P-IY[z]=M(T-Y[z])+P-IY[z]f-1U[z].
With these preliminaries, we are ready to give the basic result on equalities (6.2) and
(6.4).

THEOREM 6. Let T(z):R(z) Y(z) be a k(z)-linear map. If P(z): U(z)- Y(z)
is a k(z)-linear map whose image contains that of T(z), then there exists a k(z)-linear
map M(z):R(z) U(z) which satisfies the equation T(z)= P(z)M(z) and which has
an f-zero module

(6.5a) Z.(M(z))Z.

if and only if
(6.5b) rank P(z)-rank T(z)->_ dim U-dim R.
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If M(z)" R(z) U(z) is a k(z)-linear map whose kernel is contained in that of T(z),
then there exists a k(z)-linear map P(z)" U(z)- Y(z) which satisfies the equation
T(z) P(z)M(z) and which has a F-zero module

(6.6a) Zv(P(z)) Zr
if and only if
(6.6b) rank M(z)-rank T(z) =>dim U-dim Y.

Proof For the first part of the theorem, we refer to condition (6.2). If this condition
is true, it is necessary that

(6.7) U[z] (’l MR[z] U[z] f’l ker P(z).
But the only elements of MR[z] which can possibly be in ker P(z) are those arising
from ker T(z). Accordingly, (6.7) holds when and only when

(6.8) U[z] ffl M(ker T(z) ffl R[z]) = U[z] ffl ker P(z).
When considered as a free module, the right member of (6.8) satisfies

(6.9) rank { U[z] f-1 ker P(z)} dim U-rank P(z),
while the left member depends upon the constraint

(6.10) rank {ker T(z) f-1R[z]} dim R-rank T(z).

Together, the preceding three equations imply that (6.5b) must be satisfied. Suppose
next that condition (6.5b) is satisfied. We will demonstrate the existence of an M(z)
such that (6.2) holds. Observe that ker T(z) and ker P(z) are divisible modules, so that

(6.11) R(z) R(z)(ker T(z), U(z) U(z)ker P(z),

for suitable k[z]-linear isomorphisms

(6.12) (z) R(z)/ker T(z), (z) U(z)/ker P(z).
Because M(ker T(z)) c ker P(z), each M(z) satisfying the equation T(z) P(z)M(z)
induces a unique, k(z)-linear monomorphism M(z)" R(z)/ker T(z) U(z)/ker P(z).
The fact that M(z) is unique can also be seen as a consequence of the feature that
the map induced by P(z) on U(z)/ker P(z)_ is monic. If we suppress explicit use of
the isomorphisms (6.12), we can think of M(,,z) as a map on R(z) into U(z). Next,
we define the action of M(z) on ker T(z). Let M(z) ker T(z) f’l R[z] ker P(z) f’l U[z]
be any k[z]-linear epimorphism.//(z) induces an epic, k(z)-linear map_ on ker T(z)
onto ker P(z); and we employ the same notation for both. Together, M(z) and M(z)
can be used to define a map

(6.13) ll(z) f/l(z)" R(z) U(z)
with the understandings (6.11). For (6.13), we have

(6.14a)

(6.14b)

Thus, we have

(6.14c)

(6.14d)

(6.14e)

(2/(z) 2r(z))(ker T(z) f’l R[z] (z) ffl R[z])
=//(ker T(z) f’l R[z])/r(/(z) f-I R[z])
ker P(z) f’l U[z] M(R(z) ffl R[z]).

U[z]fl (MR[z]+ker P(z))
U[z] ffl {(ker P(z)ffl U[z]+ker P(z))M(R(z)fflR[z])}
ker P(z) ffl U[z]@ U[z] ffl M(R(z) f"l R[z])

U[z] 71 MR[z],
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as desired. Note that, for these steps to be valid, the formation of (6.11) and (6.12)
must satisfy

(6.14f) R[z] =/(z) R[z]03ker T(z) f) R[z],

(6.14g) U[z]= U(z) U[z]@ker P(z)ffl U[z].

This is always possible. For the second part of the theorem, we make use of the
condition expressed by (6.4). Because im M(z) and im T(z) are divisible modules, we
can write

(6.15) U(z)= (z)0)im M(z), Y(z)= 17"(z)q)im T(z),

for suitable, k[z]-linear, isomorphisms

(6.16a) U(z) coker M(z), Y(z) coker T(z),

satisfying the constraints

(6.16b) U[z] U(z) U[z]q)im M(z) fq U[z],

(6.16c) Y[z]= ’(z) f) Y[z]im T(z) Y[z].

Restricted to imM(z), P(z) gives an epic, k(z)-linear map P(z) onto im T(z).
Moreover, the action of P(z) remains the same for any solution P(z) of the equation
T(z)= P(z)M(z). The design freedom for P(z) lies, therefore, in its action on the
cokernel of M(z), represented by U(z). Observe that ker T(z) is a divisible submodule
of T-1Y[z]. Accordingly,

(6.17a) T-1Y[z] ker T(z)q3 (z),
where/ (z) satisfies

(6.17b) (z)- T-’ Y[z]/ker T(z),

as a k[z]-module. Though/(z) is finitely generated, ker T(z) is not; and so the only
term in the right member of (6.4) which is not finitely generated is M(ker T(z)). We
have, then, the preliminary necessity of

(6.18) M(ker T(z)) ker P(z),

which implies that the k[z]-linear map P(z)’coker M(z)-coker T(z), induced by
P(z), is a monomorphism. But this means that

(6.19) dim (coker T(z))>= dim (coker M(z)),

from which we have the condition

(6.20) dim Y-rank T(z)>=dim U-rankM(z),

which gives (6.6b). Under (6.6b), we can construct an essential solution. Let P(z) be
any k(z)-linear monomorphism on (z) into (z) with the property that

(6.21) /5-1(IT"(z) fq Y[z]) c O(z) fq U[z].

Together, /3(z) and fi(z) give the map

(6.22) (z)O) P(z) U(z) Y(z),
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for which

(6.23a)
(6.23b)
(6.23c)
(6.23d)
as required.

p-1Y[z] P-’{ IT"(z) D Y[z]@im T(z) f-I Y[z]}
=/5-,((z) fq Y[z])/3-’(im T(z) fq V[z])
c P-’ y[z] fq U[z] + im M(z) fq P-’ Y[z]
P-’Y[z]f-1U[z]+M(T-1y[z]),

Discussion of Theorem 6. The conditions of the theorem, of course, are not always
satisfied. This means that essential solutions for model matching problems need not
always exist with respect to zeros. As explained in the prologue to this section, such
a situation differs from that in the case of poles. We might ask if, when attention is
fixed upon finitely generated, torsion zeros, a result more like that for poles could be
obtained. We will see in the next section that the answer to this question must be
given as a negative. When P(z) is given, the construction of the theorem has to do
with designing M(z) in such a way that

(6.24a) Za(M(z)) =0.

In like fashion, when M(z) is given, the goal is a design of P(z) so that

(6.24b) Zv(P(z)) =0.

In fact, for M(z) of the form (6.13), we have

(6.25a) ker fin(z) Za(M(z)),
while for P(z) of the form (6.22) we find

(6.25b) coker v(z) Zr(P(z)).
For instance, (6.25a) can be seen from a construction

{ U[z]f3 (MR[z]+ker P(z))}/{ U[z]D MR[z]}
(6.26a) ={U[z]fq(MR[z]+ker P(z))+ U[z]f-IMR[z]}/{U[z]fqMR[z]}

{U[z] (’1 (/Q(ker T(z)fqR[z])+ker P(z))+ U[z] fq MR[z]}
(6.26b) /{U[z] f-i MR[z]}
(6.26c) { U[z] ker P(z) + U[z] (3 MR[z]} U[z] f? MR[z]}
(6.26d) { U[z] f-I ker P(z)}/{ U[z] f’l ker P(z) f3 M(ker T(z) f’l R[z])}.
More generally, whenever M(z) is a solution to the equation T(z) P(z)M(z), whether
or not it takes the form (6.13), we have that Za(M(z)[ker T(z)) is a submodule of
Za(M(z)). In the same way, whenever P(z) is a solution and P(z) is its induced map
on coker m(z), then Zr(P(z)) is a factor module of Zv(P(z)), whether or not P(z)
takes the form (6.22). These facts may be deduced from Figs. 6.1 and 6.2, following.
In the first, Fig. 6.1, both rows and columns are natural inclusions. In the second, Fig.
6.2, row one is an inclusion, while the columns are natural projections; row two is a
monomorphism of k[z]-modules.

U[z] n MR[z] n ker P(z) U[z] n ker P(z)

U[z] n MR[z] U[z]
FIG. 6.1
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P-’Y[z] fq U[z] P-’ Y{z]

P- ’[lnu[] P-
M(r-g[])nU[] M(r-Y[])

FIG. 6.2

Remark. In case ker T(z) is equal to zero, the rank of T(z) must equal the
dimension of R. Thus (6.5b) leads to P(z) having zero kernel as well. If coker T(z)
equals zero, then (6.6b) gives that M(z) must have zero cokernel as well. Note that
in these cases the solutions, when they exist, are unique. Moreover, the unique solution
M(z) in (6.5a) has no F-zeros; and the unique solution P(z) in (6.6a) has no f-zeros.
In fact, much more is true. See the remarks after Theorem 7, where it is shown in an
alternative context that the vanishing of ker P(z) or coker M(z) is always sufficient to
satisfy (6.5b) or (6.6b), respectively. This is true whether or not we take special cases
of T(z).

The existence of solutions to the model matching equation T(z)--P(z)M(z) is
controlled by the conditions im T(z)c im P(z) and ker M(z)c ker T(z), respectively.
In practice, the marginal case of these conditions is of great interest.

COROLLARY 1. Under the condition im T(z)-im P(z), there exists an essential
solution M z if and only if
(6.27a) dim R => dim U.

Under the condition ker M(z)= ker T(z), there exists an essential solution P(z) if and
only if
(6.27b) dim Y >- dim U.

Another case of special interest occurs when the domains of T(z) and P(z), or
the codomains of T(z) and M(z), have equal dimensions. In feedback systems, for
instance, this situation has strong physical meaning.

COROLLARY 2. Let the dimensions ofR and U be equal. Then, whenever a solution
M(z) exists, there exists an essential solution. Alternatively, let the dimensions of Y and
U be equal Then, whenever a solution P(z) exists, there exists an essential solution.

In the case of feedback control, M(z) stands for an open loop pre-compensator
which is equivalent at specified operating conditions to a given closed-loop strategy.
The concept of an essential solution carries a pleasing connotation in this case. For a
solution M(z) which is not essential presents a certain deficiency in its image; and
this in turn points out an inadequacy in manipulating the control inputs to the plant
P(z). One way to address this difficulty is to increase the dimension of R, which
corresponds to adding additional reference inputs; however, this method is subject to
a suitable re-interpretation of T(z). Another way, which is more traditional, is to
reduce the dimension of U, by deleting dependent columns of P(z), which corresponds
to using fewer controls. Before the concept of extended zeros, the effects of plant input
selection have been seen only in terms of their influence upon finitely generated, torsion
zeros. In view ofthe preceding results on matching modules of extended zeros, however,
this traditional approach may need to be reconsidered.

The matching zero modules, and the extended zero modules of solutions to model
matching equations, treat finitely generated, torsion zeros together with divisible or
free zeros, as the case may be. It is sometimes desirable to have in hand an idea of
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what is happening in regard to these individual types of zeros. Not surprisingly, it
turns out that these behaviors are interrelated, by a snake mapping; and this is the
subject of the next section.

7. The fundamental diagrams. Sections 3-6 have placed a focus upon the extended
zero modules of F-type and of O-type and their role in model matching problems. In
this section, our goal is to relate these results to solution zeros of finitely generated,
torsion type, as described in 2, and to divisible or free zeros, as explained in 3. The
main ideas center upon a pair of commutative diagrams.

THEOREM 7. Suppose that T(z)" R(z) -- Y(z) is a k(z)-linear map. IfP(z)" U(z)
Y(z) Jis a k(z)-linear map whose image contains that ofT(z), and ifM(z)" R(z)- U(z)
is a k(z)-linear map satisfying T(z)= P(z)M(z), then there exist k[z]-linear maps
fla(z)" Z(M(z))- Za and fla(z)’f(M(z))- O, the latter an epimorphism, such that
the diagram Fig. 7.1 commutes and has rows which are short exact sequences. If
M(z)’R(z)- U(z) is a k(z)-linear map whose kernel is included in that of T(z), and

if P(z)" U(z)- Y(z) is a k(z)-linear, map_ satisfying T(z) P(z)M(z), then there exist
k[z]-linear maps /3r(Z)" F- F(P(z)) and flv(z)" Z- Z(P(z)), theformer a monomorph-
ism, such that the diagram Fig. 7.2 commutes and has rows which are short exact sequences.

Proof Consider Fig. 7.1, and note that column two is the map (4.21a). Row one
is (3.9), constructed as in 3.2; and row two is just (4.17). Because flaZ(M(z))c Z’a,
the map /3a(z) exists uniquely; and, consequently, there is a unique /3a(z) which
completes the diagram. A construction for Fig. 7.2 can be accomplished in like manner,
with the aid of (4.21b), (3.4), and (4.19).

Theorem 7 leads to a number of quite detailed consequences. The first of these
is a pair of technical corollaries.

COROLLhR 3. Under the assumptions of Theorem 7, there exist k[z]-linear maps
such that the following pair of sequences is exact"

(7.1) 0- ker fin(z) --) ker fin(z) - ker fin(z) - coker fin(z) --) O,

(7.2) 0--) ker fir(z) - coker fir(Z) - coker fir(Z) -) coker fir(Z) - O.

-.- a(M(zO.--Z(M(z)) -Za(M(z)) 0

0 -Z Za ft" 0

0 0

FG. 7.1

0 0

0 -P -’ Zr ,. Z’ 0

o----r(P(z))--- zr(P(z))---- z(P(z))-----o
FIG. 7.2
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Proof Sequences (7.1) and (7.2) are consequences of the Snake lemma, applied
to the pair of diagrams, Figs. 7.1 and 7.2.

COROLLARY 4. Under the assumptions of Theorem 7, the modules in sequences
(7.1) and (7.2) are given, up to k[z]-linear isomorphism, by

(7.3a) kera(z)={U[z]f)(MR[z]+ker P(z)MR(z))}/{U[z]fqMR[z]},

(7.3b) ker fl(z)={U[z]fq(MR[z]+ker P(z))}/{U[z]fqMR[z]},

(7.3c) ker fl,(z)={U[z]fq(MR(z)+ker P(z))}/{U[z]fqMR(z)},

(7.3d) coker(z)={PU[z]fq TR(z)}/{P[U[z]fqMR(z)]+PU[z]fq TR[z]},

ker/3-v(z) M-l{ker P(z)+ P-I Y[z]f3 U[z]}

(7.4a) /{ker T(z)+ T- Y[z]VI M- U[z]},

(7.4b) coker flr(z)=ker P(z)/{M(ker T(z)) +ker P(z)VI U[z]},
(7.4c) cokerflr(z)=P-1Y[z]/{M(T-aY[z])+P-1Y[z]fq U[z]},
(7.4d) coker/3-v(z) P-Y[z]/{M(T-IY[z])+ker

Proof We have already discussed (7.3b) and (7.4c) in 6. The remaining forms
follow from standard diagram chases applied to (4.21) and the row maps in (3.4),
(3.9), (4.17), and (4.19). For brevity, we omit the details.

Remark. Observe that, when ker P(z) is zero, (7.3a), (7.3b), and (7.3c) vanish.
From Fig. 7.1, we then have that (7.3d) vanishes. In this case, Z(M(z)) is isomorphic
as a k[z]-module to Z. If a solution M(z) exists, therefore, Z(M(z)) can fail to
achieve its bound only if there is the possibility of more than one solution. Similar
statements can be made for coker M(z), in reference to (7.4a), (7.4b), (7.4c), and
(7.4d), relative to Fig. 7.2.

THEOREM 8. Suppose that T(z)= P(z)M(z) is an equation of k(z)-linear maps.
Then each of the following three statements implies the others"

(7.5a) (M(z)) f,

(7.5b) r(P()) r,
(7.5c) M(ker T(z)) ker P(z).
In the case where (7.5) holds, then Zh is a factor module of Z(M(z)) and Z is a
submodule ofZ P(z)).

Proof Condition (7.5a) makes ker fla(z) vanish, which by (7.1) makes coker
vanish, which means that Zh is a factor module ofZ(M(z) ). A like argument establishes
that Z is a submodule of Z(P(z)). From (7.5c), we find that (7.4b) is zero, which
implies (7.5b); again, (7.5c) gives (7.3c) equal to zero, which leads to (7.5a). Now
consider (7.5b), which implies that (7.4b) must vanish. If (7.5c) does not hold, then
(7.4b) cannot vanish because ker P(z)f3 U[z] is finitely generated, while ker P(z) is
not. Thus (7.4b) equal to zero must give (7.5c). Finally, we look at (7.5a), for which
(7.3c) must vanish. A necessary condition for (7.3c) equal to zero is that

(7.6a)
which holds only if

(7.6b)
which requires

(7.6c)
and (7.5c) follows.

U[z] (q MR(z) U[z] (’] ker P(z),

U[z] fq M(ker T(z)) U[z] (3 ker P(z),

dim M(ker T(z)) >-_ dim ker P(z);
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Discussion of Theorem 8. The coincidence of the three statements (7.5)
suggests the possibility that a corresponding observation may relate (6.5a) to (6.6a) in
Theorem 6. However, such is not the case. For a given P(z), when (6.5b) is satisfied,
we may construct an M(z) that fulfills (6.5a). Now, for this M(z), it is quite possible
that the original P(z) fails to satisfy (6.6a). To demonstrate this behavior, we present
an example.

Example 1.

(7.7) T(z)= 0 0 P(z)= 0 0 0 M(z)= 0 0

0 0 0 z 0 0 1

In this example, M(z) is an essential solution; but P(z) is not. On the other hand,
conditions (7.5) hold.

When conditions (7.5) are satisfied, we have that both (6.5b) and (6.6b) hold
simultaneously. If P(z) is given, with (6.5b) true, then we can design an M(z) so that
(7.5) occurs. One way to carry out such a construction is to proceed according to the
discussion following (6.11) and (6.12); for this situation, however, M(z) can be any
epic, k(z)-linear map from ker T(z) onto ker P(z), Again, if M(z) is given, with (6.6b)
true, we can design a P(z) so that (7.5) takes place. The design may be executed along
the lines established in the proof ofTheorem 6, except that we do not need the condition
(6.21). In a manner similar to that of (6.24), the basic constructive conditions for these
solutions are

(7.8a) (1/(z))=0,
(7.8b) F(P(z)) =0.

These follow from the k[z]-linear isomorphisms

(7.8c) ker fin(z) t)(M(z)),

(7.8d) coker r(z) F(P(z)),
for an M(z) of form (6.13) or a P(z) of form (6.22). In fact, for more general types
of solutions M(z) or P(z), and with the aid of diagrams analogous to Figs. 6.1 and
6.2, we can establish that (M(z)]ker T(z)) is a submodule of i(M(z)), while F(P(z))
is a factor module of F(P(z)). Here we denote by P(z) the induced map on coker M(z).

Next we turn to a study of the finitely generated, torsion zeros in solutions to the
model matching equation. In general, these solutions have zeros arising from the finitely
generated, torsion parts of Zr or Za. They may also have zeros which occur through
the design of the induced action of P(z) on coker M(z) or of the restricted action of
M(z) on ker T(z). Additional effects can also occur.

U[z] M(ker T(z) R[z]) U[z] M(ker T(z))

U[z] fl MR[z] U[z] (MR[z] + M(ker T(z)))
FIG. 7.3

We begin by directing our attention to the commutative diagram of Fig. 7.3,
wherein the rows and columns are natural inclusions. This diagram induces a k[z]-
linear map on Z(M(z)Iker T(z)) into ker a(z). The kernel of this map is given by

(7.9) { U[z] f3 MR[z] M(ker T(z))}/{ U[z] (3 M(ker T(z) f3 R[z])}.
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But this will vanish if

(7.10a) M(ker T(z) (’1R[z])= M ker T(z) f-I MR[z],

which occurs when

(7.10b) (ker T(z)+ R[z])f]ker M(z)=ker T(z)f3ker M(z)+ R[z]f3ker M(z).

Consider an element in the left member of (7.10b); and represent it by

(7.10c) r,(z)+ r(z)= r,,,(z).

Applying T(z) to (7.10c) shows that r(z)cker T(z)(-I R[z]; and so both members
of (7.10b) are equal to kerM(z). The induced map is therefore monic; and
z(m(z)lker T(z)) is a submodule of ker/a(z), which is itself a submodule of
Z(M(z)). In this way, we can use M(z) ]ker T(z) to design specified zero submodules
for solutions M(z). The cokernel of the induced map is

(7.11) {U[z](MR[z]+ M(ker T(z)))}/{U[z]f3 M(ker T(z))+ U[z]C’I MR[z]}.
If M(z) may be regarded as a direct sum map on ker T(z)@ (z) into ker P(z)@ (z),
for R(z) and U(z) defined as in (6.11) and (6.12), and satisfying the conditions (6.14),
then

(7.12) MR[z]+ M(ker T(z)) M[R(z) (3 R[z]] + M(ker T(z)),

and (7.11) is zero, with ker n(z)Z(I(z)). However, if M(z) is otherwise, (7.11)
may not disappear; and the solution may display additional zeros. To illustrate, we
give an example.

Example 2.

(7.13) T(z)=[1 0], P(z)=[1 0], M(z)=
1/(z+l) 1

Here, we have Z=0, Z(M(z)]ker T(z))=0, and Z(M(z)).k[z]/(z+l)k[z]. The
solution zero arises entirely from (7.11).

Another key observation can be made. If im M(z) includes ker P(z), then from
Theorem 8 we know that

(7.14) Z(M(z))/ker/a(z) Z,
which means that the torsion part of Za is necessarily present in Z(M(z)) as a factor
module.

Turning, then, to the possibility of removing some part of Zh from our solution,
we see that decreasing the dimension of M(ker T(z)) is to our advantage. The best
we can achieve in this regard is to choose M(z)[ker T(z) equal to zero. In this case,
ker/3a(z) vanishes, and Z(M(z)) is a submodule of Zh. If the number of nonunit
invariant factors of Zh is no greater than the dimension of ker P(z), then a solution
M(z) with Z(M(z))=O is possible. For instance, if the zeros of Za are all distinct,
then Z(M(z))=O is possible whenever M(z) is not unique. Thus there is a tradeott
between inserting into the solution zeros which are distinct from those in Zh and
removing from the solution zeros which are part of Z. We summarize in the next
theorem.

THEOREM 9. Suppose that r(z)" R(z) Y(z) is a k(z)-linearmap. IfP(z)" U(z)-
Y(z) is a k(z)-linear map whose image contains that of T(z), then Z(M(z)lker T(z))
is a submodule ofZ M z whenever a k z -linear map M z)" R z - U z satisfies the
equation T(z)= P(z)M(z). A maximum of
(7.15) min (dim ker P(z), dim ker T(z))
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invariant factors of Z(M(z)) can be specified in this way. Alternatively, up to

(7.16) dim ker P(z)- rank M(z) [ker T(z)

nonunit invariant factors ofZ’ can be made into units in Z(M(z)) by design of M(z)
offthe kernel ofT(z). IfM(z) R(z) U(z) is a k(z)-linear map whose kernel is included
in that of T(z), and if P(z) is a k(z)-linear solution to the equation T(z) P(z)M(z),
then Z(P(z)) is a factor module of Z(P(z)), where P(z) is the map induced on
coker M(z). A maximum of
(7.17) min (dim coker T(z), dim coker M(z))

invariant factors ofZ(P(z)) can be specified in this way. Alternatively, up to

(7.18) dim coker M(z)- rank P(z)

nonunit invariant faetors ofZ can be made into units in Z(P(z)) by design of P(z) off
the cokernel ofM z).

Proof The argument for the first part of the theorem has been presented in the
prologue. In the interest of space, we omit the second half.

Discussion of Theorem 9. It should be noted that the statements in this result have
a number of interesting modifications. For example, with reference to (7.16), we do
not have to make the invariant factor of Zh into a unit; instead, we could make a
more general adjustment to it. Again, in regard to (7.18), adjustment of invariant
factors could replace their reduction to units.

From Theorem 9, we see that Zh and Z play an important role in the character
of Z(M(z)) and Z(P(z)), respectively. The next section inquires further into the nature
of these modules.

8. Description of Zh and Z. In 4, we have shown that the matching zero
module Za, defined in (4.6), appears as a factor module in the zero module Z(M(z))
of every solution M(z) to the model matching equation. Moreover, it was shown that
Zn has a torsion submodule Z as given in (4.9). From these two results, it is natural
to inquire about the nature of Z.

We begin with the commutative diagram of Fig. 8.1. In this diagram, both rows
and columns are natural inclusions. Notice, in the figure, that the second column,
when extended to a short exact sequence, has its factor module isomorphic to Z.
Observe also that the first row extends into a short exact sequence with factor module
P(T(z)). From Fig. 8.1, we find a monic, k[ z] -linear map from P(T(z)) into the module

PU[zJC! TR(z)+ TR[z]
(8.1) TXp

Y[z] CI {PU[z] f’I TR(z) + TR[z]}"
The cokernel of this map is denoted by X’z. It is possible to relate the module (8.1)
to the pole module of the composite map [T(z) P(z)]" R(z)@ U(z)--> Y(z). The basic
idea is shown in the commutative diagram of Fig. 8.2, where rows and columns are

r[z] Tn[z] , Tn[z]

r[z] f3 {P/_)’[z] Tn(z) + Tn[z]}---- PU[z] Tn(z) + TR[z]

FIG. 8.1
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Y[z] 0 {PU[z] 0 TR(z) + TR[z]} . PU[z] 0 TR(z) + TR[z]

Y[z] {PU[z] 4- TR[z]} PU[z] 4- TR[z]

FIG. 8.2

again natural inclusions. From this diagram, we induce a monic, k[z]-linear map on
rXp into P([ T(z) P(z)]), with cokernel isomorphic to

PU[z] + TR[z]
(8.2) X=pu[z]q TR(z) + TR[z]+ Y[z] {PU[z]+

Returning now to Fig. 8.1, we define the factor module induced by column one to be
Z’z, and point out that it is a submodule of Z(T(z)) by the inclusion

(8.3) PU[z]f"l TR(z)+ TR[z] TR(z).

A natural inclusion of Z’ into Z(T(z)) induces a factor module isomorphic to

Y[z] TR(z)
(8.4) rZe

Y[z] CI {PU[z] TR(z) + TR[z]}"
Module (8.4) can be related to the zero module Z([T(z) P(z)]). Refer to the commuta-
tive diagram of Fig. 8.3 of natural inclusions. This diagram induces a monic, k[ z]-linear
map on rZp into Z([ T(z) P(z)]), with cokernel isomorphic to

Y[ z] f-) PU(z)
(8.5) Z= Y[z]f-) TR(z)+ Y[z](TR[z]+PU[z])"
We summarize these results.

THEOgEM 10A. Let im T(z)c im P(z), and let Z’a be the torsion subtnodule of the
matching zero module Za. Then there exist k[z]-modules rZe, Z, rXe, X, Z’, and
X’z, together with appropriate k[ z]-linear maps, such that thefollowingfive short sequences
are exact:

(8.6a)

(S.6b)

(8.6c)

(8.6d)

(8.6e)

0-> Xe --> P([ T(z) P(z)]) -+ X -+ 0,

0-> P( T(z))- Xp X’0,
0- TZp -+ Z([ T(z) P(z)])- Z - 0,

0-) Z -+ Z(T(z)) -+ Ze -+ O,
o-, z’- z’.- X’z+O.

Proof. Sequences (8.6a)-(8.6d) have been established in the prelude to the
theorem. Sequence (8.6e) is a consequence of the requirements on cokernels of columns
in Fig. 8.1, including the induced column.

Y[z] {PU[z] TR(z) + TR[z]} Y[z] TR(z)

Y[z] {TR[z] + PU[z]} ----,.Y[z] gl {TR(z) + PU(z)) Y[z] PU(z)

FIG. 8.3
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Discussion of Theorem 10A. The study of Z then begins with the finitely gener-
ated, torsion poles and zeros of T(z) and of T(z) P(z)]. From the submodules
of Z([ T(z) P(z)]) and rXp of P([ T(z) P(z)]), together with Z(T(z)) and P(T(z)),
we can find Z’z and X’z, the building blocks of Za. Note that, if im T(z)= im P(z),
both Zk and Xk vanish. In that case, we obtain the sequences

(8.7a) 0- P(T(z)) P([ T(z) P(z)]) -* X’z O,

(8.7b) 0- Z’z Z(T(z)) Z([ T(z) P(z)]) 0,

(8.7c) 0 Z’z Za- X’z 0,

and this result then reduces to Theorem 4, because f is zero. In general, however, the
description of Za is more complicated than that of Za, with five sequences instead
of three.

Consider next the commutative diagram of Fig. 8.4, where columns and rows are
natural inclusions. It is clear that row two extends into a short exact sequence having
Z(T(z)) as the factor module. The corresponding construction on row one produces
a module

T- Y[z] (ker T(z) + M- U[z])
(S.8) T-Y[z](ker r(z)+M-U[z])(ker r(z)+R[z]) =Z’

which is finitely generated and torsion. Moreover, a brief diagram chase yields the
existence of a monic k[z]-linear map on Z into Z(T(z)), with cokernel Z. The
character of Z follows from the calculation

r- Y[z] fq (ker T(z) + M- U[z])
T- Y[z]fq (ker T(z)+ M-’ U[z]) fq (ker T(z)+ R[z])

T- Y[z]fq (ker T(z)+ M- U[z]) +ker T(z)+ R[z]
(8.9a)

ker T(z) + R[z]

T-’Y[z]fqM-U[z]+ker T(z)+R[z]
(8.9b)

ker T(z) + R[z]

T-1y[z] f’l M- U[z]
(8.9c)

T- Y[z] f M-’ U[z] f (ker T(z) + R[z])"

Then, as a result of the inclusion

T- Y[z] M-’ U[z] f (ker M(z) + R[z])
(8.10)

T- Y[z] M- U[z]f (ker T(z)+ R[z]),

there exists a k[z]-linear epimorphism from

(8 11) Z(] T(z)

T-1y[z] CI (ker T(z) + M-1U[z]) CI (ker T(z) + R[z])---- T-1y[z] CI (ker T(z) + M-1U[z])

T-’Y[z] (ker T(z) + R[z]) , T-1Y[zl

FG. 8.4
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onto Z, with kernel isomorphic to

(ker T(z) + R[z]) f3 T-1Y[z] f3 M-1U[z]
(8.12) Z,

(ker M(z) + R[z]) fq T-1Y[z] f3 4--i -i-]"
We turn now to column one of Fig. 8.4; and we wish to relate the cokernel to certain
pole modules. Note that

R[z] R[z] +ker T(z)
(8.13) P(T(z))= T_ly[z]R[z]- T_ly[z]Cl(R[z]+ker T(z))’

and consider the module

(8.14)

[z]
(ker T(z)+ T-1y[z](q M-1U[z]) R[z]

ker T(z) + R[z]
T-1Y[z](ker T(z)+M-1U[z])(ker T(z)+R[z])"

By the inclusion of denominators in right members of (8.13) and (8.14), there is an
epic k[z]-linear map from XTM, the right member of (8.14), onto P(T(z)). The kernel
of that map is isomorphic to the cokernel of column one in Fig. 8.4, which we denote
by X’z’. From the left member of (8.14), there is an epic k[z]-linear map from the pole
module of (5.3) onto X, with kernel isomorphic to

(ker T(z)+ T-1y[z]f"I M-1U[z])fq R[Z]= Xk.(8.15)
T-1Y[z] CI M-1U[z] fq R[z]

With the aid of the foregoing pieces of information, we can state the analogue of
Theorem 10A for the case of Z{.

THEOREM 10B. Let ker M(z) c ker T(z), and let Z{. be thefinitely generatedfactor
module of the matching zero module Zr Then there exist k[z]-modules Zt Z’ Xr

M,

X’, Z, and X, and appropriate k[z]-linear maps, such that the following five short

(8.16a) OX’ P
lM(z)

(8.16b) 0- X"z X P(T(z)) --> O,

(8.16c) 0- Z’ - Z M(z) ZM O,

(8.16d) 0- ZTM -- Z(T(z)) Z- O,

(8.16e) 0-X- Z--Z-0.

Proof Equations (8.16a)-(8.16d) have already been established. Equation (8.16e)
follows from the fact that the cokernels of the columns, including the induced, in Fig.
8.4 must fit into an exact sequence.

Discussion of Theorem 10B. The known quantities in (8.16) are the pole and zero
modules, finitely generated and torsion, of (5.3) and of T(z), and the pair X, and
Z,, from (8.15) and (8.12), respectively. From these, we obtain Xt and Zt, together
with X and Z’z’, and finally Z. If ker M(z)- ker T(z), then X, and Z, vanish, with
resulting simplifications.

sequences are exact"
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Although the results of 2-8, Theorems 1-10, are stated for the ring k[z], they
hold in much more general situations. Section 9 describes some ofthese generalizations.

9. Extensions of the theory. For readability, we have chosen the ring k[z] and the
quotient field k(z) in which to state the results of 2-8. However, all these results
remain true in more general contexts, sometimes with a modest re-interpretation of
physical meaning. As an example, we can replace the subring k[z] of k(z) with any
subring O which contains the base field k, which has quotient field k(z), and which
is a principal ideal domain. Such rings include localizations of k[z] and discrete
valuation rings. An important instance of the latter is O, the subring of proper transfer
functions. More illustrations of rings which are useful in system theory arise from
forming the intersection of discrete valuation rings. One illustration here is the ring
Ops of transfer functions which are proper and stable, when k- R, the real numbers.

When k[z] is replaced by O, (2.1) must be changed to

(9.1) foR=O@kR,
(9.2) IoU= O@k U,

(9.3) foY=O@,Y.
Elsewhere, simply replace U[z] by oU, and so forth.

In fact, the ideas of the paper also extend to systems defined over more general
rings, with appropriate assumptions [18].

10. Conclusions. We have studied the constraints imposed upon the zeros of
k(z)-linear maps P(z) U(z) - Y(z) and M(z): R(z) - U(z) by reason of the fact that
they satisfy the model matching equation T(z)= P(z)M(z), in which r(z): R(z)
Y(z) is k(z)-linear as well. This study was inspired by the work of Conte, Perdon,
and Wyman [7] on fixed poles in the solution to this same equation. Yet it turns out
that the situation for zeros differs markedly from that for poles. Indeed, Theorem 7
indicates that the usual type of zerowhich we may think of intuitively as a state-space
zerodoes not have an intrinsic constraint imposed upon it from its appearance in a
solution P(z) or M(z) to the equation. Rather, it is the extended zero, embodying the
classical notion of zero together with the novel constructs of divisible or free zeros,
which undergoes such constraint. Moreover, essential solutionsin which the con-
straint is achieved with equalityneed not always exist; and this constitutes yet another
distinction from the case for poles.

Because of the centrality of the model matching equation in many constructions
of feedback systems and communications, we conclude that extended zeros may be
just as important as, or perhaps even more important than, the classical or state-space
type zeros. Accordingly, they appear to represent a fruitful topic for future research.

Finally these results are a consequence of the systematic use of module theory,
which presents a convenient and natural framework for study of poles and zeros.
Indeed, the existence and role of extended zeros have been discovered only as a result
of its use.
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OPTIMAL DAMPING CONTROL AND NONLINEAR ELLIPTIC SYSTEMS*
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Abstract. Optimal control for an elliptic equation when the control is the zero-order coefficient of the
differential operator is considered and an optimality system is derived. Under certain assumptions, the
problem is solved completely by giving the uniqueness and the constructive existence proof for the nonlinear
optimality system. An extension to the case when the state equation is a particular elliptic system is considered
as well.
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Introduction. We will consider an optimal control problem in which the state of
the system is defined as the unique solution of an elliptic equation and where control
is the zero-order coefficient of the differential operator (cf. [2], [9]). Also, an extension
to a particular elliptic system is given.

After proving the existence of an optimal control, deriving the optimality system,
and proving uniqueness for the optimality system (which happens to be a system of
two nonlinear elliptic equations), we show how to solve that system; i.e., we give a
constructive existence theorem.

When constructing a solution, the difficulty is that uniform estimates, i.e., compact-
ness, i.e., convergence for a subsequence of some natural iteration, is not enough to
solve the system (cf. [5]). We must invent a procedure with a property that the full
sequence converges (see Theorem 4.1). Also, uniqueness for the optimality system is
important not only because it provides uniqueness for the optimal control, and because
it guarantees that the solution of the optimality system is an optimal control, but
because the uniqueness for one closely related system (Lemma 4.1) guarantees the
convergence of the approximating sequence (see 4).

We present one computational example as well. It seems worth mentioning that
numerical experiments suggest that somewhat restrictive assumptions of Theorem 4.1,
which guarantee the convergence of the constructive scheme, could be relaxed (see
Remark 5.1).

1. Optimal damping problem. Let 1 be a bounded domain of n with C1’1 boun-
dary. Let

n
(1.1) f Lq(l)) q>2, q>-

2’

and

(1.2) A

be given. For any s => 1, set

(1.3) L_(fl) {c c L(fl), c_-> 0 a.e. in II}.
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This research was supported in part by Martin Marietta Energy Systems, Incorporated contract 19XSC136V,
which is under contract DE-AC05-840R21400 with the United States Department of Energy.

t Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025.
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For any c c L+(12), we define y= y(c) as a solution of (see [3])

(1.4)
-Ay + Ay + cy =f a.e. in 12,

y c W2’(f) n H(12) n L(12).

Remark 1.1. Results of this paper can be formulated for a general elliptic operator
(with appropriate assumptions imposed) instead of-A.

We observe that

(1.5) Ily(c)llL<_--const. where const, does not depend on cL+() and A 6+.

Next, for (q as in (1.1)

(1.6) Yd Lq(12)

and N> 0 given, we define the cost functional J by

)2
N fc(1.7) a(c) = (y(c)-ya dx+-- (c)2 dx,
2

and we ask the question:

(1.8) How do we find an optimal control?

That is, how do we find (if it exists) a (damping) control e0c L+(12) such that

(1.9) J(co) inf J(c).
L(.,)

Under certain assumptions, we will give a reasonably complete answer to the
question (1.8). To start with, we observe that an optimal control always exists.

LEMMA 1.1. There exists an optimal control.
Proof The proof is standard. Take a minimizing sequence {(c,, y(c,))}. Then

]]CnIIL2() and ]]y(c,)llL+(> are bounded sequences; hence, by elliptic estimates (see
[3]), Ily(c)llw,. is bounded. Then there exist CoC L2+(12) and yo L(12)n W2’2(12),
such that, for a subsequence,

c, -* Co weakly in L2(f),
y(c,,)yo strongly in H(12).

Also, for any n we have

f Vy(c) .V+;ty(c)+c.y(c)=ff
Hence, passing the limit we conclude that

yo-y(co).

Also, by the lower semicontinuity ofthe cost functional, (Co, yo) is an optimal pair.

2. Derivation of the optimality system. In this section we derive the necessary
conditions, i.e., the optimality system, for an optimal pair (c, y). Two results are given
in the next theorem. The first result holds under the general conditions already
introduced. The second result holds under the condition that

(2.1) f_-> 0 a.e. in 12,

and

(2.2) ya <- 0 a.e. in 12.
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THEOREM 3.1. (a) Under the assumptions (1.1), (1.2), and (1.6), for any optimal
pair (c, y), there exists p satisfying the system

-Ay+hy+cy=f a.e. in12, y

-Ap + hp + cp y -Ya a.e. in 12, p W2’2(12) n H(12) 0 L(12),
(2.3)

1
c=--py a.e. in12{c>O}, py<-O a.e. in

(b) Under the assumptions (1.1), (1.2), (1.6), (2.1), and (2.2), for any optimal pair
(c, y), there exists p satisfying the following nonlinear elliptic system:

1
-Ay+hy+---py2=f a.e. in,y=O, at01), yGW2’q(-),

(2.4)
1

-Ap+Ap+--yp-y=-yd a.e. in12, p=O atoll, pGW2’q(12),

and c py/ N. Moreover, y >- 0 and p >= O.
Proof It is not difficult to see (using standard arguments (cf. [1], [6])) that the

mapping L2+(12)e-->y(e)L2(12) is differentiable in the following sense"

(2.5) y(c+flg)-y(c)-* z strongly in L2(), as/3-*0,

for any c L2+() and g L(12), such that c + fig L+(l)) (for /3 -* 0), and z is the
solution to the equation

-Az + hz + cz -y(e)g a.e. in 12,
(2.6)

z W2’2(12) n H() n L(12).
Let c be an optimal control. For every g L (12) and/3 > 0, we have c + fig L2+(),

and

(y( c + fig) Ya )2 dx +--2 c + fig)2 dx

>-- (y(c)-- yd)2 dx +-- (c dx.
2 2

Hence, dividing by/3, and sending fi$0, we get

(2.7) f [(y(c)--yd)z+ Ncg]>--_O.

Let p be a solution to the equation

-Ap + Ap + cp y(c)-y a.e. in 12,
(2.8)

p W2’2(12) n H() n L(a).
From (2.7) and (2.8) we get

a
[(-Ap + Ap + cp)z + Ncg] >- O.

Integrating by parts and using (2.6), we deduce (y= y(c))

(2.9) f (Nc-py)g>-O VgL().
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More precisely, for c Lz+(f), consider a variation ? L(). Define ? by

(2.10) ={ ifc>e[]e[[L(a),elsewhere.
Then for any , such that [ < e,

c+fl L(),
and proceeding as before, we conclude that, now

(2.11) (Nc-py)g =0.

Passing e $0, we conclude that

(2.12) faCc>o (Nc-py)=O V L().

Putting together (2.8), (2.9), and (2.12), we prove (a).
Now, if (2.1) and (2.2) hold, then we have that

p=>0 in, y>_-0 in

and using (a) we conclude that

py =O

hence,

C

and the theorem is proved.

a.e. in f {c 0},

1
py in

N

3. Uniqueness for the optimality system. In addition to (2.1) and (2.2) we assume
that

(3.1) h is sufficiently large.

Remark 3.1. From (1.5), (1.6), and (2.4) we see that there is a uniform constant
Co, depending only on the data (moreover, independent of h and N), such that, for
any optimal pair (c, y) and any corresponding p, we have

(3.2) max {[[Y[IL(a, [[P (a} --< Co.
Then, we can write (3.1) explicitly, for example, a

2
(3 1)* h _->-

2

PROPOSITION 3.1. Under the assumptions (1.1), (1.6), (2.1), (2.2), and (3.1) there
can be only one positive solution of (2.4).

Proof. Weak formulation of (2.4) reads as

1 1

a
Vy. VO+hyO+---py20+Vp

(3.3)
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hence,

N

+Ia (/5-P)(Y-35)[ (I02+)72)- 1 ] =0.

It follows, since y(p +) 0 and p(y +) O, that p fi and y , provided

(3.1)**
L(a)

4. Solution of the optimality system. The purpose of this section is to give a
constructive proof of the existence of a positive solution of the optimality system (2.4).
Of course, since the proof is constructive, it can be easily used as an algorithm for
numerical computations of the unique solutions of (2.4), which provides us with the
optimal control. An example is given in the subsequent section.

We sta with a simple problem:

(4.1) Find u eW2’q(), u0, such that -u+Au+bu=f a.e. in , u=0 at 0.

We assume that

(4.) e eT().
Then we have the following proposition.

Poposioy 4.1. Under tke assumptions (1.1), (1.2), (2.1), and (4.2), tkere exists
a unique solution of tke problem (4.1).

Proof We shall prove the existence first. Let us sta from Uo, the solution of

-Uo+ uo=f a.e. in
(4.3)

Uo 0 at 0.

Observe that (2.1) implies that Uo0. Now, choose constant M0, such that

(4.4) -]be(mv2+ My is an increasing function of v, for v e [0, ]]Uo]e()].
Next, for k 1, assuming we already have u_, we define u as a solution of

-u+(A +M)u=f-b(u._)2+Mu_ a.e. in,
(4.5)

Then, for example, when k 1,

-(Uo u) + M(u0- u) b(uo)2

and, hence, Uo u. Similarly, using (4.4), we conclude that u_ u for any k 1.
We conclude that full sequence converges, i.e.,

(4.6) u(x)

Also, by elliptic estimates, we have

(4.7) u w.,() const.

Using (4.6) and (4.7) we can easily pass to the limit in (4.5) to conclude that u is a
solution of (4.1).
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Uniqueness will follow from the following lemma. It is worth mentioning that the
lemma is a consequence of the monotonicity of the operator in (4.1) on the set {u => 0}.

LEMMA 4.1. Under the previous assumptions the following comparison result holds
for the problem (4.1):

(4.8) b*>=b, f*<=f=u*<=u.
Proof We have

hence,

-A(u* u) + A (u* u) + b*(u*)2- b(u)2 =f* -f=< 0;

-A(u* u) + A (u* u) + b[(u*)2-(u)2] <= O,

-A(u*- u)+ A(u*- u)+ b(u* + u)(u*- u) <=0,

Find (y, p) [w2’q (12)]2, y __> O, p ->_ O, such that

1
Ay + Ay +-77 py2 f a.e. in 12, y O,

and, since b(u* + u) >= 0, we conclude that u* _-< u.
Next, we study the following (intermediate) problem:

(4.9)

(4.12) -( +y2)
L)

2A.

We confine ourselves to prove only the existence of a solution satisfying property
(4.11). This will be enough for our purposes.

Proof of Proposition 4.2. We shall construct in parallel, solutions corresponding
to g and g*. Define Yl and yl* as a solution of

(4.13) -Ay+Ay=f a.e. in, y=0 at012.

Next, using Proposition 4.1, define Pl and p* as a solution of

(4.14)

1
-Ap + Ap +-2-; YlP

2 g a.e. in 1, p 0 at 012,

1
-Ap + Ap +-77 Yl* p2 g, a.e. in 1, p O, at 012,

Remark 4.1. We can prove uniqueness for problem (4.9) using the same argument
as in the proof of Proposition 3.1. Nevertheless, for this,, instead of (3.1)**, we would
need

We have the following proposition.
PROPOSITION 4.2. Under the assumptions (1.1), (1.2), (2.1), and (4.10) there exists

a solution (y, p) of (4.9), with the following comparison property:

(4.11) g* =< gp* =< p, y* -> y.

(4.10) g 6 Lq+(12).

We will assume that (for q as in (1.1))

1
-Ap + Ap +-77 YP= g a.e. in 1), p 0 at 012.
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respectively. By Lemma 4.1 we know that Pl ->pl*. Furthermore, define Y2 and y2* as
a solution of

1
-Ay + hy +-ply

2 f a.e. in

(4.15)
1

-Ay+Ay+--p*ly=f a.e. inf, y=0 at0f,

respectively. By Lemma 4.1 we conclude that y _-< Yl, y* =< yl* and that y -<_ y2*. Proceed-
ing similarly, we construct two sequences {(Yk, Pk)} and {(Yk*, Pk*)} such that, for k >- 1,

Yk < Yk-1, Pk :> pk-1, Y*k < Y’k- 1, P*k >----P-I, Yk <- Y’k, Pk >-p’

Since those two sequences are bounded in L(I)), we can pass to the limit obtaining
pointwise limits y, p, y*, p* for the full sequences and, moreover,

y <- y* and p >-_ p*.

Finally, since we have also uniform wa’q(lI)-estimates, we can conclude easily that
the limiting functions satisfy (4.9). 13

Remark 4.2. y =< y, where y is from the preceding proposition, and Yl is defined
in (4.13).

We are ready now to solve the original problem. We consider the following iterative
scheme.

Let Yo be defined as a solution of

(4.16) -Ayo+AYo=f a.e. ini), yo=0 at01.

Define (y, p), for k =< 1, as a solution, constructed in Proposition 4.2, of

1
-Ay + Ay +--py =f a.e. in , y 0 at 01,

(4.17)
1

-Ap + )pk +- yp2 Y- Ya a.e. in

Then we have Theorem 4.1.
THEORFM 4.1. Under the assumptions (1.1), (1.6), (2.1), (2.2), and (3.1) (or (3.1)*),

the following holds:

(4.18) Yk --> Y, Pk --> P, as k

weakly in wa’q(l)), for a full sequence. Hence, (y, p) is the unique positive solution of
(2.4), and Co =- py/N is the unique optimal control. Moreover,

(4.19) YEk

Proof. From (4.16), (4.17) and Remark 4.2, we conclude that

Yo -> Y2.

Hence, by the Proposition 4.2, we have

Pl>-P3, Y<-Y3,

which implies, in the same manner, that

P2 P4, Y2 Y4, P3-->--Ps, Y3----< Ys,
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and so on. We conclude that

Yo----> Y2 -> Y4 >-" Yl <- Y3 -< Y5 --<-" ",

P:z<=P4<=P6 -<-" ", Pl>=P3>-P5 >-" ".

Hence, there are functions )7, y,/, p, such that

(4.20) Y2k 2, Y2k+ / Y, P2k / P, P2k+I ,
and also, by the elliptic estimates, weakly in w2’q(12). Furthermore, we have

1
--Ay2k + Ay2k +-pk(Yk)2 f a.e. in 12,

1
Ap2k + Ap2k +-- Y2k (P2k) Y2k-1 Yd a.e. in12,

and

1
--Ay2k+l +/Y2k+l +"r P2k+l(Y2k*l)2 =f a.e. in 12,

1
--Ap2k+l + AP2k+l -k-- Y2k+l(P2k+l)= Y2k --Yd a.e. in 12.

Passing to the limit, we conclude that (.9, p, y,/) is a solution of

1
-A9+Ay+-7-;py=f a.e. in12, )7=0 at012,

1--

(4.21)

1
-Ap_ + p_ +-- p_- y_ --Yd a.e. in , _p 0 at 012,

1
-A_y+A_y+-/2=f a.e. in12, _y=O atoll,

1
-Aft+ A/+- _y/2 -.9 --Yd a.e. in12, p=0 at 012.

Then, by the inspection, we see that (y,/, y, p) is a solution of (4.21) as well. So, if
we show that, in an appropriate class (in a class where (9, p, y,/) and (y,/,)7, p)
belong), the uniqueness holds for problem (4.21), we can conclude that

y=.9, p=/,

and the theorem is proved. The following lemma addresses this last question.
LEMMA 4.2. Suppose (fi, p, y, fi) and l, s_, ], ) are two positive solutions of (4.21),

and suppose that

(4.22) +_s2) 1 _-< 2a,
L()

and that

(4.23) - (_/2 + 2) 1 _--< 2A.
L()

(, p, y,.O l, s_, l, ).
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Proof The proof is similar to the proof of Proposition 3.1. The variational formula-
tion of (4.21) reads as

1 1

](4.24) + 7_y. 7(3 +/_y(493 -+--/y2q93 q- Tff. 7(4 +/p(o4 ---- _yp2(434 ?(o4

f [fq91--Ydq92+fgo3--YdCP4] V(q91, q92, q93, q94) E [H()]4 [LC()]4

Hence,

--ff [.7(97--/’-),2-+- .7(_p--_S)I2-k-I7(_y--_/).2-F.7(,-- ),2

+ X ((y- )2+ (p -_s)2 + (y l_)2 + (ff e)2)
1+ ((r-))e(+ r)+(_-e)y(_+e)+(!-_)p(!+_)

+ (e-p)_y(e+p))]
+ - +_) (97- i)(p ---ff (1 + ) (y_ -j)( ) o.

The lemma follows since p(37+ 1), 37(_s +p), p(]+y) and y(g+/) are =>0. Here we also
use the assumptions (4.22) and (4.23). [3

5. An example. In this section we present some computations done by implement-
ing the algorithm developed in 4.

Consider the state equation

-Au+cu=20(sin(27rx)+l) in 12 (0, 1) (0.1),
(5.1) u=0 on 012.

The problem is to choose c, such that

lln 0"0005 ;0 C2(5.2) d(c) = [u(c)]2 dx+2 dx,

is minimized. Observe that

(.3) =0.

The optimality system is

1-Au+--pu2= 20(sin (2rx)+ l) inf,,
N
1(5.4)

-Ap +-- up u 0 in f,

u,p=0 on0f.

The program consists of several subroutines and a main program. Subroutine 1 is a
solver for the problem (4.5). This is a single linear elliptic equation; hence, standard
methods apply. We used piecewise linear finite elements. Subroutine 2 is a solver for
the problem (4.1). It iterates Subroutine 1, as described in (4.5). Subroutine 3 is a
solver for problem (4.9), using iteration defined in (4.13)-(4.15). Finally, the Main
Program is a solver for the problem (2.4), using iteration (4.17).
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Computations are done on Sun 386i workstation; the results are presented in Figs.
1-3. In Fig. 1, the solution of the state equation without any damping, i.e., u(0), is
given. In Fig. 2, the solution corresponding to the optimal damping u(c) is presented.
In Fig. 3, the optimal damping c is given. We observe that the convergence is fast: it
takes only four to five iterations of the Subroutine 3 in the Main Program.
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0.00
1.00

0.33

0.00
0.00

FIG.

1.00

Z

0.84
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0.

3

0.00

FIG. 2
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Z
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0.00
00
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0.33X

0.00
0.00

FIG. 3

Remark 5.1. In all numerical experiments that we have performed, the convergence
has been recorded, even though A was equal to zero. Hence, it seems reasonable to
conjecture that Theorem 4.1 holds in that case as well. We observe that the largeness
of A was required to grant that

u_ ft, p=p.
6. An extension. Implicit damping control. Here we present, briefly, an extension

to the case when the state equation is a particular elliptic system. Let

(6.1) d c L(f),

(6.2) g Lq(12) q>2, q>-
2’

and

(6.3) A R+,

be given. For anyf L+(f), we define v v(f) as a solution of the following equation:

-Av + Av + d[(-A + A)-lf]v g a.e. in f,

(6.4) v W-’2(f) (q H(f) L(),

(--A 4- 3, )-lfG W2,2() (] H(),
or, more explicitly, we define (u, v)=(u(f), v(f)) as a solution of the following
nonlinear system"

(6.5)

-Au + hu =f a.e. in f,

u wZ’2(f) fq H(I"),
-Av + hv + duv g a.e. in f,

v W’Z(f) fq H(f) fq L(f).
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Remark 6.1. Results ofthis section can be formulated for general elliptic operators,
instead of-A; more precisely, we can consider, instead of the state equation (1.5),

Av+ Av+ d[(B + A )-’f]v g,

where A and B are elliptic operators, with appropriate assumptions imposed.
Remark 6.2. When the first equation in (6.5) contains a zero-order term as in the

second equation, it is natural to formulate, instead of the control problem considered
here, a game problem. Then, the solution of the implicit damping problem can be
viewed as a partial solution ofthe full game problem, which will be considered elsewhere
(but under more restrictive assumptions).

It is easy to see that (6.5) has the unique solution. Also,

(6.6) IIv(f)llm_-< const., const, does not depend on A R+ and f L2+(12).
Next, for (q as in (6.2))

(6.7) va G Lq()

and N > 0 given, we define the cost functional J by

(6.8) J(f) _- (v(f)-va dx+-- dx,
2

and, again, we look for an optimal control.
As before, it is not difficult to see that an optimal control always exists.
LEMMA 6.1. There exists an optimal control.
Again, we will need for the second part of the following theorem, the sign condition

(6.9) g->0,

(6.10) Vd <= O.

THEOREM 6.1. (a) Under the assumptions (6.1), (6.2), (6.3), and (6.7), for any
optimal controlfand associated solution to the state equation (u, v), there exists (pl, p2)
satisfying the system

-Au + Au f a.e. in f, u We’2(12) f-I H(f),
-Av + Av + duv g a.e. in , v W2’2(12) (1H())
Apl + Apl dVpe O a.e. in ), plW2’S(f), pl=0 atoll,

(6.11)
-Ape + Ap2 + dupe- v --Vd a.e. in 12, P2 W2’2(’) H(f) f-I L(f),

1
f ="-i Pl a.e. in l3, {f> O}, pl--<O a.e. in I f-I {f O},

for any s <
(b) Underthe assumptions (6.1), (6.2), (6.3), (6.7), (6.9), and (6.10), for any optimal

controlfand associated solution ofthe state equation (u, v), there exists (Pl, pc) satisfying
the following nonlinear elliptic system:

1
--Au+Au--pl=O a.e. inl, uWe’S(l)), u=O atoll,

N

(6.12) -Av + Av + duv g a.e. in f, v w2’q(-), v 0 at 012,

-Apl+Apl-dVpe=0 a.e. in ), plOW2’s(f), Pl=0 at OO,

-Ape+ Ap2+ dupe- v -va a.e. in , Pe w2’q(f), Pl 0 at 0,

for any s < oe, andf Pl/ N. Moreover, u >- O, v >- O, Pl >- O, and P2 >= O.
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From (6.12), it is evident that there exists a constant Co depending only on data
(moreover, independent of A and N), such that

(6.13)

We assume that

(6.14) A =<-max Colld IIL(), 1
2

LEMMA 6.2. Under the assumptions (6.1), (6.2), (6.3), (6.7), (6.9), (6.11), and
(6.14), there can be only one positive solution of (6.12), such that (6.13) holds.

Finally, we construct solution of the optimality system. Consider the following
auxiliary problem. Given h L(), find (u, v, p, p) W2’(12) x W2’() xW’() x
w2’q(f), for any s <, such that

-Au+hu=h a.e. inf, u=0 at0f,

-Av+hv+duv=g a.e. inf, v=0 at0,
(6.15)

-Ap+hp-dvp2--O a.e. in, p=0 atO,

--Ap2 -k Ap2 q- dup2- v -va a.e. in f, P2 0 at 0f.

This is a trivial system. Indeed, uvp2p. Also, we observe that

(6.16) h >- h =z> ft >- u z=> <= v =fffi2 <= p2 z=>fi p

We are ready now to solve the original problem. Consider the following iterative
scheme. Let (Uo, Vo, Pl,o, P2,o) be a solution of

u =0 in

-Av+Av=g a.e. inf, v=0 at0f,
(6.17)

-hp + hp dvp 0 a.e. in f, p 0 at 0f,

--Ap2 + Ap2-+- dup2- v -va a.e. in f, p 0 at 0f.

Define, by induction, for k_-> 1, (Uk, Vk, Pl,k, Pz,t) as a solution of

1
-Au +Au

N P,k-1 a.e. in , u 0 at 0f,

(6.18) -Av+hv+duv=g a.e. in, v=0 at0f,

--Apl + hpl dvp2 0 a.e. in , p 0 at 0,

--Ap2-F Ap2 + dup- v -va a.e. in f, P2 0 at 0f.

Then we have the following theorem.
THEOREM 6.2. Under the assumptions (6.1), (6.2), (6.3), (6.7), (6.9), (6.10), and

(6.14), the following holds:

(6.19) Uk "--) U,

weakly in w2’q(12), for a full sequence. Hence, (u, v, Pl, P2) is the unique positive solution

of (6.12), andf= Pl/N is the unique optimal control. Moreover,

(6.20)
U2k

Pl,2k /Z p, Pl,2k+l X’a Pl, P2,2k P2, P2,2k+ /Z p,

as k- o.
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Proof. It is not difficult to conclude from (6.16) that

(6.21)
lg2k/’ U2k+l’X V2k x’ t)2k+l/W

Pl,2k / Pl,2k+l, P2,2k N, P2,2k+l/"

Hence, there exists a (_u, , Pl,/52, , _v,/52, P2), such that

U2k /7 _g, U2k+ ’N ,, V2k ’N , V2k+ /7 ,
(6.22)

Pl,2k / Pl, Pl,2k+l "Na/51, P2,2k "X’a/52, P2,2k+1 P2,

and also, by the elliptic estimates, weakly in W2’q(12) (actually, the Ul’S and Pl,l’S
converge weakly in W2’S(12), for any s < o). Furthermore, we have, for k => 1,

1
--AU2k + AU2k ----Pl,2k-1 0 a.e. in 12, U2k 0 at

and

--Av2I 4" Av2t + du2lcv2k g a.e. in 12, v2 0 at

--Apl,2g -k- hpl,2g dv2tcP2,2t 0 a.e. in , Pl,2 0 at 012,

-AP2,2 + hP2,2 + dup2,2g- v2k -va a.e. in , P2,2 0 at 012,

1
--AU2k+I -- AU2k+I --- Pl,2k 0 a.e. in fl, U2k+l 0 at 012,

--Al)2k+l-l",.l)2k+l’+’dl,12k+ll)2k+l--g a.e. inf, V2k+l=0 at0f,

--Apl,2k+1%" hPl,zk+l dV2k+ P2,2k+l 0 a.e. in 12, j01,2k+l 0 at 012,

--Ap2,2k+ d- hP2,2k+ 1-1- dtlP2,2k+ --/92k+1 --Vd a.e. in 12, P2,2k+l 0 at 0f.

Passing to the limit, we conclude that (_u, 5, p,/2,/, -/-),/01, P2) is a solution of

1
-Au+hu-m/-0 a.e. in12, _u=0 at0,

N

(6.23)

-A3+hE+d_ufi=g a.e. in12, fi=0 at

--Apl "k- Apl d@2 0 a.e. in 12, Pl 0 at 0,

-A2 -1- h2 ’[-- dff2- -va a.e. in f, j02 0 at 012.

1
-Aft + Aft

N _Pl 0 a.e. in 12, fi 0 at 0,

-A_v+h_v+dfi_v=g a.e. in, _v=0 at 012,

-A6 +h dp2 0 a.e. in , /1 0 at 012,

-Ap2+ hp2+ dOp2- v_ -va a.e. in 12, P2 0 at 012.

Then, by the inspection, we see that (, _v,/51, P2, _u, v, Pl,/52) is a solution, as well. But,
quite similarly as in Lemma 4.2, we can show that, under the assumptions of the
theorem, there can be only one solution of (6.23). Hence,

(_u, 5, p,,/2, fi, _v,/,, P2) (tT, _v,/,, P2, _u, 6, pa,/32),

and we deduce (6.20). The theorem follows now easily.
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NONLINEAR NONINTERACTION WITH STABILITY
BY DYNAMIC STATE FEEDBACK*

K. G. WAGNER?

Abstract. The dynamic feedback noninteraction with stability problem for square affine systems with
a nonsingular decoupling matrix is investigated. First, a characterization of the class of dynamic feedbacks
resulting in a noninteractive system is given. It is then shown that these feedbacks induce a certain subdynamic,
which is determined by the given system alone and independent of the particular feedback used. The stability
of this subdynamic is necessary for the achievement of noninteraction with stability. This condition extends
an analogous result on the static feedback noninteraction with stability problem obtained recently by Isidori
and Grizzle.

Key words, affine control systems, noninteraction with stability, dynamic noninteraction feedback, fixed

dynamics
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1. Introduction. Consider a square affine multi-input multi-output control system

2 =f(x) + Z gi(x)ui,
i=1

Yi hi(x), 1, m, m >= 2.

Here the state x varies in Rn, and the controls u and the outputs Yi are real-valued;
f, gi, hi are assumed to be C mappings, defined on some open subset of Rn. The
following concepts are standard in control theory. (E) is called noninteractive if each
output Yi is affected by the input ui, but by no u, j i. (E) is said to be stable at a
reference point Y if Y is an asymptotically stable equilibrium point of the drift term
2 =f(x). The problem of the modification of (E) by feedback control such as to arrive
at a noninteractive system is the noninteracting control problem [1], [2], [5], [7], [9].
If the feedback is also required to stabilize (E) locally at a given equilibrium of its
drift term, we speak of the noninteraction with stability problem [3], [6], [9], [10]. The
latter is the subject of the present paper. We discuss affine state feedbacks of the form

f(x, 2) + E 2(x, 2)v2,
j=l

Ui Ogi(X, ’)-" E [3ij(X, )l)j,
j=l

i.e., we include the possibility of a dynamic extension (state if) and generally refer to
(F) as a dynamic feedback. Vl,"’, vm are the new control variables. (F) contains the
special case of a static feedback (dim ff 0).

In the discussion of the noninteraction with stability problem it is natural to
consider only systems (E) that can be rendered separately noninteractive, respectively,
stable by means of possibly different feedbacks. The question then is which further
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conditions are needed in order to achieve both objectives simultaneously. For the case
where only static feedback is allowed, the crucial condition has been found recently
by Isidori and Grizzle [6]. It generalizes an analogous result for linear systems due
to Gilbert [3 and amounts to the requirement that a certain invariant subsystem defined
by (E), the so-called P* dynamics, must be a priori stable (see 3).

The knowledge about the dynamic feedback noninteraction with stability problem
is less complete. For linear systems, Wonham and Morse showed the very satisfactory
result that no additional conditions at all need to be imposed [9], [10]. In nonlinear
systems theory, however, the problem remained open until, in [6], an example was
presented that demonstrated that it may well be impossible to overcome the obstruction
of an unstable P* dynamics even by dynamic feedback, in contrast to the linear case.

In this paper we consider systems for which the static feedback noninteracting
control problem is solvable. We show that a general genuinely nonlinear phenomenon
underlies the cited example. It turns out that the P* dynamics contains another,
generally lower-dimensional subdynamic, called the Ami dynamics, which is invariant
even under dynamic feedbacks. If this dynamics is unstable, noninteraction with
stability cannot be achieved. For linear systems, the/mix dynamics reduces to dimension
zero (i.e., does not appear), in accordance with the Wonham-Morse theory. An example
shows that also in the nonlinear case a system with an unstable P* dynamics may still
be rendered both noninteractive and stable via a suitable dynamic feedback, provided
the smaller mmi dynamics is stable.

Throughout this paper we extensively use some standard methods of geometric
control theory that by now are quite common in the field. All the necessary background
material can be found in [5]. Also, our notation follows that of [5] and [6].

2. Regular noninteraction feedbacks. The following criterion will be used exten-
sively: if (E) is noninteractive, then (see [5])
(HI) For i= 1,. ., m and for any product D of the differential operators Ls, Lg,

we have

(2.1) LgDh, 0 for all j #

(here L denotes the Lie derivative). Throughout this paper we consider the system (5;)
locally near the reference point x 0. We assume

(H2) Each output h has a well-defined (local) characteristic number p at x =0
with respect to (Z) i.e., for 0_-< k < p and each j gL) h 0, and for some
j: LgL’h,(O) 0,

(2.2) i.e., when (H1) holds: LgiLihi(O O.

Given (H2), (H1) is also sucient for noninteraction at least if g, h are analytic
[4], [5]. So the following definition is natural.
DNTON 2.1. (i) A feedback (F) transforming (E) into the system

where xe-- () and

(2.3a)

(2.3b)

,e F(xe) nu 2 aj(xe)l)j,
j=l

Yi Hi(xe) h,(x), i= 1,.’’, m,

F(xe)--( f_ (x) .-1- (gi(x))\f(xe)] i=1 0
Oli(xe)’

Gj(xe)--
j(x

+
i=1 0

[ij(xe), 1 <--
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is called a noninteraction feedback (for (2;)) if for any and any product D of factors
LF, Lc;,
(2.4) LGDehi 0 for all j i.

(ii) If, in addition, each output hi has a characteristic number cri at the origin
xe= 0 with respect to (Ee), then (F) is called a regular noninteraction feedback.

(iii) When dealing with systems (2;) with f(0)= 0 we say that the feedback (F)
preserves the equilibrium if f(0, 0)= 0 and ai(0, 0)= 0 for i= 1,. ., m (so F(0)= 0).

The object of this preparatory section is a characterization of the class of regular
noninteraction feedbacks for those systems (E) that are already noninteractive.

So assume that (HI), (H2) hold for (E) and consider a feedback (F) and the
resulting system (Ee). For notational convenience from now on we will often omit the
argument x when a mapping H(xe) is referred to. If H happens to depend only on
the x part of xe= (x, ), we emphasize this by writing H(x). The following formulas
are easily deducted from the definitions"

LkFhi Lhi(x), O<= k <= pi

(2.5)
L+hi- L’+lhi(x)+ Lg,L’hi(x)

k kLoLFhi Lg,Lhi(x) ij, 0 <= k <= pi (=0 for k < pi).

If (F) is a noninteraction feedback, then (2.5), (2.4), (2.2) imply/3o 0 for ij; thus,
(2.3b) reduces to

+ (x)’fl, j=l ...,m.(2.6) Gj
./

In addition, if ii(Xe) is not identically zero on a neighborhood of x O, (2.5) implies
that the characteristic number cri of hi at xe= 0 with respect to (Ee) exists if and only
if/3,(0) 0 and in this case, o-i pi. This is case (i) of the following claim (2).

PROPOSITION 2.2. Assume that (2;) satisfies (H1) and (H2). Claim:
(1) A feedback (F) is a noninteraction feedback if and only if its coefficients ai, o

exhibit the following decoupling property:

(2.7a) flo =- 0 ifj i,

(2.7b) LGDeai 0, LGDeii 0

for all 1,. ., m, all j and any product D offactors LF, LGi.
(2) (F) is a regular noninteraction feedback if, in addition, for each {1,..., m}

one of the following statements holds:
(i) flii(O) O, or
(ii) /3,---0, and cri(x e) has a characteristic number, say ri-1 at x =0 with

respect to (,e).
The characteristic number O" of hi at x --0 with respect to (Ee) equals pi

in case (i), respectively, pi + ’i in case (ii).
Sketch ofproof We may assume (2.7a). Let D be a product of factors LF, L,.

The idea of the proof is to establish the following relations between the relevant Lie
derivatives of hi, /3,, ci (to prove by a straightforward induction on the number of
factors of De, starting with (2.5)):

(2.8) p.D L,Lhi Lg,L’hi(x)" D [3. + 2 tk,De(X)’Bk,D
finite

(2.9) Del.o’+’hi Lg,L’hi(x) Deoi-F 2 Ok,De(X) "Atc,D"’-"F
finite
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Here k is a summation index. Each function k,D k,D is of the form DLg,L’hi or

DL/+lhi for some product D of factors Ly, Lg,. Each Bk,D’, Ak,D" is a product of
functions of the form Deii or Deoi, the D being products of factors LF, L,. The
total number of operators LF, L, appearing in Bk,D’, respectively, Ak,D" is strictly
smaller than the number of factors of D (harmless exception" for De= identity an

Ak,D" 1 appears, cf. (2.5)).
Claim (1) can now be derived from (2.8), (2.9) by a similar induction argument.

The/3, 0 case of claim (2) results from the following auxiliary claim" If/3, 0, r _-> 1
and rP+ P’ (To deriveLo.Lvai =- O, for 0 < < ’- 1 then ,o, hi Lg,L hi(x) L l’r--1

for r= 1 from (2.5) and, for z > 1, from (2.9)" let De= L-1, then apply Lo, and note
(2.6).)

Remark. The decoupling condition (2.7b) can also be expressed in terms of
first-order differential operators involving Lie brackets. An elementary calculation using
the rule LtC,D3= LcLD-LDLc shows the following well-known equivalence for a
function a(xe)

LGDea 0

for all j and all products D of factors Lv, L

(2.10) for all Lie products B of F, Ga, , G,

containing a factor G, j # i.

The form (2.10) for the decoupling condition will be useful later.
Proposition 2.2 may be compared with a similar characterization of the class of

static regular noninteraction feedbacks due to Ha and Gilbert [4]. Its essential part is
the decoupling property for Ogi, ii with respect to the original system (E) instead of
(Ee). In contrast, our condition refers to (Ee) and is thus only an implicit one.
Nevertheless, it will serve as an essential tool for the proofs of our main results.

3. Review: the P* decomposition. Let (H2) hold and let A(x) be the so-called
decoupling matrix of (E), defined by its entries

aij(x) LgLflhi(x), 1 <-- i,j <= m.
Throughout the rest of this paper we assume that a static regular noninteraction
feedback for (E) exists locally near x 0. This is the case if and only if (see [5])

(H3) A(x) is nonsingular near x 0.

The starting point for the ensuing discussion is the main result of [6] on the static
feedback noninteraction with stability problem which we briefly review here. Let R*
be the smallest distribution containing gl, ", gm and invariant under f, g, , g,.
Following [5] we denote this by

R* (f, gl ,’’’, gm IsP {gl ,’’’, gm}).

R* is the so-called strong accessibility distribution of (X) [8], [5, p. 38]. (H2) implies
that, for i= 1,..., m, the maximal controlled-invariant distribution A* contained in
ker dhi is well-defined, nonsingular, and involutive [5, p. 145]. We need the following
additional regularity assumption:

(H4) (i) Near x-0, R* is nonsingular and finitely computable (cf. [5, 1.6]).
(ii) Near x =0, the largest controllability distribution P* contained in A* is

defined, nonsingular, and finitely computable for 1, , m [5, IV.5].

if and only if
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Hypothesis (H4) is known to hold for an open and dense set of reference points. What
we actually need is that x 0 belongs to this set.

THEOREM 3.1 [6]. Let (H2), (H3), (H4) holdfor (E). Then there exists a coordinate
system x (Xl,""", Xm+2) locally around x 0, each xi possibly vector-valued, with the
following properties:

(1) P*i =sp{O/Oxj l <=j<=m+l,j i},

(3.1) e*:= P*=sp
0

i:1 OXm+l

(2) In the coordinates x, each noninteractive system (E) obtainedfrom (E) by means
of a static regular noninteraction feedback displays the following P* decomposed form:

l --?l(Xl, Xm+2)-Jl- ll(Xl, Xm+2)l)l, yl hl(Xl, Xm+2)

rn --?m(Xm, Xm+2) -" gmm(Xm, Xm+2)Vm, Ym hm(Xm, Xm+2)
(3.2)

x+, =/+,(x)+ 2
i=1

i+2 =/+2(x+2).
In addition we have in terms of (E)"

(3.3) P/* =(f, 1,’", m [sp {" 1 <=j<= m,j i}).

(3) Now suppose f(0)=0 and consider in (2) only feedbacks that preserve the
equilibrium, so f(O) 0 in (3.2). Then the map fm+l(O, O, X,+I, O) is determined by
the given system (E) alone. The drift term of (,) can be asymptotically stable at x =0
only if the P* fixed dynamics

(3.4 +1=+,(0,... ,0, x+,,0

associated with (E) is asymptotically stable at Xm+ O.
Remark If dynamic feedback is considered, the stability of the P* fixed dynamics

is no longer necessary for noninteraction with stability For linear systems, this is clear
in view of the Wonham-Morse theory mentioned in the Introduction A nonlinear
example will be provided later in 6.

4. The mixed brackets distribution and the corresponding subsystem. Invariance
properties. The result just described indicates that the P* dynamics constitutes the
essential obstruction in the static feedback noninteraction with stability problem. It is
natural to ask how far we can reduce this P* dynamics if dynamic feedback is allowed.
To motivate the following discussion a bit, suppose for the moment that (E) is already
noninteractive and consider the case (E)= () in Theorem 3.1. By (3.3), (3.1) it is clear
that all those Lie products of f, gl,"" ", gm that contain two factors gi, gj with ij
belong "canonically" to P*. We refer to these products in the sequel as mixed brackets.
Of course, P* may be bigger. For instance, if [f, gl] and [f, g2] happen to be nonzero
and linearly dependent, then these nonmixed brackets also belong to P*. However,
the existence of such additional elements of P* depends on the validity of certain
nontrivial relations in the Lie algebra Lie {f, g,..., g,,} that might be destroyed by
means of a suitable dynamic extension. Thus, it is reasonable to conjecture that P*
and, consequently, the P* subsystem have a "core" determined by the mixed brackets
and this intuition is indeed correct. So let

Amix, the mixed brackets distribution
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be the distribution generated by all the mixed brackets. While A *, p*, P* are invariant,
at least under invertible static feedbacks, there is no obvious reason for expecting any
kind of feedback invariance of the mixed brackets distribution. Yet our main result
states that Ami does exhibit invariance, in a sense, with respect to noninteraction
feedbacks.

THEOREM 4.1 (invariant projection property of Amix). Suppose that () satisfies
hypotheses (H1) and (H2). Let (ye) be any system obtained from () by means of a
(dynamic) regular noninteraction feedback. Let A,i be the mixed brackets distribution
of (ze) and 7rx, the canonical projection from the tangent bundle of the x space onto
that of the x space. Then

7"x (memix) mmix

The proof of this theorem is given in the next section.
COrOLlARY 4.2. If in Theorem 4.1 the feedback applied to (,) is static, then

mix mmix-
Remark 4.3. As a consequence, if we start with a system (E’) that satisfies (H2)

and (H3) but is not itself noninteractive, then any two systems (E), (E) obtained
from (’) by means of a static regular noninteraction feedback will result in the same
mixed brackets distribution mmi (for (El) (2) can be transformed into each other via
static regular noninteraction feedbacks). That is, this Amix is in fact determined by the
given system (E’) alone and does not depend on the particular choice of its noninterac-
tive counterpart (E).

We now use the mixed brackets distribution to derive a refinement of the P*
decomposed form (3.2). Suppose that f(0)=0 and that () also satisfies (H4) in
addition to (H 1) and (H2), so Theorem 3.1 can be applied for () (E) (accordingly,
we omit and write ui instead of vi when we refer to the P* decomposed form (3.2)
of (E) itself). Suppose further that

(H5) Amix is of constant dimension locally around x 0.

Given (H5) it follows by the very definition of Amx that mmi is an involutive subdistribu-
tion of P* and is invariant under f, gl,"" ", gm. In particular, the differentials of the
components of the coordinates x,..., x,,, x,+2 used in Theorem 3.1 annihilate Ami
Now recall that during the construction of the coordinate system x (see [6, Lemma
4.1]) the x,,+ part is required only to complete the previously constructed
Xl, , Xr,, X,,+2 to a full coordinate system. So we can, without affecting the statements

* such thatof Theorem 3.1, choose new coordinates Xm+l as follows. First, choose Xm+
dXm+l, +2the components of dx, dx,, ** dxm constitute a local base for the annihi-

lator of Ami (this is possible by the Frobenius theorem since Ami is involutive and
nonsingular). Then adjoin further coordinates *Xm+ SO as to obtain a full coordinate
system. Then

(4.1) Amix=sp Ox*m+
and since Aix is invariant under f, g,..., gin, the X*m+ coordinates appear in (3.2)
nowhere but in the 2"+ equation (cf. [5, Lemma 1.4.3]). Consequently, the P* dynamics
(3.4) splits:

** 0),2*m+, =f*m+l(0, 0, Xm+l, Xm+l,

"** ** ** 0).Xm+l =fm+l(O," O, Xm+l,
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For this dynamics, x,,+l** 0 defines an invariant manifold and the restriction on this
manifold is given by

(4.2) Xm+1"* =fro*+1(0, 0, X+ 0, 0).

This is (in coordinates) the restriction of the drift term of (X) to the integral manifold
of Ami passing through x 0; therefore, we call it the Ami dynamics. Since P*, Amix,
and the P* dynamics are the same after any static regular noninteraction feedback,
so is the Ami dynamics. Accordingly, we can, in analogy to Remark 4.3, associate a
well-defined Ami dynamics also to systems (X’) that satisfy only (H3) instead of (HI),
simply by executing first an arbitrary static regular noninteraction feedback and then
using the resulting system (X).

The most remarkable feature of the Ami dynamics is that, unlike the P* dynamics,
it also survives dynamic noninteraction feedbacks. The following theorem constitutes
an analogue to Theorem 3.1 (3).

THEOREM 4.4 (invariant projection property of the Ami dynamics). Suppose that
f(0) =0 and that () satisfies (H1), (H2), (H4), (H5). Let (2e) be a system obtained

from () by means of a (dynamic) regular noninteraction feedback which preserves the
equilibrium. Assume that the mixed brackets distribution A,x of (Ee) is also constant
dimensional near x O. Claim"

(1) The drift term of (Ee) admits the restriction on the integral manifold of Aix
passing through xe= O.

(2) This restriction, called the Ai dynamics of (), has a well-defined projection
into the x space, and this projection coincides with the Ami dynamics of (X).
Consequently, (y.e) can be asymptotically stable at x 0 only if () has an asymptotically
stable Ami dynamics.

Proof Since Ai is nonsingular, it is involutive and so has an integral manifold
I passing through the equilibrium point xe= 0 of the drift term

f(xe )(f(x)) ( (X)) xe(4.3) )e F(x __...it..
i=1 0

"Oi(

of (._e) mix is also invariant under F, and this implies that I e, containing an equilibrium
of (4.3), is an invariant manifold for (4.3). This proves claim (1). Consider now the
A,ix dynamics, i.e., the restriction of (4.3) to I e. If B is an arbitrary mixed bracket of
(Ee), then, by the decoupling property, LBci=0, i= 1,..., m. Since our feedback
preserves the equilibrium, ai(0)=0, so a=-0 on Ie. Similarly, using the invariant
projection property for Ai we deduce that X 0, X O, Xm+1.: O, Xm+2 0 on
Ie, whereas the coordinate functions x’m+1 can be made part of a coordinate system
(x*,,+, *) on Ie. Here * is an appropriate selection of components of . In these
coordinates the restriction of (4.3) to I reads

*m+l--f*m+l(0,""", 0, X’m+1,0, 0),

*= P(X*m+I, *), appropriate.

Claim (2) is now obvious.
Remark 4.5. The mixed brackets distribution and the corresponding subsystem

are structural properties typical for nonlinear systems. In fact, for a linear system all
mixed brackets vanish and so the obstructive mmi dynamics does not appear. From
the general viewpoint of nonlinear control theory, the success of the linear Wonham-
Morse approach thus obtains an additional motivation.
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Remark 4.6. If the assumption of nonsingularity of mmix, mnix in Theorem 4.4 is
dropped, we nevertheless can show the invariance of certain dynamical characteristics.
In fact, since f(0)=0, F(0)= 0, we can conclude by the mere definitions and without
invoking nonsingularity that the subspaces Amix(0), Aaix(0 are invariant subspaces,
respectively, for the differentials fx(0) and Fxe(O) which correspond to the linearized
drift terms of (E) and (Ee). What we can show is the following inclusion for the spectra
of the’respective restrictions:

(4.4) r(f(0) ]Amix(0) C o-(fxe(O Amix(0)).
In particular, (Ee) is surely unstable if an eigenvalue off(0)[Amix(0) has a positive real
part.

Proof. We have ai(0)= 0, and by the decoupling property the restrictions of the
differentials dai(O) to Anix(0) also vanish. It follows that the restrictions on Aix(0) of
the linear maps given by

Fe(O) and
dxe o

coincide (cf. (4.3)). Formula (4.4) follows from this by using the invariant projection
property of mrai and some standard arguments from linear algebra.

This remark and proof constitute a direct generalization of the concluding reason-
ing in [6, 5].

5. Proof of Theorem 4.1. The theorem is proved once we succeed in showing that
the projection r maps all members of a set of generators of Aix into Amix and that
the images thus obtained suffice to generate all of Ami So our first step is the selection
of appropriate sets of generators. Consider first mmi Let Lr, c mmix be the B-linear
span of all those mixed brackets which contain exactly r factors f and s factors in all
(0 -< r -< s 2). By repeated use of the skew symmetry of the Lie product and the Jacobi
identity, we show successively that Lr, is linearly spanned by each of the following
sets of more special mixed brackets:

(i) The mixed brackets in Lr, of the form

[bs, [bs_l," [b2, bl] ]],

b, b {f, gl ,’’’, gm}.

(ii) The mixed brackets in Lr. of the form

[(adrof, g’), ["’, [(adf, g,), (adrf, g’l)] ]],
(5.1)

q=s-r, rq+. .+rl=r, l<--il,. .,iqm

(to obtain from (i) by distributing all factors f, beginning from the left, through the
products on their right via the Jacobi identity. The ad notation is defined by (adf, g) g,
(adk+lf, g)= [f, (adkf, g)]). Note that 6 i1 for some j.

(iii) E, -the set of the mixed brackets in L,s of the form (5.1) with the additional
property 2

To see this, use (ii) and the fact that a formal Lie bracket [B, [A, , [Aq_l, Aq] ]],
where B, A1,’", Aq are indeterminates, can be linearly combined by the brackets
[C1, ["’, [Cq, B]... ]], where the C’s form permutations of the A’s. (This fact can
easily be proved by induction on q.)
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Thus, Ami is generated by the union of the sets Er, The corresponding quantities
of the system (Ee) are defined in an analogous way and, as usual, marked by the
superscript e. Now let

"/’i--O’i- Pi, 1," ", m,

where tri (respectively, pi) is the characteristic number of the output hi with respect
to (Ee) (respectively, (E)). Recall from 2 that, if ’ 0, then ,(xe)#o near xe=0;
otherwise,/3,(xe) 0 near xe= 0 and ’i- 1 is just the characteristic number of ai(xe)
with respect to (Ee).

LEMMA 5.1. For i= 1," ", m and p 0, 1, 2,... an identity of the following form
holds:

(5.2) 7r((adF, G,))=E b ,, Ck,
k

Here

(5.3)

b,i product of the form"
[gJr, [" ", [gJ,, gi]" ]], 0 <= r <= p r
jr," ",jl E {0," "’, m} (here we let go=f);, "product" of one of the following two types:

Dr(’’’ (Dl(fl,)) "), 0<= r <- p,

Dr(’’’ (Dl(--t(ad’F,G,)Oi))’" "), 0 -< r-t- </9,

where Dr," D1 {LF, al, Olm}.

In addition,
(i) For each k we have the following alternatives"

--Either, contains no %,j # i, and therefore has the same decouplingproperty
as ai, ft, themselves,
Or bp is mixed, i.e., b,i contains a factor gj, j # O, i.

(ii) Ifp < , then (5.2) vanishes. Otherwise, exactly one ofthe b,, say b.,, contains
a maximal number offactors f; namely, we have

((ad-i. gi)" ii if i O,
k*,, -[-(ad- ’ gi) L(ad,-F,G,)ai if , > 0

and here Ck*,i(xe) 0 near xe O.
Remark. Ck*, does not depend on p; therefore, the superscript p is dropped here.

Note also that if r > 0 we have by the definition of the characteristic number r-i
of a

(5.4) L(aa’’ -1)’-LaL)- 0 for O r- 1.

Proof of Lemma 5.1. Fix e {1,..., m}. The proof proceeds by induction on O-
For p =0 we have by (2.6)

(G) g. , (=0 if r > 0)

as desired. Induction step p p + 1" by assumption and (2.3a) there are vector fields
X, X’e sp {0/0} such that

(5.5) F =f+ 2 g+ X, (adF, G) 2 b, 4o, + X’
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(for notational convenience we write here f, gj instead of (o), (J)). Now remember the
following product rule for vector fields Xi, Y and scalar functions yi, 6j"

x=Ex. %, Y=E .a
{x, Y]=X Y. (La)-Z X. (L.%)+E {X, Y] %a.

i,j

Thus, bracketing the vector fields (5.5) we obtain

(ad+’F, G,)=E b o
k,i" LFd/)k,i gj" L(adF,G,)Olj

k j=l

(5.6) + E [f b,,,] o + [f X’] + E E [gj, b
k k j=l

+ Y {gj, X’].aj+Y,{X, bk,,] Ck,, +[X,X’].

Because of the decoupling property we have here

L(adOF,Gi)Oj 0 forj i.

In addition, sp{0/02} is, of course, involutive and (trivially) invariant under
f, gl,’’’, gin, even under each b e Lie {f,..., g,,}. It follows that all those terms in
(5.6) that contain X or X’ belong to sp {0/02}. Summing up, the action of rx on (5.6)
results exactly in a representation (5.2) with p now replaced by p + 1. The additional
statements on (5.2) follows by direct inspection of (5.6) using the induction hypothesis
and (5.4). S

LEMMA 5.2. Let ONrNs-2, q:=s-r, i,.. .,iq{1,.. .,m}, i#i2, rq,...,r
nonnegative integers such that rq +. + r r, Rj := rj + for j 1, , q. Claim"

x([(adRoF, Go), [..., [(adF, G,), (adRIF, Gil)] ]])

[(ad gq), [’" ", [(adf g), (adq gh)] ]]
(5.7)

k*,iq" k*,i + bj" j(xe),

where

bj U Er,,s, U Er,,s,, Jj (x e) smooth
r’< r’=
s’s s’s

(note that the first summand on the right-hand side is a nonzero multiple of a typical
element of Er,s).

Proof The proof is by induction on q. First, let q 2. For notational convenience
we may assume without loss of generality that il 1, i2 2. From Lemma 5.1 we get,
for i= 1, 2,

(5.8) (adR,F, G,) (ad’f, g,). Ck*., + , bkR5 CkR,’i + J72,
kk*

with certain vector fields J sp {0/02} and all brackets bkR, of the form (5.3). Since
k # k*, these brackets contain fewer than ri factors f and, besides the obligatory factor



NONLINEAR NONINTERACTION WITH STABILITY 619

gi, at most ri more factors in all. We now bracket the vector fields (5.8) and obtain,
by means of a computation similar to that in the preceding proof,

(5.9)

[(adR2F, G2), (adR’F, G,)]
R RI R R

b,, L(adnZF, Gz)dpk,l-- bk,2" L(adn,F, G1)flPk,2
k k

+ [(adr2f, g2), (adr’f, gl)]"

+ 2 [b R2 bk,,,]" 4’ k’.,+sPk,2, k,2
(k,k’)(k*,k*)

Here, in the first two sums, if a bracket b is not mixed then its 4) factor has the
decoupling property (see Lemma 5.1), and therefore the Lie derivative of this
appearing in (5.9) vanishes. So the rx projection of (5.9) contains only mixed brackets.
The special form (5.7) is now verified just by counting the factors of each bracket.

The induction step q- q + 1 proceeds in virtually the same way as the initial step
just completed. We need only the additional observation that the argument of rx in
(5.7), denoted for the moment by B, is now a mixed bracket. Therefore, by the
decoupling property, LBdpt,i--0 for all functions b in (5.2) (where i= iq+l, p-- Rq+).
It is for this reason that the induction step does not give rise to nonmixed brackets on
the right-hand side of the new (5.7) corresponding to q + 1 instead of q.

LEMMA 5.3. Let O<=r<=s-2. Then 77-x(Ere,s)Amix
Proof For those members (5.1) (replace f, g by F, G) of Eer, whose exponents

rq, , r are all sufficiently large, i.e., r => % forj 1, , q, the statement is contained
in Lemma 5.2. For the others, the procedure of the proof of Lemma 5.2 can be followed
all the same. The only difference is that now some of the sums (5.2) used in this proof
may be empty. On the other hand, there is now no more need to identify certain
nonzero contributions, so this does not matter.

Theorem 4.1 now follows easily from these lemmas. In fact, by Lemma 5.3,
7rx(Ax) r, 7rx(sp Er,)= mmi On the other hand, it follows from Lemma 5.2 by a
combined induction on (r, s) that 7r(A,i) indeed contains each Er,s; therefore,

7rx(Aix) sP ( I,-j Er,s)-- Amix.
r,

6. Examples.
Example 6.1. Isidori and Grizzle [6] proved that a system of the form

1 HI, Yl Xl,

(6.1) 2 u2, Y2 x2,

.3= a3(Xl, X2, X3),

where

a3(0 =0,

(a3)xl(0) 0, (a3)x2(0) 0, (a3)x3(0) > 0,

a3)xlx2(O) 70

cannot be rendered both noninteractive and stable, although it is already noninteractive
and could also easily be stablized by a simple linear feedback. This fact is now easily
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explained by the theory just presented. The system (6.1) is already in P* decomposed
form and we have

OX20X OXl OX

Since

(a3)x,x2,t
we have here Amix P*. So the Ami dynamics equals the P* dynamics

33 a3(0, 0, X3),

which is unstable because of (a3)x3(0)>0. The desired result now follows from our
Remark 4.6. Its proof in [6] can be directly recognized as a special case of our preceding
calculations.

Example 6.2. The next example demonstrates that a nonlinear system with an
unstable P* dynamics may nevertheless be rendered both noninteractive and stable if
its Ami dynamics is stable. Consider the following modification of the preceding
example:

1 Ul, Yl

(6.2)
3=(Xl+X2)2--X3,

4 Xl X2 + 24.

Obviously the linearization of (6.2), and hence (6.2) itself, are stabilizable at x =0.
Using (3.3) we compute

p=sp{ 0 0 0}OX20X304

p=sp{ 0 0 0}OX10X304

Ox3

Thus, (6.2) is in refined P* decomposed form. Its P* dynamics

23 --X3, 24 X4

is obviously unstable, whereas the mix dynamics

2 x

is asymptotically stable. So no static %edback can render (6.2) noninteractive and
stable; yet a suitable dynamic feedback may exist, and it does indeed. Adjoin to (6.2)
the equation

)5 --X2 nt- Xs.
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In the new coordinates

1411 Xl, 1413 X2,

W2 X4 X5, 14)4 X5,

the (xl, x2, x4, xs) part of the thus extended system reads

1 u, y w,

2 1411-31- 14’2,

3 u2, Y2 w3,

4 W3 -- W4"This pair of independent controllable single-input single-output systems can, of course,
easily be stabilized without affecting the noninteraction. The final adjunction of the
x3 part

3 (w + w) x3

obviously does not change matters.
In view of this example it is natural to ask whether the stability of the mmi

dynamics is also sufficient for noninteraction with stability in our setup. However, up
to now this question is unsettled. The above procedure is not general. For instance,
changing x to x3 in the 4 equation of (6.2) does not affect P* and Amix, but the
procedure now leads to a (wl, w2) subsystem which is no longer stabilizable. It is
unknown to the author whether this modified system can at all be rendered noninterac-
tive and stable. What can be done in general is to construct dynamic noninteraction
feedbacks which reduce the distribution p.e of the resulting system (Z) to the smallest
possible dimension, namely, that of Amix. Hence, there is no fixed dynamics bigger
than the Ami dynamics. Unfortunately, the feedbacks known up to now generally
destroy the stabilizability (even in the linear case), so they are of little practical interest,
and we forego a more detailed discussion.
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Abstract. A domain 1 depends upon a control variable u, and its boundary consists of three parts:
F0, Fu, and ,. The part F0 is prescribed independently of u. The part F is determined directly upon
prescribing the control u. The remaining part , is determined as the free boundary of a variational inequality
with 1 as the noncoincidence set. The problem is to choose u so that u will become "as close as possible"
to a given surface. Properties of the optimal control u* are derived.

Key words, optimal control, variational inequalities, optimal design
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1. The physical problem. Let Q be a bounded domain in En with C- boundaryand let a, b, H be constants satisfying 0 =< a < b < H. Let

QH {(x, y); x Q, 0 < y < HI.
We introduce the set U of control functions u(x)"

U={ueLip(Q),[Vul<-_p a.e., a<-_u(x)<-b, and U=Uo on oQ},.

where Uo is a given C function satisfying

a < Uo < b,

and p is a given positive number; U is a compact subset in LZ(Q).
For any u U let

l’l, {(x, y); x Q, u(x) < y < H}

and consider the variational inequality

(1.1) I Vz. V(-z) dxdy>--I f(-z) dxdy /Ku, zK

where

(1.2) Ku {z 6 Hl([-u), z >- 0 in l-l,, z 1 on {y u(x)}, z 0 on {y H}}

and f is a given function in C’I(0H) satisfying

(1.3) O<--_f<--_C *, fy>=O (C. positive constant);

the last two conditions in (1.2) are taken in the usual trace sense (recall [12, 4.2]).
Formally, problem (1.1) is equivalent to the obstacle problem

-Az=-f in {z>0}, z->_0 in l’lu, -Az_->-f in lu,

z-1 on {y= u(x)}, z=O on{y=H},
(1.1a)

Oz
0 on the lateral boundary of u.

0v
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Let y q,(x) be a given function satisfying

(1.4) qC2(O), b<q(x)<=H ifx(.
We wish to find a control u such that the free boundary of the corresponding

solution z zu of (1.1), (1.2) will be "as close as possible" to {y q}. This problem
arises in electrochemical machinery [4, p. 177], [11] whereby we wish to achieve a
specific shape of the surface of a metal workpiece (the anode) by electrochemical
process; the control {y u(x)} plays the role of the cathode part of the outer boundary
of the bath containing a chemical solution, and a fixed voltage is applied along this
boundary. The function f represents a source term which we can introduce into the
process.

In this paper we will adopt a weak formulation of the goal of achieving a shape
close to {y q,(x)} (see Remark 5.2), and we will establish necessary conditions on
the optimal control u. In particular, the optimal control will be uniquely and explicitly
determined for Uo= const., Uo depending on the domain (see Corollary 5.2). At the
end of the paper we will briefly consider other control sets.

2. The e-problem. Let X x, y dX dx dy.
Let F(X, z) be a function satisfying

(2.1) F CI(O.H X), F>--Co (Co const.).

Introduce the functional

(2.2) (u)

where zu is the solution of (1.1), (1.2), and consider the following problem.
PROBLEM (P). Find u* such that

u* U, J(u*) min J(u).
uU

THEOREM 2.1. There exists a solution u* of Problem (P).
Proof Take a minimizing sequence u,, and denote the corresponding solution of

(1.1), (1.2) by z,,. By standard estimates for variational inequalities [5], [9] we deduce
that, for a subsequence, u,, --> u*, z,, --> z* uniformly, and (u*, z*) is a solution of (1.1),
(1.2). Clearly, u* is then a solution of Problem (P).

From now on we will deal with a specific minimizer u* and denote the correspond-
ing solution of (1.1), (1.2) by z*. We also set

f* f..
In order to derive necessary conditions on u*, we wish to consider e-approximate
problems for which the cost function is ditterentiable; this procedure was used in [2]
and [6].

Letj c; ({Ixl < 1}),j -> 0, j(x) dx 1,j(x) e-i(x/e) for any e > O, and define
the mollifier

Note that/x (u) - u in C" (Q) for any 0 < a < 1.
Introduce functions/3(z) C in z (0<e<l) such that

/3(z)0 if z>0, e-0, /3(z)-- if z<0, e-0;
(2.3)

/3’(z)_->O for allz, and /3(e)=O, /3(0)=-C,
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with C, as in (1.3). Consider the elliptic problem:

(2.4) -Az +/3(z) -f in

z= 1 on {y=(u)}, z=O

OZ
(2.5) -0

Ov

O<--e<l,

on {y H},

on the lateral boundary of f.(u).

We denote the solution by z,; note that z, belongs to Hl(-g(u))["] C2’a(-tz(u)).
Consider the functional

J(u)= fa F(X,z,) dx+l f ]u-u*]Z dx.

POUZM (P). Find u e U such that

u, e U, A(u) =min L(u).
uGU

Proceeding as in the proof of Theorem 2.1 we can show that there exists a solution

u of Problem (P); we denote the corresponding solution of (2.4), (2.5) by z.
Fuhermore, we have the following lemma.

LEMMA 2.2. As e O,

(2.6) u u* weak& in WI’V(Q) and strong& in C(
2p(2.7) z, z* weak& in Wl(.)

for any 1 <p<.
Proof For any sequence e 0 there is a subsequence such that

(2.8) uou, z,oz
in the sense of (2.6), (2.7). Fuhermore, taking e 0 in the relation

L(u)L(u*),

we arrive at the inequality

i s2p - u*l< u(x, *(x, )+u Q

From the optimality of u* it then follows that

limsupf u-u*=0
e0 Q

and therefore also Ul u*, Zl z*. Clearly, (2.6), (2.7) now follow from (2.8).
LEMMA 2.3. For any u U the corresponding solution z z of (2.4), (2.5) satisfies

(2.9) 0zl,

(210) 0.
OY

Proo Suppose z takes negative minimum at a point Xo (Xo, Yo) in.Then
fl(z(Xo)) <-C, by (2.3). Since also Az(Xo) 0, (2.4) gives f(Xo)> C,, a contradic-
tion to (1.3). Thus the minimum of z is achieved only on the boundary, and (by (2.5))
it is greater than or equal to zero.
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Since/3e(1) =0, z= 1 is a supersolution of (2.4), (2.5); it follows (by comparison)
that ze =< 1.

The function w =Oze/Oy satisfies

-Aw+’e(ze)w -fy in D.u,
and

w_<-0 on{y=H} (since ze => 0 in

w<=0 on {y =/xe(u)} (since ze -< 1 in

Ow
-0 on the lateral boundary of

Hence proceeding formally to use the maximum principle, we deduce that w-< 0, and
(2.10) thus follows. Since w may not actually be continuous (or even bounded) at the
corner points of 12,u), we should proceed to establish assertion (2.10) either by
approximating y=/xe(u) so that it becomes horizontal near oQ (and then w is con-
tinuous in l),u)) or else by working with the weak equation for w and applying the
maximum principle for weak solutions.

3. The optimality conditions for (P). We denote by ue a solution of Problem (Pc)
and by ze the corresponding solution of (1.1), (1.2); set fie fl,<, F {(x, H); x Q},
Fe {(x, y); y =/xe(x), x Q}, Fl,e the lateral boundary of fie.

Let v be any function such that ue + gv U for all sufficiently small > 0, and
introduce the quotient

z,+ ,3v- ze
qe,

6

LEMMA 3.1. As 6 -> O,
2,r(3.1) qe, --> we weakly in Woc(Fte

for any 1 < r < oo, where we is the weak solution in Hi(fie) of
(3.2) -Awe+’e(ze)we=O in fie,

Oze(x,y)
(3.3) we(x,y)=-Ixe(v)(x) on

Oy

(3.4) we=0 on F,

(3.5) Owe
0 on the lateral boundary F

Remark 3.1. Since we is only in Hi(fie), it should be mentioned that Owe/O,
makes sense as an element of H-1/2(FI,e), and the solution to (3.2)-(3.5) is defined in
the sense that

(3.6)
we(x, y)[sr(x, y)’e(ze)-A(X, y)] dX

y) Off(x, y)
(v)(x) dS

Oy 0,

for all " e H2([],e) such that ’=0 on FLI Fe and 0/0,=0 on

Proof Taking the difference of the elliptic equations for z+v and ze and applying
Lp elliptic estimates, we find that

IIz:=/ v-zll=,<..) <-
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for any compact subdomain 1* of ; depends on e and )*. It follows that for
any sequence 6 0 there is a subsequence for which (3.1) holds. Since (3.4) and (3.5)
are rather obviously satisfied, it remains to establish (3.3). Using the fact that the
boundaries {y=/x(u)} and {y=/x + 3v)} are smooth, we can compute q, on {y=
/x(u)+ C3}, for any C>sup v. Setting 0(x)= tx(u)(x)+C6, we deduce that

q,(x, O(x)) _Oz,,+, (x, O(x))[tx(u + 6v)(x)- 0(x)]
Oy

+(x, O(x))[tx(u)(x)-O(x)]+ o(1)
Oy

as 6 0, from which (3.3), in the sense of (3.6), easily follows.
For any convex set U in a real Banach space X we define

[0 if u e U,
hv(u)

+oe if u U.

Recall [1] that the subdifferential Oht(u) is defined as follows:

w Ohcr(u) if and only if w X* (the dual of X) and hc(u + v)- hc(u) >= (w, v)
VvX;

here (w, v) denotes the application of the bounded linear functional w to v. Recalling
the definition of hc(u + v), we see that

(3.7) Ohc(u)={wX; (w, u-v)>-O Vv U}.

Since u he,(u) is a convex function, we easily find that

(3.8) w6Ohcr(u) if and only if limsup+o(hv(u+,Sv)-hc(u))/6>-_(w, v), for all
v6X such that u+vU.

From the optimality of (u, z) we have

F(X, z,+ F(X, z + u u* +-
(3.9) ,(+) o 2

->_0 ifu+6vU.

Dividing by 6 and letting -* 0, we get

f F(X, z)w I F(X, z(x, tx(u)(x)))tz(v)(x) dx

(3.10)
+ f (u-u*)v>-O ifu+6vU for all small6>0.

We will rewrite this condition more effectively by introducing the "adjoint
variable" p, defined as the solution of the elliptic problem:

-Ap +’(z)p -Fz(X, z) in

(3.11)
p=0 onFUF,

Op
-0 on I’1,

0,

Note that p is smooth up the boundary {y =/x (u)}; furthermore,

p HI() 71H2() V small 6 > 0,



628 v. BARBU AND A. FRIEDMAN

where

f {(x, y)" x Q, dist (x, oQ) > 6, tx(u(x)) < y < H}

We can transform the first integral on the left-hand side of (3.10), formally as follows:

F(X, z)w I [ZXp-’(z)p]w

a\0’
wE-p

0/
(by(3.2))

oz op
(v)[1 +lv(u)12] ’/2 dx (by (3.3)-(3.5)).

To proceed rigorously we take a C() such that a 1 in and a =0 in
/ We set q,=pa and note that

q, H(), -q,+’(z)q,=-aF(X, z)+p, in ,
q,=0 on FUF, Oq’-O onFl,,

O,

where

p, c.
If we take q, in (3.6), we get the following precise (and modified) version of (3.12):

Ia Fz(X,z)w I r O-z--

(3.3)

+ [:z(X,z)(-)-p,]w.

Substituting this into (3.10), we get

Q JOy Ov
(3.14)

n{P(x, )(u)}+(u-u*)-} vo
if u + 6v U for all small 6 > O, where

I111(>_-< c,

Since p q, in f, letting 6-0 in (3.14) and recalling (3.8), we conclude that

Oz (x, (u)(x) (x, (u)(x)(1 + [(u)[2) 1/2

(3.15) k Oy Ou

+ [F(x, z(x, (u)(x)))] oh(u + (u u*)),

where U is the control set, considered as a subset of L2(Q). We summarize in Theorem
3.2.

THEOREM 3.2. If (U, Z,) is a solution of Problem (P), then there exists a

unique solution p of (3.11) such that (3.15) holds.
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In order to apply this result we need to analyze the structure of Ohio(u); this is
done in the following section.

4. The structure of Oht:.
THEOREM 4.1. Assume that there is a g WI"(Q) such that g= Uo in oQ and

I[vgll()p. Then, for any u U, wOh:(u) is and only if w has the form
(4.1) w=-div0+r/ inQ,

where

(4.2)

and

(4.3)

O(LI(Q))n,
O(x) 0 a.e. in {x Q; IVu(x)l <
O(x) A(x)Vu(x) a.e. in {x Q; IVu(x)l =p},
where h LZ( Q), h(x)=>0 a.e. x Q

r/ L2(Q),
n(x) =0
n(x)_-<0

n(x)->0

a.e. in {x Q; a < u(x) < b},
a.e. in {x Q; u(x) a},

a.e. in {x Q; u(x) b}.

_Proof Observe first that if w is given by (4.1)-(4.3) then for any v U,

; w(x)(u(x)-v(x))dx=- I divO(u-v) dx+ I rt(u-v) dx

>--f div O(u-v) dx= f (O,V(u-v)) dx>-O;

thus w belongs to Oht:(u).
To prove the converse, write U Uo U1 where

Uo={U w*’(Q)’,lVu(x)l<-p a.e. in Q; U=Uo on oQ},

U1 {u L2(Q); a <- u(x) <-_ b a.e. in Q}

and set hi ht:i, 0, 1.
It is easily seen that

(4.4) rl oh(u)

if and only if r/ satisfies (4.3).
Next we show that

(4.) wOho(U)

if and only if w =-div 0 where 0 satisfies (4.2). It is easily seen that if w =-div 0
where 0 satisfies (4.2) then w satisfies (4.5). To prove the converse, let we
Oho(u)c L2(Q). Since wLZ(Q), there is (H(Q))" such that w(x)=-div :(x)
almost everywhere in Q. By definition of Oho(u) we then find that Ohi(Vu) almost
everywhere in Q where

K={rl(L(Q))"; r/=Vv a.e. in Q, v Uo};

that is,

(4.6) (,Vu-)dxO VK.
d
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We may represent K as K K [’l K2, where

Ka={qL(Q))"; r/=Vv, v Wl’(Q), V=Uo on oQ}.

Kz={qL(Q))";[q(x)[<=p a.e. in Q}.

Let us denote again OhK’(L(Q))" ((L))")* the subditterential of hK viewed as
function from (L(Q))" to R (-c, +]. Then

ohm: (r/) {/x ((L(Q))")*;/z(r/- u)->_0 V, K}

where ((L(Q))’)* is the dual space of L(Q))" and/x(r/- z,) is the value of measure

z in r/- z,. By assumption of the theorem we see that g (int K2)fq K1 where int is
taken in the (L(Q))" topology. Since (intK2)fK1 is nonempty, according to a
well-known result due to Rockafellar [14] we have

Ohg OhKl -t- OhK2
where ohK,’(L(Q))"-((L(Q))")* are subdifferentials of hK, viewed as functions
from (L(Q))" into R. Hence =/x+/x2 where txiOh:i(Vu ). Let us denote by
the absolutely continuous part of the measure /xi. Then /xT (L(Q))" and, since
(L(Q))" (in fact is even in (H(Q))"), we must have that

We have

hK2(’0)-- ff h(q(x)) dx Vrl (L(Q))"

where h(r/) =0 if Iwl_-<p and h(r/) + if Iwl> p. But then, by Corollary 1.3 of [15],

tx(x)Oh(Vu(x)) a.e. in Q.

Since 0h(r/) =0 for I 1<o, if I1 =p, we conclude that

(4.7)
/x(x) =0 a.e. in {x O; IVu(x)l <

/x(x) =AVu(x) a.e. in {x Q; IVu(x)[ =p},

where A L2(Q), A => 0 almost everywhere in Q.
Since Ohl,(Vu) is just the set of normals (in ((L(Q))")*) to the linear subspace

{r/ (L(Q))"; r/=Vv, v W’(Q)} at Vu, so is/x’. Hence,

tx?(x)Vv(x)dx=O VveW’(Q),v=OonoQ,
O

which yields

(4.8) div/x 0 a.e. in Q.

Recalling that =/x +/z and using (4.7), (4.8) it follows that w=-div =-div 0
where 0 c-/x’ satisfies (4.2).

To complete the proof of Theorem 4.1 we will need the following lemma 1, p. 28].
LEMMA 4.2. Let A, B be maximal monotone operators in a real Hilbert space and

assume that D(A) fq D(B) 0 and that

(4.9) (:, r/)=>O VeAu, rl=B,u, ueD(A),

where Ba A-l(1-(1 +AB-1)). Then A+B is a maximal monotone operator.
We will apply this lemma with A Oho and B Oh1. We first observe that

(4.10) (:,r/)=O VeAu, "qBu, ueD(A)f"ID(B)
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since by (4.4) and (4.5), s =0 almost everywhere in {x; r/(x)s 0}. Next we note that
(I+AB)-ID(A)c D(A) for all h>0. Indeed for any uD(A)= Uo,

u fu a.e. in {x; a<= u(x)<- b},

I a a.e. in {x; u(x) <- a},(l+hB)-lu=PrJ
D(B)

b a.e. in{x; u(x)>-_b}.

Thus since a-<_ Uo -< b the latter implies that (1 + hB)-lu Uo. Also, by monotonicity
of A,

(Au A(1 + AB)-lu, B,u) >- O.

Since B,u B(1 + AB)-lu, we conclude (using (4.10)) that

(Au, B,xu)>= (A(1 + AB)-’u, B(1 + AB)-lu)-_> 0

for any u D(A).
We have thus verified the condition (4.9). It follows that the mapping u-

Oho(u)+Ohl(u) is maximal monotone. Since 0ho+0hl c0ht: we conclude that, in fact,

Oho(u) + 0hl(U Oht:(u)

and Theorem 4.1 follows from the preceding characterizations of (4.4), (4.5).

5. Properties of the minimizer u*. In this section we will apply Theorem 3.2 in
order to deduce properties of the minimizer u*. We take

F(X,z)=(z-z(X)),(5.1)

where z(x, y) satisfies

(5.3) z> 1

(5.4)

Az<--f in

in QH f’l {a <-_ y <-_ b},

z>0 inQH,

(5.5)
z
->0 on0Qx(0, H).

By comparison, u*< z in tH and, hence, if e is sufficiently small,

(5.6) z-z<=-co<O in f,

where Co is a constant independent of e. It follows that

-Fz(X, z(X)) -2(z z) -> 2Co> 0

Hence, we can apply the maximum principle to p (in (3.11)) and deduce that

(5.7) p>0 in.

Since p 0 on {y =/x (u)} we also get

(5.8)
op
<0 on {y =/x(u)(x)}.
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Recalling (2.10) we conclude that the first term on the left-hand side of (3.15) is
nonnegative. From (5.1), (5.6) we get

F(X, z(X))-> c > 0 on fl,

where Cl is a constant independent of e. It follows that the left-hand side of (3.15) is
strictly positive, independently of e; i.e.,

(5.9) w + (u u*) -> 2c > 0 for some w Ohu(u),

where c is a constant independent of e; in view of (2.6),

(5.10) we => c > 0 for some we Ohu(u)

if e is sufficiently small. We will assume that

(5.11) IlVuoll(< p.

Then, by Theorem 4.1 applied to we,

(5.12) -div0+>=c>0 a.e. in Q,

where 0 (L(Q))" and L(Q) satisfy (4.2), (4.3); i.e.,

O(x)
(5.13) Vu(x) p

[0(x)[
a.e. in {x Q; O(x) 0}, u Uo on oQ,

(5.14)

re(x) =0

m(x)<-o

m(x)>-o

a.e. in {x; a < u(x) < b},

a.e. in {x; u(x)= a},

a.e. in {x; u(x)= b}.

In particular, we see by (5.12) and (5.14) that O(x)0 almost everywhere in {x
Q; u(x) < b} and, therefore,

(5.15) IVu(x)l p a.e. in Q {x Q; u(x) < b}.

In other words, u WI’(Q) is a weak solution in Q of the eikonal equation

(5.16) IVul--p.

Since, in general, equation (5.16) with Dirichlet condition has an infinite number of
weak solutions (i.e., solutions u WI’(Q) that satisfy almost everywhere the equatio,n)
it is not clear for the moment what u looks like.

Recall [3] that u C(G) (G an open subset of R") is called a viscosity solution
of (5.16) provided, for any 4 CI(G), if u-4 attains a local maximum at Xo G then
]V 4(Xo)l =< p, and if u-4 attains a local minimum at Xo G then IV(xo)l--> p.

An equivalent definition is the following (see [3]): Set

D+u(xo) {p R"; lim sup [u(x) U(Xo) -p" (x Xo)][x Xo[- -< 0},

D-lu(xo) {p eN; lim inf [u(x)- U(Xo)-p" (X-Xo)]lX-Xol- _->0}.
-o

Then, u e C(G) is a viscosity solution if

IPl -< for anyxoeG, peD/u(xo),

IPI=>O for anyxoeG, peD-u(xo).

From this definition it follows that if u e W’(G) is a viscosity solution then it is also
a weak solution; i.e., it satisfies the equation IV ul = almost everywhere in G.
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A function u C(G) is said to be semiconcave if for any 6 > 0 there exist C > 0
such that u(x)-Clxl2 is concave on every convex subset of

a x G; Ixl <, dist (x, OG) >

A function u C(G) is said to be semisuperharmonic if for any > 0 there exist C > 0
such that Au _-< C in G in the distribution sense.

Note that if u is semiconcave, then it is also semisuperharmonic.
THEOREM 5.1. Under the assumptions (5.1)-(5.5) and (5.11), u is a viscosity

solution t,o the eikonal equatio~n (5.16) in 0. Moreover, u is semiconcave and semisuper-
harmonic in any component Q of 0, and it is given by

(5.17) u(x) inf {b(y)+ L(x, y)} Vx (,
lE00e

where

(5.18)

and

L(x, y) inf {pT; :l Lip [0, T], (0) x,

:(T) y, :(t) 6 Q V 6 (0, T), I’(t)l --< 1 a.e.}

(5.19) b(y) { uo(y) if u aO~ 71 oQ,
b ify6aQ\aQ.

Proof In view of Proposition 5.2 in Lions [10, p. 137] if suffices to show that u
is the maximum element of the set

Se--{1.) wl’((e), [Vv[p in 0, v<=u on

Now, using (5.13) we have, for any v S,

-f div O(-u+v)+ dx= f OV(-u+v)+ dx= I O(-Vu+Vv)<=O.

Since, by (5.12), (5.14), -div 0 => c > 0 on Q, it follows that (-u + v)+ 0. Thus
u => v, which means that

u(x) sup v(x) Vx
S

i.e., u is the maximum element of S.
Remark 5.1. By the proof of Theorem 1.4 in [3] and by Lemma 2.2, u* lim_o u

is a viscosity solution of

IVul p in Qo {x Q, u*(x) < b}.

If we knew that the boundaries oQ\oQ are smooth (cf. [10, Remark 2.5, p. 70])
uniformly in e, then we can apply Theorem 2.3 of [10, p. 66] to deduce Au <= C’ in
compact subsets Q’ of Qo with C’ depending on Q’ by not on e (e small enough). It
follows that u* is semisuperharmonic in every component (o of Qo. Hence, by
uniqueness of semisuperharmonic viscosity solutions [10, p. 82] we conclude that u*
is the unique semisuperharmonic viscosity solution to (5.16) with Dirichlet data u Uo
on oQ (lOQo, u b on OQo\OQ; furthermore, the representation (5.17)-(5.19) extends
to u*. Note that this does not imply uniqueness of u*, because Qo depends on u*.

We will now use Theorem 5.1 to compute u* in some simple cases.
Observe first that any component Q of Q must satisfy

oQ. N oQ # f.
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Indeed, otherwise we get from (5.17)-(5.19)

b > u(x)= b + inf L(x, y)

which is a contradiction. It follows that

VxQ,

(5.20) if oQ is connected, then Q is connected.

Let d (x) dist (x, 0 Q) for x Q. Set also

Q*= {x Q; there exists a unique point y oQ such that d(x)= Ix-y]},

do=min{d(x);xoQ*\oQ}, Q*={xQ, d(x) < 3}.

We will assume for simplicity that oQ is connected and Uo(X)= const. Uo. Since

u(x) < b in Q the "inf" in (5.17) cannot be attained for y oQ\oQ. Hence, recalling
also (5.20),

(5.21) u(x) Uo+ inf L(x, y) tx Q.
yoQ

For small 3, Q D Q* and, therefore,

(5.22) inf L(x, y)= pd(x);
yoQ

consequently,

(5.23) u(x) Uo+ pd(x), d(x) < 3.

As long as uo+p3 < b and 3 < do we can continue to increase 3 in small steps
while proving that Q D Q* and that (5.22), (5.23) hold. Consequently,

u(x)=uo+pd(x) inxQ* where 3o=minldo, b-ul.
Jp

Letting e- 0 we obtain Corollary 5.2.
COROLLARY 5.2. Let (5.1)-(5.5) hold. Thus any optimal control u* satisfies

(5.24) u*(x)=uo+pd(x) in Q*, 3o=min [do, b-u.
If, in particular, (b Uo/)p <- do then u*(x) b in Q\ Q*o and thus u* is uniquely
determined.

In the case where Q={x; ]xl<R}, Corollary 5.2 implies that u* is uniquely
determined by

uo+p(R-[xl) if[x[>R b-uo
P(5.25) u*(x)

b-uo
b if Ixl--<R-.

P

To apply this theorem to the electrochemical machining problem (see Remark 5.2
below), we choose a function 0 satisfying

0---0 onoO,
(5.26) P C2( ()’ ou

b<d/o<-_g/(x)<-H ifxQ (qo=infq),
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and introduce the surface

We take

(5.27)

r {y q,(x), x O}.

z(x, )= R(y-O(x)).

Then Oz/O,=O on oQ x (0, H), (5.2) reduces to

(5.28) R"(y-O(x))[1 +]VO(x)lZ--R’(y--O(x))AO(x)<--f
and (5.3), (5.4) reduce to

(5.29) R(y- q(x)) > 1 in QH (3 {a <_- y <_- b},

(5.30) R(y- O(x)) > 0 in QH.

The last two inequalities are satisfied if

(5.31) R(b q’o) > l, R(H) > O,

Remark 5.2. In the electrochemical machining problem we want to choose the
control so that the free boundary y=/x(x) will be as close as possible to y-q,(x).
This is hard to do. Suppose instead that we can choose in 5

zO 0 if y > (x),
(5.32) a ify<q(x) (a>0).

The solution z of the variational inequality satisfies

z=0 ify>/z(x),

z>0 ify</z(x)

and thus the statement "l[z-zll is as small as possible" is a weak version of the
statement "ll/z q]l is as small as possible" (with suitable norms). This is the motivation
for working with the functional (5.1). Next, for any small 6 > 0 and e > 0, take a C2

monotone function R(s) satisfying

e if s> 6,
(5.33) R(s)= a if s<0 (a>l).

If we choose f-= C* with C* sufficiently large, then (5.28) and (5.31) are satisfied.
Note that this choice of R yields a function z(x, y)= R(y- q(x)) which is very close
(say, in Ll-norm) to the desired function in (5.32).

Remark 5.3. It is clear that the previous discussion and results remain valid if we
take

(5.34) F(X, z) Iz- z(X)lp

where p_>-2 and z satisfies (5.2)-(5.5). With F defined by (5.34) the cost functional
(2.2) is a more accurate estimate of the "distance" between the coincidence set of z*
and the set {y _-> q(x)}.

6. Generalizations. The results of 2-5 extend to other control sets and func-
tionals. We briefly mention one example whereby the control set is

(6.1) U= {U E WI’p(0), a u(x) b}, p > n,

and

(6.2) J(u) f F(X, z,) dX + A f IVulp dx ()t > 0);
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since p > n, by Sobolev’s inequality it follows that the control functions belong to
Ca(Q) where a =(1/n)-(1/p). Here, in the e-problem we replace Oht(u) in (3.15)
by

where Ap is the p-Laplacian

Ohx(u)-ApApu,

Apu =div ([Vu[P--lvu)
taken in the distribution sense, and Ohl(u) is characterized by (4.4), (4.3). Thus (5.10)
yields, as e - 0,

(6.3) -Apu*>- c-7 a positive constant and r/ as in (4.3).

We can therefore state the following result for Q in R n, n _-> 1.
THEOREM 6.1. If (5.1)-(5.5) hold, then for any minimizer u* of (6.2), in the class

(6.1), the inequality (6.3) holds; in particular,

(6.4) -ApU* >= c > 0 in the open set {u < b}.

For n 1, p 2 we get that u*(x) is a convex function.
Remark 6.1. We recall (using (2.10)) that the free boundary for (1.1) is smooth

(see [5, pp. 177-179]); iff Cm+ then the free boundary is given by u q(x) with
(49 C m+a+ce.

Remark 6.2. The method of this paper can be used, in principle, for other free
boundary problems (see [6], [7]). However, in some cases it is difficult to derive
meaningful properties of the optimal control from the optimality conditions for the
e-problem. We describe one such case which arises in contact problems for elastic
bodies. In a rectangle

R={O<x<l, O<y<H}

the control variable is a curve

F. {y= u(x), O<x< 1},

where u belongs to the control set

U ={u e Lip [0, 1], lu’(x)l-<o, u(O) Uo, u(1) u,, b<= u(x) <-_ H} (0< b < H)

and z is the solution of the Signorini problem (see, for instance, [5], [9]):

-Az =f in

z>--O,
Oz Oz
-->_--0, z--=0 on
0, O,

z=0 on 0fu\F,,

where fu R ffl {y < u(x)}. The functional to be minimized is

J(u) f (z Z(x, y))2 dx dy,
u

where z is a given function. This problem was studied by Hlaviek and Neas [8],
who proved the existence of an optimal control u*. Using our method we define the
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e-problem whereby analogously to (2.4), (2.5) we take

-Az=f in

Oz
m+/3(z) 0 on
0v

z 0 on Of.(.)\F.(.).
Proceeding as before, we arrive at the inequality

(6.5)
o’- p

( +(u,))/+ ,)l+(u

U Zxy Zyy U* 20)2

=>-P(l+(u’)2) 1/2 +pzy + u + z + rt on F(u) fq [u > b],

where u u, z z, Oht,(u)-O’ + , and where p is the solution of

-Ap z- z in 12.(.),
Op
+B’(z)p =0 on F,,,
Ov

p 0 on Of

Here F,, is given by {y=/x(u)(x)}.
Remark 6.3. For optimal design in elliptic variational inequalities, from the point

of view of sensitivity analysis and numerical methods, see [13] and the references
given there.
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OPTIMAL CONSUMPTION BY A BOND INVESTOR: THE CASE OF
RANDOM INTEREST RATE ADAPTED TO A POINT PROCESS*

PETER LAKNER? AND ERIC SLUD

Abstract. The problem of optimizing the expected total discounted utility of the rate of consumption
by an agent with initial wealth x who, at each instant, can choose a rate of consumption and who invests
all his unconsumed wealth in a bond (bank) is studied. The bond is assumed to have a randomly varying
interest rate with known probabilistic behavior. A general martingale principle is formulated, according to
which the optimal consumption rate is expressed in terms of a positive martingale, if one can be found,
satisfying an almost sure integral condition. This martingale will be characterized in the case where the
stochastic history of the interest rate is adapted to (i.e., expressible in terms of) an underlying counting
process. The problem studied can be viewed as a special case of optimal consumption problems in "incomplete
markets," a terminology introduced to the financial literature by Harrison and Pliska [Stochastic Process.
Appl., 11 (1981), pp. 215-260].

Key words, interest rate process, discounted utility, incomplete markets, counting process, martingale,
minimal filtration, ordinary differential equation

AMS(MOS) subject classifications. 93E20, 49A60

Introduction. The present paper treats the problem of optimal consumption by an
agent who invests his unconsumed wealth in a single bond (bank) with a stochastic
interest rate, and who does not invest in the stock market.

Several authors discussed the optimization problem in the case where the agent
invests in the stock market as well. The initial significant results were achieved by
Merton in 11 and 12], and the more general, explicit solutions are presented in [2],
[7]-[ 10] using the "martingale technique," instead of the method of dynamic program-
ming. In [7]-[10], the financial market consists of several stocks and a bond. There is
an agent who invests in the financial market and consumes on a finite time-horizon
[0, T], and defines his consumption preferences with a strictly concave, sufficiently
smooth "utility function"

u:[o, oo) U {-oo}.

The intuitive idea is that a rate of" consumption c(t) at time gives our agent e- U(c(t))
amount of" "utility," where/ > 0 is a discount factor, and the agent strives to maximize
the expected total discounted utility of consumption

E e-t3’U(c(t)) dr,

subject to the restriction that he is not to be in debt at the terminal time.
In the above-mentioned papers there is a crucial assumption which is referred to

as the "completeness of the market." This is a simple mathematical condition imposed
on the vector of stock price processes, which guarantees the uniqueness of an auxiliary
probability measure under which the vector of" stock price processes, discounted by
the current bond price, is a martingale. It also follows from the "complete market"

Received by the editors June 21, 1989; accepted for publication (in revised form) June 15, 1990. This
research was supported by Office of Naval Research contract N00014-89-J-1051.

? Stern School of Business, Department of Statistics and Operations Research, New York University,
New York, New York 10003.

Mathematics Department, University of Maryland, College Park, Maryland 20742.

638



OPTIMAL CONSUMPTION BY A BOND INVESTOR 639

condition that under this auxiliary probability measure, every martingale can be
represented as a stochastic integral with respect to the discounted stock price processes.
Assuming that the market is complete, the optimization problem is solved explicitly
in [,7]-[10]. For more information about the notion of complete market, see [3] and
[4], where it is defined and its use is illustrated in the theory of contingent claim pricing.

The question of contingent claim pricing and optimal consumption and investment
remained open in the case where the market is incomplete. In the present paper we
address the latter problem, assuming that our agent, whom we will call a consumer,
does not invest in the stock market, only in the bond (bank). Since our market model
has no stocks, and is therefore incomplete, our setting is a special case of the optimal
consumption/investment problem in an incomplete market.

The "classical" approach of Merton to this problem (in [11] and [12]) would be
to assume that the interest rate process is a diffusion, write down the corresponding
Hamilton-Jacobi-Bellman equation of dynamic programming, and try to solve it for
particular utility functions like U(c)=log c, or U(c)=c with a positive constant
0< < 1. However, being unwilling to make the assumption that the interest rate is
Markovian, we cannot follow this path. Instead, in 2 we develop a general principle
called the martingale principle, which is a sufficient condition for optimality. In the
following part of the paper we present an application of this principle in the case
where the underlying filtration, which models the flow of information, is generated by
a counting process.

We can put our problem in a different framework, called the Hotelling problem
[6], concerning the optimal rate of depletion of a resource which reproduces itself at
a random exponential rate. Everything in the present paper can be applied to the
Hotelling problem in continuous time by a change of terminology.

1. The optimization problem of a consumer. Let (f, , P) be a probability space
and [0, T] a bounded time-horizon, with positive terminal time T< c. The flow of
information is represented by a filtration (fit: 0 <= <-T} in ft. The or-algebra t is
generated by all the information available as of time t, including additional random
data observed at time zero. The interest rate {r(t), fit:0 <-- t-< T} is assumed to be an
adapted, measurable process, bounded above by a fixed positive constant Ko and
bounded below by -1.

We denote by p(t) the price of the bond at time t, relative to its price at time
zero. It evolves according to the equation

(1.1) dp(t)- r(t)p(t) at, p(O) 1.

The solution process

(1.2) p(t)--exp r(s) ds 0 <-t<= T

is positive, adapted to t, bounded above, and bounded away from zero. Indeed, by
the boundedness conditions imposed on the interest rate, the discount process

(1.3) 3/(t)----exp r(s) ds
1

p(t)

satisfies

(1.4) e-lor<--_7(t)<=er O<-t<= T.
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A consumption process {c(t), oft:0_-<t_-<T} is a nonnegative, adapted process
satisfying the integrability condition

(1.5) c(s) ds < c a.s.

The nonnegative, ot-measurable random variable c(t) denotes the rate of consumption
at time t. The condition that the consumption process c(t) be adapted corresponds to
the requirement that the consumption rate c(t) depends only on the time and on the
available information at that time.

We will study the behavior of a consumer who has initial wealth x > 0 at time
zero. Denote by x(t) the value at time of the consumer’s wealth, which is assumed
to be invested in the bond. If the consumption plan c(t) is financed exclusively by the
initial wealth and by the bank, then x(t) satisfies

(1.6) dx(t)=(r(t)x(t)-c(t)) dr, x(0) x,

where the factor r(t)x(t) is the rate of gain or loss on the invested wealth. By (1.4)
and (1.5), the unique solution of (1.6) is

(1.7) x(t)=- x- y(s)c(s) as

A consumption process {c(t): 0_-< =< T} is said to be admissible if the correspond-
ing terminal wealth is nonnegative, i.e., if

(1.8) x(T)>-O a.s.

By (1.7), a consumption process {c(t): 0-< t-< T} is admissible if and only if it satisfies
the budget inequality

(1.9) y(t)c(t)dt<-x a.s.

A utility function U: (0, o)- will be a continuously differentiable, strictly
increasing, strictly concave function, which satisfies the condition

(1.10) lim U’(c) 0.

It follows that the derivative function U’:(0, )- (0, U’(0)) is positive and strictly
decreasing with U’(O)=-U’(0+)-<_c well defined, and therefore admits a strictly
decreasing, continuous inverse I:(0, U’(0)) (0, ). If U’(0) < o, then we extend the
inverse continuously on all of (0, c) by defining I(y)--0 for y-> U’(0). For technical
reasons (see Lemma A.1 in the Appendix), we also assume that for a sufficiently large
positive constant C < c to be fixed later (following condition (A3) in the Appendix)
and for each 6 > 0, there is a constant A A(6) such that for all constants 1/C _-< C1,
C2C,

(.) g’ cI
z

-u’ c <=AIz-z’l for allz, z’->,

and there is a constant A not depending on for which

U’(CII((-)) <-Az for all z>0.(1.12)

Extend the utility function U(. to all of [0, ee) by

(1.13) U(0)--lim U(c)>--oe,
c-0+



OPTIMAL CONSUMPTION BY A BOND INVESTOR 641

with the convention that the value of the function U at zero may be negatively infinite.
In order to define his consumption preferences, our consumer chooses a utility function
U(. which satisfies the above conditions and a discount rate/3 , with the intuitive
idea that rate of consumption c(t) at time gives him e-t U(c(l)) amount of"utility."
In this paper we take the discount rate /3 to be a fixed constant. All of the results
proved here extend easily to the case where/ is replaced by a nonrandom function
/3(. which is uniformly bounded away from 0 and , and where all discount factors
e -t’ are replaced by exp (-to fl(s) ds).

The optimization problem of our consumer is to maximize the value of

(1.14) E e-’U(c(t)) at

over all admissible consumption processes which satisfy the inequality

(1.15) E e-’U-(c(t)) dt<,

where U-(c)=-U(c) if U(c)<0, and U-(c)=0 otherwise. Condition (1.15) guaran-
tees that the expression in (1.14) is well defined. We denote by (x) the class of
admissible consumption policies that satisfy (1.15). The value function of this
optimization problem is given by

(1.16) V(x)sup E e-’U(c(t))dt’{c(t),OtT}(x)

Remark. The class (x) is nonempty, since the constant consumption process

?(t) ----- e
T

trivially satisfies (1.15), and (1.9) follows from (1.4).
For every admissible consumption process, (1.4) and (1.9) imply

"C(t) dt x eKoT

and by Jensen’s inequality

Io Io (Ioe-t3U(c(t)) dt<-_ U(c(t)) dt <- TU - c(t) dt <= TU eI7"

It follows that the value function of our optimization problem is finite: V(x) < c. Any
consumption process c(t) for which the expected discounted utility (1.14) achieves
the value V(x) is called optimal.

The following lemma shows that the optimal consumption process is unique.
LEMMA 1.1. Let Cl(t), c2( t) be two consumption processes in g(x), and assume that

both are optimal. Then the Lebesgue P measure ofthe set {(t, to) 6 [0, T]O: Cl( t, to)
c2(t, to)} is zero.

Proof Define

c3(t)=--1/2(Cl(t)+ C2(t)).

By the convexity of the function U-(. ), the consumption process c3(t) satisfies (1.15).
Obviously c3(t satisfies (1.9), so it belongs to the class (x). By the strict concavity
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of U(. and the optimality of Cl(t) and Ca(t),

E e-’g(c3(t)) dt>=- E e-’U(Cl(t)) dt+E e
o

-’U(ca(t)) at) v(x).

Since the last inequality cannot be strict, the lemma follows.

2. A martingale principle. This section concerns a general principle of optimality
for the optimization problem posed in 1. The next result could be extended in an
obvious way to the case T-.

THEOREM 2.1. Suppose that there exists a positive ,-martingale { Y( t): 0_-< =< T}
which satisfies the identity

(2.1) 3,(t)I(e’3,(t) Y(t)) dt= x a.s.

Then the consumption process

c*(t) I(e’3,(t) Y(t))

belongs to the class (x), and is optimal for the consumer.

Proof. The process c*(t) satisfies (1.9) trivially, since

T

(2.3) E 3,(t)c*(t) dt= x a.s.
o

Let {c(t)" 0_-< t_-< T} be an arbitrary consumption process in the class (x); by the
remark following (1.16), such a process exists. Now we must show that c*(t) satisfies
(1.15), and that

(2.4) E e-tU(c*(t)) dt>-_E e-’U(c(t)) dt.

It follows from the concavity of U(. that for all c_-> 0 and y > 0,

(2.5) U(I(y)) > U(c)+ y(I(y)-c).

Substitute y em3,( t) Y( t) and c= c(t) in (2.5) to see that

U(c*(t)) >- U(c(t))+ e’3,(t) Y(t)(c*(t)-c(t)),

or, equivalently,

(2.6) e-E’ U(c*(t)) >- e -E’ U(c(t)) + y(t) Y( t)(c*(t) c(t)).

In order to show that c*(t) satisfies (1.15) and (2.4), it suffices to show that

(2.7) E 3/( t) Y( t)c( t) at <- E 3’(t) Y( t)c*( t) at < o.

We define the new probability measure P on fir by

(2.8) /3(A)= 1
E[I(A)Y(t)], At, t(O, T].

E[ Y(0)]
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Since Y(t) is a martingale, the above definition is consistent, and P is a bona fide
probability measure on OfT, equivalent with P. We denote by E the corresponding
expectation operator. Using (2.3) and (1.9) we can write

E T(t)Y(t)c(t)dt =E[Y(O)][foT

=E[Y(O)]ff.[ff
y( t)c( t) dt] <-_ E[ Y(0)]x

y(t)c*(t)dtI
E y(t) Y(t)c*(t) at < o,

which completes the proof of the theorem. Iq

The optimization problem has been reduced to finding a positive -,-martingale
Y(t) which satisfies (2.1).

3. Examples with history generated by a point process. We formulate the interest
rate process in terms of a simple (nonexplosive, right-continuous, unit-jump) counting
process N(t), which counts the cumulative number up to time of discrete events
(such as changes in commercial-bank prime rate or federal reserve discount rate)
related to major interest-rate changes. Let us generate the initial or-algebra oo, which
is generally not trivial, by information observed as of time zero, together with all
negligible events in the probability space (f, o, P). Then the interest rate process r(t)
and the corresponding discount process 7(t) are adapted to

-t------ ffoU tN O’(ffo, {N(u): 0_--< u--< t}),

which is a "minimal right-continuous filtration" for the counting process N(. ), and
satisfies the "usual conditions" [1, Thm. T25, p. 304, and Thm. T35, p. 309].

Our primary assumptions are that N(T) is bounded, i.e., that there exists a known
constant n such that

(3.1) N(T)<=n

and that N(t) admits a predictable ff intensity A(t) such that for some constants
0<b<B<oo and all t[0, T],

(3.2) b l{N(t)<n} A t) l{N(t)<n} Bl{N(t)<n}.

Let us assume first that we have a positive, t-martingale Y(t) satisfying (2.1),
in order to derive necessary conditions. Then, by Theorem T20 of [1, p. 302], this
martingale has a right-continuous modification, also denoted Y(t), which is again a
positive ,-martingale satisfying (2.1). The fundamental representation theorem for
right-continuous fit-martingales [1, Thm. T9, p. 64] guarantees the existence of a
predictable process f(t) satisfying

(3.3) If(s)l’ (s) ds < oo a.s.,

such that

(3.4) Y(t)= Y(0)+ f(s)(dN(s)-,(s) ds), 0 < t<= T.

The integral on the right-hand side of (3.4) is a Riemann-Stieltjes integral.
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Let Zo O, and 3-1, 3-n denote the successive jump times of N(t). Then every
if, adapted right-continuous process (t) can be represented almost surely on each
event {W:Zk(W)_--<t<zk+l(co)} for k=O,...,n-1 as (tlzl,..-,zg) for some
measurable random element (.[.,...,.) of the space of measurable functions of
k / 1 arguments which are right-continuous in the first argument. For the rest of this
paper, we adopt the notational convention that the (if, predictable) processes 3/(t),
h(t), f(t), etc., are represented on random intervals Zk(co) <- < Zk+(co) by functions
denoted with the same letter written with subscripts and arguments (3/k(t[ 3-, ", Zk),
hk(t Z," , 3-k), etc.).

3.1. The one-jump case. In this section, assume that N(t) has at most one jump
up to time T, i.e.,

(3.5) N(T)-<_ a.s.

Then we have the following representations:

(3.6)

(3.7)

h (t) ho(t) 1 {t=<7.1},

3/(t) 3/0(t) 1 {t__<7.1} / 7(t[ )1 {,>7.1),

(3.8) f(t) =fo(t) 1{,<=7.1 +A(tl 3-a)1 {t>7.1}

It follows from (3.6)-(3.8) and (3.4) that on the event {t < r}

(3.9) Y( t) Y(O) fo(S)Ao(S) ds,

whereas on the event {t _-> 3"1}

(3.10) Y(t)= Y(O)+fo(3",)- fo(S)Ao(S) ds.

Since f(.) does not appear in (3.9) and (3.10), the only unknown function will be
fo(" ). Consider the function

(3.11) a(t)= fo(S)Ao(S) ds, 0 < t<= T.

By (2.1), almost surely on the event {3"1 T}

(3.12)
r

3/o(t)I(et3/o(t)( Y(O)-a(t))) dt= x,

whereas on {3"1 < T} almost surely

(3.13)
o

1

3/o( t)I(et3’3/o( t)( Y(O) a( t))) dt

+ 3/(t[3")I(et3/,(tl3",)(Y(O)-a(3"1)+fo(3"a))) dt=x.

By assumption (3.2), the support of 3"1 contains all of [0, T], and the event {3"1 T}
has positive probability. Therefore, (3.12) and (3.13) must hold almost surely on
(1), 0, P), the latter for Lebesgue-almost every 3"1E (0, T). Here, as throughout the
rest of the paper, all equations involving functions hk(t[ 3"1,’’’, 3"k), 3/k(t[ 3",’’’, 3"k),
etc., for k >-0, should be understood as almost sure equalities among o measurable
random variables or random elements of spaces of measurable functions (cf. the
discussion immediately preceding 3.1).
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Define a function

(3.14) Q(ult, T)= y,(slt)I(uet3Sy,(slt))ds 0<u<c, 0=<t=<T.

It follows from the dominated convergence theorem, the monotone convergence
theorem, and (1.4) that for each [0, T), the mapping Q(. t, T) is continuous, strictly
decreasing, and positive on an interval (0, A) for some constant A A(t, T) (0, c);
that Q(u[ t, T) 0 if A < c and u => A; and that

(3.15) lim Q(u[ t, T)=0,

(3.16) lim Q(u It, T) c.
u-->0

Therefore, Q(. It, T) has a strictly decreasing, continuous pseudoinverse

(3.17) Q(vlt, T)=inf{u>0: Q(ult, T)> v},

which satisfies

(3.18) Q(Q(vlt, T),t, T)=v, 0< v<c.

Rewrite (3.13) in the form

(3.19) /o(S)I(e,o(s)(Y(O)-a(s))) ds+Q(Y(O)-a(t)+fo(t)lt T)=x,

valid for almost every e (0, T), and define for e [0, T] the functions

(3.20) h(t) exp to(s) ds

Zl(t) h(t)(Y(0) a(t)) > 0,(3.21)

and

(3.22) Z2(t) x- 3’o(S)I eS3’o(S) ZI(S) as.
h(s)]

Then h(. is ditterentiable for almost every e (0, T), and

(3.23) /(t)-- -Ao(t)h(t) a.e. (0, T).

Now, by (3.21), (3.11), and (3.23), for almost every (0, T)

(3.24) ,l(t) -A0(t)h(t)(Y(O) a(t) +fo(t)),

and by (3.19), (3.21), (3.22), (3.24), for almost every (0, T)

(3.25) Q -Ao(t)h(t) It, Y Z2(t).

For Lebesgue almost every (0, T), (3.22) yields

/i(t)(3.26) 2(t)=-Y(t)I ety(t)
h(t) ]

and (3.21), (3.22), and (3.12) imply the boundary conditions

(3.27) ZI(0) Y(0), Z2(0) x, Z2(T) 0.

We summarize our results so far in the following theorem.
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THEOREM 3.1. Suppose that there exists a positive t-martingale Yt which satisfies
(2.1). Then the functions ZI(’), Z2(’), given by (3.21) and (3.22), are absolutely
continuous on [0, T] and satisfy the differential equations (3.25)-(3.26) for almost every
6 (0, T), with the boundary conditions (3.27).

The converse of the preceding theorem is still more interesting for our purposes.
THEOREM 3.2. Suppose that there exist two nonnegative, absolutely continuousfunc-

tions Z1, Z2: [0, T] - [0, ), which for almost every (0, T) are positive and satisfy
the ODE system

(3.28) (21(t), 22(t)) -o(t)h(t)Q(/2(t)lt, T), -yo(t)I e’ h(t)

with the boundary conditions

(3.29) ZI(0) <, ZI(T) > 0, Z2(0) x, Zz(T) 0.

Then the process { Y( )" 0 <- <- T} defined by

(3.30) Y(t)
Z(t)
h(t)

on the event {0 < < ’rl}

(3.31) Y( t) Q(Z2( ’I) I T) on the event

and defined arbitrarily on the null event {rl T}, is a positive -martingale satisfying
(2.1).

Proof Since ZI(" and Z(.) must be strictly decreasing and positive on (0, T),
the process Y(t) is well defined and positive. Define the function fo: [0, T] by
fo(T) 0 and, for 0 <- =< T

(3.32) fo(t)=
Zl(t) 1 d (Z(t))
h(t)

+ O(Z2(t) lt, T)
Ao(t) dt \ h(t) /

and define the predictable process

(3.33) f(t)= fo(t)l{t<__,}, 0<--_ < T.

Using (3.23) and the absolute continuity of the functions ZI(" and h(. ), it is easy to
show that (3.4) holds. Since ZI(’) is strictly decreasing, and Ao(’) and 1/h(.) are

bounded, it follows from (3.32) that

(3.34) E If( t)lA t) dt <- e
dO

and Y(t) is indeed a martingale [1, Thm. TS(fl), p. 27]. By the absolute continuity of
Z2(’), together with (3.14) and (3.18), (2.1) follows immediately.

The next step is to show that the ordinary differential equation system (3.28)-(3.29)
does have a solution. Although we state the result here, its proof relies on the more
general lemmas stated and proved in the Appendix.

THEOREM 3.3. Under the assumptions of this section, the almost everywhere system
(3.28)-(3.29) of ordinary differential equations in Theorem 3.2 has a unique solution,
and this solution Z_ (t)= (Zzlttl) is absolutely continuous as a function oft and satisfies the
system for all [0, T].

Proof We verify the hypotheses of Lemma A.1 in the Appendix, where

F(z, t, T)=--l(t)O(zlt, T), GI(t) To(t), G2( t) ett
3’0(t)
h(t)
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First, assumption (A1) on the function I(. follows immediately from the assumptions
on the utility function U made in the paragraph (1.10)-(1.13), and the uniform
boundedness assumption (A3) on the functions Gi(t) follows immediately for fixed
T< o from the bounds (1.4) on y(t) together with the definition of h(t). We next
check assumption (A2), that F is locally Lipschitz in I-l(z/(T-t)). First, (3.14) says
that

T T- T-
’)/I(S t)I(v e3s/l(S[ t)) ds

--1-1( 1 I T

T-
yl(S] t)I(u eyl(S] t)) ds

By Lemma A.0 of Appendix A, with Gl(S) yl(S] t) and G2(s) G1 (s) e*, there exist
s and s2 between and T such that the last expression has the form

I-1(y1(s11t)I(v e*y(s2] t)))- I-(y(s t)I(u e*yl(S2] t))).

By (1.4) and then (AI.1) with Cmax (eKT, e(+l)r), we find that for all u, v >= 6*=--
I-(e(+)TI(8 e-T)), the absolute value of the last displayed difference is at least
lu-vl/A(), That is,

T T- A()

Since Q(ult, T)e-r(T-t)I(6*) implies that u6*, we find that the inverse
function Q(z t, T) has the propey

for y, zN e-or( T- t)I(6*). Similarly, it follows from (1.4) and (3.14) that Q(u[ t, T)
e-oT(r t)I(u e(+lT), SO that by (3.17)

O(z’t’T)NerI-( e-r z
forallz.

Thus, if we restrict T to lie in an interval [0, T.], then there exists a constant D
(=exp (Ko T.)) such that for all positive z,

O(z[ t, T) < DI_, ( z )(T-t)U

Since [(t)] is uniformly bounded away from 0 and , assumption (A2) ofthe Appendix
holds for F(z, t, T) as defined above. The conclusion of our Theorem is now pa of
Lemma A. 1.

3.2. The n-jump case. So far in this section, we have proved that a unique optimal
consumption policy, determined by the "martingale principle" and an ordinary differen-
tial equation, exists under the very special assumption that the counting process N(t)
to which the interest-rate process is adapted has at most one jump in the bounded
interval [0, T]. We now return to the case (3.1), where N(T) is assumed bounded by
the known integer n, and prove by a backward induction that the martingale Y(t)
determining an optimal policy is determined by recursively solving at most n ordinary
differential equations.
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Observe first that under (3.1), on the event {w" Tn-l(w) < T}, if the consumer has
used the admissible policy c(t) to guide his consumption on the time interval [0,
then his wealth as of time Tn_ is Xn-1 =- X--Io c( t) y( t) tit. The restarted counting
process N(T,_+s)--N(T,_) on the ,._1 measurable random time interval [0, T-
Tn-) has almost surely at most one jump. The problem of optimal consumption on
the remaining interval (T,_I, T], posed conditionally given ,._, is precisely the
problem which we have just solved in the previous section, where initial wealth is
replaced by xn_, the time horizon T by T-’n-, the time-variable by s t-
the interest rate process by y(Tn_+S), and the function I(z) by (z)= I(ze’.-1).
In the present setting, Theorem 3.2 identifies the optimal consumption rate
Cn_(tlT,’’’, T,_) for T,_l_--< t_--< T, conditionally given ._, as follows.

Replace x by x,_=X-o c(t)y(t)dt and T by T--Tn_ in (A4), and define
functions F and Gi (i 1, 2) in terms of the time-variable s Tn-1 for [Tn_, T]
by

G2(s)= G,(s) exp fls+ ,.-,(ylT,," ", r,-,) dy
Tn

The differential equation system (A4.0) defined in this way with initial and terminal
conditions

Z")(OIxn_)=Xn_I and Z(2n)((T--Tn_)--)lXn_):O
has a unique solution _Zn(slx,_) for O<=s <- T--Tn-, and Z"(slx,_) is monotoni-
cally decreasing in the parameter xn-. For Tn- ----< t, define the positive ._ measurable
random function Y,-(’I’,""", ")-= Yn-(’I’,""", ", xn_l) as in (3.30)-(3.31) by

exp A(v) dv Zn(tlxn_a) if < Tn,

Y.-( T1 ,’’’, Tn-1, Xn-1)

exp A(v) dv
2n)(Tnlxn-1)

if >
;(.) :-"

Then Y.-(Tn-I+SIT1,"" ", T._,X._I) is a positive maaingale in s, and the unique
optimal consumption rate on [T.-1, T], after having used c(. on [0, T.-1), is

Cn_l(tl T,""", Tn-l,Xn-1)--" I(yn-(tl T1,""", Tn-1)etYn_l(tlT1, Tn-l,Xn-1)).

The only way in which the policy c(. used on [0, Tn_) enters into the expression for
cn_(tl T," ", Tn-, X,_I) is through the parameter x,_a x o c(t)y(t) dt denoting
the consumer’s wealth as of the random time T_. One of the immediate consequences
of Lemma A.1 is that the function Yn_(tlT,’’’, Tn-I,Xn-) has a Lipschitz, nonde-
creasing dependence on the parameter xn_/(T-r,_) over bounded sets.

We next describe the backwards inductive step in solving for the martingale Y(t)
on (Tk-, Tk] after its trajectory on (Tk, T] has been expressed as a nondecreasing
locally Lipschitz function of xk/(T-Tk), where xk denotes the consumer’s wealth at
random time Tk.



OPTIMAL CONSUMPTION BY A BOND INVESTOR 649

THEOREM 3.4 Suppose 1 <--k <- n is fixed and that the nonnegative t adapted
random function Yk( l’l," ", ’, Xk) is nondecreasing and locally Lipschitz in xg/ T-
’k) on (0, o), is uniformly bounded by BI-I(xk/(T-’k)B) for some constant B and, for
’k <= t, has the form

Yk(tl rl, rk, Xk)= Yk(’k +It1, ", rk, Xk)
tA’rk+

(3.34k) fk(Y 1,’’’, ’k, Xk)Xk(yl’l,’’’, ’k) dy

+ l{’k+l<=tIfk(’rk+l I’1,’" ", ’k, Xk).

Then there is a unique function l,k_<=tiYk_l(tlrl,’’’, ’k-l,Xk-1) satisfying the same

properties and of the form (3.34k-1), which is determined for ’k (’k-1, T] by

Yk_l(tl "rl, 7"k_1, Xk-1)

(3.35)
=Y t+l’l,’’’,

k--1

I(eSy-(sl ’,’", ’-) g-(sl ’,"’, ’-, x_)) ds
and

T

(3.36) Xk-1
7"k

’)/k-l(S "/’1, ", ’/’k-l)

I(etSYt-l(S[ h,’’’, "/’k-l) Yk-I(Sl h,’’’, 7"k-l, Xk-1)) ds.

Note. First, condition (3.34) says that the random functions Y(t 17"1,""" 9"j, Xj)
for j k and k-1 are nonrandom measurable functions of their arguments on the
respective intervals Irk, rk+l) and Irk-l, rk). In addition, (3.34) says that

Yj(+I-I’F1,""", Tj)- Yj(’Fj+I ’/’1,""" "Fj)

(3.37) 1 d

/(Tj+I) dt Y(tl’,

where the displayed derivative makes sense for all < +1 and can be regarded as a
left-derivative at +1. Next, since

(3.38) Xk Xk-1-- Yk-I(S ’1, "Fk-1)
k--1

I(et3syk-l(Sl ’/’1, "Fk-1) rk-l(Sl 7"1, ’/’k--1, Xk-1)) ds

should denote the consumer’s wealth as of time rk t> ’k-1, we recognize con-
dition (3.35) simply as saying that the martingale Y(.) to be defined equal to
Yk-l(]rl, ’k-1, Xk-1) on [’k-1, ’k ^ T] for k= 1,2,..., n, is right-continuous at
each time rk which is less than T. Condition (3.36) recapitulates the requirement (2.1)
for Y(. on the ,event [rk_l < T <-- ’k].

Proof In order to characterize and solve for Yk-l(t] rl,’’’, rk-1) using (3.34)-
(3.35), we will solve on s= t- rk-l [0, T--k-1] for gk)(s) defined by

Z(t-_)=exp 1_(ylr,...,r_)dy Y_(tl,"’,r_,x_)l,,et
Tk

x_- (e%-( , , -1)g-()-( , ", -) d.
Tk
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According to (3.35)-(3.37) this vector function _z(k)(s) satisfies the almost-everywhere
ordinary differential equation system (A4) in Lemma A.1 of Appendix A, where T in
(A4) is replaced by T--rk_l, x by Xk_, and I(z) by (z)= I(z e3k-,), and where

F(z, s, T- rg-1) Ak-l(s +

exp I-(YI,’",-)dY
k

r(( + -,) + I,,’", -,, -+ x, ),

a(s) al(s) exp s+ 1_(yl,,..., _) dy
k

The existence, uniqueness, and asseed regularity propeies of the solution ((s)
all follow immediately from Lemma A.1, the hypotheses of which hold by the assump-
tions of the present theorem. We note in conclusion that by the special form of
(3.34), each of the random functions (5+slr,..., 5, x) is a maingale in s0,
and is a local maingale by 1, p. 27], with integrability verified exactly as in Theorem
3.2.

It remains to tie together the construction of Y_ with the inductive step provided
by Theorem 3.4. Note first that each of the systems of ordinary differential equations
defining ((s) (and thereby defining ) in the preceding proof involves only its own
initial condition x and none of the other wealth-values x. Thus, after having obtained
all the forms of (tl ,’" ", 5, x) for j =0,..., n-1 as measurable functions of
their arguments on [5 N < 5+], we proceed by forward induction as follows. First
fix the total wealth xo x, and define Y() Yo(tlxo) for 0 N N T, < . Next, define
inductively for j 1, 2, , n 1, on the event N T],

x
I(e%-(s[, -)-(sl ,""", _, x_))ds,

g(t)= (lr,...,5, x) for 5NtNT, t<5+l.
Use (3.37) to define Y(t)=Y_l(rlr,’’’,r_,x_) for NtNT on the event
[ N r]. Then by construction and (3.37), Y(5) agrees with _(5 , , 5_, x_)
for every 5 which is less than or equal to The maingale propey in s of each
random function (5 + sr,. , r, x) implies immediately that the adapted
random function Y(t) on [0, T] is also a maingale (with respect to ). Finally, the
definition of x from x_, together with the construction of the theorem, imply that
Y(t) satisfies (2.4) almost surely. The maingale principle of 2 (Theorem 2.1) implies
Theorem 3.5.
ToM 3.5. Under assumptions (3.1) and (3.2) on the underlying countingprocess

N( t), for Y(
I(e(t) Y(t)) optimizes expected discounted utility (1.13) over all admissible consump-
tion rates.

4. Dsess etess. The main result of this paper, summarized in
Theorem 3.5, says that under the condition (3.1) bounding a priori the number of
jumps of N(. on [0, T], and under the regularity conditions assumed for the utility
function, there exists a unique , adapted optimal consumption rate c*(t), which is
constructed from the positive maingale Y(t).
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A number of possible interesting extensions of Theorem 3.5 are topics for further
research. First, at least under some auxiliary assumption allowing one to prove a priori
bounds on the optimal martingale Y(t) or consumption rate c*(t), it seems likely that
passage to limits as n--> should allow the bound n in (3.1) and (3.2) to be replaced
by . Second, it would be desirable to extend Theorem 3.5 to the case where the
underlying process N(t), to which both the interest rate and consumption rate processes
are adapted, would be a multivariate or marked point process. If these first two
extensions were accomplished, then the lower bound in (3.2) could be removed by
replacing N(t) by a multivariate counting process N*(t) with first component N(t)
and second component an independent Poisson process with intensity b. Other open
problems connected with the martingale Y(t) of this paper include" the relationship
with the "value function," which plays such an important role in related treatments
of interest rates adapted to diffusion processes, and the possibility of obtaining results
for diffusion and more general interest-rate processes without jumps by passing to a
high-intensity limit within the present framework.

Appendix A. Lemma on ordinary differential equations. The following summarizes
the properties of equations (3.28)-(3.29) needed to show that each of these equations
has in general a well-defined and unique solution. The results of this Appendix are
self-contained, although for the applications in 3, the function I(.) is the pseudo-
inverse of the derivative U’(. of the utility function U(. of 1.
(A1) For some positive v which may be +, I’(0, v)--> (0, ) is a continuous and

strictly decreasing function such that I(0+)=oo and I(v)=0. The function
I(.) is defined =0 on Iv, ) if v <’. For some sufficiently large constant
C < and each 6 > 0, there are constants A A(8) such that for all constants
C-1C1, C2C

(AI.1) I- CI
z

-I- C! <-AIz-z for z, z’>

and there is a constant A depending on C but not on 8 for which

(Al.,2) [-1(1I(2)) A12 for all z>0.

(A2) F(z,t, T) is a nonnegative measurable function on (0, oo) x {(t, T)" 0< t< T -<

T,} for some T, < oe, which is nonincreasing in z with F(0+, t, T) _-< oc, and
which is Lipschitz with respect to I-(z/(r- t)) on each set {(z, , r)" z/(r-
t) -< -} for > 0. Moreover, there exists D < oe such that for all z > 0 and
t<T,

F(z,t,T)<DI_I( z)T-t)D
(A3) For i- 1, 2, G(t) are positive continuous functions on [0, T,] such that for

some K < o0, ]log Oi(t)] _-< K for all [0, T,].
In these three assumptions, T, plays the role of a fixed upper bound on the

time-horizon T, and the constant C in (AI.1) may and from now on will be fixed equal
to D. exp (K1), with D _-> 1.

LEMMA A,0. For arbitrary < T, there exist values Sl and s in t, T] such that

1
GI(s) ds al(Sl) G2(s2)w)]I(

T- I(G2(s)v) I(G2(s2)v) ]"
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Proof Fix < T, and let v _-< w be such that I(G2(s) v) > 0 for some s t, T]. Then
the intermediate value theorem implies that there exists s2 t, T] for which

I( G2(s)w)) dsG,(s)
I(G2(s)v)]

I( G2(sz)w)/ I( G2(s2)v))is parallel to
1

i.e., for which

If G,(s)I(G2(s)w) ds

I G,(s){I(Gz(s)w)+ I(Gz(s)v)} ds
I(Gz(sz)w)

I(G2(s2)w)+ I(G2(s)v)

Then the integral mean value theorem applied to

T- I( G(s)v) ] I( G2(s2)v)

implies the existence of sl. [3

LEMMA A.1. For each fixed T <= T. and x > O, there exists a unique value Yo such
that the (unique) solution Z(t)=-_ \/2(/))[’ZI(t) on (0, T) in the almost-everywhere sense of the
ordinary differential equation system

(A4.0) _(t)
-G,(t)I(G(t)Z,(t))

satisfies Z(T-) 0, ZI(T-) > 0. Moreover, Yo Yo( T, x) is continuous in both arguments,
and is strictly decreasing and Lipsehitz with respect to x T on {(t, x): 0 <= T <-_ T., x T <-

-1} for each 3 > O. In addition, there exists a finite positive constant B such that for all
z and all T <- T., Yo( T, x) <= BI-(x/BT).

Proof The main part of the proof consists in studying the existence and properties
of the solution in almost-everywhere sense of

(A4) "_Z( t)
-G,( t)I( G2( t)Z,( t))

Z_ T-)

as a function of z > 0. The strictly monotone dependence of each component of the
right-hand side of (A4) will be used to establish the existence of a decreasing and
absolutely continuous solution Z(t). We omit the qualification "almost everywhere"
in equalities and inequalities deduced from (A4).

The integrated form of (A4) tells that the function W(t)=-Z(T-t)-z for
0 < =< T must satisfy

(A4’) W(t)= F G(v)I(Gz(v)(W(T-v)+z)) dr, s, T ds, WI(0)=0.

Now fix K exp (K) k-, and let sr denote the set of nondecreasing functions
H(t) on [0, T] such that H(0) =0. Note that with our choice C D exp (K1), we have
C => K. For each z > 0, define the transformation Rz on sr by

(RzH)(t)=- F GI(T-v)I(G(T-v)(H(v)+z)) dr, T-s, T ds.

Then by (A1) and (A2), Rz is evidently monotone increasing in the sense that

Hi(t) <= H2(t) for all t=(RzH1) (t) <= (RzH2(t)) for all t.

If Ho(t)=O, then (RzHo)(t)>-Ho(t), and for each and t, R{Ho(t) is a monotone
increasing sequence in j 1, 2,. .
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By assumptions (A1)-(A3), for all > 0 and all z > 0,

(RzH)(t)< DI- GI(T-v)I(Gz(T-v)(H(v)+z)) dv ds

(A5) <= D 1-1 I(K(H(v)+z)) dv ds
KsD

<=D 1-1 I(K(H(s)+z)) ds.

But for each z > 0, there exists by standard theorems and (A5) and (A1) with C KD,
a unique solution st(t, z) on [0, T] of the equation

(A6) d-(t)=DI-1 I(K(z+(t))) st(0) 0.

The function s( )= ’(., z) evidently belongs to the domain sgT of Rz, and Ho(t)<=
(Rz)(t). In addition, (Rz)(t)<-(t), by (A5) and (A6). Therefore RzHo( t) <-_ ( t) for
all j and all [0, T], and W.(t)=-lim_ RHo(t) exists and is an element of
Clearly, W.(t) (RzW,)(t) is a minimal nonnegative solution ofthe integral fixed-point
equation (A4’), and similarly W*(t)=-lim_. R(t) is a maximal solution since all
solutions W(t) of (A4’) are bounded by st(t), according to Theorem 4.1 of[5, pp. 25-26].

To show that the solution of (A4) or (A4’) is unique, we prove that the function
J(w)= F(t Gl(s)I(G2(s)w) ds, t, T)is Lipschitz for w[6’, ) for each 6>0, where
6’=-AlkI-l(k/). Indeed, if w>=v>= ’, then both I(v) and I(w) are _<-1 by (A1.2),
and by (A2)

[J(w) J( v)l K2 [ I-l ( 1 f
7

)< Gl(s)I(G2(s)w) ds
T-t

T-t
Gl(S)I(G2(s)v) ds)]

for some constant K2. By Lemma A.0

T-t I( Gz(s)v) I( Gz(Sz)V) ,l

for some values sl and S2 in [t, T] which depend on v and w. For fixed < T, apply
(A1) to deduce the Lipschitz property

IJ(w) J(v)[ < KzA(6)Iw vl.
But all solution-functions W in of the equation (A4’) are bounded between zero
and the function ’(., z) on [0, T] by Theorem 4.1 of [5, pp. 25-26]. Thus all solutions
W can be bounded uniformly on [0, T] for each fixed z > 0. It follows by standard
arguments that the functions W,(t) and W*(t) coincide and that the solution _Z(t, z)
of (A4) or (A4’) is unique and depends continuously on z for z_>-3’.

We know that ZI(0, z)->_ z goes to c as z does. Also, for each z > 0, ZI(0, z)<-
z+(T, z), and it is easy to see from (A6) and (A1.2) that st(T, 0+)=0. Thus Zl(O,z)
goes to zero as z goes to zero. Therefore, the intermediate value theorem implies that
for each x>0 there is a unique value of z for which the solution _Z(., z) of (A4)
satisfies Z2(0, z) Gl(t)I(Gl(t)Zl(t, z)) dz x. Then yo yo(T, x) ZI(0, z). Since
Zl(t, z) increases with z for all t, it is easy to check that Zz(t, z) decreases with z, so
that x decreases with increasing z, and Yo is a decreasing function of x.
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Next we check the upper bound for Yo in terms of x T. Since ZI(t, z) N z -- ’( T, z)
for 0 <- <_- T, we have for each s in [0, T],

Z2( s, z 1 f Gl(t)I(G2(t)Zl(t z)) ds
T-s T-s

>_ Gl(s)I(G2(s)(z+(T,z))) ds>-kI(K(z+(T,z)))
T-s

by (A3) and the monotonic-decreasing property of I(. ). Then by (A2),

yo Z,(O, z) z + F(Z2(s, z), s, T) ds

Io t<-z+D I-  T- ib
N z + DTI-I (- I(K(z + ( T, z)))).

However, assumption (A1.2) for C >= KD implies that

d

dt
(t)<-Da,(z+(t)), t>-O

so that (T, z)<-Az for all T N T, and some constant A2 which will depend on T,.
Substituting in the upper bound for Yo, and applying (A1.2) once more, yields

Finally,

yoN (1 + DT.AA_)z A3z.

T

x=Z2(O,z)= G,(s)I(G2(s)Za(s,z)) ds<-KTI(kz)NKTI(kyo/A3)

implies the desired upper bound yon BI-l(bx/T), where B A3/k b 1/K.
Clearly, Yo is continuous with respect to x and T, and its Lipschitz dependence

on x T over compact intervals is obtained from (A2) and estimates like the preceding
on the relations

Yo z + F(Z( t, z), t, T) dt,
T

x= G,(s)I(Gz(s)Z,(s, z)) ds.
o

The idea is to fix arbitrary z, z’_-> 3’, to define y and x’ from z’ just as yo and x are
defined from z, and then to bound difference quotients (y-yo)/(z’-z) above and
(x’-x)/(T(z’-z)) both above and below. Our proof is now complete.
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THE WAVE METHOD FOR DETERMINING THE ASYMPTOTIC
DAMPING RATES OF EIGENMODES I: THE WAVE

EQUATION ON A RECTANGULAR OR CIRCULAR DOMAIN*

JIANXIN ZHOU? AND GOONG CHEN?

Abstract. The uniform exponential decay property of the wave equation with viscous boundary damping
has been studied by several people. The mathematical proofs used therein are commonly based on energy
identities, which cannot determine the actual decay rates of the solution. In Quinn and Russell [Proc. Roy.
Soc. Edinburgh Sect. A, 77 (1977), pp. 97-127] and Chen [Ph.D. thesis, University of Wisconsin, Madison,
WI, May 1977], such damping rates have been calculated for rectangular and circular domains, respectively,
using separation of variables and a perturbation approach good for small viscous damping parameters. In
this paper, we extend some earlier geometrical optics and diffraction methods of Keller and Rubinow [Ann.
Phys., 9 (1960), pp. 24-75] to treat the eigenvalue problems with dissipative conditions. Such methods
provide strong insights into the physical properties of the solutions. Asymptotic estimates of damping and
wavenumber are shown to agree favorably with the earlier results of Quinn and Russell and Chen for small
damping parameters, as well as with the numerical solutions computed herein for cases even when the
damping parameters are not small.

Key words, wave method, asymptotic damping rates, geometrical optics

AMS(MOS) subject classifications. 93D15, 93B60, 35L05, 35P20

1. Introduction. Consider the wave equation

(1.1) wtt(x t)-Aw(x, t)=0, xe[-lc", t>0

on a bounded domain in n. On the boundary 012 of 12, assume a dissipative condition

ow(x,t) Ow(x,t)+a=O, a > O, x 6 0, > O,(1.2)
at On

where n is the unit outward normal on 012. Condition (1.2) says that force Ow/On is
negatively proportional to the velocity, so a viscous damper is installed in effect
everywhere on the boundary. We call a the viscous damping parameter. The initial
conditions for the wave equation are

w(x,O)=wo(x),

Ow x.
(x,O)=vo(X),
ot

The energy of the system at time is

(1.3) E(t)= fa [IVw(x’ t)[2+ wt(x’ t)] dx.

Several people (cf. [2], [8], [11], e.g.) have shown that if the domain 12 has certain
geometries, then the energy of vibration will decay uniformly exponentially: there exist
M _-> 1, /z > 0 such that

(1.4) E(t)<-Me-tE(O)
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for all initial conditions (Wo, Vo) HI(-))H(f), where Hk(12) is the Sobolev space
of order k -> 0. This uniform decay property is important in the design oflinear-quadratic
regulators for distributed parameter control systems. The larger/z is, the higher the
performance of the regulator is commonly regarded. Thus, from the practical design
viewpoint, it is useful to know the overall damping rate /x or the damping rates of
individual eigenmodes of the controlled system. Nevertheless, except in [1] and [11],
explicit information on such damping rates is not available because the mathematical
proofs as given in [2] and [8] are based on energy identities, which cannot provide
sharp estimates of decay in relation to the damping parameter a. Indeed, such sharp
estimates are pretty hard to obtain for general domains. Therefore, the best hope
is to look for some answers in the case of special domains: rectangles, circles, and
ellipses, etc.

Quinn and Russell 11 studied the case of rectangular geometry, while Chen 1]
did the circular geometry. Both works are based on the elementary separation of
variables approach and a perturbation argument valid for a small damping parameter
a, and provide certain useful estimates for the damping rates of eigenmodes. It is
obvious that the perturbation argument used therein is also valid when the damping
parameter a is large--we simply develop a perturbation series in terms of 1/a in lieu
of a. But when a is of medium sizemneither too large, nor too smallmthen the
perturbation argument in [1] and [11] would fail and no explicit damping rates of
eigenmodes would be available. A more general approach is required in order to obtain
such information.

In this series of papers, we plan to generalize the wave propagation method (WPM)
developed by us in [3] and [4], and elsewhere, to study the problem. The WPM in [4]
gives sharp asymptotic estimates of eigenfrequencies of vibration for equations in one
space dimension, including the wave, beam, and Schr/Sdinger equations. The extension
of WPM to higher space dimensions, say n =2 in (1.1), is difficult because more
complicated wave phenomena such as caustics, foci, grazing and gliding rays can
happen. Fortunately, for simple geometries such as rectangles, circles, and ellipses,
the fundamental work has been done in an important paper [7], wherein Keller and
Rubinow used the general geometrical theory of optics (GTO) and the geometrical
theory of diffraction (GTD) to estimate eigenvalues ofthe Laplacian subject to Dirichlet
and Neumann boundary conditions. Their methods and results are still unsurpassed
to this day, even though the paper is already three decades old. In this paper, we will
incorporate our earlier ideas of WPM [4] into Keller and Rubinow’s work [7] to obtain
asymptotic eigenfrequency estimates for the Laplacian with dissipative boundary
conditions. Our results agree with those in [1] and [11] when the damping parameter
a is small, and agree sharply with the numerical results when the damping parameter
is not small. Our analysis here is based on the physical postulates of wave propagation
and optics, which have all been rigorously justified in the asymptotic sense by Maslov
and Fedoriuk [10].

Our plan is as follows. In the present paper, Part I, we will study mainly
the circular and rectangular cases in two space dimension. In the follow-up paper,
Part II, we plan to study the case of a rectangular plate, generalizing Keller and
Rubinow’s work to the biharmonic operator A2. There are additional interesting
problems such as:

(i) The cases of elliptical and triangular geometries;
(ii) Overdamped modes (cf. Remark 4.2); and
(iii) Space dimension three.

If possible, we also wish to investigate them in subsequent parts of this series of papers.
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2. Extending Keller and Rubinow’s wave method to dissipative boundary condi-
tions. Let 1) be a bounded domain in R or 2. We let the damping parameter a in
(1.2) be complex:

(lta and a denote, respectively, the real and imaginary parts of a). This condition
is more general than (1.2) in that it also covers some acoustic and electromagnetic
scattering problems wherein the impedance parameter a is complex in general.

We consider an eigenmode b(x):

(2.2) w(x, t) e-k’ 49(x), x e 12.

Substituting (2.2) into (1.1) and (2.1), we obtain a reduced wave (i.e., Helmholtz)
equation with impedance boundary condition:

(A+ k)(x) 0, xea
(2.3)

0(x)
ik4)(x) a -0, x Of.

On

Our task here is to derive estimates on the eigenfrequencies k.
To make our paper sufficiently self-contained, we first introduce the theory

developed by Keller and Rubinow in [7], with suitable adaptations to our problem.
(Not surprisingly, many passages and figures in this section are adopted from [7]
without alteration.)

According to GTO [5], [6], when Ikl is large, b can be represented by a geometrical
optics expansion:

p=O (ik)p
(2.4)

Y e .o(X) + O
j=l

where it is assumed there are N waves propagating in 1). Each wave has phase Sj and
(dominant) amplitude A.o. For simplicity, let us write A,o as A. Substituting (2.4)
into (2.3) and equating to zero the coefficients of k2 and k, we obtain

(2.5) Ivsl2 1 (the eiconal equation),

(2.6) 2VSj. VAi+AAS=O (the transport equation)

for j= 1,2,...,N.
The surfaces Sj constant are called wavefronts, and the trajectories orthogonal

to the wavefronts are called rays. The rays, as characteristic to (2.5), are easily seen
to be straight lines. Let - denote the arclength along a ray; then (2.6) implies that
along the ray Sj is given by

(2.7) S(’) Sjo + ’,

where So is the value of S at the point from which - is measured. The sign "+" in
(2.7) can be chosen to be "+" or "-" depending on if r is measured positively or
negatively in the direction of increasing Sj.
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The transport equation (2.6) is a linear ordinary differential equation along rays

a
2-+ Aj(ASj) 0, j= 1,2,..., N,

which has solution

(2.8) Aj(r) Aj(0) exp - AS(7) dr/ A(0)[ 1/2

L G(0)
G(-) is the Gaussian curvature of the wavefront S. const, at . When n 3, (2.8) is
further seen to be equal to

[ PjlPj2 ]1/2(2.9) Aj(’)=A(O)
(pjl+’)(p2+’)

(in N3),

where p and pj2 denote the principal radii of curvature of the wave front at r 0.
When n 2, we regard &z=m in (2.9) (i.e., a cylindrical wavefront) so we can write

(2.10) A(,) A(0) P (in
pj+

We now apply the boundary conditions in (2.3) to the solution (2.4). We substitute
and equate to zero the coefficient of k to obtain

N ( anOSJ ikSi(2.11) A-aA/ e =0.
j=l

As in [7], we now assume that at every point on the boundary the terms in (2.11) for
which A- aA OS/On 0 vanish in pairs. That is to say, for each such j wave, there
is another j’ wave, j’j, such that

(2.12) Ay aA
Physically, this assumption means that each wave hitting the boundary gives rise to a
reflected wave. (The waves for which A aA OS/On 0 are absorbed by the boundary
and do not give rise to reflected waves.) Since (2.12) holds for a range of values of k,
it follows that

s=s, on0a.(2.13)

Therefore,

(2.14) OS OS,
on 0,

Os Os

where s=(-n2, nl) is the unit tangent vector in the counterclockwise sense, with
(hi, n2) being the components of the unit outward normal n. Since

VSk
0Sk 0Sk=s+n for k=l,2,...,N,
Os On

from (2.5) and (2.14), we obtain

On On

Therefore,

(2.15)
OSj OSj,+-- on 0.
On On
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Arguing along the same lines as in [7], we can show that the "+" sign in (2.15) is not
admissible; thus,

(2.16) OSj OSj,
on Oft.

On On

Using (2.13) and (2.16), we obtain

(2.17) A,=
1- c(OS/On)

-1 + c(OSj/On)
Aj on

We call this the reflection relation. Note that if we choose c 0 and c co, then we
obtain, respectively, the reflection relations for the Dirichlet and Neumann boundary
conditions in [7].

Equation (2.9) for the amplitude Aj breaks down at points on a caustic surface,
where -=-pjl or r =-pj2 (Pjl Oj2). (If " =-Pjl =--Oj2, such a point is called a focal
point.) Indeed, near a caustic surface a more elaborate WKB approximation is necessary
for a uniformly valid expansion of the field (cf. the book by Maslov and Fedoriuk
[10] for a general treatment of wave optics on manifolds; cf. also Remark 4.2).

As in [7], we assume that
(i) Each wave converging to a caustic gives rise to another wave diverging from

the caustic; and
(ii) The rays of the diverging wave (which are gliding rays) are assumed to be

the continuations of those of the converging wave and the phase along these rays is
assumed to be the continuation of the phase on the converging rays.
Thus,

(2.18) S= S,
on a caustic. By passing a regular (i.e., nonfocal) point on a caustic, in (2.9), pj + "
(or P2 + ’) changes sign from "-" to "+." Thus

(2.19) A,= e-i/ZA.
(Passing a focal point, the relation is

(2.20) A,= e-iAj
because both pl + r and pj2 " 7’ change signs from "-" to "+.")

Now let us trace a ray of any wave in the direction of increasing r. We come to
a caustic or boundary because f is a bounded domain. In either case, the ray continues
as a ray of another wave. A sequence of waves is encountered in this manner. Since
there are, by assumption, only a finite number N of waves in the solution, one of the
waves in this sequence must recur. Therefore, a ray orthogonal to a given wavefront
is ultimately orthogonal to this very same wave front again. But the value of S
continually increases as a ray is traversed in the positive direction. Therefore, at the
second point of intersection of the wavefront and the ray, the value of S is greater
than its initial value by the length of the ray between intersections. Since S is constant
on a wavefront, S must therefore be multiple valued. The corresponding amplitude Aj
may also be multiple valued due to the change (2.19) or (2.20) on the ray paths.

To form an eigenmode b, the solution to (2.3), resonance must occur; i.e., the
wave that recurs must be in phase with itself that is to say, the overall phase difference
due to the changes of S and A must be an integral multiple of 2r. This is expressed
by

(2.21) k cSS + 6 arg A Zrnj j l N, n 7/



ASYMPTOTIC DAMPING RATES OF EIGENMODES 661

where 6Sj and 6(arg Ai) denote, respectively, the changes of Sj and the argument of
the complex amplitude A.

In [7], Keller and Rubinow further used the important concept of a covering space
to resolve the difficulty of the multivaluedness of S by regarding them as branches of
a single function S. The covering space is multisheeted, just like a Riemann surface in
complex analysis. The number of sheets is equal to the N distinct branches of 7S.
The various sheets are replicas of the domain 12 which may be bounded internally by
caustics. The sheets corresponding to 7S1 and 78j2 are joined together along the part
of the caustic or boundary where S1 Sj2, the places where the wave j gives rise to
the wave j2 by reflection or by passing through a caustic. Similarly, we consider A to
be branches of a single function A defined on the covering space.

Now assume that the fundamental group of the covering space (of 7S) contains
q linearly independent closed curves C, j 1, 2,. ., q. Then the condition (2.21) can
be rewritten as

kcjVS, dcr+Y 6(arga)=2rrn, j= 1,2,. , q.(2.22)

We will incorporate the reflection condition (2.17) into the formula (2.22) to obtain
the asymptotic damping rates and eigenfrequency estimates in the examples to be
discussed in the next few sections.

3. Asymptotic damping rates and eigenfrequencies for a circular domain. Circular
and elliptical domains seem to be the only domains where caustics are known to be
constructible [7]. We consider a (2-D) disk 12 with radius a. Let C(ao) be a circle
with radius ao and centered at the origin. Any ray in 12 tangent to C(ao) will be
tangential to it again after a reflection at 012 (cf. Fig. 1). Thus C(ao) is a caustic to the
family of rays generated by successive reflections at 0f.

To apply Keller and Rubinow’s theory in 2, we need to find a set of N normal
congruences of rays that are closed under reflection. (A normal congruence of rays is
a family of rays orthogonal to any given surface.) From the preceding paragraph, we
can consider all those rays traveling inward from 0f to the caustic C(ao) as one normal
congruence (cf. Fig. 2) and all those traveling outward from C(ao) to 012 as a second

ao

FIG. 1. A ray inside a circular domain and some of the rays that arise from it after several reflections. All

of these rays are tangential to a concentric circle of radius ao, the caustic. (Reprintedfrom [7], with permission.)
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FIG. 2. Normal congruence of rays converging to the caustic. (Reprinted from [7], with permission.)

congruence (cf. Fig. 3). Therefore, N 2. The covering space for a disk is topologically
homeomorphic to a torus [7]. There are only two linearly independent closed curves
on a torus, so q 2 in (2.22). From the way the covering space is constructed in [7],
we can choose the first curve C1 to be just C (ao), and choose C2 to be shown as in Fig. 4.

We now apply (2.22) to C1 and C2. Along C1, VS is tangent to it, and no ray
crosses the caustic, so

VS. do- arclength of C (ao) 2rao,
(ao)

3(arg A) 0,

and (2.22) gives

(3.1) k(2rao)=2rl, /=0, 1,2,....

Remark 3.1. It is well understood that for the eigenvalue problem (2.3), most of
the true eigenvalues A =-k2 are complex numbers. This implies that (most of) the k
themselves are complex numbers. So how can a complex number be equal to a real
number in (3.1) ? It turns out that k in (3.1) should be regarded as a real number, namely,

FIG. 3. Normal congruence II of rays diverging from the caustic. (Reprinted from [7], with permission.)
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FIG. 4. The closed path C2 on the toroidal covering space. (Reprinted from [7], with permission.)

the real part of the true eigenfrequence A in Theorem 1 later, as k here is only an
approximation to the real part of the true eigenfrequence A. We can aptly call k the
wavenumber. The rationale will become clear later on (see especially Remark 3.2
afterwards).

The curve C2, as shown in Fig. 4, consists of two rays, each of length (a2- ao)1/2,
and an arc of the caustic of length 2ao cos-l(ao/a). Therefore,

(3.2) VS dcr 2(x/a2 a ao cos-l -)
Note the choice of "-" sign to conform to the counterclockwise sense on C(ao).
Consider the change of arg A. This path crosses the caustic only once, so by (2.19)
arg A is retarded by 7r/2. Also at the boundary, reflection occurs according to (2.17).
Therefore, arg A changes by another angle

(3.3) -Tr+arg
1- a(gS/gn)
l+a(OS/On)"

Let us combine both changes of (arg A). In consistency with the sign convention in
[7], we actually have

(argA)=(-)-[-Tr+arg(1-a(OS/On)ll+a(OS/On
(3.4)

_Tr_arg(1-t(OS/Onl)2 l+a(OS/On
and using (3.1) in (3.2), we obtain

(3.5)

2k a-- a- ao cos-1 27rm --+ arg
2 l+a(OS/o

--+--argk x/a2 a aocos 7r m
4 27r l+a(0S/-ni]

m= 1,2,3,....
We further simplify the above by noting from Fig. 5 (or cf. (32) of [7, p. 35]) that
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(r, 0)

FIG. 5. The two-ray paths from the caustic to the point (r, 0). One ray leaves the caustic at tr

ao[0-cos-1)] and travels a distance ’ =(r2-a2o) 1/2 to the point. The other ray leaves the caustic at r2=
ao[ 0 + cos- (ao/r) 2 cos- (ao/a) ], is reflectedfrom the boundary, and reaches the same point on the second
sheet after traversing a distance ’ 2(a2- a)/-(r- a)/. (Reprinted from [7], with permission.)

Thus,

oS
On

and (3.5) becomes

k(x/a2 ag_aocos_l?) =Trim+3 1

(3.6) 4 27r (1-ax/a2-a/a]arg
1 + av/-a5- ag/a/

m=0, 1,2,. ..
Note that we have shifted m by one from (3.5).

Substituting ao from (3.1) into (3.6), we obtain

[(ka)9-1e]l/21cos-l(--a)[-7r m +-+--arg31 (1-ax/k2a2-1/a_)](3.7) 4 27r 1 + ax/-5’- 12/

m,/=0,1,2,3,....

This relation determines k, the (real) wavenumber, up to O(1/k). Note that by choosing
a 0 and a + in (3.6), we recover, respectively, formulas (26) and (25) of[7, pp. 33-
34] for the Dirichlet and Neumann boundary conditions.

Next, we determine the damping rates of eigenmodes. We use the same idea as
developed in [4]. The damping of wave motion is completely attributed to the attenu-
ation of the wave amplitude after reflection at the boundary. According to the reflection
relation (2.17), the amount of damping endured after each reflection is

1-a(OS/On) 1-(a/a)x/a-a
In In

l+a(OS/On) l+(a/a)x/a-a
Consider a complete cycle of wave motion; i.e., let a wave of normal congruence II
reflect (at 0f) into a wave of normal congruence I, and then further transmit across
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the caustic to become a wave of normal congruence II (cf. Figs. 1, 2). Since the caustic
is essentially a barrier against wave penetration, it can be regarded as a boundary
surface (curve) also. As the wave propagates with speed one, and the round trip
distance made by the wave from the circumference to the caustic is 2(a2- a) 1/2 (cf.
Fig. 4) by using the very same arguments as in the one-dimensional wave propagation
case in [4, 2], we obtain

rate of damping per unit time
total attenuation in a cycle of wave motion

the round trip time duration

(3.8) 1

2/aZ a2
o 2/a2_(l/k)2

In
ak- a/k2a2-12
ak + o/k2a2- 2

We can now state Theorem 1.
THEOREM 1. Let Z C, Z <_-0, satisfy

(a+)6(x) 0, x 1 the disk with radius a,

(3.9) Oct(x)
iAc(x) a 0 on 012.

On

Then k + itx( k) is an approximation to some A such that

(3.10) A= k+ itz(k)+ 0() for large k,
where k and tz k satisfy, respectively, (3.7) and (3.8) for given integers l, m O, 1, 2,

Remark 3.2. Our treatment in this section is based on the right physics of the
problem. As the waves are propagating in the medium f, there is no loss of energy;
therefore, the wavenumber k should be real, at least asymptotically. The only energy
loss happens when the wave hits the boundary and makes the reflection. Therefore,
nearly the entire damping rate can be attributed to the decrease of magnitude of the
amplitude.

4. Comparison with existing results and numerical solutions. The case where f is
the unit disk has been treated by Chen in his Ph.D. thesis 1]. Since those results have
never been published elsewhere, we briefly summarize them below.

A direct approach of separation of variables in polar coordinates

(4.1) qb(x) Jl(Ar) e+/-il, Jl" the Bessel function of order

for (3.9) leads to the transcendental equation

(4.2) J(A + iaJJ(A =0, O, 1, 2,. .,
for the determination of the eigenfrequency A. Let Aim denote the mth positive zero
of the Bessel function Jl. We divide our discussion into the following cases:

(a) Small a. It has been shown in [1] that each Aim has a small neighborhood
(uniform with respect to l, m) such that the solution A of (4.2) is analytic with respect
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to the damping parameter a"

(4.3) h Aim .ql_ ClmlOl ..[.. Clm20l 2.._. + Clmjol, _4c.... [a[ sufficiently small.

We can actually compute a few coefficients by substituting (4.3) into (4.2) and using
the Taylor expansion:

Clm

3 1
Clm2

2 Aim

(cf. [1, p. 114]). Thus for small a, the rate of damping is approximately equal to

(4.4) (-ia) -a + O(a2).

We have computed a set of zeros of (4.2) for small a by using Newton’s method, for
=0, 1, 4. See Table 1. Using a =0.01, 0.015, 0.02, respectively, we have found from

Table 1 that the damping rates are approximately equal to those in Table 2, in close
agreement with (4.4).

To make comparisons, now we apply our formula (3.8) to the unit disk.
COROLLARY 1. Consider the unit disk where a 1. Then for a C such that ]a] is

small and 9a > 0, we have

ix(k) -a + O(a2).

Proof Write

We note that the caustic radius ao satisfies 0< ao < 1. By (3.8),

1 r//1 ag]2 + (:/i a)2

[1 + r//1 a]2 + (:/1 ao2) 2

21 -2r//1 a+ la 141 ao

1

441 a [-4r/x/1 a+

--n+o(l l=)

+

Thus Corollary 1 is in full agreement with (4.4).
(b) Medium size a, ce 1. Again, we use Newton’s method to compute the zeros

of (4.2), using a 0.2, 0.5, 0.6+ i. 0.3, 0.95, 1.5. Here we only tabulate the case =4.
(For other integral values of l, the numerical data have manifested the same pattern.)
Refer to Table 3.
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TABLE
Zeros of Jt( A / iaJ(A 0 for O, 1, 4 and small a. The number on the left denotes the real part of A,

while the number on the right denotes the imaginary part of A.

2
3
4
5
6
7
8
9
10

2
3
4
5
6
7
8
9
10

2
3
4
5
6
7
8
9
10

/=0

a 0.0100

2.404846,
5.520087,
8.653734,

11.791539,
14.930921,
18.071067,
21.211639,
24.352474,
27.493481,
30.634608,

-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000

a =0.0150

/=1

a =O.OLOO

3.831719,
7.015594,
10.173473,
13.323696,
16.470633,
19.615861,
22.760087,
25.903674,
29.046830,
32.189681,

-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000

0.0150

2.404872,
5.520098,
8.653741,

11.791544,
14.930925,
18.071070,
21.211642,
24.352476,
27.493483,
30.634610,

-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001

0.0200

3.831735,
7.015602,
10.173479,
13.323700,
16.470637,
19.615864,
22.760089,
25.903676,
29.046832,
32.189683,

-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001

0.0200

2.404909,
5.520114,
8.653751,

11.791551,
14.930931,
18.071075,
21.211646,
24.352480,
27.493486,
30.634613,

-0.O20002
-0.020002
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003

3.831758, -0.020002
7.015615, -0.020003
10.173488, -0.020003
13.323707, -0.020003
16.470642, -0.020003
19.615869, -0.020003
22.760093, -0.020003
25.903680, -0.020003
29.046835, -0.020003
32.189686, -0.020003

/=4

a 0.0100

7.588349,
11.064714,
14.372540,
17.615969,
20.826935,
24.019022,
27.199090,
30.371009,
33.537139,
36.699002,

-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000
-0.010000

a 0.0150

7.588357,
11.064720,
14.372545,
17.615972,
20.826938,
24.019024,
27.199092,
30.371011,
33.537141,
36.699004,

-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001
-0.015001

a 0.0200

7.588369,
11.064728,
14.372551,
17.615977,
20.826943,
24.019028,
27.199095,
30.371014,
33.537144,
36.699007,

-0.020002
-0.020002
-0.020002
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003
-0.020003

I=0
I=1
I=4

TABLE 2
Damping rates for 0, 1, 3 and small

a =0.001

-0.010000
-0.010000
-1.010000

0.015

-0.015001
-0.015001
-0.015001

a 0.02

-0.020002-- 0.020003
-0.020002-- 0.020003
-0.020002 0.020003
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TABLE 3
Zeros of J4(A + iaJ’4(A 0 for medium size

2
3
4
5
6
7
8
9
10

=0.2

7.591022, -0.201866
11.066571, -0.202322
14.373976, -0.202489
17.617143, -0.202570
20.827930, -0.202616
24.019885, -0.202645
27.199852, -0.202664
30.371693, -0.202678
33.537758, -0.202688
36.699568, -0.202695

=0.5

7.606712, -0.532225
11.078529, -0.540915
14.383550, -0.544249
17.625107, -0.545912
20.834740, -0.546866
24.025830, -0.547466
27.205127, -0.547868
30.376432, -0.548151
33.542060, -0.548358
36.703506, -0.548514

0.6 + i. 0.3

7.226642, -0.628858
10.675812, -0.618721
13.973686, -0.612093
17.212268, -0.607839
20.420470, -0.604931
23.610813, -0.602830
26.789701, -0.601247
29.960780, -0.600013
33.126286, -0.599025
36.287671, -0.598217

2
3
4
5
6
7
8
9
10

0.95

7.686725, -1.306102
11.201637, -1.476234
14.521295, -1.572608
17.764806, -1.634592
20.970697, -1.677146
24.155629, -1.707628
27.327934, -1.730159
30.492176, -1.747237
33.651029, -1.760458
36.806140, -1.770878

=1.5

5.885229, -1.791908
9.244764, -1.050649
12.649875, -0.919150
15.938485, -0.873084
19.174790, -0.850710
22.382899, -0.837951
25.573933, -0.829925
28.753790, -0.824525
31.925909, -0.820708
35.092441, -0.817906

We now compare the damping rates in Table 3 with the values obtained by applying
formula (3.8). Using a 1, and noting that the radius ao of the caustic C(ao) shrinks
to 0 as rn becomes large, we obtain

(i) For a 0.2

1 1 -0.2

1 +.02
-0.202733.

This is very close to the value -0.202695 at the bottom of the second column
in Table 3.

(ii) For a 0.5

1 1-0.5

1 +0.5
-0.549306.

This is very close to the value -0.548514 at the bottom of the fourth column
in Table 3.

(iii) For a 0.6 + i0.3,

1 1-(06.+ i. 0.3)
1 + (0.6+ i. 0.3)

-0.581575,

which is close to -0.598217 at the bottom of the sixth column in Table 3.
Note that the values in that column are increasing, contrasting the decreasing
columns 2 and 4 in (i) and (ii).
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(iv) For ce 0.95,

1 1-0.95
(4.5) 21n -1.831781.

1 +0.95

This deviates a little from the value 1.770878 at the bottom of column 8 in
Table 3. The reason is that the damping parameter 0.95 is rather close to
one. There is little question that those damping rates will still converge to
the value in (4.5) if we let m become larger and larger.

(v) For c 1.5,

1 1-1.5
(4.6)

2
In

1+1.5
=-0.804719.

(iv) This is close to the value -0.815787 at the bottom of column 10 in Table 3.
We have checked that if more and more roots are computed (i.e., m is chosen
large), then those damping rates will keep increasing and getting closer and
closer to the value (4.6).

(c) The characteristic impedance case, c 1. When c 1, formula (3.8) gives

1 1-1
In -oo.

2 1+1

This infinitely large damping rate means that the amplitude of the reflected wave is
zero; i.e., the incoming wave (here, the normal congruence II wave) would be completely
absorbed by the boundary. In the one-dimensional case, such a complete wave absorp-
tion property is easy to confirm (see [3], e.g.; cf. also [9] for the higher-dimensional
case). Let us look at the two-dimensional case here.

We have computed a large number of zeros of (4.2) for =4 again. These zeros
are listed in Table 4. The reader can find that the rates of damping are steadily
decreasing. For the 185th root, the damping rate is -3.881022. Since

2 e-3"881022 0.041259,

this means that at the wavenumber k 587.4475 (i.e., the real part of the 185th zero
of (4.2), when l= 4), the reflected wave (i.e., normal congruence I) has an amplitude
that is only about 4.1 percent of the incoming wave.

We conjecture that the imaginary parts of the zeros of (4.2) for each will decrease
without bound, reaching -oo.

From the stabilizer design point ofview, choosing ce 1 seems to suppress vibration
most effectively.

We have observed that the damping rates listed in certain columns of various
tables are steadily decreasing (see, e.g., columns 2, 4, and 8 in Table 3), whereas those
listed elsewhere (e.g., columns 6 and 10 in Table 3) are steadily increasing.

This can be interpreted by Corollary 2.
COROLLARY 2. Let 7+ befixed in (3.8). Then the rates ofdamping are decreasing

if
d

(4.7) da---o Ix(k, ao) < 0

and increasing if
d

(4.8)
dao

Ix(k, ao) > O,



TABLE 4
Zeros of Ja(A)+ iaJn(A)= 0 when a 1. Note that the imaginary parts of A all have negative signs as

indicated by Im.

Re -Im Re -Im Re -Im

30th

60th

7.705903, 1.468978 204.117590, 3.352118 398.937859, 3.687488
11.283858, 1.743047 207.260466, 3.359772 402.079794, 3.691412
14.670407, 1.923818 210.403304, 3.367311 405.221723, 3.695305
17.975551, 2.056575 213.546105, 3.374737 408.363648, 3.699168
21.235540, 2.160406 216.688872, 3.382054 411.505567, 3.703002
24.467162, 2.245244 219.831605, 3.389266 414.647481, 3..706806
27.679611, 2.316829 222.974306, 3.396374 417.789391, 3.710582
30.878440, 2.378714 226.116977, 3.403383 420.931295, 3.714329
34.067233, 2.433228 229.259619, 3.410294 424.073196, 3.718048
37.248411, 2.481964 232.402232, 3.417111 427.215091, 3.721740
40.423677, 2.526053 235.544818, 3.423836 430.356983, 3.725405
43.594260, 2.566325 238.687379, 3.430472 433.498870, 3.729043
46.761071, 2.603408 241.829914, 3.437021 436.640753, 3.732655
49.924800, 2.637782 244.972426, 3.443484 439.782631, 3.736241
53.085978, 2.669829 248.114914, 3.449865 442.924506, 3.739801
56.245022, 2.699852 251.257380, 3.456165 446.066377, 3.743336
59.402261, 2.728099 254.399825, 3.462387 449.208244, 3.746847
62.557962, 2.754775 257.542249, 3.468532 452.350107, 3.750333
65.712341, 2.780049 260.684654, 3.474603 455.491966, 3.753794
68.865575, 2.804066 263.827039, 3.480600 458.633822, 3.757232
72.017811, 2.826947 266.969405, 3.486526 461.775674, 3.760646
75.169172, 2.848797 270.111754, 3.492383 464.917523, 3.764038
78.319763, 2.869708 273.254086, 3.498171 468.059369, 3.767406
81.469670, 2.889759 276.396400, 3.503894 471.201211, 3.770752
84.618968, 2.909018 279.538699, 3.509551 474.343049, 3.774075
87.767723, 2.927548 282.680982, 3.515145 150th 477.484885, 3.777377
90.915989, 2.945402 285.823250, 3.520677 480.626717, 3.780657
94.063816, 2.962630 90th 288.965504, 3.526149 483.768546, 3.783916
97.211245, 2.979273 292.107743, 3.531561 486.910373, 3.787153
100.358313, 2.995371 295.249969, 3.536915 490.052196, 3.790370
103.505052, 3.010960 298.392182, 3.542212 493.194016, 3.793566
106.651492, 3.026070 301.534381, 3.547453 496.335834, 3.796741
109.797658, 3.040731 304.676568, 3.552641 499.477648, 3.799897
112.943572, 3.054968 307.818744, 3.557774 502.619460, 3.803033
116.089255, 3.068807 310.960907, 3.562856 505.761270, 3.806149
119.234724, 3.082269 314.103059, 3.567886 508.903076, 3.809246
122.379997, 3.095374 317.245201, 3.572866 512.044880, 3.812324
125.525087, 3.108141 320.387331, 3.577797 515.186681, 3.815383
128.670009, 3.120587 323.529451, 3.582680 518.328480, 3.818424
131.814773, 3.132727 326.671561, 3.587516 521.470277, 3.821446
134.959391, 3.144578 329.813662, 3.592305 524.612071, 3.824450
138.103873, 3.156151 332.955753, 3.597048 527.753862, 3.827436
141.248227, 3.167461 336.097834, 3.601747 530.895652, 3.830404
144.392463, 3.178519 339.239907, 3.606403 534.037439, 3.833355

"147.536587, 3.189336 342.381971, 3.611015 537.179223, 3.836288
150.680606, 3.199922 345.524026, 3.615585 540.321006, 3.839204
153.824528, 3.210287 348.666073, 3.620113 543.462786, 3.842104
156.968357, 3.220440 351.808112, 3.624601 546.604564, 3.844986
160.112098, 3.230390 354.950143, 3.629049 549.746340, 3.847852
163.255758, 3.240144 358.092167, 3.633458 552.888114, 3.850702
166.399341, 3.249711 361.234183, 3.637828 556.029886, 3.853536
169.542850, 3.259097 364.376192, 3.642160 559.171656, 3.856353
172.686291, 3.268310 367.518193, 3.646455 562.313424, 3.859155
175.829666, 3.277355 370.660188, 3.650713 565.455190, 3.861941
178.972979, 3.286238 373.802176, 3.654936 568.596955, 3.864712
182.116233, 3.294966, 376.944158, 3.659123 180th 571.738717, 3.867468
185.259431, 3.303543 380.086133, 3.663275 574.880477, 3.870208
188.402576, 3.311975 120th 383.228102, 3.667393 578.022236, 3.872934
191.545670, 3.320267 386.370065, 3.671477 581.163993, 3.875644
194.688717, 3.328422 389.512022, 3.675528 584.305748, 3.878340
197.831718, 3.336447 392.653974, 3.679547 587.447501, 3.881022
200.974675, 3.344344 395.795919, 3.683533
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where tz(k, ao) is given by (3.8). In particular, when a 1 and 0< c < 1, we have

d
(4.9)

dao
(k, ao) > 0 (0< a < 1)

so the rates of damping are decreasing.
Proof ao is the radius ofthe caustic, 0 < ao < 1. As m increases in (3.8), ao decreases

monotonically to zero [7]. Therefore, (4.7) and (4.8) hold. To see (4.9), we note that
from (3.8),

x(k, ao)=- l+c(1-ao) 5
(1-a)+’’’+c’(1-a)’+’’"

"2n+l

So/z(k, ao) decreases as ao decreases on the interval (0, 1).
So far in this section we have only dealt with the damping rates of eigenmodes.

How good is formula (3.7) in approximating the wavenumber k? In [7], Keller and
Rubinow did some calculations (using a =0 and a in (3.6)) and noted that the
numerical solutions are extremely close to the tabulated values of zeros of Bessel
functions and their derivatives. Here we list two sets of values of k computed from
(3.7), using

4, a 0.5, for Table 5,

4, a 0.6 + i. 0.3, for Table 6.

The reader can compare those values against, columns 3 and 5 in Table 3, respectively,
and find that they are rather agreeable, the more so when the wavenumber becomes
large. Here our fractional errors are considerably larger than those reported in [7] (for
the energy conserving cases) at all frequencies.

Remark 4.1. For each m, the smallest (positive) solution k of the transcendental
equation (3.6) (corresponding to m 0 or 1) is known to have the strongest "whispering
gallery" property. Such a whispering gallery mode has the largest radius ao for its

TABLE 5
The wavenumber k as computed by (3.7) for l--4, ce 0.5.

7.553060
11.048664
14.361846
17.607830
20.820315

6
7
8
9
10

24.013419
27.194222
30.366699
33.533268
36.695487

TABLE 6
The wavenumber k as computed by (3.7) for =4, a =0.6+ i. 0.3.

7.180463
10.652558
13.957908
17.200239
20.410711

6
7
8
9
10

23.602581
26.782572
29.954486
33.120648
36.282563
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caustic. Since a whispering gallery mode is "essentially supported" only on an annulus
with outer radius a and inner radius ao, as shown in Fig. 1. Therefore, a whispering
gallery wave propagates right adjacent to 0f. Since there is boundary damping present
at 0f, will the whispering gallery mode get damped with the largest damping rate (in the
same family of eigenmodes, i.e., given fixed 1)? The answer is negative as evidenced
by the damping rates data given in column 2, Table 3, for =4, with a =0.5. The
reason is that the wave "slides" along the boundary; thus the energy loss from damping,
being "the friction in the perpendicular direction," is not as large as expected.

Remark 4.2. By adapting the work in [7, pp. 35-39] to our problem, it is not
difficult to show that the eigenmode b(x) has the asymptotic representation

__/kr)2 12]-1/4 cos / (kr)2 -/2] 1/2 COS
-1

kr

+- arg 74 2 ka+a/(ka
(4.10) th(x) th(r, 0)=

1 12 /4-(kr)2]-1

if r-> ao,

exp ilO-lcosh r + kr)2]

if r_-< ao.

The second representation can be regarded as the analytic continuation of the first
one. This function is easily seen to be exponentially small inside the caustic (i.e., r <- ao)
when becomes large.

Remark 4.3. Let the damping parameter a be positive and small. It is known that
the eigenmodes (4.1), where A is a solution of (4.2) and A is close to Aim (cf. (4.3)),
do not constitute a complete set of eigenfunctions of L(). Another family of eigen-
modes must be added to make a complete set. This family is given by

It(Ar) e+/-it,

where It is the modified Bessel function of order l, and A is a (unique) real positive
root of

I,()- Ii() o.

Such an eigenmode decays exponentially in time without oscillations, i.e.,

w(x, t) e-’It(Ar) e+", a > O,

satisfies (1.1) and (1.2). We will call such modes overdamped modes. Our wave method
developed here does not cover such overdamped modes. Such eigenmodes seem to be
intimately connected with the complex or imaginary rays [6], [7] and with the second
representation formula in (4.10). We hope to be able to treat them in a separate article.

5. The case of rectangular geometry. Quinn and Russell [11] first studied the
problem (1.1), (1.2) on a rectangular domain, which initiated a series of papers by
Chen and others. We describe their setup of the problem and results. Let f be a
rectangle:

’ {(21, X2)]O < Xl < a, 0 < x2 < b}
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throughout the rest of this section. On 0, the boundary conditions are prescribed as

w=0 on0ol:0<=x<-a, y=0, t->0,

(5.1)

OW Ow
+a=O on 0o2:0yb, x=a, t>-O, a->O,
Ot Ox

OW Ow
+/3=0 on 0o3:0<-x-<a, y b, >- O, >- 0,
ot oy
w=0 on 04: O<-_y<-_b, x=0, t=>0.

In [11], Quinn and Russell let a b =zr, and a,/3 real and small. They showed that
under such circumstances there exists a two-parameter family of eigenmodes:

w(x, t)= e-i’4(x),

x//2 + m2 --i (a/2 +/3.m_2]/2+m2 2(5.2) A ]+O(a +[32), /,m=1,2,3,...

and another one-parameter family of overdamped eigenmodes:

w(x, t) e-XJ’ok(x),
(5.3)

0<AI<A<’’’<Aj<’.

We will leave out the study of overdamped modes in the present paper.
In [11], Quinn and Russell also gave explicit forms for the b(x) in (5.3) in their

paper. (They had an extra factor 1/2 in their expression immediately before their Lemma
6.2, which has been corrected by us in (5.2).)

We now study the eigenfrequencies for the rectangular geometry and boundary
conditions (5.1) by the wave method.

For the rectangle, Keller and Rubinow [7, pp. 57-59] pointed out that there are
four normal congruences of waves, i.e., N 4, and the covering space is again topologi-
cally a torus. The four normal congruences of waves are depicted in Figs. 6-9.

Consider the family of rays in Fig. 6. The geometrical optics expansion in 2
reduces to

(5.4)

where

b(x) A exp (ik(qlX + r/2xl)),

T]I COS 0, ’/’12 sin 0

(0 the angle formed between the ray and the X axis).

S

S

S

FIG. 6. Rays of normal congruence I. (Reprinted from [7], with permission.)
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FIG. 7. Rays of normal congruence II. (Reprinted from [7], with permission.)

FIG. 8. Rays of normal congruence III. (Reprinted from [7], with permission.)

FIG. 9. Rays of normal congruence IV. (Reprinted from [7], with permission.)

Upon hitting side 02, reflection happens. Utilizing (2.17), we obtain the reflected wave
of normal congruence II

(5.6)
(-1 + aT/1 eik. ]ii-i laA1 exp(ike-q,(xl-a)+rl2x2]),

the one as shown in Fig. 7. This wave moves left, hits side 54, makes a reflection there,
and returns to the same direction as in Fig. 6. The reflection of wave (5.6), according
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tO the last boundary condition in (5.1), gives rise to a wave of normal congruence I"

(5.7) _[(-1 + at/l) e2ik,l, All exp (ik(rllXl + r/:x2)).
(1 -i- cer/1

In order for an eigenmode to form, resonance must happen so the two waves (5.4)
and (5.7) must be in phase

(5.12) k: ( 12 m2)-5+--- 7r:, l, rn 7.

and we have

[ (--1-k-cerll) eZikn,a ]arg ii - 21r, l Z,

(5.8) arg(1-a]+2ka=21, lZ.
1 +

This is equivalent to applying (2.22) to a first closed path, j 1, on the torus, the
covering space of wave motion.

Similarly, if we track the motions of normal congruences and III and II of rays
as shown in Figs. 7 and 8, beginning from

(x) a exp (ik[-nx,- nz(X2-b)])

in Fig. 8, we see that after first reflection at and second reflection at 3, this wave
becomes

(1+ A exp (ik[-x-(x-b)]).

So, again, we deduce that

(5.9) arg +2k b 2m, m +

This is equivalent to applying (2.22) to the second independent closed path, j 2, on
the torus. From (5.5),

therefore, the wavenumber k satisfies

(5.11) k
1

2/-arg - + 2m-arg l,m
4a + +]

subject to

2+=1.
Note that once and m are given, k is determinable from (5.8)-(5.10). So the solutions
k form a two-parameter family.

A special case is where 0, then

arg 0, arg 0,
1 + 1 +
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This agrees entirely with the separation of variables approach because the boundary
conditions (5.1) reduce to the Dirichlet condition, which is known to have eigenfrequen-
cies k satisfying (5.12).

Similarly, if ce =/3 +, then

arg
1 +

and (5.11) yields

1 -/3r/2
+/-rr, argo= +/-rr

1 +fir/2

1 ]k2
1

(21 + 1)2 +---5 (2m + 1) 2 rr2, l, meZ.

This determines the eigenfrequencies k for a mixed Dirichlet-Neumann boundary
value problem which are also well understood.

Now let us compute the damping rates of eigenmodes. We note that for normal
congruence I and II waves, a complete cycle of wave motion takes 2a/r/1 units of time
because 2a/rl is the distance traveled by these waves. The total amount of damping
that the waves have endured is

1 cer/1In

Therefore, the rate of damping per unit time for such a cycle of wave motion is

1In 1-cr/1
(2a/r/l)

Similarly, the rate of damping per unit time for a cycle of wave motion as characterized
by (5.9) is

1--3T2In
(2b/ q2) 1 +

Hence, the rate of damping per unit time for a wave to go through the complete
sequence of motion

waves (I, II)+ waves (II, III)+ waves (I, II)

1
(5.13) (2a/r/1--S In

1
+ln

(2b/r/z) l+fl2
This expression is obtained based upon the understanding that vertical and horizontal
wave motions are independent of each other. Because of the amplitudes’ multiplicative
effect, the total rate of damping (as the logarithm of gain ratio) must be additive of
damping rates in the separate horizontal and vertical directions. Also note that on a
rectangle, there does not exist any caustics, so (5.13) will suffice to provide the damping
rate per unit time, from the same ideas as in the circular geometry.

Any other complete sequences of wave motions (such as combinations of (III, II),
(I, IV)) will also give the same damping rate as (5.13).

COROLLARY 3. When a and are real nonnegative and small, a b 7r, the damping
rate per unit time (5.13) is

1 ( al2 + .._2 2(5.14) . -lt- O(O --’32), l,mZ.12+m2 /



ASYMPTOTIC DAMPING RATES OF EIGENMODES 677

Proof When a and/3 are real and small

because [*/1[--< 1, [/2[--< 1. Thus

Therefore, from (5.8) and (5.9), we obtain

(5.15) r/-
k

1-/37> 0

arg 0.

" j’/2

m

Substituting (5.15) into (5.13), for small a and/3, we have

T]I T]2
5.13 _a [_2oer11+ O( a2rlZ) +_ [_2Sr12 + O(8 2)]

1
{OT]2 /2-/’?’ "- O(O2 "- )}

12 q- m2
q- O(a 2 -- j2).Therefore, we see that the damping rate (5.14) agrees with (the dominant)

imaginary part of a in (5.2) given by Quinn and Russell, for small a and/3. But our
formulas (5.13) and (5.11) (subject to (5.8)-(5.10)) are more general because they
apply to almost all range of values of a,/3, a => 0, /3 -> 0.

There have been many physical arguments used by Keller and Rubinow in [7]
and by us in this paper. These arguments are all based on the accepted standards of
wave propagation and optics and have been rigorously established in [10] by Maslov
and coworkers; therefore, they yield asymptotically accurate solutions.
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NONSMOOTH PROBLEMS WITH CONFLICTING CONTROLS*

J. WARGA?

Abstract. This paper considers nonsmooth problems defined by ordinary differential equations and
involving conflicting controls of two players. These problems differ from differential games in that the second
player is informed of the first player’s choice of control function before making his own choice. It attempts,
with only partial success, to generalize the results obtained for C problems in [J. Warga, Optimal Control

of Differential and Functional Equations, Chaps. IX and X, Academic Press, 1972]. The results are in the
form of a familiar alternative: either the problem is "strongly controllable" at a first player’s relaxed control
r or certain maximum principles and transversality conditions are valid. Two models are discussed in
which the controls of the second player are relaxed controls, respectively, hyperrelaxed controls.

Key words, differential equations, conflicting controls, relaxed controls, hyperrelaxed controls, necessary
conditions, derivate containers
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1. Introduction. We will consider problems with conflicting controls that bear
some formal resemblance to differential games but provide the second player with a
priori information about the first player’s decisions. A special case of these problems
are minimax problems of the form infu sups, where u and v are the controls of the
first and second players. Specifically, consider functions y, ., and 3 (y,)7) satisfying
the differential equations

y( t) s, y(s), u(s)) ds,

(1.1)

37(t) f(s, (s), u(s), v(s)) ds Vt T:= [to, tl],
to

in which R and Re are compact metric spaces and u" T-R and v" T->R. are
(Lebesgue) measurable functions or, more generally, measurable selections of measur-
able set-valued mappings --> R (t) and --> R , (t). For given functions

h (hi, h m) .n _.>m, .n [p ._>

(where R denotes the space of real numbers), we set

q(u) (q’, q’)(u) h(y(t,)), (u)(v) =/()(t,))
and consider the restricted attainable set

(1.2) ={q(u)](u)(v)<=O Vv}.

If Uo yields the minimum of ql(u) subject to qfl(u) 0 forj 2,- , rn and Op(u)(v) <-_ 0
for all v, then clearly q(u0) is on the boundary of . This cannot be the case if q is
either controllable at Uo, i.e., some neighborhood of q(Uo) is contained in o, or a

fortiori, if q is strongly controllable at uo, i.e., there exists /3 > 0 such that some
neighborhood of q(Uo) is contained in

(1.3) :- vv}.
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(We might mention, in passing, that the restriction ](fi(tl) <0 is more general than
it may appear. Thus, e.g,, a restriction of the form h((tl)) AcEa, with A a convex
body, is equivalent to h((tl))<=0 if we set h b h, where b is a gauge function
of A. For a more detailed discussion, see [6, p. 29].)

A similar problem was studied in [4, Champs. IX and X] under the assumption
that the functions f(t,., r), f(t,., r, re), h and h are C1. It was shown theremand the
proof remains valid under the weaker assumptions of this papermthat there are two
ways of compactifying the problem, corresponding to different "physical" models. The
first of these ways replaces the conflicting ordinary controls u and v with relaxed
controls r and 7r so that (1.1) is replaced by

fi(t)= Ito
f(s, y(s), (, (s)) d

(1.4)

ds f(s, (s), r, rp)o’(s)(dr) x 7r(s)(drp) Vt T,
o

where f (f, f). This properly models two kinds of problems" problems with additively
coupled (or separated) controls in which

f(t, , r, re)= l(t, , r)+2(t,, re)

(where the boldfaced letter represents a point in the space n+p to distinguish it
from the function 33 with values in n/P); and problems in which the adversary (who
controls v) does not have perfect means of detecting the exact value of u(t) but only
detects the distribution of values of u(. over short intervals of time. The second kind
of compactification replaces u(. with the corresponding relaxed controls or(. while
replacing v(. with the corresponding hyperrelaxed controls 7r: T R- rpm (Re),
where rpm (Re) represents the set of Radon probability measures on Re. This latter
type of compactification properly models problems with nonseparated controls and
with perfect observation capabilities of the v-controller, and replaces the sets and

of (1.2) and (1.3) with their closures.
In the present paper we primarily study, in Theorem 2.4, the controllability of the

problem when it is subjected to the first kind of compactification involving relaxed
controls of both opponents. However, we also derive a weaker result, Theorem 2.5,
pertaining to problems with hyperrelaxed adverse controls. In both cases, we assume
that f(t,., r), f(t,., r, re), h, and / are Lipschitz continuous but not necessarily C 1.
We also require the additional "semi-C 1’’ assumption (2.3.5)

f(t, , r, rp)= l(t, , r)+2(t,, r, re),

where 2(t,., r, rp) is assumed to be C 1. Our results are in the form of an alternative"
either the problem is strongly controllable or certain maximum principles and transver-
sality conditions are valid. The maximum principles (or, more properly, minimum
principles) appear in different forms. In Theorem 2.4, the "integral" form 2.4(b2.1) of
the maximum principle is analogous to those obtained for many other nonsmooth
problems. On the other hand, our first "pointwise" principle 2.4(b2.2) involves an
integral of a function with values in L2 provided with a "weak" norm, while each
version of the second one, 2.4(b2.3), requires a special assumption (verifiable a priori).
The maximum principle 2.4(b2.2) involves certain considerations about an interchange
of the order of integration that bear a superficial resemblance to some aspects of
stochastic integration [3, Thm. 3A, p. 79].
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We define the framework of our problems and the corresponding results, Theorems
2.4 and 2.5, in 2. In that section we also include an abstract result, Theorem 2.6,
which we use in proving Theorems 2.4 and 2.5 and which we expect to have other
applications in optimal control. In 3 we comment on the maximum principles of
Theorems 2.4 and 2.5 and on the "semi-C 1’’ assumption (2.3.5). The proofs appear
in 4.

2. Definitions and results.
2.1. Preliminary definitions and notation. We denote by A or cl A, A, 0A, co A,

and co A the closure, interior, boundary, convex hull, and convex closure of A. We
endow the spaces R with the Euclidean norm and the spaces (Ra, Eb) (of b a

2 1/2matrices) with the (strictly convex) norm J(M)J:-[F,j Mij] We represent the
elements of any Ea as column vectors and denote their transpose by the superscript
T. We denote by B the closed unit ball in a normed vector space and by B the
closed unit ball in Er. If U is a Radon measure on a compact metric space X, x X,
and g’X--Ea continuous, we write supp (u) for the support of u, 6x for the Dirac
measure at x, and g(u) for g(x)u(dx).

We use some of the notation, definitions, and results of [4, Chaps. IX and X],
which we summarize in the present context. Let T:= [to, ta] E, be the Lebesgue
measure on T; R and R, compact metric spaces, / := R R, and R" T- 2n and
R," T- 2n-/-measurable mappings whose values are nonempty closed sets. We write
C(T, Ra) [AC(T, [)] for the spaces of all continuous (absolutely continuous) func-
tions from T to Ea with the sup norm, and Lq(lz,) for the Banach space of
/z-measurable functions with values in a Banach space f and with the usual norm
[. [q < c. We denote by frm (X) the vector space of all Radon measures on X, and by
frm+ (X) and rpm (X) its subsets consisting of nonnegative and probability measures,
each with the weak* topology of C(X)* (the topological dual of C(X)= C(X, )).

We denote by be the collection of relaxed controls, i.e.,/z-measurable mappings
or" T- rpm (R) with or( t)(R (t)) 1/z-almost everywhere and with the weak* topology
of LI(/x, C(R))*. We similarly define ow,, respectively 5, with R, R(t) replaced by
Rp, R,(t), respectively,/, R(t) x R(t). The sets 5, O, and 5 are compact and
convex. We write for the collection of hyperrelaxed controls, i.e., Borel measurable
mappings 7r" TxR-rpm(Rp) with 7r(t, r)(R,(t))= 1 for all rR /z-almost
everywhere. For each o- 5 and 7r, we write cr(R)Tr for the unique element of

such that

at (t, r, r,),(R)r(t)(a(r, r))-- at o-(t)(ar) (/, r, r)r(t,
lO tO

There appears to be no useful way of defining a compact metric topology for
so as to render the mapping r - or(R) r" - continuous for every cr . However,
if we choose any denumerable subset ’ of , then we can define [4, Def. X.2.1]

(a) a set of equivalence classes in such that

O’( ’27"1(t) O’() 7/’2(t) /z-a.e. Vtr co

if r and 7F2 belong to the same equivalence class, and
(b) a compact metric topology for such that the mapping 7r- or(R)Tr"

is continuous for every cr co
We will use the symbol to denote either 5, or and, for cr 5 and

we will write tr(R)Tr(t) for or(t) 7r(t). We observe that, with these definitions, the
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mapping 7r--> (R)’rr" ---> is continuous for every choice of cr co 5’, where 5’ is
an arbitrary denumerable subset of* and is defined accordingly. If g" R x Rp --> R
is continuous, we write g(cr(R)r(t)) or g(cr(t), 7r(t)) for cr(t)(dr) g(r, r,,)r(t)(dr,)
if r 5, and g(r(R)Tr(t)) for cr(t)(dr) g(r, rp)Tr(t, r)(dr,,) if 7r . We observe that
for any continuous g: R --> Ea we have g(cr(R) 7r(t)) g(cr(t)) for all r . We also
write w (r)w(dr) for the integral of a function - (L=(/X, R), I’lw), where I’lw
is a "weak" norm on L=(/X, E) that can be defined as follows. Let {Xl, x,... } be a
dense denumerable subset of L:(/X, E) and

lelw := E 1<4 xi}l
i:1 1 -]’-IXil

V{ L2(/X, ) (L2(/X, ))*.

Then [’[w is a norm on L2(/X,), and it induces the weak topology (=the weak*
topology) on any bounded subset of L2(/X, R) (L2(/X, ))* [4, Thm. 1.3.11].

We will also use the concepts of a derivate container and of Clarke’s generalized
Jacobian [2, p. 70].

DEFINITION 2.2. Let Wc a be open and g: W--> b locally Lipschitzian.
(2.2.1) We say that a collection {Ag(x)} e > 0}, also denoted by Ag(x), of closed

bounded subsets of (a, Rb) is a derivate container for g at x if

Ag(x) c A’g(x) for e < e’

and there exists a sequence (gi" W’-’)b) of C functions converging uniformly to g
and such that

We set

g;(y)Ag(x) if yW, ly-xl<-e, i>--l/e.

Ag(x)= f-I Ag(x)

for every derivate container Ag(x), and refer to Ag(x), as well as to Ag(x), as a
derivate container. Since the sets

Ag(x)=cl{g’i(y)ly6 W, ly-xl<-_e, i>-l/e}c Ag(x)

also define a (better) derivate container, and the set-valued function x-Ag(x) is
upper semicontinuous, we henceforth assume that the derivate containers that we use
have this upper semicontinuity property.

(2.2.2) Let D= {y Wig’(y exists},

Og(x) co {g’(y) y 6 D, ly-xl-<_e}, Og(x) VI Og(x).

Then Og(x) coincides with Clarke’s generalized Jacobian and, by [6, Thm. 2.5], Og is
a derivate container that is upper semicontinuous.

Assumption 2.3. Let V c " and I7" Np be open, z V x 17", and the functions

f" Tx VxRR", f" Tx f/xRxRpRp,

=(f,f)’TxVxRXRp-N n+p, h" VNm, h" V-N

such that
(2.3.1) f(., r, r, rp) are/x-measurable;
(2.3.2) f(t,., .,. are continuous;

and there exist c->_ 0 and a/x-integrable " T- [0, oe) such that
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(2.3.3) f(t, ", r, rp) have tp(t), and h and h have c, as a common bound and a
common Lipschitz constant;

(2.3.4) the differential equation

(t) f(s, fi(s), o’@Tr(s)) ds Vt T
to

has a unique solution 33(o’(R)7r)(.)= (y(o’), 37(o’(R)7r))(.) for every choice of r*
and 7r ;

(2.3.5) f(t,.,, r, rp)=/(t,, r)+2(t,, r, rp),
where re and^re2 satisfy the same conditions as f and, in addition, has a partial
derivative [2 with respect to the second argument of , and the function

(, r, re) - @:t?:( t, , r, rp)" Q x R x Rp --> (1"+’, ["+P)

is continuous for each T.
We can now state our principal results. Theorem 2.4 deals with the case of adverse

relaxed controls and Theorem 2.5 with the case of adverse hyperrelaxed controls. We
write Of(t, w, r) and Of(t, ff, r, rp) for the generalized Jacobians of f(t,., r) at w and
of f(t, ., r, rp) at .

THEOREM 2.4. Let O’o 6f be such that f(fi(cro(R)cr)(tl)) <-O for all 7r 6f and let

yo(t):=y(cro)(t), 33o(7r) (t) := fi(O’o@ 7r) (t).

Let Assumption 2.3 be satisfied and Ah and A be derivate containers for h and . Then
either

a there exists > 0 such that

h(yo(tl))-1-[3m c {h(y(o-)(tl))l r St, (fi(o-(R)Tr)(tl)) <-- --fl VTr

or
(b) there exist

g m, ofrm/ z AC( T, II"), . ,-> AC( T, "+p)

such that

(bl) O< Ig’l + =< 1

z(t) r lrAh(yo(tl))+ z(s) r Of(s, yo(s), O’o(S)) ds Vt T

(Tr) c-- { e AC( T,

’(t) r e A())o(’)(tl)) + ’(s) r Of(s,y"o(’rr)(s), o’o(R) r(s)) ds Vte T

(b2) (the maximum principles).
(b2.1) (the maximum principle in integral form).

" Z(s)Tf(s, yo(s), (r- ro)(S)) ds
to

+ oo(dr) P.(r)(s)Tf(s,o()(S), (r--Cro)(S) r(s)) ds>=O
to
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(b2.2) (a "pointwise" maximum principle). If R(t) R for all T then, for all
re R,

z(t)rf(t, yo(t), r)+[I (Tr)(.)rf(.,fio(Tr)(.), r, Tr(.))w(dTr)](t)
z(t) rf( t, Yo(t), ro(t))

+[fw ()(’)7(’, o()(’), o(’), Ix-a.e.

(b2.3) (a pointwise maximum principle).
(i) If the compact set on which the continuous function

7r --> (o( 7r)( tl) be, [

achieves its upper bound 0 is at most denumerable then, for ix-almost all T, Oo( t) has
its support on the compact set on which the continuous function

r-> z(t)7"f(t, yo(t), r)+ f (Tr)(t)r(t, fio(Tr)(t), r, 7r(t))w(dTr)

achieves its minimum over R( t);
(ii) if the function r2 of assumption (2.3.5) is independent of r then, for ix-almost

all T, O’o( t) has its support on the compact set on which the continuous function

r-+ z(t)rf(t, yo(t), r)+ f ,(Tr)(t)rl(t, )3o(Tr)(t), r)w(dTr)

achieves its minimum over R*( t).
(b3) (the transversality condition).

/(33o(Tr*)(tl)) =max {/(fio()(tl))l 7r ,9,} 0 for w-almost all 7r*.

THEOREM 2.5. Let O’o b, and let ’ be an arbitrary denumerable subset of
containing tro, with defined accordingly. Assume that

and let

/(fi(O’o()Tr)(tl))=<O /rr ,
yo(t):=y(O’o)(t), fio(Tr) (t) := (Cro() 7r) (t).

Let Assumption 2.3 be satisfied and Ah and Ah be derivate containers for h and h. Then
either

(a) there exists > 0 such that

h(yo(tl))+[3Bm c {.h(y(tr)(tl))ltr co ’, h(fi(o-@Tr)(tl))<_-fl /Tr

or

(b) there exist

gl[]m, wefrm+ (), z AC( T, ff"), . o--> AC( T, a "+p)
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such that

(bl) O< Igl + o3() < 1

z(t) r 6 {lrAh(yo(tl))+ z(s) r Of(s, yo(s), Go(s)) ds Vt T

() c-- { AC( T,

(t) T A(o(#)(tl)) + (s) Of(s, fo(#)(S), o@#(S)) ds Vt r

(b2) (maximum principles).
(b2.1) (a weak maximum principle in integral form).

z(s) Tf(s, yo(S), (G-- Go)(S)) ds

+ to(dTr) P.(Tr)(s)Wf(s,;o(rr)(s), (G--O’o)(R)Tr(s)) ds>=O
to

Vo’E ’.

(b2.2) (a weak pointwise maximum principle). If 9’ is closed under concatenations
with tro on rational intervals, i.e., if, for every subinterval I of T with rational endpoints
and every cr ’, we have or’ 9’ whenever cr’( t) G(t) for 6 I, tr’(t) Go(t), elsewhere,
then, for all G 9’,

z(t)rf(t, yo(t), o’(t))+ [i P.(Tr)(’)Tf( fio(Tr)(" ), G(R)Tr(.))w(dTr)](t)

(b3) (the transversality condition).
/()3o(r*)(tl) =max ](fio(Tr)(tl)) =0 for w-almost all *.

/x-a.e.

Let

{ )’-i:--- 0--"( O1 oi)liloJ>o, 20J<l
j=l

If E and F are normed vector spaces, A c E convex, A , a A, and g" A- F, we
define the (Fr6chet) derivative g’(a) (even if a OA) as the continuous linear operator
on E to F such that

limlb-al-’[g(b)-g(a)-g’(a)(b-a)]=O as b-a, bEA\{a}.
A basic tool in proving Theorems 2.4 and 2.5 will be a special case of the following

general result that we expect to apply in other contexts as well. In proving Theorems
2.4 and 2.5 we will use Theorem 2.6 below with 07/= K. However, in other applications
that we have in mind, the set K may represent and the set 9/an "abundant" subset
of ow such as the set of ordinary (unrelaxed) controls.

THEOREM 2.6. Let K be a convex subset of a real vector space, qj K for j
O, 1, 2,..., a normed vector space, C a convex subset of with a nonempty interior,

the jth column of the unit x matrix. Let 71 K(q, )" K- x , (qo)6 C, and ej
be such that, for each i= 1, 2,... and 0 3-i, there exists a sequence (Uk(O)) in 71 such
that, for each i,

( )lim (q, )(Uk(0))= (q, ) qo+ O(q--qo) uniformly on -i
k j=l
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and

0 - (q, cb) Uk 0))" 3] - , is continuous for every k.

Assume that there exist 6 > 0 and functions (qi, di)" K om for 1, 2,
such that

lim (qi, i) (q, ) uniformly

and, for every 1, 2, , the function

o-(g, (o):=(, qo+ 20(q-qo
j=l

is continuously differentiable.
Then either
(a) there exists fl > 0 such that

or

q(qo)+flB,,, = {q(u)l u 2/, dp(u)+B, C}

(b) there exist sequences ({i)=({, {2i) in m ,, (’)/i) in (0, ), and (Oi), with
I{il I{1 + ]g[ 1, limi ,i 0, and Oi yfl], such that

i>Oforallj=l 2,...(bl) liminfi{i(g(Oi), Gi(O))ej=
and, for every weak* cluster point {= ({1, {2) of ({), we have

(b2) 0<l{I--" l{ll-’-l{2l 1;
(b3) {2(qo)=supcc {2c.

3. Comments.
3.1. Maximum principles. Heuristically, one might "derive" the pointwise

maximum principle 2.4(b2.3(i)) without the special assumption made there by inter-
changing the order of integration in the double integral in 2.4(b2.1) and then choosing
various o- 5 to coincide with Oo except on small subintervals of T containing a
given point t. This methodmwhich works effectively for many other problemsmfails
in our case. The reason is that we have no way of showing, and no reason to expect,
that the integrand of this double integral is w /x-measurable. In fact, if we denote
this integrand by x(Tr, s), then we can think of the family {x(Tr, )l 7r } as a stochastic
process, and an analogous interchange of the order of integration in the context of
stochastic processes appears to require rather strong assumptions (see, e.g., [3, Thm.
3A, p. 79]) that are not satisfied in our case. In our study of conflicting control problems
with data that are C with respect to the state variables [4, Chap. IX, X.3.7] we were
able to avoid this difficulty and to obtain improved results (both for relaxed and
unrelaxed adverse controls) by proceeding essentially as follows. Let

4,(7r, t, r, rp) := ?.(Tr)( t) Tf( t, )3(trO@ 7r)(t), r, rp),

D(Tr, t, r)= max {O(Tr, t, r, re)lrp6R(t)}.

We showed that relations 2.4(b3) and 2.5(b3) of Theorems 2.4 and 2.5, and specifically

(3.1.1) /(fi(Oo@ 7r*) (tl)) /(33(Oo@ 7r) (tl))

for w-almost all 7r* and all 7r , imply that, for/x-almost all and Oo(t)-almost all

r, we have

(3.1.2) (Tr, t, r, ,rr*(t))--D(Tr, t, r).

This last relation enabled us to replace the integrand of the double integral with

b(Tr, t, (o-- ro)(t)) that is o /x-measurable because 7r- 33(O’o(R)Tr)(tl) is continuous
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and r-> :$(’n’)(.)’-->(C(T,"+v),].[sup) is w-measurable so that (r, s)-> (r)(s) is
w x/.t-measurable.

The reason that the above method is effective in the C case is because (r) is
then uniquely defined by the differential equation to which the differential inclusions
of 2.4(bl) and 2.5(bl) reduce themselves. Relation (3.1.1) then implies that

’" O(Tr, s, O’o(S), 7r’(s)- 7r*(s)) ds,
to

which is the directional derivative of 7r-/()3(O’o(R)r)(q)) at r* in the direction of
7r’-r*, must be nonpositive for all 7r’ , and this yields relation (3.1.2). Unfortu-
nately, in our present context, the function ff(Tr) that "corresponds" to relation (3.1.1)
and the function if(Tr) that appears in 2.4(b2), respectively, 2.5(b2) may be different
solutions of the inclusion in (b 1).

The "pointwise" maximum principles 2.4(b2.2) and 2.4(b2.3(i)) appear to be both
theoretically and computationally much weaker than the corresponding C results
involving the function t. It remains to be seen whether, and to what extent, these
results can be strengthened. The maximum principles of Theorem 2.5 are much weaker
than the corresponding relations 2.4(b2.1) and 2.4(b2.2) of Theorem 2.4 and, for this
reason, Theorem 2.5 must be viewed as a preliminary result marking only the first step
in the study of nonsmooth problems with hyperrelaxed adverse controls. On the other
hand, Theorem 2.5 "comes cheaply" because it is derived along with Theorem 2.4
without causing any complications or requiring any additions.

3.2. Assumption (2.3.5). For all 7r , let

Z( Tr) { 6 AC( T, "+P)

Assumption (2.3.5) is explicitly used only in Lemma 4.4 below to prove that the
set-valued function - Z(Tr) has a closed graph. The latter property is later used
to prove the relation (Tr)co Z(Tr) w-almost everywhere of statements 2.4(bl)
and 2.5(bl). In view of the transversality relations 2.4(b3) and 2.5(b3), this last
relation involves only the adverse controls 7r in the set of those that maximize
/(33(O-o(R)Tr)(t)). For a given O’o, the determination of Y( represents an unrestricted
optimal control problem (at least in the case of relaxed adverse controls), a problem
that is reasonably well understood and often computationally manageable. On the
other hand, without Assumption (2.3.5), we can only assert that (Tr) co (r) w-

almost everywhere, where (. is the set-valued mapping whose graph is the closure
of graph (Z(.)). The use of (. would generally require the determination of lim-
sup Z(Tr) as 7r approaches Y( (a problem for which we know no practicable methods
of attack) except for special problems, such as evasion problems [4, IX.3], where j
has a special structure.

4. Proofs. We denote by a normed vector space. If A and B are subsets of a
real vector space, we write

AB:={zAIz+BA}.
LZMMa 4.1. IfA and W’-31 are convex, A,z’, and Wfq{z}

A then there exists { ({, {2) m X 0-* such that

Id[= 1, {W > cl z at- {2a ’t w W, a A.
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Proof Let V := { v] (z, v) W}. Then V A and there exists g,2 . such that
0 and

Thus

{(’2w2, wl)l(w 1, w2) W} and {(t’2a a, z) la > O, a A}

are disjoint and convex subsets of R x" and there exists (go, gl) 0 in x R" such
that

+{’2W2-t-{lwl{+g’2a--{o-t-{1z o>0, (w1, W2) W aA.

Set g2 gog,2. If gl 0 then go 0, hence {2 # 0. Thus g := (gl, g) 0 and

gw>=glz+ga Vw W, aA.

We may assume that I,el 1, otherwise replacing g with
LEMMA 4.2. Let W be a nonempty convex subset of " x , r > 3’ > 0, Co a convex

subset of containing y + rB, 0 W, 0 Co, and Cr := Co yB,. Then either
(a) /B C {wll(w 1, W2) W, W2 C/}

or
(b) there exists {= ({1, {2) ,, , such that I l- Igll / I =l- 1 and

gw>=-y(l+[yl/r) Vw W, gc<= y WcC.
Proof Since r > y, the set C. is nonempty. If (a) does not hold then there exists

a point z yB,, such that W fq{z} C =. Then, by Lemma 4.1, there exists
m, such that [{1 1 and

gz+g2c<=gw cr Cr, w W.

Since 0 W, this implies that

Since y/ r)y Cr, we have

ew >= glz / - +eZy >- -l+ell.,/-- lg=l lyl >= -( l / lyl/ r)

4.3. Proof of Theorem 2.6. Let

Ai(O, ce):-- {gl(0)to w if,, G’,(O)w + ceB c C (qo)}

:= sup {o O, , oB,, A O, o V O o-}

Then either y 1/2 lim supi y > 0, and then
(i) there exist y e (0, 6] and 51 c (1, 2,... such that

yBm c A,(O, y) ViGil, OG

or limi y 0, and then
(ii) there exist io, % y + 1/i > 0, and Oi yi such that lim % 0 and yB,, is

not contained in A(Oi, y) for i-> io.
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First assume that (i) holds, and let (uk(O)) be as defined in the statement of the
theorem. Let/, N e {1, 2, } be sufficiently large so that

(4.3.1) sup Ig,(O)-,c(u(O))l<= 3,2/32,
o

(4.3.2) sup IGr(O)-(uu(O))l <- y2/128,

a, (0) -,(qo)l r/28,(4.3.3)

and let

G(0):= Gr(0) + [(qo) G, (0)].

Since (qo) C, we have G:(0) C. Furthermore, by (4.3.2) and (4.3.3),

(4.3.4) sup IGi(O)--’I’(uN(O))I <- )’2/64.
0

Let /3= )’2/64. Since GT’(O)=G’(O) for all 0 6S-r, it follows from (4.3.1), (4.3.4),
and [7, Thm. 3.4, p. 848], that

q(qo) + flBm = {q(uu( O)) O )’fir, dP(uu( O)) +B = C}

= {(u)l u % ,I,(u) +B = c},

showing that alternative (a) is valid.
Next assume that (ii) holds. Since C#, there exist y C and r > 0 such that

y + rB, c C, and we may assume that r > )’i for all sufficiently large i, say i_-> i. By
Lemma 4.2, with

W:={(g’,(O,), G’,(0,))o) o) -,}, Co:=C-(qo),

for each _->

(4.3.5)

dCi < )’i Vi e C (I)( qo) )’i(4.3.6)

Relation (b l) now follows directly from (4.3.5).
Let g= (1, 2) be the weak* limit of some subsequence (f)iy of (gi), with

5 c (i, i + 1, ), and let c C. Then, for all sufficiently large ,
c P(qo) e C @( qo) @ )’iBv

and by (4.3.6) {2(c-P(qo))<=0. Since 2 is continuous, this implies that

d2(C--(qo))<O ’V’Ce C,

thus proving (b3). Thus it remains to prove that 0 < It’l _-< 1. The inequality Igl <-- 1 follows
from [{1 1 for all i. The inequality [{1>0 follows directly from (4.3.6) and the
assumption that C. Indeed, there exist Yo and ro> 0 such that

Yo + roBv C dp( qo) @ )’iB

for all large i 5. It follows by (4.3.6) that

{2i Yo + rog2 z <= )’ Vz e ,
hence
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and therefore

{yo =< -ro(1 Iell),
thus proving that { (ffl, vf2) 0. [’]

We will hencefonh use the notation of 2 (and, in panicular, the symbol to
denote either g or ) and the known result (proven in the arguments of [4, Thm.
VI.I.1]) that the functions

y()’*C(T,N") and ()’*C(T,n+p)

are continuous. We also observe that the -integrable function of assumption (2.3.3)
may be assumed to be a constant. This can be accomplished by replacing the indepen-
dent variable in the differential equation

(t) f(s, (s), @#(s)) ds Vt T
to

by r := tto [1 + O(s)] ds that effectively divides f by 1 + O(t) and does not affect the
statement of Theorems 2.4 and 2.5. Fuhermore, since Assumption 2.3 guarantees that
all the solutions of the above equations are uniformly bounded, we denote by c the
common bound and Lipschitz constant off(t,., r), f t, r, rp ), / t, r), 2(t, ", r, rp ),
h, h y(), and (@).

LZMMA 4.4. Let c*:= c exp (C(tl- to)) and X be the compact subset of C(T, "+P)
whose elements have c* as a common bound and a common Lipschitz constant. For each, let Z() be the collection of all G AC(T,n+p) satisfying

(t) T A(o(#)(tl)) + ftt’ (s) T Of(s, o(#)(s), o@#(s)) ds Vt

en Z() Xfor all and the function

Z()" 2AC(T’"+p)

has a closed graph.

Poof Let lim * in . Since 0f and A are bounded by c for all
and Of has values that are compact and convex, the sets Z() are compact and
contained in X. If, for each k 1, 2,. ., we choose & Z() and set

:= (o@) o(#), :=o@
then, by Assumption (2.3.5),

Of(t, (t), (t)) O,(t, (t), o(t))+ 22(t, k(t), (t))

and there exist g-measurable selections M of

tO(t, (t), o(t))

such that, for all T,

(4.4.1) (t)= &(t,) + (s)[M(s)+(s, y(s), (s))] as.

Now assume, by way of contradiction, that there exist (1, 2, and eo > 0
such that

(4.4.2) dist(&,Z(*)):=inf(l&-xlsulxZ(*)}>eo .
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We may choose a subsequence ffffl of Y" such that the functions ’k converge uniformly
to some sr* as k ranges over Y’I. Since limk 7rk 7r* in , hence limk ro(R) 7rk Cro(R)
in * we have

lim 33(cro(R) 7rk)= 39(Cro(R)Tr*) in C(T,
k

Let Bn+p.n+p denote / for .(’+P, R’+P), Cl 2c(tl- to),

c’=(3cc*+l)[l+Cl exp(cl)], O< rl<eo/C,’ 9* =fi(tro()Tr*

and let if{2 ff{ be such that, for all k , r R, rp Rp, T,

I(t, fi(t), r, rp)-22(t, *(t), r, rp)l,

(4.4.3) 0/(t, k(t), fro(t)) 0/(t, fi*(t), fro(t)) + "n+p,n+p
Iffk-- ff*lsup , k(tl)Ag(*(t))+,p.

Then, for k Y{,

lim (s)r/(s, (s) (s)) ds
JeY2

tl
*(s)/(s, *(s, oN*(s s

(s)/(s,;*(s),o*(s))

and therefore

(4.4.4)

T" ’k(S) 2/2(S, yk(s), Cro(R) 7rk(s)) ds

e srk (s) r2 t?2(s, fi*(s), tro(R) 7r*(s)) ds + 2c,q6p

for all sufficiently large k ff{2, say for k Y’3.
Let M*(t) be the closest point in the compact convex set 0r?l(t, f*(t), cro(t)) to

Mk(t) and k a closest point in A(*(t)) to k(tl). The point M(t) is unique because
we have chosen a strictly convex norm for ("+P, "+P). By Lusin’s theorem, the
-measurable functions Mk(t) and - O/l(t, *(t), o(t)) have continuous restric-
tions to sets of nearly full -measure, and M(.) is continuous when restricted to
these sets. Thus M(.) is -measurable and, by (4.4.1), (4.4.3), and (4.4.4), for all
k ff{3 and T, we have

k(t)r=k + k(S)r[M(s)+22(S,*(S),0*(S))] dS+ek(t)

where lek(t) (3cc*+ 1). If we denote by (. the solution of

( t) r + (S)T[M(s) + 2/2(S, ?*(S),o*(S))] ds,

then we observe that Z(*) for all k Y{3 and that A :=- satisfies

tl
Ak(t) Ak(S)r[M(s) + 2/2(s, *(s),o*(s))] ds + ek(t).
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Thus, by Gronwall’s inequality,

and therefore

IA(t)l (3cc* + 1)[ + 2c(t- to) exp (2c(t to))] r/= c’r/

k Z(Tr*)+ c’Bc(r.e"+p) C Z(Tr*)+ eoBc(r.R.+p) Vk Y{3.

Thus dist (srk, Z(r*))=< Co, which contradicts (4.4.2).
We conclude that the function r - Z(r)" - 2AC(T’R"+p) is upper semicontinuous

and has compact values. Thus, by Berge’s theorem, it has a closed graph.
The following lemma is partly patterned on Lemma 3.2 of [5, p. 30].
LEMMA 4.5. Let C( T, N"+P] wi frm+ (), wi() <_- 1 limi w co weakly, X

and Z(Tr) be as defined in Lemma 4.4, - X coi-measurable for all 1, 2, , and
assume that for every e > 0 there exists io( e such that

(Tr)F(Tr):=(Z(Tr)+eBze)f-lX Vi>--_io(e),

Then there exist an co-measurable . C T, N "+P) and (1, 2, such that

and

()coZ(r) Vre

lim coi(dTr) z(Tr)(s)rx(s, 7r) ds co(dTr) .(Tr)(s)rx(s, 7r) ds
to to

for all bounded X" T x -N"+P such that s X(s, ) is -measurable for each
and the function

x(s)(s, ) ds’
to

is continuous for each x X.
Proof For 1, 2, , let

i(@) (, i())i(d) V C( x X).

Then there exists u frm+ (P x X) such that

(4.5.) ,()= f (,x),(d(,x)), I,l=,(xX)=,()a

for all C(P xX), and there exist c (1,2,...) and ufrm+ (xX) such that

lim u weakly.

Let n denote the (conventional) norm of L(, C(P)). Then, for all e C(P x X)=
C(, C(X)), we have

lim [ (," )]supu(d(, x))= lim [ (,. )]spw(d)

[ I(,.)lsu(d)= n().
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Thus u is a continuous linear functional on the normed vector space (C(, C(X)), n,,,)
and, by the Hahn-Banach theorem, can be extended to (Ll(w, C(X)),n,o). It
follows, by a variant of the Dunford-Pettis theorem (the proof being the same as in
[4, Thm. IV.1.8]), that there exists an w-measurable A’frm (X) such that
ess sup, [A (t)l(X) < oo and

(4.5.2)f(,x)u(d(,x))=fw(d)f(,x)A()(dx) VELI(m,C(X)).

We verify that A () is a nonnegative measure w-almost everywhere.
Let e > 0. By Lemma 4.4, Graph (Z) is closed and therefore Graph (F) is closed.

Since z() F() for all and all sufficiently large i, relation (4.5.1) implies
that u has its suppo on Graph (F) for sufficiently large and therefore u has its
suppo on Graph (F). It follows thus from relation (4.5.2) that A() is supposed
w-almost everywhere on F(). Therefore, by (4.5.1) and (4.5.2), for every u 6 C(),

lim i(u)= u(w)w(dw)= u(w)u(d(w,x))

=(d)fu()a()(dx)
f u()()(r())(a);

hence A(w)(F())= 1 w-almost everywhere.
Now set

():= f x()(ax) v

and let " T x-+P be as described in the statement of the lemma. Then -()
is -measurable and

() co r() := c [(z() +) x] re>0;

hence () co Z(). Fuhermore, the function

(, x) (, x) x(s)(s, ) as
1o

being continuous in for each x and continuous in x uniformly for all , belongs to
C(xX). Thus, by (4.5.1) and (4.5.2),

(X) := lim w(d) ()(s)(s, ) ds
i to

.(a(, x)) x(s)(s, ) a
to

to

We observe that, for every P, the Nnction s x(s)(s, ) is -integrable for all
x X and the Nnction x x(s)(s, ) is continuous on X uniformly for all s and
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r. Thus the function (s,x)-x(s)(s,r) is xA(r)-integrable and, by Fubini’s
theorem,

x(s)(s, ) as ()(dx)= x(s)()(dx) x(s, ) as
to to

xa((x (s(, s
o

e()()(, ) as.
0

Vus x)= j(a j’, ()()(, ) a.to
LEMMA 4.6. Let and be as in Lemma 4.5 and

s(, t):= ()(t)(t, o()(t), (-o)(t)).

Then

to(dr) Mj(r, s) ds j(r,.)to(dr) (s) ds Vj= 1, 2,....

Proof We first prove that the bounded function- A(,. ). - (L(, ), I" Iw)

is w-measurable and therefore also w-integrable. Since

r -> ()" -> C T, "+P), [. Isup)

is co-measurable, for every e > 0 there exists a closed set F such that o(\F)< e

and ] is continuous, so that

lim (i)(t)= (r)(t) uniformly for T

if r, ri F and limi ’i--r. The bounded function

-f(", ;o()(" ), (- o) (R) (" ))"- (L(, ), "I)

is continuous because

"-’) 0(7")" "-) (C( T, [n+p), ]o Isup)

is continuous and therefore

r- g(s)Tf(S,o(r)(s), (- cro)(R)r(s)) ds
to

is continuous for every g L2(/z, n/p). Therefore, if limi i in F then

lim g(s)(, s) ds g(s)(, s) ds Vg L(,
to to

Thus (," )" F (L(, ), I" Iw) is continuous for every e > O, and therefore the
bounded function

is w-integrable.
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Let (q):= t,’ p(s) ds for all q L2(/z, ). Then is a bounded linear functional
on (L2(/z, ), l" Iw) and therefore

w(dTr) (Tr, s) ds ((,.))(d)
t0

= (, (a

(,.)w(d) (s) ds W =1,2,...

LMMA 4.7. Let , let w and be as in Lemma 4.5, and let

(r, , t) := ()(t)f(, o()(t), r, (t)), ():=

lim I(ri)(t)= I(r)(t) tz-a.e, if lim ri r in R.

_Proof Let F c T be measurable, a > 0, and q" 9, x T- such that

O(,n-,. )G t2(/z, ), 1(, t)[ <= a V6 *p, tF

and (,. )" (L2(, ), ’w) is w-measurable. Set

J(" )= fw (’ )(d).

Then we have

(4.7.1) ]J(t)]aw() -a.e. in F.

Indeed, assume, by way of contradiction, that there exists H F such that (H)> 0
and [J(t)[ > a() for all H. Set

g(t)= 1/J(t) Vt H, g(t) =0 Vt TH,

g(X) g(t)X(t) dt VX6 L2(,).
to

Then g is a bounded linear functional on (L2(, ), . w) and therefore

O< (H)= g(t)J(t) dr= (, )m(d)
0

g((,. ))(d) (d) g(t)(, t) dt
to

o

a contradiction.
Let

()() := sup {(r, m )- (r’, m t)l Idist (r, r’) 1/i}.
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Then, for all T, limi ai(Tr)(t)=0 uniformly for 7r STy,, and the argument used in
proving Egoroff’s theorem shows that for all e > 0 there exist a subset A of T and
numbers k(m, e) such that

tx(T\A)<e, ai(Tr)(t)<=l/m li>-k(e,m), , tA.
Thus

[(r,,t)-(r’,,t)ll/m VtA,

if dist (r, r’) 1/k(e, m), and therefore, for each e > 0, m {1, 2,. }, and k(m, e),
the function

(, t) @(, t):= ai()(t)

satisfies our assumptions, with F A and a 1/m.,It follows thus, by (4.7.1), that

II(r,)(t)-I(r)(t)l= ((r, m-)-(r,, m .))(d) (t) --()
m

/x-a.e. in A
if dist (r, ri) <-- 1 / k(m, e). This implies that

lim I(ri)(t)= I(r)(t) /x-a.e. if lim r r. IS]

4.8. Proof of Theorems 2.4 and 2.5. Step 1. We define a subset 6e of 6e in the
following manner. For purposes of Theorem 2.5, we enumerate 6e’ as {or0, o’1,""" }
and set 6e co S’. For purposes ofTheorem 2.4, we observe that, by Castaing’s theorem
[1, Thm. 5.3], there exists an at most denumerable collection of/x-measurable
selections of R such that the set {/9(t)IP } is dense in R (t)/x-almost everywhere.
Let be the collection of all closed subintervals of T with rational endpoints. Then
the set x is denumerable. For each (p, I) x we define a corresponding
element tr b by

or(t) tv,) /t I, tr(t) tro(t) /t T\I.

We then adjoin to the denumerable set of such tra denumerable dense subset of the
compact metric space S and the given point tro, and enumerate the entire set as
{cro, rl, tr2,""" }. We then set

,90cx-- CO {0"0, O’1, 0"2," }.

Step 2. Let p:lR "+p [0, oo) be C’ for 1, 2,... and such that

0 if ill or re, f
where d refers to the Lebesgue measure on "+P. We set

f(t, y, r, rp) t, Y-Y1, r, rp)pi(l) ayl.

We recall [6, Proof of Thm. 2.5] that the functions f(t,., .,. and @2f(t,., .,. exist
and are continuous, that

2fi(t,y,r, rp)O1/if(t,y,r, rp) if+-/,,+p’C ,
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and that lim,f =f uniformly when is restricted to a compact set. Thus, for all
sufficiently large and each cr oW and 7r , the differential equation

33(t) f/(s, 33(s), o-(R)Tr(s)) as vt T
to

has a unique solution fii(o’(R) r). For all such i, o-, and 7r, and for 0 e O-i, we set

fii(cr@Tr)=(yi(cr), fii(cr(R)Tr)), qg(r)= h(y(cr)(tl)), qi(r)= hi(yi(cr)(t)),

*(o’)(Tr) =/(fi(o’() ’)(t)), @i(o’)(Tr) h’(?i(cr@Tr)(t)),

*(0)=o+ X 0(-o),
j=l

gi(O) qi(o’*(0)), G,(0)(Tr) @,(r*(0))(Tr),

where (hi), (hi) are the sequences that define Ah, Ah. We easily verify (usi,ng the
uniform boundedness and uniform Lipschitz continuity with respect to 3 of f, f, h,
hi, , i) that

lim yi(cr)=y(tr), lim

lim (/9i(o) (/9 (O’), lim ,(r)(Tr)= (o-)(Tr)

uniformly for all o- 5e and 7r 6 9,, and that the functions

are continuous (because, as previously observed, ,rr-..-->o’(R),rr and ,rr--->(o(R),rr) are
continuous for each r 5e). Thus the values of (q, @) and (qi, @i) are in " C().
We also observe that f(t,., r, rp), hi, i, and 33i have a common bound and Lipschitz
constant that we continue to denote by c. The arguments of [4, Thms. X.3.2 and X.3.4]
show that (gi, Gi) are C 1, the functions

O’-) yi(o’*(O)) and O’-) ff.i(O’$(O)@Tl")

are continuous, uniformly for all 0 and 7r, and

g;(O)ej= i(O)(s)Tfi(s, yi(cr*(O))(S), [O’j--O’*(O)](S)) as
to

(4.8.1)
iGi(O)(Tr)ej i(O)(’W)(s)Ti(S, i(O’*(O)@’W)(S) [O’j--O’:O(O)]@’W(S)) as

for all 0 8-i and 7r e , where

i(O)AC(T, (n,m)) and ,(O)(Tr)AC(T, "+p)

are solutions of the differential equations

st(t) r= h;(yi(r*(O))(t,)+ (s)T2f(s, yi(cr*(O))(S), cr*(0)(S)) ds,

(4.8.2)

;(t) T= (i(O’:(O)@’w)(tl))"] (s)T2fi(s, i(O’:(O)@’W)(S), O’*(O)@"lr(S)) ds.
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Furthermore, the arguments of [4, Thm. X.3.4] show that ’TT’i(O)(’TJ" is continuous
for each and 0.

Step 3. Let

o//= K 5 co {0-0, O’1, 0"2, }, qj o"j, 6 1,

= C(), C={glg(r)<=O

uk(O)=0"*(O) Vi, k= l,2, 03-,.

Then Theorem 2.6 is applicable. Alternative (a) of Theorem 2.6 yields directly alterna-
tives (a) of Theorems 2.4 and 2.5. We will assume, therefore, that alternative (b) of
Theorem 2.6 holds and will seek to derive alternatives (b) of Theorems 2.4 and 2.5.

The functionals g2 9*= C()* are represented by measures Wi frm () and,
being uniformly bounded, have a subsequence ({2)is converging in the weak* topology
to some {2 represented by some o frm (). By 2.6(b3),

{2(0"o) I (o( 77)( t1))w( d77) sup { f g(77)w( der) g( 77) <- O / 77 }.
Since 77-/(3%(77)(tl)) is nonpositive and bounded, this implies that w frm+ () and
therefore g2(0"o)= 0 and the transversality conditions (b3) of Theorems 2.4 and 2.5
are satisfied. Furthermore, the bounded sequence ({)is has a subsequence (g)i,
converging to some {1 m. Thus the relation 0< 1{11 + [g2[ =< 1 of Theorem 2.6 yields
the relation 0<l{l]+w()<= 1 of Theorems 2.4 and 2.5.

We next consider the terms in relation 2.6(bl). Let

Z {Ti(Oi), 2i(77) ".--" "i( Oi)(77), 0"? "-- 0"*(Oi).

Then the sequence (zi)is,, whose elements are uniformly bounded and have a common
Lipschitz constant, has a subsequence (zi)s converging uniformly to some z
AC( T, n). Furthermore,

[f(s, 3, (rT-o)(R),r(s))l<_-2c Y O<-_2cy,
j=l

for all i, s, 3, and 77. It follows now from the first equation of (4.8.2) that z is a solution
of the corresponding differential inclusions in 2.4(bl) and 2.5(bl) and, by (4.8.1),

z(s)7"f(s, yo(s) (o 0"0)(s)) ds Vj 1 2,’’"(4.8.3) lim ggl(O)ej=
i off

tO

We also have, by (4.8.1) and (4.8.2),

{2G(Oi)e=’ oDi(d77 i(77)(s)Ti(S, Yi(0"? (R)77)(S), (0"j- 0-?)(R) 77(S))MS;
to

hence

(4.8.4)

lim 2{iai(Oi)ej
i

f I ’l
lim w,(d77) -(77)(s)Tf(s, 33O(77)(S), (0" 0-o) (R) 77(S)) ds.
iG ,9

to

Let X and Z(77) be as defined in Lemma 4.4. We observe that the function

s- x(s, ):= j(s, ;0()(s), (- o) (R) (s)) as
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is bounded, uniformly for all 7r and j 1, 2,. ., and it is/x-measurable. Further-
more, the function

ds
to

is continuous on for every x e X (since r-> o’(R) r is continuous for each o-e ).
It follows therefore from (4.8.4) and Lemma 4.5 that there exists (zr)e co Z(zr) for
all r e such that r-> (zr) is w-measurable and

lim gGl(O)e
i.,

w(dr) f(Tr)(s) f(s, fio(rr)(s), (%-ro)(R)Tr(s)) as vj= 1,2,....
to

This last statement and (4.8.3), together with relation 2.6(b 1), now yield 2.4(b 1), 2.5(b 1),
and the inequality

(4.8.5)

z(s)rf(s, yo(S), (o’j t:ro)(S)) ds

+ w(d#) (r)(s)T(s, fio(r)(s), (5--ro)(R)r(s)) ds>-O
to

Vj=I,2,. .,
which yields, in particular, statement 2.5(b2.1).

Step 4. Let

M(r, t):= z(t)Tf(t, yo(t), r), Mj(t) S4((o) O’o)(t), t),

M(Tr, t) be as defined in Lemma 4.6, and

:= f
J

By (4.8.5) and Lemma 4.6, we have

tl
[,..j(S) -1

t- Bj(S)] ds >= 0 Vj 1, 2,....
to

Let L be the set of the common Lebesgue points of s + N for all j that is of full
/x-measure, let Lf-I (to, tl), and let (ak) and (bk) be sequences of rational numbers
in T such that

ak < < bk, lim (bk ak) 0.
k

Then, for all j= 1, 2,...,

(4.8.6) lim
1 fa’k

[sC(s) + Nj(s)] as sd( t) + B( t).
k bk ak

We observe that, for purposes of Theorem 2.4, for each p and k there exists some
j such that

r(s) 6o(s) if ak <- S <= bk, o’j(s) go(S) if s
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For purposes of Theorem 2.5, and under the assumption of 2.5(b2.2), for each r’
and k there exists some j such that

rj(s)=cr’(s) if akSbk, O?(S)=O’0(S) if S T\[ak, bk].

Since sj(s)= (s)=0 for s T\[ak, bk], it follows from (4.8.5) and (4.8.6) that, for
all r , respectively, r 0’ and all L, we have

z( t) f( t, yo( t), r( t) + [ f (r)( f o(r)( ), cr(R) r( )w(dr) l t)

(4.8.7)

>-z(t)rf(t’y(t)’cr(t))+[fw (r)(" )r?(" )(r)(’)’@(" ))w(dTr)] (t)"

Within the context of Theorem 2.5, this proves statement 2.5(b2.2) and completes the
proof of Theorem 2.5.

Step 5. We henceforth consider statement (b2) of Theorem 2.4 and set
By choice, the set {O’l, O’2, } is dense in 5, and the function o---> o-(R) r" -->

is continuous for each r ,. Thus both integrals over T that appear in (4.8.5) are
continuous functions of cr over if o? is replaced by r. Therefore, inequality (4.8.5)
remains valid when rj is replaced by any r oW. This proves relation 2.4(b2.1). It
follows from (4.8.7) and Lemma 4.7 that, if R(t) R for all T then, for all re R,

z(t)Tf(t, yo(t), r)+[fw (r)(" )f(" fi(r)( ")’ r’ r( ))w(dTr)](t)
z(t)rf(t’y(t)’(t))+[fw (r)(" )rf(" ))(r)(" )’ (" )’ r(.))oo(dr)](t)

/x-a.e.

This proves statement 2.4(b2.2).
We next derive the pointwise maximum principle (b2.3(i)) of Theorem 2.4. As

before, let
T,(r,t):=z(t)f(t, yo(t),r), g(r, zr, t):=(Tr)(t) f(t,o(zr)(t),r, zr(t)).

For each p and r supp (w), the functions

t--> s(6,(,)-O-o(t), t) and t s(6p(,)-O-o(t), r, t)

are x-integrable and, therefore, the set of their common Lebesgue points is of full
x-measure. Since and (by 2.4(b3)) supp (w) are at most denumerable, the set L
of their common Lebesgue points for all p and rsupp (w) is also of full
/x-measure. Now let tLf’l(to, tl), and let (ak) and (bk) be sequences of rational
numbers in T such that

ak < < bk, lim (bk ak O.
k

Then, for all r e {O’o, O’1," } and r e supp (w),

lim
k bk

(
I

bk
SI(O’(S), S) ds (o(t), t)

1

ak ,
lim

1 Ii’k
,(o’(s), "n’, S) ds ,,c(cr(t), "n’, t).

k bk-- ak
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We observe that for each p e and k there exists some j such that

rj(s) 6o(s) if ak =< S--< bk, o)(s) ro(S if S e T\[ak, bk].

It follows therefore from (4.8.5) that, for all p e and e L,

The functionsf( t, y, andf( t, ,., rp) are equicontinuous and 7r(t) are probability
measures. Thus, for each e L, the functions

r sO(r, t) and r- d(r, 7r, t)w(dTr)

are continuous. Since the set {p(t)lpe} is dense in R(t) /x-almost everywhere
and o’o(t) is supported on Re(t), we conclude from (4.8.8) that, for/x-almost all and
for all re R(t),

sg(cro(t), t)+ I s(Oo(t), Tr, t)w(dTr)<=sd(r, t)+ I s(r, Tr, t)w(dTr).

This proves statement (b2.3(i)) of Theorem 2.4.
We finally derive the maximum principle (b2.3(ii)) of Theorem 2.4. Since

f(t,, r, rp)=/l(t,, r)+/z(t,, rp), the maximum principle (b2.1) yields

" Z(s)Tf(s, yo(S), (or-- O’o)(S)) ds
to

+ ,o( s(((,o((,(,-o(->-0
o

The function (s, r)- ff(Tr)(s), w-measurable in 7r and continuous in s, and the function
(s, 7r)-/(s, )3o(Tr)(s), (o-- ro)(s)),/z-measurable in s and continuous in 7r, are both
/z x w-measurable. We may therefore apply Fubini’s theorem to the double integral
above and obtain

q
E(s, (r- ro)(S)) ds>=O

to
(4.8.9)

where

(s, (- o)(S))

Z(s)Tf(s, yo(S), (r-- ro)(S)) + f (7r)(s)T,(S, fio(Tr)(s), (r-o)(S))w(dr).

If we choose p e then, for any/z-measurable set F and

o’(s) 6o() Vs e F, o’(s) cro(s Vs e T\F,

relation (4.8.9) yields [E(s, p(s)) E(s, O-o(S)) ds >- O, hence

E(t, p(t))-E(s, ro(t))_->0 /x-a.e.

Since is denumerable and {p(t)lpe} dense in R*(t)/x-almost everywhere, we
conclude that the maximum principle 2.4(b2.3(ii)) is valid. This concludes the proof
of Theorem 2.4.
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MARTINGALE AND DUALITY METHODS FOR UTILITY
MAXIMIZATION IN AN INCOMPLETE MARKET*

IOANNIS KARATZAS?, JOHN P. LEHOCZKY, STEVEN E. SHREVE, AND GAN-LIN XU

Abstract. The problem of maximizing the expected utility from terminal wealth is well understood in
the context of a complete financial market. This paper studies the same problem in an incomplete market
containing a bond and a finite number of stocks whose prices are driven by a multidimensional Brownian
motion process W. The coefficients of the bond and stock processes are adapted to the filtration (history)
of W, and incompleteness arises when the number of stocks is strictly smaller than the dimension of W. It
is shown that there is a way to complete the market by introducing additional "fictitious" stocks so that the
optimal portfolio for the thus completed market coincides with the optimal portfolio for the original
incomplete market. The notion of a "least favorable" completion is introduced and is shown to be closely
related to the existence question for an optimal portfolio in the incomplete market. This notion is expounded
upon using martingale techniques; several equivalent characterizations are provided for it, examples are
studied in detail, and a fairly general existence result for an optimal portfolio is established based on convex
duality theory.

Key words, incomplete markets, portfolio processes, stochastic control, convex duality, utility maxi-
mization

AMS(MOS) subject classifications, primary 93E20; secondary 60G44, 90A16, 49B60

1. Introduction. This paper studies the problem of an agent who receives a deter-
ministic initial capital, which he must then invest in an incomplete market so as to
maximize the expected utility of his wealth at a prespecified final time. The market
consists of a bond and m stocks, the latter being driven by a d-dimensional Brownian
motion. In such a model, incompleteness arises when m is strictly smaller than d. The
market coefficients, i.e., the interest rate, the rates of stock appreciation, and the stock
volatility coefficients, are random processes adapted to the full d-dimensional Brownian
motion. When m < d, it is typically not possible to construct a portfolio consisting of
the bond and the m available stocks, so as to completely hedge the risk associated
with these coefficient processes.

Our model is not Markov, and so the Bellman equation of dynamic programming
is inadequate for its analysis. Using the Bellman equation, Svensson [21] has treated
an infinite-horizon, incomplete, Markov model with an income process. He derives
first-order conditions and obtains explicit solutions when the utility for consumption
has constant absolute risk aversion. Duffle and Jackson [4] provide a similar analysis
of a finite-horizon, incomplete, Markov model.
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The principal result of this paper, Theorem 12.5, provides conditions under which
an optimal portfolio exists in an incomplete market, and characterizes this optimal
portfolio in terms of the solution to a dual optimization problem.

In 2-5, we define the utility maximization problem faced by the agent. In 6
we present the solution when the market is complete (m d), and complete hedging
is possible. This solution proceeds in three steps. First, on the underlying probability
space we determine a new measure which discounts the growth inherent in the market;
under this measure, the expected value of the final wealth attained by any reasonable
portfolio is equal to the initial endowment. Second, among all random variables whose
expectation under the new measure is equal to the initial endowment, a most desirable
one is determined. Third, it is shown that a portfolio can be constructed that attains
this most desirable random variable as its terminal wealth; this portfolio is optimal.
A complete market is one in which the agent can construct a portfolio that attains as
final wealth any random variable with expectation under the new measure .equal to
the initial endowment. Because such a construction is possible, it is said that the agent
can hedge against the risk associated with this market. Mathematically, the construction
of a portfolio uses the fact that any martingale with respect to a Brownian filtration
can be represented as a stochastic integral with respect to the Brownian motion; the
integrand in this representation leads to the portfolio we are seeking. However, if there
are fewer than d stocks, this line of argument fails.

In 7 we introduce a convenient way of thinking about an incomplete market:
fictitious completion. When there are fewer than d stocks, then we augment the stocks
with certain fictitious ones so as to create a complete market. If the fictitious stocks
have a high appreciation rate, then under an optimal portfolio the agent will hold a
long position in them, but if they have a low (even negative) appreciation rate, then
he will hold a short position. Thus we would expect to be able to adjust the appreciation
rates of the fictitious stocks so that the agent, by optimal choice, does not invest in
them at all. These judiciously chosen fictitious stocks allow us to write down the
complete market solution for the utility maximization problem but are superfluous in
the actual implementation of the optimal portfolio, which must then also be optimal
for the original incomplete market. The fictitious completion with the above property
is the least advantageous to the agent, because the portfolio which is optimal under
this completion is available to him under every other fictitious completion. We thus
have the notion of a leastfavorablefictitious completion: for every fictitious completion
we compute the portfolio which maximizes the expected utility of final wealth, and
then we choose the completion which makes this maximum expected utility as small
as possible.

As explained in 7, a convenient way to parametrize fictitious completions of an
incomplete market is by a certain space of continuous local martingales, each local
martingale being the Radon-Nikodym derivative process of the new measure alluded
to in the earlier discussion of complete markets. This kind of parametrization is studied
in 8, and several pertinent results are established. It is also desirable to characterize
the local martingale corresponding to the least favorable fictitious completion, and to
show that it gives rise to an optimal portfolio in the original incomplete problem; this
program is carried out in 9, where various such equivalent characterizations are
provided. Section 10 studies two examples in which the least favorable fictitious
completion can be computed fairly explicitly. In the first example the utility function
is logarithmic, and it is discovered that the fictitious stocks in the least favorable
completion should have rates of appreciation equal to the interest rate of the bond.
This is a very general result, insensitive to the nature of the dependence of market
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coefficients on the driving Brownian motion. In the second example it is assumed that
the utility function is of the power form, and that the driving Brownian motion splits
into two independent parts; the first part drives the stock processes, whose coefficients
are adapted solely to the second part. The least favorable local martingale is exhibited
as the solution to a martingale representation problem, and the optimal portfolio is
found to be given by the formula already known to be correct for deterministic model
coefficients.

In 11 we introduce an auxiliary optimization problem involving the family of
local martingales which characterize fictitious completions; this problem is "dual" to
the "primal" utility maximization question of 5, in the sense of convex duality. We
study the relation between the primal and dual problems, and explain how a solution
to the latter induces one for the former. The question of existence in the dual problem
is tantamount to the existence of a least favorable fictitious completion; it is dealt with
in 12, by the use of methods from convex analysis.

Our model for the financial market can be traced back to Merton [16], [17] and
Samuelson [20]. The modern mathematical approach to portfolio management in
complete markets, built around the ideas of equivalent martingale measures and the
creation of portfolios from martingale representation theorems, began with Harrison
and Kreps [6] and was further developed by Harrison and Pliska [7], [8], in the context
of option pricing. Pliska [19], Cox and Huang [2], [3], and Karatzas, Lehoczky, and
Shreve [13] adapted the martingale ideas to problems of utility maximization. Much
of this development appears in 5.8 of Karatzas and Shreve [14], from which 6 of
the present paper is drawn (see also the review article of Karatzas [12] for a survey
of financial economics problems in complete markets). An extension of the papers
above to infinite horizon problems is reported by Huang and Pages [11].

A first step toward a martingale analysis of incomplete markets was taken by
Pages [18], who considered a Brownian model in which the number of stocks was
strictly less than the dimension of the driving Brownian motion. However, the
coefficients of the bond and stock prices in this model were allowed to depend on the
underlying Brownian model only through the bond and stock prices themselves. Thus,
the vector of bond and stock prices formed a Markov process. This specialization
created an essentially complete market, and thus it avoided the more interesting case
of a market with genuinely unhedgeable risk. However, Pages did characterize the
class of equivalent martingale measures which could arise in an incomplete model,
and this laid the groundwork for further developments (e.g., Lemma 8.2 in this paper).
A more substantial step was taken by He and Pearson [9] in a discrete-time, finite
probability space model, where the authors proposed finding the optimal intermediate
consumption and terminal wealth corresponding to each of the equivalent martingale
measures, and then searching over those policies to find a pair yielding the minimum
expected total utility. Using separating hyperplane arguments, they were able to show
that the total utility obtained by this two-step "minimax" process is the optimal total
value for the incomplete problem.

He and Pearson have also studied the incomplete problem in a continuous-time,
Brownian model. In an early version of He and Pearson [10], the authors consider
Pags’s characterization of the family of equivalent martingale measures and search
over this family for a "minimax" equivalent martingale measure, which would lead
them to the optimal consumption and portfolio processes just as in a complete market.
The martingale associated with this measure would create the "Arrow-Debreu" state
prices in the incomplete model. However, the continuous-time model is more subtle
than one might expect, and although it is now clear that Arrow-Debreu state prices
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exist for the incomplete model under some assumptions, it is not clear that they are
associated with a martingale.

The present paper uses local martingales rather than martingales to address the
issue of market incompleteness in continuous-time models. This work was motivated
by the aforementioned previous version of He and Pearson [10], and by the use of
local martingale methods introduced by Xu [22] in the study of incompleteness induced
by a prohibition on the short-selling of stocks. Using the stochastic duality theory of
Bismut [1], Xu formulated a dual problem whose solution could be shown to exist
and could then be used to obtain existence and characterization of the solution of
the original problem. As this paper shows, such duality methods can also be used
in the traditional incomplete Brownian market model. While we still do not know if
the minimax equivalent martingale measure sought by He and Pearson exists in any
generality (see, however, the note following the references), we show here that the
solution to Bismut’s dual problem is a "least favorable local martingale" which can
be used to generate a sequence of equivalent measures. The existence of this least
favorable local martingale is sufficient for the study of many models. A notable
exception is the incomplete market model in which the agent’s endowment is a stochastic
process; we do not know how to obtain the existence and a characterization of the
optimal policy for such a model in terms of a least favorable local martingale, unless
it is actually a martingale.

He and Pearson [10] have incorporated Xu’s local martingale techniques into
their original work. They report the existence of an optimal portfolio for the terminal
wealth utility maximization problem when the index of relative risk aversion is
everywhere greater than or equal to one, and they report similar results for the problem
with intermediate consumption and consumption at the terminal time when the index
of relative risk aversion is everywhere less than or equal to one. Our paper deals only
with the case of terminal wealth utility maximization when the index of relative risk
aversion is everywhere less than or equal to one; the generalization to also allow for
intermediate consumption is straightforward. Whereas He and Pearson [10] assume
that some augmentation of the market model will result in Markov prices, we allow
general It6 price processes. He and Pearson 10] do not provide the full set of equivalent
conditions contained in our Theorem 9.4, nor do they use our assumption (4.8). This
assumption and the introduction of the set Kl(O’) play a fundamental role in our proof
of Theorem 9.4.

Remark on Notation: We denote by "standing assumption"those conditions that
are always in force; they will not be cited in the theorems. The Standing Assumptions
are 2.1, 2.2, 2.3, 4.1, and 5.1. We denote by "assumption" those conditions which are
in force only when theorems specifically cite them.

2. The market model. We adopt a model for the financial market consisting of
one bond with price Po(t) given by

(2.1) dPo( t) r( t)Po( t) at, Po(0) 1,

and m stocks with prices per share Pi(t), i- 1,. ., m, satisfying the equations

(. e( e( b( + 2 (W.( ,..., m.
j=l

Here W W1, , We)* is a d-dimensional Brownian motion on a probability space
(f, , P), and we denote by {ot} the P-augmentation of the filtration generated by
W. It is assumed throughout that d ->_ m, i.e., the number of sources of uncertainty in
the model is at least as large as the number of stocks available for investment.
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The interest rate r(t), the vector b(t)=(bl(t),..., bin(t))* of stock appreciation
rates, and the volatility matrix or(t) {trij(t)}l__<i=,. -<_j-<_d are the coefficients ofthe model.
They are taken to be progressively measurable with respect to {,}.

Standing Assumption 2.1. or Ilb(t)ll at <, Ir(t)l dt<- hold almost surely, for
some given real constant L> O.

The positive constant T in Standing Assumption 2.1 is the terminal time for the
problem. All processes are defined on [0, T].

Standing Assumption 2.2. The matrix tr(t) has full rank for every t.
As a result of Standing Assumption 2.2, the matrix (o’(t)tr*(t)) -1 and the relative

risk process

(2.3) O(t) a-- ty*(t)(r(t)tr*(t))-l[b(t)-r(t)lm]
are defined. Throughout this paper, we denote by 1k the k-dimensional vector whose
every component is one. In addition to Standing Assumptions 2.1 and 2.2, the following
assumption will be made throughout.

Standing Assumption 2.3. IlO(t)ll 2 dt < o, almost surely P.
We shall have occasion to use the so-called discount process

Po(t- exp r( s ds

as well as the process

(2.5) Wo(t)& W(t)+ O(s) as

and the exponential local martingale

(2.6) Zo(t)&exp O*(s) dW(x)- IIo(x)lldx

DEFINITION 2.4. A financial market as above will be called complete if m d, and
incomplete if m < d.

3. Prtfl mt elt roeesses. A porolio process (t)=((t),..., (t))*
is an N-valued, {}-adapted process satisfying

(3.1) I]*(t)(t)l 2 dt< a.s.P.

We regard (t) as the propoion of an agent"s wealth invested in stock at time t;
the remaining propoion 1-*(t)l 1-= (t) is invested in the bond. We do
not constrain these propoions to take values in the interval [0, 1]; in other words,
we allow both sho-selling of stocks, and borrowing at the interest rate of the bond.
For a given, nonrandom, initial wealth x>0, let X’ denote the wealth process
corresponding to a poafolio defined by X’(0)= x and

dX’(t) r(t)X’(t) dt+X’(t)*(t)[(b(t)-r(t)l) dt+(t)dW(t)]
(3.)

r(t)x’(t) dt + X’ t)*( t)(t)dWo(t).
In other words,

(t)X’(t) =x exp *(s)(s) dWo()- I1*()(11 d

(3.3)
=x+ (sX’(s*(s(s Wo (s,
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Remark 3.1. An application of It6’s rule to the product of the processes Zo and
/3Xx’ of (2.6), (3.3) leads to

(3.4) l(t)Zo(t)XX’(t) x+ (s)Zo(s)X"(s)(o’*(s)r(s)-O(s))* dW (s).

This shows, in particular, that the process flZoXx’= is a nonnegative local martingale,
hence a supermartingale.

4. Utility functions. The agent in our model has a utility function U:(0, c)- E
for wealth. We make the following assumption throughout.

Standing Assumption 4.1. U is strictly increasing, strictly concave, continuous and
continuously differentiable, and satisfies
(4.1) U’(0) __a lim U’(x) o, U’(c) a_ lim U’(x) O.

x$O xoo

The (continuous, strictly decreasing) inverse of the function U’ will be denoted
by I’(0, oe), (0, oe); by analogy with (4.1), it satisfies

(4.2) I(0) A lim I(y) oe, I(oe) A lim I(y) O.
y$0 y-c

We introduce also the function

(4.3) /](y) max U(x)-xy] U(I(y))-yI(y), 0< y <
x>O

which is the Legendre transform of- U(-x), with U extended to be -oe on the negative
real axis. The function U is strictly decreasing, strictly convex, and satisfies

(4.4) l]’(y)=-I(y), 0<y<ee,

(4.5) U(x)=min[l](y)+xy]= l](U’(x))+xU’(x), 0< x <oe.
y>O

The useful inequalities

(4.6) U(I(y))>= U(x)+y[I(y)-x] Vx>0, y>0,

(4.7) U( U’(x)) <-_ U(y)-x[U’(x)-y] Vx>0, y>0

then follow directly from (4.3), (4.5).
The monotonicity of U and /] guarantees that the limits

U(0) __a lim U(x), U(o) =a lim U(x),
x$O xee

(0) - lim (y), (oe) A lim (y)
y,[,0 yoo

exist in the extended real-number system.
LEMMA 4.2. U(0)= U(oe), U(0)= U(oe).
Proof. It follows from (4.3) that U(ee)_-<limy_ U(I(y))= U(O), as well as

U(oo)_->lim U -e =U(O)-e Ve>O,

whence O(oe) U(O). Similarly, it follows from (4.5) that U(oe) _-> lim_,oo/(U’(x))
(0), as well as

U(oe) <-_ lim [ fJ() + e] (J(O) + e Ve>O,

whence U(oe)= U(O).
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We will sometimes impose the following condition on the utility function U.
Assumption 4.3. For some c (0, 1), y (1, oo), we have

(4.8) ,U’(x) >- u’( yx) Vxe(O,).

Quite obviously, Assumption 4.3 is satisfied by the utility functions U(x)--log x
and U(x)= x/8, with 8 < 1, 8 S0. Upon replacing x by I(y) in (4.8), and then
applying I to both sides of the resulting inequality, we see that Assumption 4.3 is
equivalent to the condition

(4.8)’ I(cey) <= yI(y) Vy (0, oo),

for some a (0, 1), y (1, c). By iterating (4.8)’, we obtain the apparently stronger
statement

(4.9) Va(O, 1), =:iye(1, oo), suchthat I(oy)<=yI(y) Vy(O, oo).

5. The utility maximization problem. For a given utility function U and a given
initial capital x> 0, the stochastic control problem considered in this paper is the
following: to maximize the expected utility from terminal wealth EU(X"’( T)), over the
class (x) of portfolio processes 7r that satisfy

(5.1) E( U(X’( T)))-< oo,

where a -=a max {-a, 0}. The value function of this problem is denoted by

(5.2) V(x) sup EU(XX’"(T)).
s(x)

To be sure this problem is meaningful, we make the following assumption throughout.
Standing Assumption 5.1. V(x) < oo, for all x (0, oo).
A portfolio process r sf(x) which attains the supremum in (5.2) is called optimal

In 9, 11, and 12 we provide conditions that ensure the existence of optimal portfolios,
as well as various characterizations of optimality. Some examples, in which optimal
portfolios can be computed explicitly, appear in 10.

Remark 5.2. In the case of a market model for which the relative risk process
0(. of (2.4) satisfies the condition

rl10(t)112 at<-C a.s.

for some given real constant C > 0, a sufficient condition for Standing Assumption 5.1
is

(5.4) U(x) <- k + k2x6 /x (O, oo)

for some kl > 0, k2 > 0, 8 (0, 1).
Indeed, the process Zo of (2.6) is then a martingale, and W0(’) is a Brownian

motion under the probability measure Po(A)--E[Zo(T)IA] on oft (the Girsanov
theorem; cf. Karatzas and Shreve [14, 3.5]). For any p (1, 1/8] and suitable constants

cl > 0, c2 > 0, we have

UP+(x) c --t- c2X6p [x (0,
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from (5.4), where U/(x)a_ max { U(x), 0}. Also, we have

(XX’(T))ap= xaP exp p r(s) ds-
2

II*(s)(s)ll as

exp p *(s)(s) dWo(x)- II*(s)(s)ll ds

(5.
(ex)p. exp p *(s)(s) dWo (s)

l p for- II*(s)(s)ll = as

from (3.3), and

(5.7)

EoZ-q(t) Eo exp q O*(s) dWo (s)-- II0(s)ll ds

exp
2

IIo(s)ll as

--<exp{ q(q-1)2 c}
from (2.6) with 1/p+ I/q= 1. Now (5.5)-(5.7), in conjunction with the H61der
inequality, give

.EU(X’=(T)) Eo[Zff’(T) U(XX’=( T))]

<= (EoZq( T))’/q(EoUP+(XX’( T))) ’/p

=<exp{ (q-l)2 C}(c’+c2(eLx)p)l/p<cx3

for every 7r M(x), justifying Standing Assumption 5.1.

6. The complete market solution. The utility maximization problem of 5 admits
a simple solution in the case m d of a complete market; this solution was derived
by Karatzas, Lehoczky, and Shreve [13] and independently by Cox and Huang [2],
[3]. In this section we briefly review the pertinent results, both for easy reference and
for later usage in the treatment of the incomplete market case.

For the purposes of this discussion, we need the following assumption.
Assumption 6.1. E[/3(T)Zo(T)I(y(T)Z0(T))] < c, for all y e (0, c).
Under it, the function ;To" (0, ) - (0, c) defined by

(6.1) ;To(y) a- E[,8(T)Zo(T)I(y[3(T)Zo(T))], O<y<oo

inherits from I the property of being a continuous, strictly decreasing mapping of
(0, oo) onto itself, and so ;To has a (continuous, strictly decreasing) inverse o from
(0, co) onto itself. We define

(6.2) _a I(o(X)/3 T)Zo(T)).

Note that for every portfolio process r (x), the supermartingale flZoXx’ of (3.4)
satisfies

(6.3) E [fl (T)Zo( T)Xx’(T) <= x.
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(6.4)

(6.5)

LEMMA 6.2. The random variable satisfies
E[fl( T)Zo(T):] x,

E(U(G))- < oo,
and for every portfolio r ,91 (x), we have

(6.6) EU(XX’=(T))<=EU(().

Proof Equation (6.4) follows directly from the definitions of : and o. From
(4.6) we have

U() -> U(1)+ o(X)(T)Zo(T)[- 1]
(6.7)

>- -I U(1)I- o(X)fl( T)Zo( T).

But fl is nonnegative and bounded almost surely and Zo is a nonnegative local
martingale, thus a supermartingale. Therefore E[/3(T)Zo(T)] < oo, and (6.5) follows.
Now let r be a portfolio satisfying (5.1). From (4.6), (6.3), and (6.4) we have

EU(:) >= E{ U(X"=(T)) + o(X)fl T)Zo( T)[-X"= T)]}

>-_EU(X"=(T)).

From Lemma 6.2 it develops that ifthere exists a portfolio -k such that : XX’(T),
then is optimal. So far we have not used the assumption of market completeness;
this assumption is used only in the construction of the portfolio which finances :,
a question that we now broach.

We begin with the positive martingale

(6.8) M(t)

Being adapted to the Brownian filtration {t}, M admits the stochastic integral
representation

(6.9) M(t)=x+ O*(s) dW(s)

for some {-,}-adapted process satisfying o ]]O(s)[] 2 ds<oo almost surely (e.g.,
Karatzas and Shreve [14, p. 184]). According to It6’s lemma

and thus

We define

d
(t) --Zo(t)(0(t)+M(t)0(t))*dW(t)’

M(T) Ior 1
fl T)

Zo( T
x +

Zo(
(6(t)+ M(t)O(t))* dWo (t).

(6.10) f((t) M(t) 1 [ fo 1

fl(t)Zo(t)-fl(t) x+
Zo(s)

(O(s)+M(s)O(s))* dW(s)

1
(6.11) (t) --1

(t)Zo(t)f(t) (o’*(t)) (O(t)+M(t)0(t)),

and verify that .(0) x, (T)- as well as d((t)f(t))=
(t)f(t)r*(t)cr(t) dWo(t) hold. A comparison with (3.3) shows that X(.) is the
wealth process corresponding to the portfolio -: .(. )- XX’( ).

We have proved the following result.
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THEOREM 6.3. Let an initial wealth x > 0 be given. In a complete market d m)
under Assumption 6.1, the portfolio - given by (6.11) is optimal. The resulting optimal
terminal wealth is given by (6.2).

Example 6.4 (Logarithmic utility function). Suppose U(x) log x. Then So(y)
l/y, o(X)- 1Ix and

(6.12) x exp r(t)/-zllO(t)ll dt+ O*(t) dW(t).

Let be given by

(6.13) ,k(t) (or(t) or* (t))-’[ b(t) r(t) 1,, ].

From (3.4) we have Xx’s(T)= x/(T)Zo(T)= :, so is optimal and

(6.14) V(x)=E[logXX’(T)]=logx+E r(t)+llo(t)l[ dt,

provided that this last expectation is finite (cf. Karatzas [12, 9.3, 9.6]).
Example 6.5 (Power utility function and deterministic model coefficients). Suppose

that U(x)= x/6, where 6 < 1, 6 S0, and suppose that the processes r and 0 are
deterministic. Then exp {(/(1 3)) to O*(s) dW (s)- (32/2(1- 3)2) to ]10(s)ll 2 ds} is a
martingale with expectation equal to one (Karatzas and Shreve 14, Cor. 5.13, p. 199]),
and from (6.1)

o(y)= yl/(_l) exp { 3 for( 1 ) { 3

1- r(s)/- IIo(s)ll ds, E exp
1-3

=yl/(-l) exp
1-3

m(s) ds

where

O*(s) dW(s)

(6.15) m(t)Ar(t)+
2(1-3)

It follows that o(X)= x-1 exp {8 I m(s) ds}, and

(6.16) =xexp r(t)+2( 16)[10(t)ll at+
1-3

Taking

(6.17)

O*(t) dW(t)

(t) A
1

(r(t)cr*(t))-’[b(t)-r(t)l,]
1-3

in (3.4), we obtain

[3(t)Zo(t)XX’(t)=x exp -2(1_3)2 IIO(s)ll 2 ds+ O*(s) dW(s)

from which follows Xx’(T)= sc and thereby the optimality of

7. Fictitious completions of an incomplete market. The utility maximization prob-
lem of 5 for an incomplete market (d > m) will be studied by the method of "fictitious
completion." We will perform, in other words, the thought experiment of introducing
d m additional stocks driven by the d-dimensional Brownian motion W, thus creating
a fictitious complete market in which the utility maximization problem can be solved
as in 6. We will then try to determine appreciation rates for these additional stocks,
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so that the optimal portfolio in the resulting complete market does not invest in the
additional stocks at all, i.e., is in s(x).

Following this program, we introduce an { ot}-progressively measurable, uniformly
bounded, (d-m)xd matrix-valued process p(t) whose rows, thought of as vectors
in d, are orthonormal and in the kernel of or(t), i.e., cr(t)p*(t)= 0. We also introduce
an {ot}-progressively measurable, (d- m)-dimensional vector process satisfying

(7.1) II(t)ll dt< a.s.

We create fictitious stocks with prices Si(t) governed by

j=l

The matrix-valued process p will be held fixed throughout the remainder of the paper,
but the process a will be considered as a parameter.

For the augmented stock appreciation rate vector /_a_[b] and the augmented
volatility matrix - [o we can define an augmented relative risk process

(7.3) (t) _a_ ,,( t)(( t)*( t))-I [/( t)- r( t)lm] 0(t) + v(t)

by analogy with (2.3), where

(7.4) ,(t) ___a p,( t)[z( t) r(t) ld_,, ].

Note that O*(t),(t)=O, and thus Ilff(t)ll 2= IlO(t)ll2+ll,(t)ll 2. It will be assumed that

io(7.5) ]lu(t)ll z dt < oo

holds almost surely, so that (by analogy with (2.6) and (6.1)) we may define the
exponential local martingale

Z(t) a--exp (O*(s)+ dW (llO(s)ll2/ll (s)ll =) ds

(7.6)
1 Z(s)(O(s) + ,(s))* dW (s)

and the function

(7.7) (y) __a E[J3( T)Z( T)I(y[3( T)Z( T))],

If the condition

0<y<oo.

(7.8) (y) <

prevails, we may define to be the inverse of and set

(7.9) x g I((x)(T)Z(T))
by analogy with (6.2).

Remark 7.1. If the fictitious stocks introduced in this section were really available,
then EU(X) would be the maximal expected utility of final wealth (Theorem 6.3).
Since these stocks are not available, we have

(7.10) V(x) a_ sup EU(XX’=( T)) <- EU(),
(x)

and equality holds if there exists a portfolio process r (x) such that

(7.11) Xx’(T) sx a.s.,
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i.e., if the terminal wealth can be financed without investment in the fictitious stocks.
In light of (7.10), such a r would be optimal for the problem of utility maximization
in the incomplete market. In 9 we shall discuss properties which r and u must have
in order to be related by (7.11).

8. A family of exponential local martingales. Let us denote by S[0, T] the class
of {t}-adapted, Ed-valued processes 0 satisfying

io(8.1) 0(t)ll dt < c

almost surely, and decompose S[0, T] into the orthogonal subspaces

(8.2) K(tr){uS[0, T]; tr( t) u( t) 0, ’v’t[0, T],a.s.},

(8.3) K+/-(tr){0 S[0, T]; o(t)Range(tr*(t)),/t[O, T], a.s.}.

Remark 8.1. The process 0 of (2.3) belongs to K+/-(tr), whereas the process u of
(7.4) belongs to K (r). On the other hand, if u K (tr) is given, then (7.4) can be solved
for the appreciation rate vector of the fictitious stocks, by taking this vector equal to

(8.4) a,( t) p( t)u( t) + r( t)ld_,.

Thus, the class K(r) provides a parameter space for fictitious completions of the
incomplete market.

We will denote by 3 the fictitious completion of the financial market by the
additional stocks of (7.2), with p(. fixed and (. )-= (. ), u K(cr).

The associated family of exponential local martingales {Z}K(, given by (7.6),
will play a fundamental role in what follows.

LEMMA 8.2. Consider the discounted stock price processes

Qi( t) a-- ( t)Pi( t), i-1,...,m.

Then for every u K (or), the processes ZQi are local martingales under P.
Proof. It is seen from (2.2), (2.4) that

dQi(t)= Qi(t)[(bi(t)-r(t)) dt+tri(t) dW (t)],

where tri(t) is the ith row vector of the matrix tr(t). It follows from this, (7.6), It6’s
rule, and tr(t) u(t) 0, that

d(Z(t)Qi(t)) Z(t)Qi(t)[o’(t)-(O(t)+ u(t))*] dW (t).

PROPOSITION 8.3. For any given 7r M(x), flZXx’E is a local martingale under P
for every u K (r); in particular,

(8.5) E[fl(T)Z(T)XX’(T)]<=x Vu K(cr).

Proof. From (3.3), (2.5), and (7.6) follows the analogue

(8.6) fl(t)Z(t)X(t)=x+ (s)Z(s)X(s)[o’*(s)(s)-(O(s)+u(s))]* dW(s)

of (3.4) for the process X X’=. This representation shows that flZX’ is a positive
local martingale, hence a supermartingale, and (8.5) follows.

Remark 8.4. Suppose that 7r is a portfolio process, and that X is a continuous,
{t}-adapted process which satisfies (8.6) almost surely, for some u K(tr). Then X
is the wealth process corresponding to the initial endowment x and the portfolio
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process zr, i.e., X X’. Indeed, apply It6’s rule to the product of the processes ZX
and A, where A-Z is easily seen from (7.6) to satisfy

dAy(t) A(t)[(O(t)+ u(t))* dW(t)+(l[O(t)[[:+ u(t)[[:) dt],

and obtain (3.3).
The following result provides a kind of "converse" to Proposition 8.3.
THEOREM 8.5. Consider a positive, 7.-measurable random variable B, for which

there exists a process h K (or) with

(8.7) E[(T)Z(T)B]<=x E[(T)Zx(T)B] Vv K(o).

Then there exists a portfolio 7r i(x), such that XX’(T) B, almost surely.
Proof. Define a positive, {t}-adapted process X via

(8.8) fl(t)Z;,(t)X(t)= M(t) A- E[fl(T)Z(T)BIt], 0 <- t<= T.

Certainly X(0)=x, X(T)= B almost surely, and the positive martingale M in (8.8)
has M(0)= x. From the martingale representation theorem (Karatzas and Shreve [14,
Problem 3.4.16, p. 184]), M(t)=X+o (s) dW (s) for some {fft}-adapted process
satisfying II(t)ll = at < oo almost surely. Since M is continuous and M(t)> 0 for all
t [0, T], we may define h S[0, T] by (t)=-p(t)/M(t). Then

M(t) x exp p*(s) dW (s)-- IIg,(s)ll as
(8.9) r

x- Jo M(s)b*(s) dW (s), 0<= <- T.

Decomposing @ as @= @1+ @: with @1 K-(cr), @: K(cr) and comparing (8.8),
(8.9) with (8.6), it transpires that proving the theorem amounts to finding a portfolio
7r such that

(8.10) -M(t)(tl(t)+ 2(t))= (t)Za(t)X(t)[o’*(t)Tr(t)-(O(t)+ A (t))].
This will certainly be possible, provided that

(8.11) qt:(t)=h(t) dtxdP a.e. on [0, T]xf,

because we can take then 7r to satisfy cr*Tr 0-1 K+/-(r). Consequently, we have
to show that (8.7) implies (8.11).

To this end, consider an arbitrary but fixed v K(g) and introduce the sequence
of stopping times {,}_ given by

z,= rinf te[0, r]; M(t)en, or ([[l(s)ll2+ll2(s)ll=+[lA(s)[] =) dsen,
(8.12)

or II(s)ll = as n, or *(s) dW (s) >n}
for every n-> 1. Obviously, lim._ z. T almost surely, and we denote v.(t)
v(t)l[o. .](t). Clearly, A + ev. K(o’) and

(8.13) Zx+.(t)= Za(t) exp -e v*(s)(dW (s)/ (s) ds)-- II(s)ll = ds

for every e (-1, 1), n => 1. On the other hand, the definition of z, in (8.12) gives

(8 14) e-3nl I<_ Z+.(T) 3hie-<e -l<e<l.
Zx( T)
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It follows then quite easily (from (8.12)-(8.14) and the dominated convergence
theorem) that (8.7) implies

(8.15)

0=--E (T)Z+(T)B
e=0

=E[fl(T) O--
oe Z,+( T)

=-E fl(T)Za(T)B v*(s)(dW(s)+A(s) ds)

or equivalently, in the notation of (8.8)"

(a. M(- ,,*(s(dVC(s+,x( ds =0 Vn-->l.

Now It6’s rule, in conjunction with (8.9), gives

(8.17)

From the definition of ’n in (8.12) we see that the expectations of the two stochastic
integrals in (8.17) are equal to zero. Substituting back into (8.16), we obtain

(8.18) E M(t)v*(t)(A(t)-Oz(t))dt=O Vn>=l.

The arbitrariness of v K(tr) in (8.18) leads to (8.11).
9. Equivalent optimality conditions in an incomplete market. The conclusions of

7 were predicated on the assumption

(7.8) (y) < oo Vy (0, o),
but this condition often will not hold for all v K(r) (cf. 13 (Appendix)). Accord-
ingly, we restrict ourselves to the class

(9.1) Kl(O-) ---a {v K(cr); v satisfies (7.8)}
in what follows.

Remark 9.1. If Assumption 4.3 holds, and v K(cr) satisfies (y) <oe for some
y (0, oe), then , Kl(O-). This can be verified easily, using (4.9).

For a fixed initial capital x > 0, let -k M(x) be given, and consider the statement
that -k is optimal for the incomplete market maximization problem of 5"

(A) OPTIMALITY OF 7’. EU(X’(T)) <-_ EU(X’S(T)), for all 7r M(x).
We will characterize condition (A) with the help of the following conditions

(B)-(E). For a given A Kl(O-) recall the notation of (4.3), (7.9) and consider the
following statements.

(B) FINANCIBILITY OF :. There exists a portfolio .k M(x) such that XX’S( T), almost surely.
(C) LEAST-FAVORABILITY OF A. EU(Xa) <= Eg(x), for all v Kl(cr).
(D) DUAL OPTIMALITY OF A. For all v Kl(Cr),

El(,(x)( T)Za (T)) <= El( (x)( T)Z( T)).
(E) PARSIMONY OF A. E[fl(T)Z(T)sC] -< x, for all t, K,(o’).
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Our principal result of this section, Theorem 9.4, states that conditions (B)-(E)
on are equivalent and they imply the existence of satisfying (A), provided that
Assumption 4.3 and U(0)>- hold. This latter restriction is rather severe, for it
excludes the important special case of the logarithmic utility function U(x)= log x.
For this reason we also develop a somewhat more modest result, Theorem 9.3, which
suffices for a complete treatment of the logarithmic case (Example 10.1).

But first, let us try to motivate the developments that follow by discussing the
significance of conditions (B)-(E). While we do not present any proofs for the claimed
equivalences in the .discussion that follows, we offer some plausible arguments to the
effect that conditions (A)-(E) are connected to one another.

Discussion 9.2. For any given Kl(r), ( is the optimal level of terminal wealth
in the fictitiously completed market . When will it also be optimal in the original,
incomplete market? Presumably, only when there exists a portfolio -k which invests in
the original m stocks only (i.e., ,k (x)), such that Xx’ . In other words, condition
(B) has then to hold, and condition (E) follows directly from (8.5). In particular, (E)
says that the value of the contingent claim is at least as large in the fictitiously
completed market as in any other market , v Kl(o-). Note in this connection
that, according to the definitions, E[fl(T)Z(T)(] x, for all K(r).

Furthermore, the terminal wealth can be financed by investing in the stocks of
any other market (since, in fact, it can be financed by investing in the original m
stocks). Thus we obtain the condition (C), which captures the "least favorable"
character of .

Let us derive finally the condition (D), at least in the case U(0)>-c (in which
/ is bounded from below, thanks to Lemma 4.2, and thus the expectations in (D) are
well defined). Indeed, by writing (4.7) with x replaced by and y replaced by
(x)(T)Z(T), and taking expectations, we obtain

E( 2--Y, (x) fl T)Z,( T) >= E&(, (x),8 T)Z, (T)) + o)j, (x)

{E[fl( T)Z, (T): E[fl( T)Z,,( T)]}

>= EO( qY, (x)fl( T)Z, T)

from condition (E).
THEOREM 9.3. Conditions (B) and (E) are equivalent, and imply (C). Furthermore,

if (B) holds, then the portfolio in (B) satisfies (A).
Proof (B)(E) follows from Proposition 8.3.
(E)(B) follows by letting B : in Theorem 8.5. Note that this theorem remains

valid if in it K(cr) is replaced by Kl(Cr). In order to see this, it suffices to observe that
the processes h +evn (appearing in (8.13)) belongs to K(cr) for every e(-1, 1),
n _-> 1, because from (8.14) and the fact that h Kl(o-):

+,,.(y)<=eanll(ye-3’ll)<oo Vy (0,

The last statement of the theorem follows from Remark 7.1.
(B)(C) holds because the previous implication and (7.10) imply

EU(X) V(x) <= EU(X) Vv K,(o).

THEOREM 9.4. Assume that U(O) >-00 holds. Then
(i) Conditions (B)-(E) are equivalent, and if (B) holds, then the portfolio "k in (B)

satisfies (A);
(ii) Conversely, if r sd(x) satisfies (A), then there exists a A K(o’) for which

(B)-(E) hold, provided that Assumption 4.3 is also in force.
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Proof In view of Theorem 9.3, we need discuss only the implications (C)(D)
(B) and assertion (ii) under the appropriate conditions.

(C)(D) For any given y > 0 and ,, Kl(O-), the convexity of U yields

(9.2) -(- I(J((y+e)fl(T)Z,(T))- II(yfl(T)Z,(T))I<=fl(T)Z(T)I fl(T)Z(T)

in conjunction with (4.4), for e >-y/2, e #0. From the assumption u K(), the
random variable on the right-hand side of (9.2) has expectation equal to (y/2)
and the dominated convergence theorem shows that

d
(9.3) y E(yfl( T)Z( T)) -E[fl( T)Z( T)I(yfl( T)Z( T))] -(y).

Therefore, for any given x> 0, u K(), the convex function

(9.4) f(y)& E(yfl(T)Z(T))+xy, 0<y<,

attains its minimum at (x), since f’(y)= x-(y). But thanks to (C) and (4.3), we
now have for any y > 0 that

L(y)L((x)) E{ F((x)# T)Z(T))

+ (x)#( T)Z(T). I((x)#( T)Z( T))]
(9.5)

EU(I((x)(T)Z( T))) EU() EU()

L((x)) ve K,()

and thus,

EU( (x)fl( T)Z T)) E[ U()- (x)fl( T)Z T)(]

=L (x)) x(x) L( (x)) x(x)

E((x)#( T)Z(T)).

(D)(B) Repeat the proof of Theorem 8.5 up to (8.14), with K() replaced by
K(), (8.7) by (D), and B by . Everything then boils down to showing that the
analogue

of (8.15) can be obtained from the consequence of (D)

(9.7)

since I + e K() for every e (-1, 1), n 1 (recall the argument in the proof of
implication (E)(B) in Theorem 9.3). Indeed, (9.6) follows formally from (9.7) by
differentiating inside the expectation sign, and using (4.4), (7.9), (8.13).

For a rigorous justification, recall (8.12) and use the convexity of to obtain,
for any given y > 0:

(9.a
y(r)(e z(r((r e-z. (r))
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where K,,-a supo<<l (e3n-l)/e. The expectation of the right-hand side of (9.8) is
equal to yK, le times E[/3( T)Z (T)I(ye-3"B( T)Z (T)] (ye-3"), a finite quantity
by the assumption A Kl(Cr).

On the other hand, the mean-value theorem implies that for each e (-1, 1)\{0}
there is a random variable y with values in [0, 1], such that

Z+.(T)-Z(T) U’(yfl(T){Z(T)+ y(Z+.(T)-Z(T)}))

From this and (9.7), the conclusion (9.6) follows, thanks to the dominated convergence
theorem, by letting e$0.

Proof of (ii). Step 1. Let X be the wealth process corresponding to the optimal
portfolio . We have from (3.3)

fl( t)2( t) x + fl(S)2(s)(cr*(s)(s))* dWo (s)
(9.9)

=x exp -*(s)cr(s) dWo ()- II*(s)()ll d

Now take a bounded, {t}-progressively measurable portfolio process r/ with values
in Nm, and perform a small random perturbation of -k according to

(9.10)

where-l<e<l, e#0, and- T ^ inf / [0, T];

(9.11)

(see (9.19), (9.20) below for the definitions of the processes N, A, and ). We also
define the process X (.) via

(t)X(t) x exp r*(s)o’(s) dWo ds

(9.12)
x + (s)X(s) (s)(s) dWo(s),

and note that X(.) X’=( ). Consequently, (A) gives

0
EU(X(T))I =o=0.(9.13)

Oe
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A comparison of (9.9), (9.12) yields

(9.14) X(t) 2(t) exp e rl*(s)tr(s) dW (s)--
where

(9.15) If’C(t) &- Wo( t) r*(s)’fr(s) ds W(t) + (O(s) o’*(s) (s)) ds.

Then, at least formally, (9.13) and (9.14) lead to

(9. e ’(2(r2(r n*(s(s dW(s) =0 n_->.

Step 2. In order to justify (9.16) rigorously, obsee from (9.14) and (9.11) that
e-3nll NX T)/(T) e11, almost surely, and from the concavity of U

X(T)-2(T)1

e U(X( T))- U(2( T))I U’(min {X( T), X( T)})

e3hIll- 1
(9.17) U’(e-3"IIX( T))( T)

I1
[U(e-3II(T)) U(0)] e3"K,

e"n v(2(r))- (0)],

with K, as in (9.8). The right-hand side of (9.17) has finite expectation, namely,
e3K( V(x)- U(0)). On the other hand, the mean value theorem implies the existence
of a random variable y with values in [0, 1], such that

[U(X(T))- U(2(T))]=!(X(T)-2(T)) U’(2(T)+T{X(T)-2(T)})

U’((T)+T{X(T)-(T)})(T)
1

exp e n*(s)(s) d(s)- II*(s)n(s)ll: as 1

It is clear now that (9.16) follows from this expansion, (9.13), and the dominated
convergence theorem, by letting e0.

Step 3. Now proving (B) amounts to finding A e K() such that (T)=
I(% (x) (T)Zx (T)), or equivalently

(9.18) U’(X( T)) (x)( T)Zx (T).

We will show that (9.16) leads to a "natural" candidate process A e K(), which is
actually in KI( and for which (9.18) is then shown to hold (Step 4).

Consider the process

(9.19)

n*(s(sW(s+ n*(s(s[O(s-(s(s]as,
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as well as the positive martingale

(9.20) N(t)& E[U’(2(T))2(T)It]=Yo+ N(s)O*(s) dW (s),

where Yo EN(T) and is some process in S[0, T], constructed by the argument
preceding (8.9). Using Standing Assumption 5.1 and U(0)>-oo, note that yo
EN(T)<= E[U((T))- U(0)] <oo. Obviously (9.16) amounts to E[N(-,)A(-,)]=O;
on the other hand, we have from (9.19) and (9.20) that

N(r)A(n) N(t)*(t)(t)[O(t)+ O(t)-*(t)(t)] dt

+ ([*(v(+a((]* (.

From the definition of in (9.11), the stochastic integral has zero expectation, and
thus [N(r)A(.)] =0 leads to

(9. (v*(([(+0(-*((1 =0 n e

for arbitrary as described above. Because , T almost surely as n , we obtain
that

(9. a * (+ 0
belongs to K(). For this choice of I, the exponential local maingale Z of (7.6)
becomes

Za(t)=exp (O(s)+(s))*dW(s)- 0()+()11d
(9.23)

 Io’=exp (O(s)-*(s)(s))*dW(s- ii()-*((sllds

Step 4. Finally, we justify I K() and (9.18). From (9.20) and (9.9) and I =0,
it follows that

N(T)
U’(X( T)) fl( T)

fl( T)( T)

(9.4) (T) 2
xp( 0() dW ()- 0(s)l ds

x xp ((s)(s)) dWo (s)- I(s)(s)ll ds

=Y2 fl( T)Z T),
X

thanks to (9.23) and (9.22). It remains to show that A K() and yo xx(x). In
order to see this, apply I(. to both sides of (9.24), take expeCtations, and use (9.24)
aain to obtain

( r)z r)I (r)z (r) [()z()x()]

___x E[ U’(( T))( T)] =__x EN(T) x <
Yo Yo

From Remark 9.1 we have A Kl(r), and yo xx(x) follows.
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10. Examples in an incomplete market. In the examples of this section, we assume
m <d and produce the optimal portfolio and the process A Kl(cr) satisfying
conditions (B), (C), and (E). In Example 10.2, A also satisfies (D).

Example 10.1 (Logarithmic utility function). Suppose U(x)=log x. Then (y)
1/y, (x)= 1/x, for all vK(o’), and =x/(T)Z,(T). The process h --0 satisfies
(E), because

E[fl(T)Z,(T)]=xE exp u*(s) dw(s)- II(s)ll=ds x VEK().

The last inequality follows from the fact that exp {-’o (s) dW (s)- ’o II(s)ll
bein a nonneative local mainale, must be a supermainale. Accordin to Theorem
9.3, the optimal pofolio process must satisfy X’(T)=, and this was deter-
mined in (6.13) of Example 6.4. The value function V(x) is Biven by the expression
(6.14), and it is finite for every x E(0, )if E II0(t)ll at< (ra] Standin
Assumption 5.1). From (?.4) we see that 0 corresponds to completion of the market
by stocks whose appreciation rates are equal to the interest rate. With a loxarithmic
utility unction, the aent will not use such stocks euen or hedin purposes.

Example 10.2 (Power utility unction and totally unhedeable market
coecients). Suppose U(x)=x/, where <1, #0. Suppose that the volatility
matrix (t) has the form c(t) #(t), 0], where #(t) is an m x m, nonsinBular matrix
for all E [0, T], almost surely. Decompose W into (t) W(t),. , W(t)) and
(t)=(W+(t),..., Wa(t)), and let {} and {} be the auBmentations under P
of the (independent) filtrations enerated by and respectively. Assume that the
processes r, b, and # are adapted to {}, a situation we refer to as totally unhedeable
market coecients because the stock prices are driven solely by

e( e( b( + 2 e(a( ,. ., m.
j=l

We show that under these conditions, the pofolio process given by (6.17) is optimal.
In the present context, this process is random and {}-adapted, rather than determinis-
tic as in Example 6.5.

To verify the above asseion, we note first that 0*(t)= 0*(t), 0], where

( (((le*(-[b( r(].

We note also that the processes I eK() are of the form 1*(t)=[0, *(t)], where
X(t) is (d-m)-dimensional. With m(.) given by (6.15), we define

Aexp m(t) dt

The differential of the positive {,}-maingale N(t) [exp { I re(s)ds}l,} has

a representation as dN( t) -N( t)i *( t) d (t), where I i e K() (see the argu-

ment leading to (8.9) for a justification). Therefore

(10.1) exp m( =N(r=aexp

We may assume without loss of generality that is the coordinate mapping
process (t, ) (t) defined on C([0, r], N), the space of continuous functions
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from [0, T] to Rm, and I is the coordinate mapping process on ---a C([0, T], Ra-,).
Then f/= x , and P is the product of m-dimensional Wiener measure/5 on and
(d- m)-dimensional Wiener measure fi on . Abusing notation slightly, we regard
the {,}-adapted process as a process on . For /kalmost every o3, we have
o *(s, a3)l[ 2 ds < e, and thus for fixed 03, the process

6
(t, ff)-exp

1 6
(s, o3) dff" (s, o3)-2(1_6)2 (s, o3)112 ds

is an {,}-martingale on under /5, with expectation equal to one (Karatzas and
Shreve [14, Cor. 5.13, p. 199]). Consequently,

E exp
1 6

(10.2) exp
1-6

*(s, a3) dff" (s, a3)}P(do3)
=exp 2(1--6)2 IIt(s’ )11- ds

From (10.2) and (10.1) we have

a(y) =y1/(8-1)E exp
1-6 r(s)+-ll(s)ll=+llX(s)ll = ds

*(s) aft" (s) E exp 0*(s) dff" (s)
1-6 1-6

=y/(-I)E exp
1-6 )m(s) ds +

1

2
IIi(s)11 ds+

A6/(1-6)yl/(-I)E exp 6 m(s) ds

It follows that h Kl(Cr), /Ja(x)--Ax-1, and using (10.1) we obtain

(x)( T)Za (T)) 1/(’-1) x exp r(t)+
1-26 )2(6- 1)2

II(t)ll= dt

O*(t) dW(t)
1-6

Just as in Example 6.5, we conclude from (3.4) that Xx’e(T)= , where - is given
by (6.17).

Remark 10.3. An important unresolved question is whether there are simple,
widely applicable conditions that guarantee that for the process A satisfying conditions
(B)-(E) of 9, the nonnegative local martingale Za is actually a martingale. (See,
however, the note following the references.) In Example 10.1 we have

/x(t)= go(t)=exp O*(s) dw IIo(s)ll = ds
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SO we must assume at least that Zo is a martingale in order to conclude that Z is. In
Example 10.2 a computation similar to (10.2) reveals that

EZ(T)=E exp i*(t) dfV(t)-- ([[0(t)[[2d-IIi(t)ll 2) dt

=e exp i*(t) d(- IIi(11d

Taking expectations in (10.1) and recalling the definition of A, we see that EZ (T) 1.
This is enough to ensure that Z is a maingale (Karatzas and Shreve [14, p. 198]).
We have so far been unable to produce an example in which Zo is a maingale but
Z is not.

11. Dlty. We hencefoh impose the following assumption.
Assumption 11.1. U(0) > -.
In addition to the original, or primal," optimization problem

(. V(x= sup

of 5, we shall consider in what follows the dual optimization problem for y (0, ),
namely,

This problem will have a value Nnction V" (0,)N under the following assumption,
which will also remain in force for the remainder of the paper.

Assumption 11.2. For every y(0, ), there exists p K() such that

(11.3) J(y;

See Remark 11.9 in connection with this assumption.
For arbitrary x>0, y>0, e (x), and p K() it follows from (4.3) that

with equality if and only if

By taking expectations in (11.4) and recalling Proposition 8.3, we obtain

(11.6) J(x; ) j(y; ) + xy,

with equality prevailing if and only if (11.5) and x (y) hold. In paicular, it follows
from (11.6) that

(.7) V(x) v(y)+xy x>0, y>0.

Remark 11.3. Suppose that for some given x > 0 and y > 0, there exist (x)
and I K() such that

(ll.a) J(x; x)= J(y;
Then achieves the supremum in (11.1), and a achieves the infimum in (11.2).
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PROPOSITION 11.4. Under Assumptions 11.1 and 11.2, suppose that, for a given
y >0, there is an optimal process Ay Kl(o) for the dual problem of (11.2). Then there
exists an optimal portfolio rx sd(x) for the primal problem of (1 1.1) with x- gy(y),
and we have

(11.9) (y) sup V() -y].
>o

In particular, /(. is convex.
Proof The optimality of Ay gives

(11.10) E[(21y(x)fl(T)Z(T))]<- E[((x)fl(T)Z(T))]
for this particular x (y). This is Condition (D) of 9. Theorem 9.4(i) shows the
existence of a portfolio x sg(x), which is optimal for the primal problem and satisfies

Xx’( T) I(yfl( T)Z( T)).

We conclude that (11.8) prevails (i.e., (11.6) holds as an equality with r x, ’ Ay),
and thus

(y) (y; Ay)=J(x; rx)-xy= V(x)-xy<-_sup V(()-y(].
#>o

The inequality in the opposite direction follows directly from (1 1.7), and the duality
relationship (11.9) is established.

Assumption 11.5. Suppose that the dual problem of (11.2) admits an optimal
process Ay K1 (o’), for every y > O.

A sufficient condition (Theorem 12.3) for the fulfillment of Assumption 11.5 will
be given in the next section. Under the Assumption 11.5, (11.9) holds for all y > 0,
and the following question arises. Under what conditions can we guarantee that, for
every given x>0, there exists an optimal portfolio "2rx for (11.1)? According to
Proposition 1 1.4, this will happen if for every x > 0 we can find a real number y(x) > 0
such that

(11.11) x= zy(x(y(x)).
PROPOSITION 11.6. Suppose that the conditions of Proposition 1 1.4 hold, as well as

Assumptions 11.5 and 4.3 and U(eo) . Thenfor every x > O, there exists a real number
y(x) > 0 that achieves infy>o l(y) + xy]; this number satisfies (1 1.1 1) as well.

Proof From (11.3), Jensen’s inequality, the supermartingale property of Z, and
the decrease of U, we have

(11.12) ](y; ,)_-> (J(yE[fl(T)Z,(T)])>= (yeLEZ,(T))>-_ (J(ye L) V, K(cr)

for the constant L>0 of Standing Assumption 2.1. Therefore, iS"(y)_-> l(yeL) holds
for every y (0, oo), and I(0)= limy+o l’(y)_->/(0) U(oe)= oe (Lemma 4.2).

Consequently, for any given x > 0, the convex functionf(y) l(y) + xy, 0< y <
satisfies f(0+)=f(oe)=, and thus attains its infimum on (0, ) at some point
y(x)>0. Now by the Assumption 11.5, there exists a process Ay( Kl(tr) such that
V(y(x)) J(y(x); Ay(), and we have

inf [Ty(x)x + (Ty(x); Ay(x))] inf [xy+.(y; Zy(x))
0 y>O

_-> inf [xy+ (y)] xy(x)+ (y(x)).
y>O

In other words, with the notation

(11.13) Gy(u)Y(uy;Ay)=E(uy(T)Z(T)), 0<u<,
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the function

(11.14) Dx(u)uxy(x)+Gy(x)(U), 0<u<o

achieves its infimum at u- 1.
From these considerations and Lemma 11.7 below, it transpires that

D’x(1)- xy(x)+ G(x)(1)= xy(x)- y(x)W,((y(x))
is equal to zero, and thus (11.11) holds. 13

LEMMA 11.7. Under the conditions ofProposition 11.6, thefunction Gy( of (11.13)
is well defined and finite on (0, oo) for any given 0< y <, and satisfies

(11.15) G(1) -yW(y).

Proo Since ()= U(O)- by assumption and by Lemma 4.2, we have from
(4.4) that

(y)- () ’() d(= I() d(, 0< y

Thus, for any given a (0, 1), it follows with the help of (4.9) that

(ay)- ()= I() d= a
ay

for a suitable constant 7 (1, ). Consequently, for any given y (0, ),

E(ayfi( T)Z,,( T)) ayE&(yfi( T)Zh( T)) + (1 a)()

Since a (0, 1) is arbitrary,

(11.16) E(uy( T)Zy( T)) <

holds for every u (0, 1]. But the function (.) is decreasing, so (11.16) also holds
for every u > 1.

Now use the convexity of , the dominated convergence theorem, (4.4), and the
fact that I K(), to justify the computations-[ r)z., (r)I((r)z., r))] -.,(),

which leads to (11.15).
It just remains now to put Propositions 11.4 and 11.6 together, in order to obtain

the following existence result for the primal problem (11.1).
TuoM 11.8. Suppose that Assumptions 4.3, 11.1, 11.2, and 11.5 hold and

U() . enfor any given level x > 0 ofinitial capital, there exists an optimalpor(olio
(x) for the utility maximization problem of 5.
In other words, under appropriate conditions, in order to obtain the existence of

an optimal pofolio it is sufficient to deal with the existence of a solution
for the dual problem (11.2). We will do that in the next section.
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Remark 11.9. Assumption 11.2 is satisfied if (5.3) and (5.4) hold. Indeed, it is not
hard to check that condition (5.4) and definition (4.3) lead to

(11.17) U(y)k+k.y V0<v<oo

with ce-8/(1-8), k3=(l-8)(k_’)/ ’,and thus

( .8) .(.v; v) --< k, + k.,y e ’’ EZ,,’(T),
where L is the constant of Standing Assumption 2.1. But now- (ll0(t)ll/ II.(t)ll ) dtZ,,"(T)=exp (O(t)+ v(t))* dW (t)--R-

(11 o(.,.)I1- + i1,,(.,)11 )exp
2

and if we take v c K (r) to satisfy

I," ,-’(.,)11 as <= c a.s.

(by analogy with (5.3)) we obtain EZ,,"(T) <= e’’’’’’’. Back into (11.18), this estimate
shows that (11.3) is satisfied.

12. Existence in the dual problem. We will establish here the following existence
result for the dual optimization problem of (11.2). This theorem is the final step in
the solution to the problem of optimal investment in an incomplete market; see
Theorem 12.5.

Assumption 12.1. E J’i II0(t)ll dt<oo.
Assumption 12.2. x,-xU’(x) is nondecreasing on (0, oo).
THEOREM 12.3. Suppose that Assumptions 4.3, 11.1, 11.2, 12.1, and 12.2 hold. Then

.]br every y c (0, oo), there exists a process A.,, K(o-) which achieves the in.]imum in
(11.2). E]

Remark 12.4. Assumption 12.2 is equivalent to

(12.1) y--yI(y) is nonincreasing on (0,

If U is of class C-(0, oe), Assumption 12.2 amounts to the statement that the Arrow-Pratt
measure of relative risk aversion does not exceed one:

xU"(x)
(12.2) ---< Vx (0, oo).

U’(x)

On the other hand, it follows from Assumption 12.2 that U’(x)_>- U’(1)/x for all
x => 1, whence U(x) U(1) + U’(1) log x. Consequently,

(12.3) U(oo) =oo.

From this remark and Theorems 12.3, 11.8, and 9.4, we deduce then the funda-
mental result of 11 and 12 as follows.

THEOREM 12.5. Under the assumptions of Theorem 12.3, corresponding to every
x > O, there exist"

(i) An optimal portfolio M(x) for the utility maximization problem of 5; and
(ii) A process A Kl(o) (A depending on x) which achieves the infimum in (11.2)

with y= A(x); this A satisfies the equivalent conditions (B)-(E) of 9, and the
appearing in (B) is
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We carry out the proof of Theorem 12.3 in a series of lemmas that take up much
of the remainder of the section. Let us start with a rather simp.le observation.

LEMMA 12.6. Under Assumptions 11.1 and 12.2, we have U(O)=o, U()>-,
and

(12.4) z-(e) is convex on

Proof. The first two claims follow directly from Lemma 4.2 and (12.3). As for
(12.4), observe from (4.4) and (12.1) that (d/dz)U(eZ)=-eI(ez) is a nondecreasing
function of z.

Introduce now the Hilbert space

(12.5) H(tr) ---a I1 ( )11 ds<oo

with inner product (/z, ,)E. /z*(s)u(s) ds and norm [,] V’(u, ,). For a fixed y > 0,
we consider the functional Jy" H(tr)--> LJ {+oo} given by (11.2), namely,

(12.6) Yy(,) E(J(y( T) e-(T))

with the notation

fo lfo(12.7) (t)& (O(s)+(s))* dW()+ (ll0( )ll=+ll (s)ll =)ds, K().

LEMMA 12.7. Under Assumptions 11.1, 12.1, and 12.2, Jy(. is a convexfunctional
on H(), which satisfies

(12.8) lim fly(

for every y (0, ).
Proo From the convexity of the Euclidean norm in d, the decrease of and

(12.4), we have

](I+I)NN exp logy- r(s)

(12.9) = exp X logy-

+ I log y r(s) ds- (r)

for any 1, in H() and A1 0, A20 with AI+ A2 1. On the other hand, with L
as in Standing Assumption 2.1, we obtain from (12.4) and Jensen’s inequality

Jy() EU(exp [log y + L- (r)])

(12.10) 0(exp [log y + L- E(r)])

0(exp [log y+
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LEMMA 12.8. Under Assumptions 11.1, 12.1, and 12.2, we have Jy( u) 0o, for every
K(cr)\H(o’) and y (0, 0o).
Proof. Fix y(O, 0o), , K(cr)\H(cr) and define stopping times

r, T^ inf [0, T];  (x)ll = dx

for n 1,2,.... With L as in Standing Assumption 2.1, it follows from Jensen’s
inequality, the supermartingale property of Z, and the decrease of U, that

y( u) EO(yfl T)Z,( T) E[E{ (J(yfl T)Z( T))I o%.}

>= E[ l](yeLE{Z( T)] @.})] -> El)(yeLZ.(%,))

>-- yexp L-I E (l10(s)l12+ II (s)ll 2) ds

for every n => 1. The conclusion follows by letting n-* 0o. [3

Proof of Theorem 12.3. Fix y (0, 0o). The convex functional .y(. of (12.6) is
lower-semicontinuous in the strong topology of H(cr), by Fatou’s Lemma. Therefore,
it is also lower-semicontinuous in the weak topology (Ekeland and Temam [5, Cor. 2.2,
Chap. 1]). Thanks to the coercivity property (12.8) of Lemma 12.7, Jy(.) attains its
infimum over H(r) at some /y H(r) [5, Prop. 1.2, Chap. 2]. In light of Lemma 12.8
and Assumption 11.2,

(12.11) inf J(u)= Jy(A) < 0o.
yK(o’)

It remains to show that Aye Kl(r). From the decrease of U and/, (4.4) and (4.8)’,
we obtain for some a (0, 1), 3’ e (1, 0o)"

(12.12)

J()- J(0o) >= J()- J I(u) du >= 1 I

->_ f.t() vf (o, ).

Replacing c by y(T)Zy(T) in (12.12) and taking expectations, we obtain

Ay (y) E[fl( T)Z,xy( T)I(y( T)Z,( T))]<=
ay

y(1-a)
lEO(y/3 (T)Zy( T))- (0o)] < 0o,

thanks to (12.11), and thus hy Kl(r) by Remark 9.1.

13. Appendix. We provide in this section an example with a well-behaved utility
function U for which we do not have ,(y) < 0o for all y (0, 0o) and u K(r). The
existence of such an example necessitates the introduction of the set Kl(r) in 9.

In the setting of 2, take re=l, d--2, o-( t) -= (0,1), r(t)=0, b(t)=0, T=I,
B= W, and define the stopping time z&inf{t6 [0, 1]; t+B2(t) 1} and the process

(13.1)
-2B(t)

q(t)& (l-t)2

0;
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u(t)&(q(t), 0)*. For the utility function U(x)=2x/- we have l(y)=y-2, and (7.6),
(7.7) give

(13.2) Z(t)=exp q(s) dB (s)-- q(s) ds

[(13.3) (y)=y- exp (s) dB (s)+ s) ds

It is shown in Liptser and Shiryaev [15, p. 224] (see also Karatzas and Shreve [14,
p. 201]) that the process Z of (13.2) is not a maingale; in fact, the construction
(13.1) is made with this propey in mind. This implies, in paicular, that

(13.4) E[exp{f2(s) ds}]=;
for otherwise Z would be a maingale, by Novikov’s theorem (Karatzas and Shreve
[14, p. 199]). According to Liptser and Shiryaev [14, p. 225]:

Io Io Io(s [( -4 ( -3](a,(a(-
whence

exp 2 [(1- t)-4+(1- t)-3]B(t) dt( e
If this last expectation were finite, then so would be

[exp { ] P(s) ds}] =[exp {2 (1-t)-4B(t) dt},
contradicting (13.4).

eleget. We are grateful to an anonymous referee for carefully reading
this paper and offering helpful advice on exposition.

Nte e i rf. It has recently been discovered that, under quite general
conditions, the local maingale Z is actually a maingale, where I is the process
whose existence is proved in Theorem 12.5. This result is reposed in [23].
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INVARIANCE OF THE APPROXIMATELY REACHABLE SET
UNDER NONLINEAR PERTURBATIONS *

KOICHIRO NAITO AND THOMAS I. SEIDMAN

Abstract. This paper considers nonlinear perturbations of control systems with linear dynamics
and seeks to analyze whether the approximately reachable set may be left unchanged by this pertur-
bation. Under suitable conditions it is shown that this analysis may be reduced to the presumably
simpler analysis of such invariance for a family of affine perturbations. Interest centers on the context
of infinite-dimensional state spaces so the system may, for example, correspond to a hyperbolic or
parabolic partial differential equation.

Key words, approximate reachability, control, distributed parameter system, nonlinear, per-
turbation, invariance
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1. Introduction. Reachability results for distributed parameter systems are hard
to come by since, when the state space ,’ is infinite-dimensional, the "standard" ap-
proaches (typically based on such implicit assumptions as local compactness, etc.)
may no longer be applicable. This is especially true for nonlinear systems in a setting
for which the information available relates only to the approximately reachable sets for
related linear problems. Our concern here is with the extension to this more general
context of a mode of analysis treated in a sequence of earlier papers [11], [12], [15],

We consider a nonlinear control system given by

(1.1) Ax + Fx + Bu, u E ad
with A linear and F a nonlinear operator satisfying some suitable growth condition.
The control operator B need not be linear and we may occasionally write B(u) to
emphasize this; we set Yad := {w B(u) u e ad).

We wish to consider (1.1) as a "perturbation" of the control problem

(1.2) Az + Bu, u ad
omitting the nonlinearity F. For the moment we require only that (1.2) should have
a meaningful solution for each u ad and we will consistently denote this solution
by z. Setting

(1.3) Zad := {zu satisfying (1.2) for some u e Uad},
part of our interpretation of "meaningful" is that Zad is to be considered in some
Banach space A" of functions on [0, T] with continuity to X for the evaluation map
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In general we take ," to be C([0, T] ’), which certainly ensures that the evaluation map E
will be continuous. We do note that lesser regularity could be permitted away from the terminal
time in particular, to allow for the effect of "rough" initial data.
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E z z(T) , X so that we can speak about the reachable set

t:0 :=E := {Ez: z e}

as a subset of the state space
In considering (1.1), we observe that: for any particular solution x x, the

nonlinearity gives Fx as some specific function g. This solution is then also a solution
of an alternate perturbation of the system (1.2):

(1.4) 2 Ax + g + Bu, u E ad

using the same control u. We will consider the family of hi:fine perturbations (1.4) with
g taken from some given subset G of a function space . The relation, of course, is that

is to contain each Fix(.)] as u ranges over lgad in (1.1). Presumably the reachability
analysis for (each of) the affinely perturbed problems (1.4) should be simpler than
that for the original nonlinearly perturbed problem (1.1). For (1.4), (1.1) we will
again be considering solutions in the same space , of X-valued functions as we use
for the "unperturbed" equation (1.2).

It will be important for us to consider the relation of (1.1) to (1.2) from the
viewpoint of (1.4). Given a solution z zu for (1.2), we may write (1.1) as an
equation for y x- z:

G’zF(y+z)=:g such that=Ay+g.

For the moment this specification of a "map" G CF is purely formal but, of course,
we will eventually want to have G Zad -- .The question we wish to consider is:
(Q) When must a state which is approximately reachable for (1.2) also be approx-

imately reachable for the nonlinear system (1.1) ?
Letting EF C A’ denote the reachable set for (1.1) i.e., the set of values for x(T)
as x ranges over solutions of (1.1) with u ad this asks whether K:0 C F; we
note that the complementary inclusion is, in general, much easier to analyze. More
precisely, we are asking:

When can the question (Q) above be analyzed (answered affirma-
tively) by considering the family of (presumably simpler) related
questions for the affine problems (1.4) as g ranges over ?

In this form it should be clear that our concern is with the validation of a mode of
analysis. We are, for example, seeking conditions on (1.4) for g ensuring that
is invariant under the perturbation: (1.2) (1.1). The essential requirement will
be a certain uniformity (over suitable bounded subsets of ) for a measure of the
approximate reachability; see (3.23) et seq.

We have already investigated the corresponding invariance of the (exactly) reach-
able set in a sequence of papers [11], [12], [15], [16]. The work presented here represents
an extension of this work in two directions: the consideration of approximate rather
than exact reachability and the consideration of control sets which do not form a
linear space with linear B.

We further note that our present approach to (Q) is "one at a time" and so,
with minor modification, lends itself to an analysis of approximate controllability for
(1.1) in a less "global" context than the invariance of the title. The arguments used
here put this work in the setting of "the fixed point approach to controllability" and
we refer, e.g., to [5] and its references for further historical discussion of this approach.
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2. Some examples. In this section, before beginning the analysis of reacha-
bility, we wish to provide some representative examples for which one can verify
certain general hypotheses, (H1) below, as to the settings to which our analysis ap-
plies. As previously noted, our concern is with settings for which the state space A’
is infinite-dimensional so that (1.2) may itself be an abstract formulation of a partial
differential equation. We emphasize that our hypotheses do not restrict consideration
to parabolic equations (compact, analytic semigroups). The analysis here could, in
principle, be applied also to hyperbolic systems although one expects that consid-
erations of approximate reachability (compare [15], [17]) might then only be of interest
if {B(u) u E lad} is not itself a linear space.

We turn now to some specific examples of systems governed by partial differential
equations whose dynamics will satisfy the general hypotheses (H1) below but only
indicate briefly the verifications. In 6 we will provide, following [15], some results
which are sufficient to provide such verification for more general classes of problems.
For each of these examples the spatial domain will be a bounded region gt C ]Rm with
"smooth enough" boundary OFt; we set Q :- (0, T) x and E :- (0, T) x 0.

Example 1. Our first example already exhibits many of our concerns for applica-
tion. Consider boundary control of the nonlinear heat equation:

(2.6) : Ax + (., x, Vx) on Q, Xn eu on E

as (1.1). The corresponding "linear" control problem is then

(2.7) Az on Q, Zn w on E

where w eu. (Note that Xn, Zn denote normal derivatives at OFt.)
We wish to take A’ :- L2(gt) as state space. Note that the function f()

(.,(.), [V](.)) is not well defined for general E , since the argument V would
then only be in H-(gt) and so need not be a function at all for pointwise composi-
tion with . This is a situation for which the considerations of Lemma 3 below are
important. If we assume that the scalar function is (uniformly) Lipschitzian in its
variables , V, then we can introduce the auxiliary space :- L2([0, T] H(t))
and have Lipschitz continuity from to L2(Q) for the Nemytsky operator
F x (., x, Vx). Fairly standard methods show that L is well defined and contin-
uous from this l to A’ and to :. Further, if one uses a suitable weighting (exponential
in t) for the norms of y and , then one can arrange that v < 1 so Lemma 3 will
apply (provided we can take Z ’-. A" n ).

Note that these considerations do not yet involve ad or lad as I relates only
to the problem with homogeneous boundary conditions (and, of course, homogeneous
initial conditions).

Suppose we would wish to consider ad {u L2(E) u > 0 he}. Clearly we
must begin by restricting this further, to those u (and corresponding w eu) for which
(2.7) and (2.6) have solutions in some satisfactory sense. If we take w Y "= L2(E),
then it is standard that the solution map $ defined by (2.7) is continuous and, indeed,
compact from Y to A’ n y. One can then take, e.g., :- $, normed so that S is
an isometry. By suitable density arguments one can show that the X-closures of the
sets of solutions for (2.6), (2.7), and the corresponding equation affinely perturbed by
arbitrary g l will be the same whether one works with ad :-" {W " W

1 he} or with the original ad, restricted to u giving solutions in ,1". Thus one has
equivalence in the sense of (3.17), below. This, together with Lemma 3, gives (H).
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We note also that this lad is convex and closed in g since we obviously have ad
convex and closed in

Example 2. We next consider distributed control of the equation

(2.8) 2 Ax + (., x, Vx) + w on Q, x 0 on E,

assuming that o" Q ]Rm+l --+ ]it is a "nice" function (i.e., with uniform bounds on
enough derivatives). Again, (2.8) can be put into the abstract form (3.15) by taking
the state space k’ to be k’0 L2() and then introducing A as the Laplacian on

with domain :D(A) := { E H2(t) C ,’0 [oft 0}. Since -A is self-adjoint
and positive, there is no difficulty (e.g., through the rate of decay of the eigenfunction
expansion coefficients) in defining I-A]r for all r >_ 0 and we set k’ "= T)([-A]t/2); it
is known [7], [8] that X H(Ft) for 0 <_ # < 1/2, that X { 6 H(t) ]oe 0}
for 1/2 <#< 25-,etc.

Consider controls w 6 Y} Yl}m := L2([0, T] 2(m) for (fixed) m _> 0. A
standard semigroup estimate2 gives continuity for Lt from m to "’tt for each # <
m + 1 and a convolution estimate shows that Lw =: x(.) will be in L2([0, T] --+ k’, for
#<m+2. We get

x(.) e ,1", "= C([0, T] X,)g L2([0, T] X,+I)

for each # < m+l. On the other hand, for any 6 2(m+2 we can set w,(t) :=
(- tA)/T to get w, 6 m and Ltw, (t/T). Hence, Xm+2 C ICo(Ym) C

N,<m+2(m. Any more precise estimate of/C0(m) would be much more difficult to
obtain even in this "simple" setting.

In considering the nonlinear partial differential equation (2.8), our assumptions
make o uniformly Lipschitzian in x, Vx, so a standard (Picard iteration) argument
gives existence of a (unique) solution of the nonlinear equation (2.8) in ,l’0 for, say,
any control w E ]0 L2(Q); compare the proof of Lemma 3 below and the proof of
Lemma 4 in [15]. This then gives o(.,x, Vx) =: Fx =: GFW =: g again in L2(Q) so
[g + w] 6 0 and by the analysis above, we then have x 6 X, for arbitrary # < 1
and this gives /CF C N,<X,. For smoother controls one can similarly obtain the
regularity result: ]F(m) C tt<m+l,’# provided one has an estimate of the form:

]l(-A)t’/2Fxll _< C[1 +
for such #. The estimate (2.10) follows from the assumed regularity of o while # <
but the boundary conditions then intervene; one will only continue to have (2.10), at
least while # < 25-, provided that, in addition to the bounds on derivatives for o, one
were to require that o(., 0, .) 0 on OFt so xloe 0 also implies [Fx]loe 0.

For the nonlinear equation (2.8) there is no longer a simple explicit calculation to
give a useful lower bound for/CF(Ym). Taking X Xo, for example, we have Xm+2
dense in k’ for arbitrary m so ]C0(m) X and we would similarly like to show that
/F(Yl}m) k’. Under the assumptions we are now imposing, we can consider, e.g.,
l<m< and get

L[T]g e :D(A) [:D([-A]m+I), X] C []C0(Wm,

Since A generates an analytic semigroup on A’0 one has

(2.9) II(--A)S(T)II < C
on bounded intervals for r > 0 and with C depending on r and the interval.
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with m/(m + 1) as parameter for the interpolation spaces, corresponding to
(5.41). Thus, looking ahead, we note that the assumptions of Theorem 5 will then be
satisfied if one further imposes a growth condition on to strengthen (2.10) so as to
get (6.48) with r < 1/(m + 1).

Example 3. For our next example we take [2 (0, 1) C ]R and consider

(2.11) 2 x" + 9(x, x’) on Q := (0, T) (0, 1),
x(., 0) u(.), x(., 1) 0 on (0, T).

As above we assume 9 is uniformly Lipschitzian and take X := L2(0, 1); we now wish
to take

Yad glad {integer-valued step functions on (0, T)}.

We again take := L2([0, T] ---+ Hi(0, 1)) and 12 ’= L2(Q). Since we can "restart" the
equations at each of the (finitely many) jumps of u E/,/ad, there is no difficulty with
the solvability, for each such u, of the various equations: solutions will be piecewise
smooth. Our difficulty is now with the continuity of the maps and with the desired
convexity of ad.

Suppose the scalar function 9 also satisfies a growth condition (r, s) <_ ao
so the Nemytsky operator F satisfies [[Fx](t)l x <_ Co + Clx(t)[x; independent of
x’. In this case, a bound on u in, say, L2(0, T) gives solutions, for (2.11) and for the
corresponding linear equations, in a compact subset ofX and, using interior regularity,
such that the corresponding gradients are in a compact subset of, say, L2((0, T) (a, b))
for any 0 < a < b < 1. It follows, extracting suitable convergent subsequences for
which the gradients are converging pointwise he, that if one considers any bounded
set in L2(0, T) then all limits of the solutions will again be solutions in X. We now
observe (compare Lemma 5) that the set ad above and the set := HI(0, T) have
the same (sequential) weak closure in L2(0, T), i.e., all of L2(0, T), so the X-closures
of the sets of solutions (and so the corresponding approximately reachable sets) will
be the same for each of these as for L2(0, T) restricted to those u for which there
are, indeed, solutions in X satisfying the boundary conditions in a meaningful sense.
It follows that we can take tad :-- and Z:tad Z Sad (noting that we do
have continuity and compactness for S 1@ A" N Y) with equivalence in the sense
of (3.17). We will have (H) and the needed convexity if we work with this ;ad.

Example 4. For our final example we consider a quasi-linear wave equation

(2.12) Ax + (., x) on , x[E u

where we assume is smooth, uniformly Lipschitzian and with a growth condition
]] <_ C(1 + [x])e with < 1. We assume homogeneous initial conditions: x(0)
0 (0) and that the controls u E/,/d are to be taken smooth enough to have an
extension to Q, again denoted by u, with, say, q := [/2- Au] L2(). This will
ensure that the solution z zu of the corresponding form of (1.2)

(2.13) Az on , zl u

will be in Z :-- C([0, T] --. n2() N C([0, T] gl(f)), using an estimate obtained
by multiplying (2.13) by [z- u], integrating, and applying the Gronwall Inequality.
If we take l := L2(Q), then a similar estimate shows the continuity of L
Finally, we note that (1.5) becomes

) Ay 4- 9(’, Y 4- z) on , YI 0
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and a standard contraction mapping argument gives existence of a solution y
using the Lipschitz property of 7, with an estimate lYl O(Izle) where lYl is the
g-norm and Izl is the -norm. The compactness of the embedding Z --. V then
completes the verification of the general hypotheses (H1) with the growth condition
(4.8).

We note two particular cases of interest from the viewpoint of teachability: (1)
in the one-dimensional case with acl consisting of functions vanishing at one end of
gt and nonnegative at the other, it is known [13] that/Co is dense in, say,
for T large enough; (2) for gt C ]Rm with u E/ad having support in some small fixed
subset F C 0 and/or with T not too large, then the reachable set will only be some
(small) part of A’ and it is interesting to ask whether a geometric restriction on the
support in for could provide the hypotheses for invariance.

3. Formulation and notation. We have already introduced the set Zad of
solutions of (1.2) (in some fixed sense) as the control u ranges over 1Jag and the
(formal) operator E :x x(T). We now also introduce the linear solution operator
L:

(3.14) L v x such that Ax + v

(with homogeneous initial conditions) for suitable v(.). Note that (1.2) and (1.4) have
linear dynamics (i.e., linear in z or x although not necessarily in u) while the dynamics
given by the perturbed equation (1.1) are quasi-linear.

We have already made our first basic observation: neither B nor u $1ad (nor
their individual properties) can be relevant to any of (1.2), (1.1), (1.4), but only
w := B(u), considered as an element of some space Y. Indeed, we have seen that
the only really relevant entity is z zu, the corresponding solution of (1.2). Thus,
the effects of control are entirely determined by the set ad.

Expressed in terms of this (formal) operator L, the differential equations (1.1)
and (1.4) then take the abstract forms:

(3.15) x

(3.16) x Lg + z (z Zad g e ),

where ad is now simply a (specified) subset of some function space g and G is a
specified subset of another function space . Until one specifies the spaces involved
this is purely formal but we note here that, although we refer for convenience to (1.1),
(1.2), (1.4), we will always be interpreting "solution" in the present sense: through the
abstract operator equations (3.15), (3.16) with any hypotheses and interpretations to
be attached to these. Except for this section, the (motivating) earlier examples, and
the final section, our considerations are independent of any interpretation of (3.15)
and (3.16) as differential equations.

Note that, since we consider the equations (1.2), etc., with fixed initial condi-
tions, it is always possible, with no loss of generality, to translate the problem by
some fixed trajectory z0, correspondingly modifying F, ;ad, and all reachable sets.
Henceforth, for expository simplicity, we do assume that, ab initio, the problem has
been formulated with homogeneous initial conditions so that one has zu Lw where
w B(u). At the same time, once one has avoided consideration of any (essentially
irrelevant) problems with regularity near the initial time, it is convenient to assume
that all our solutions are elements of the fixed space , := C([0, T] A’) so that, in
particular, the operator E A" A’ is always well defined and continuous. We also
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assume that Zad C , set-theoretically, but may find it convenient to topologize it
somewhat differently: as ad C ; e.g., if there is a continuous embedding - A’.

Our underlying set of "solvability hypotheses" is:
(H1) Let each of the following hold:

(i) Equation (3.14) has a (unique) solution x Lv E ,1" for each
v E ; the linear map L is well-defined and continuous from
to

(ii) For each z ad there is a unique solution x of (3.15) and
we assume that g Fx is in , i.e., there is a well-defined
(nonlinear) map G GF Zad Z g which we assume
is continuous By ’ we then have x ,!’ for the solution x of

(iii) The map G :Zad is compact.
Compare (1.5) for the definition of the map G. In 4 we will consider some specific
examples involving partial differential equations and some classes of settings for which
these abstract hypotheses can be verified.

Having formulated the "dynamics" of the problem introducing the relevant
spaces and the operators L and C_F to obtain (3.15), (3.16) we next wish to
consider the various reachable and approximately reachable sets. We now define
Lit]: v [Lv](t) (so, in particular, EL LIT]) and set

T IF L[T]G + E" ad -"+ ’" Z "-- Ex such that (3.15).

Clearly, in view of (H1), the operator T is continuous. If, for arbitrary , C 2:, we
define"

K:F(Z,) "= {Ex (3.15) for z e Z,} {TFz’z e 2:,},
.= EZ, := {Ez.z e Z,},
.= + Ez) z e Z,} + t:o(Z,),

then the (exactly) reachable sets for (1.2), (1.1), and (1.4) will be K:0 K:0(Zad),
(:F (:F(ad), and ]g ]g(;ad), respectively. The corresponding approximately
reachable sets are then the X-closures: E0, K:F, K:g, respectively (i.e., K;0(ad), etc.).
We make here our second basic observation" for present purposes we may always
replace the "original" ad at our convenience with any other set lad for which the
approximately reachable sets are the same:

(3.17) 0(2:d) 0(2;ad), g(Z’d) :g(Zd), F(Zd) F(Zd).
In particular, the continuity of G assumed in (H)(ii) will mean that we can always
take Zad closed, i.e., replacing it by its closure with no loss of generality. As part of
this observation we also note that ad or, equivalently, Iad satisfying (3.17) is
of purely set-theoretic significance so the relevant topology is at our convenience.

It is sometimes convenient to introduce explicitly the intermediate space Y such
that B(u) E ad C SO ad Sad and to consider the map: u w ’= B(u)
z Zu defined by (1.2). The second "factor" of this is the (linear) solution map for
(1.2)"

(3.8) S. --, z.w z

and we now write Yad =-- Yd if ad "= SYad and ad "= SYnOd are equivalent in
the sense of (3.17).



738 INVARIANCE OF THE APPROXIMATELY REACHABLE SET

In our previous work we assumed, with , F, that the exactly reachable set
for (1.2) was invariant under all the affine perturbations (1.4) for g E V, i.e., that

(3.19) K:a Ko for each g E ,.
The natural reachability condition for us to consider in attempting a corresponding
treatment of approximate controllability would seem to be

(3.20) /Cg Co for each g ,
but we will need to strengthen half of this, the inclusion

(3.21) K:o C K:g,

to obtain the desired result. Suppose, given A’ and e > 0, we introduce the
set-valued function C(.) -C(.; ,e) defined on 1) by

Then (3.21) just means that C(g;,e) is nonempty for each e/Co and each e > 0.
Fixing /Co and e > 0, we now set

(3.23) (g) (g; , ) := inf{lzlz z e C(g; 5, )}

for g E F and then, for R > 0, define

(3.24) /(R) (R; ,e):= sup{t(Gz; ,e) z e Zad, Izlz <_ R}

To have each (g) finite (for > 0 and g e ,) just means that e ]Cg (for each
g ,) so (3.21) means that (g; ,e) < for each > 0 and every E K:o. This
does not yet mean that will be finite and we will express the desired strengthening
of (3.21) quantitatively in terms of (.) and/(.).

Returning to the condition (3.20), we finish this section with some observations
about the structure of the set Fa Va(;ad) given by

(3.25) .= e y. E0} {a e y. Li la + o
noting that (3.20) just asserts that , C l)a. Since we always assume L[T is contin-
uous, we always have Va closed in I.

LEMMA 1. )a is closed under addition and subtraction. If ]Co is convex, then
is a (closed) subspace of

Proof. Suppose g, g Fa. We first wish to show that E_C/Co where :- g- g,
i.e., for any K and e > 0 that there exists 2 ad with I- E21 g s" To start, we
have L[T_].0 + Ezo 1 L[T]g with 1 "= L[T]g + Ezo. Since 1 K:g and g E
gives/Ca c ]Co, there must be z ad such that [-Ez g e/2. Now Ezl K:o and
g a gives ]Co C a’ L[T]g+o so (_Ez-L[T]g) f:o and there must be 2 E ;ad
with I[Ezl L[T]g] E21 < e/2. Since__- E2 ( Ez)+ (Ez _-[L[T]g + E2]),
this gives I- E21 <- e as desired so /Co. This shows L[T]+ ]Co C K:o for g- g.
Reversing the roles of g, g gives --L[T]. + ]Co C )0 or K:o C f:. Combining gives
f:o f: so Va for g- g Fa a, i.e., Va is closed under subtraction.
Trivially, 0 la so g E la gives -g la whence g- (-g) g + g is in la
for g, g I)a, i.e., Fa closed under addition also.
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If we only show that convexity of/o implies that of la, then the algebraic closure
above shows that a is a subspace. Suppose, then, is any convex combination of
)a so 0 cjgj with cj > 0, cj 1, gj EVa. For any E/Co we have L[T] "+-

cj(L[w]gj -F- ). As each g Va we have each (L[w]gj + ) e/o so convexity of/o
gives (L[T]/-+- ) /0. This, for each /(:0, gives/C C/0. By Lemma 1 we have
also - cj(-gj) a convex combination of )a so [L[T]_(-0) + ] e /o for each
/Co, i.e., e [LIT].0 -+-/0] --/.0" Combining gives/o
Note that closure under addition shows that a is always unbounded (except for

the trivial case: l {0}), so ad must then also be unbounded. Note that/o will
certainly be convex if Zad is convex.

4. Reachability. At this point we begin our analysis of approximate reachability
by proving the trivial part of invariance: if, for each affine perturbation by g , :--
G;ad in (1.4), one can reach no state which is not already approximately reachable
for (1.2), then the nonlinear perturbation (1.1) can also produce no new reachable
states.

LEMMA 2. Assume (H1)(ii) and the reachability inclusion

for each g ,,
i.e., -F- L[T]g /Co for lo, g ,. Then ]F C

Proof. Since /(:F qe>0[/CF -+- Be] with Be := ( X’II < e}, we have
if and only if for each e > 0 there is some e Tze )F with Ie 1 < e. Setting
ge := Gze, we then have Tze L[w]ge -t- Eze so e /Cg. This shows that we always
have

Now, if one has (4.26), then the right side of (4.27) will be in Iqe>o[/(:o + Be] -/o as
asserted.

For comparison we note that our previous work [11], [12], [15], [16] obtained
essentially the following result.

THEOREM 1. Let 31"ad be a Banach space 3 and assume (H1) together with
the growth condition

[C zlv <_ Co +

for some < 1. Assume the reachability invariance (3.19)")g )o for each g
Then F o, i.e., the exactly reachable set is then invariant under the perturbation
by F.

(Of course this implies invariance of the approximately reachable set: we also have
1 1o.)

Proof. We only sketch the proof here to fix the ideas; for details, see [15]. From
the inclusion/(:g C o, we can argue as in Lemma 2 to have/CF C/Co. The principal
effort must go into showing that one also has the reverse inclusion/Co c/CF.

3 In the previous papers .ad was a Banach space with B linear. The modification to the
present formulation requires no essential change in the ideas at this point since we can topologize g
by identification with/4/Af(B) when B is linear.
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The proof begins by noting equivalence of (3.19) to the range condition

(4.29) L[T] C EZ.

Then the nullspace of the continuous linear map:

{z}] + Ez" X

will be the graph of a linear operator: g {z} which is bounded by the Closed Graph
Theorem. By the Michael Selection Theorem [10], there is a continuous right inverse
to the canonical projection: z {z}: Z - [Z/Af(E)] which may be taken to be of
linear growth.

Composing, for any fixed E E0, there is a continuous selection C C 12 Z
satisfying

(4.30) L[w]g + E[Cg]

and a linear growth condition: ICglz O(Iglv ). It is an important point that C
depends only on the range inclusion (4.29) and not at all on F.

We then consider the map: Z Z given by

CGF’zg’-- GFZ’-- Cg

and note that this can be restricted to an invariant ball by using the linear growth
of C and the sublinear growth condition in (4.28). Using (H1)(iii), the Schauder
Fixpoint Theorem applies to give the desired result since using a fixpoint 2 of CG
in (3.15) just gives TF- . Vl

Our intention here is to use, for the analysis of the approximately reachable set, a
modified version of the argument used above for the exactly reachable set. We already
have Lemma 2 and have noted that the real problem is to determine when/o C/F,
which is just the question (Q) of the Introduction. It is not difficult to see, much as
for (4.27), that we have

(4.32) /F

where (I)(, ) "= {z e Zad" z e C(Gz;,)}. Our argument, then, is to show that the
set-valued map" z - C(Gz;,) has a fixpoint (so (I)(,) is nonempty) for K:0
and all > 0. We take the inclusion Ko C Kg of (3.20) as a starting point but, again
as noted, we will be forced to strengthen this.

The critical difficulty with this program is that (4.29), with Zad a Banach space,
was essential for the applicability of the theorems used above to obtain the essential
continuity and linear growth for C and so, with the growth condition (4.28), exis-
tence of an invariant ball for the mapping CGF. The various results in this paper
correspond to ways of handling this difficulty.

We have already made our third basic observation: for present purposes we may
not only fix (arbitrary e /0) but also (arbitrary > 0)" now considering
C C,e G ad, we weaken (4.30) to require only that

One easily sees that having C(g; ,) nonempty (for each e/0 and each > 0) is
precisely equivalent to the inclusion/(:0 C Eg. Given this and the compactness of CJF,
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it is not too difficult to construct C C,e continuous giving (4.33) for each g E ,.
Unfortunately, without strengthening this condition we cannot obtain a growth rate
for C C,e which, with (4.28), would give a bounded invariant set. (Under the
strong assumption that EG, is known to be precompact in X, we do, however, have
Theorem 6, below.) Our basic approach is embodied in the following theorems.

THEOREM 2. Assume (H1). Let "ad be convex and, for some X and > O,
assume that there is some R R(, ) such that

(4.34) Z(R; < R.

Then there is some 2 ,gad (with 121 <_ R) such that I- TF21 <-- 2e.
Proof. By (H1) we have G, L, TF continuous so there is no loss of generality in

taking Zad closed in , (i.e., replacing it by its closure). Now define

(4.35) .= {z e lzl < R}, := {az z e

Note that (i) ZR is closed and convex in Z, (ii) R is precompact in by (H)(iii),
and (iii) C(g) "= Z Nt:(g; , ) is nonempty for each g 6 g since v(g) _< D(R) < R.
By (ii), we can find a finite set of "centers" {gj "j 1,..., J} such that

(4.36) m!n{Ig gjl} <- 5 := e/211L[w]l for each

and by (iii), we can find zj CR(gj) for each j. A standard construction gives a
continuous partition of unity subordinate to the covering of a by 25-balls centered
at {gj}, i.e., continuous scalar functions j on V such that

y>_O, y(g)-lforgeGa, j(g)>Olg-gjl_25.

We now define C- C,e by

and note that this gives C "a --, a since ,R is convex. Clearly C is continuous
and, as each zj ((gy), a simple computation from (3.22) gives

(4.37) I- [I[T]g + ECg]Ix

_
2e for each g e .

From (H) we have CG :a ---, :a continuous and compact so, applying the
Schauder Fixpoint Theorem, there is a fixpoint 2 a, i.e., we have C 2 for

G2. Putting g gives L[w]g + ECg LIT]G2 + E2 =: TF2 so (4.37) gives
I- IF21 -- 2e as desired.

THEOREM 3. Assume (H) with (4.28) and that ad is convex. Now suppose, for
some 1o and each > O, that one has a growth rate

(4.38) (g) <_ o + lgl for g e ,
with < 1/. (Here, is defined as in (3.23); the numbers 50,, may depend on, .) Then one has F.

Proof. Substituting (4.28)in (4.38) gives

< Co + C [Co + O(R’) o(R)
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as < 1. Hence one can always find R R(, ) for which fl(R) < R so Theorem 2
applies. K]

Note that if we have this for every E Ko and also have the hypotheses of
Lemma 2, then we have shown, as in the title, invariance of the approximately reach-
able set under the nonlinear perturbation F, i.e., (F (0.

The condition (4.28) is the same growth condition for the nonlinearity as was
imposed in Theorem 1. Note also that the condition (4.38) implies, in particular, that
u is finite and so quantitatively strengthens the simple requirement of approximate
reachability for each (1.4)"

(4.39) C )g L[w]g + )0 for each g {. := {(rFZ" z Zad}

which, for every 0, would just be (3.21). We can also use this approach--
more-or-less unchanged, with proper formulation- in a somewhat more complicated
nonlinear setting in which the linear operator A is also taken to depend on x, u.
Without developing this further at the present time, we provide the formulation here
in the hope that it will also add to the reader’s insight into the essential aspects of
the original argument above. Clearly one might continue to extend the same basic
ideas.

We now suppose that we wish to analyze approximate reachability for an equation
of the form

(4.40)

by comparison with similar considerations for the family of (presumably simpler)
equations (1.4); now, A ranges over a suitable set I of linear operators and g ranges
over G. As above, we assume that A(x,,, u) MI and f(xu, u) {i for each solution
x of (4.40) as u ranges over ,ad and that that solutions are here also taken in
A" := C([0, T] - A’) where A’ is the state space. We assume that there are well-
defined maps

M .ad --+ d U t-- A xu u

LIT]" lad ,/1[ { "-+ X [it, A, g] x(T)

given by (4.40) and (1.4), respectively. We will take Had to be a convex subset of a
suitable Banach space and take MI, to be compact Hausdorff spaces; we assume the
topologies can be taken so that LIT] and M are continuous. Much as before, we then
introduce

C(A,g;
u(A,

{it e Uad’l- L[TI[U, A, g]l < },
inf{lul’u e C(A,g;,e)},
sup{v(A,g;,a)" A e MI, g

For u(A, g; , e) to be finite just means that C(A, g; , e) is nonempty and this will be
the case, for the given E X and every e > 0, if and only if this is approximately
reachable for (1.4) using this A .dl. This, of course, would not be sufficient in itself
to ensure finiteness of R(,e) unless, for example, one were to know that u(.; ,e)
would be upper semicontinuous on the (assumed) compact set ,dl x .

THEOREM 4. Let the setting be as assumed above and suppose, for some fixed
A’, that we have R(,e) < c for each > O. Then this is approximately

reachable for (4.40).
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Proof. Choose some R > R(,) and restrict attention to the ball/JR "= {u E
1Jad’lUl <_ R}. We can then construct a continuous map C C,e "[,dl x ] /JR
such that, corresponding to (4.33), we have

I L[T][C(A, g), A, g]Ix -< 2
for each [A, g] E x g. We omit detail since this is much as in the proof of Theorem 2

what corresponds to (4.36) is that we can find, for each [A, g], a control ]4R N
C(A, g; , ) and then a neighborhood Af A/’(A, g) on which the continuous function
L[T][, .] varies by no more than in X-norm; there is then a finite subcovering by
such neighborhoods, and one can find a corresponding partition of unity.

Note that the continuity of ( and the compactness ofIx make the composition
CC a continuous, compact selfmap of the bounded convex set/MR. The Schauder
Fixpoint Theorem applies to ensure a fixpoint fi for which (4.40) gives ]-x(T)] <_ 2.
This, for each > 0, ensures the approximate teachability of this for (4.40). Z]

5. Further results. Having verified (HI), the principal problem in applying the
general results above is, of course, the difficulty in verifying a condition such as (4.38)
to enable one to restrict attention to some R. There are, however, certain cases in
which one can proceed. We note one in which ;gad is the whole Banach space Z and
another in which the nonlinearity F gives only a compactly restricted perturbation of
the final value.

Since we only consider p(g; o, ) for 0 e ]Co so o Tzo, we can introduce

P(; ):= inf{Iz’ z’ e [z0 Zad], I-- Tz’I <- }
and have u(g;Tz0,) (L[T]g,). Observe that if we consider Zad Z, then
scaling gives P(A, ) Ap(, /A) so (4.38) is equivalent to requiring that

{inf{ (1-#). ()"= limsup e- Izl’z e Z and
e--0 z

should be bounded for E {L[T]g g in some -bounded subset of G, }. It is possible
to show that u, is actually a norm intermediate between the X-norm on 0 (v 0)
and the obvious induced norm: I1 := inf{]zl Tz } on ]Co (v 1). Thus,
finiteness of u,(L[T]g) is a stronger condition than just requiring L[T]g e o but is
weaker than the exact reachability condition of Theorem 2, i.e., that L[T]g ]Co. We
will not analyze u, directly but will, instead, use the established theory Banach space
interpolation (el., e.g., [4]).

THEOREM 5. Suppose Zad Z SO ]CO =: XO is a (closed) subspace of X. Assume
(H) and suppose4 that, for some ) > O, one has

(5.41) L[T]g A’# for each

where X is an interpolation space [X0, X]# with X "= o (taken with the norm:

I11 "= inf{Izl" Ez for e X1 ]Co}; note that here Izl is the Z-norm) and
Xo "= o with the X-norm. Let F be a nonlinearity satisfying the growth condition
(4.28) for some < . Then the approximately reachable set ]iF i8 precisely ]Co.

4 Given F, the hypothesis (5.41) with ) > is somewhere between taking z0 0, which just
reduces to the (inadequate) hypothesis (4.39), and taking 1 which is equivalent to the exact
teachability inclusion (4.29) used in Theorem 1. Note that it is easiest to obtain (5.41) if one takes
V as small as possible consistent with (H).
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Proof. Since (5.41) gives L[T]V C A’I C X0 and these are subspaces, we have
(4.26) so f:F C )0 by Lemma 2. As usual, we are primarily concerned with the
complementary inclusion.

While there are various possible interpolation functors, the extremal property of
the K-functor (see, e.g., Theorem 3.9.1 of [4]) gives a uniform estimate:

(5.42) s-K(s;) <_ CI[o (s > O, E Xo)

(C depending on the choice of]. ]o) where the function K(.) is defined by

(5.43) K(s; ) "= inf{15ol + sisals" 5o +5 5, 5 e
inf{slz] + 15- Ezl" z e

Fixing e > 0, define

For any e Xo set p "= Ilo and consider s e/w in (5.42), (5.43) with w > w().
From (5.42) this gives K(s; ) < e so, from (5.43), there exists z Z such that

(Here the first is the X-norm while the second is the Z-norm.) Since we may take w
arbitrarily close to w(), this shows"

(5.44)

for e Xo.
Note that (5.41) implies, by the Closed Graph Theorem, continuity of LIT] as a

linear operator from l/to A’o, i.e., existence of a constant ( such that IL[w]glo g (71g
(Igl is the Y-norm). Now fix o Ezo e /o A’I and, letting L[T]g in (5.44),
note that I- Ezl <- e if and only if

-[Lirla + E(zo z)]lx _< e so Zo z =" z’ ((g; o, ).

From (5.44), any w > u(l i lalo) can be used to estimate z’ so

(5.45) inf{Iz’l" z’= zo- z e
_< Izol +inf{Izl’zo- z e C(g;o,e)}
< I ol + [ce-(z-)]l/’[Olgl]/

We recognize this as (4.38) with 1/0; the assumption 0 > f gives f < 1/f. Thus
Theorem 3 applies to show )0 C F and one has the desired invariance: EF ]0. El

COROLLARY. Stppose VO i8 any space for which LIT] Vo -* X is continuous and
121 is any space for which the exact teachability condition holds: {L[T]g g E V1} C
1o. Assume (H1) with ll taken as )o := [2o, 1]o for some 0 > f; assume (4.26)
and (4.28). Then one has ]F 10.

Proof. Let L be L T_IT] _[,] 1/0 Xo := /o and let L be 1/1 A’I :=
Eo; the latter is bounaea oy the Closed Graph Theorem

[W.] L[T]
since L[T]I C ,1. Then

boundedness of T Vo A’o "= [A’o, A’I]o follows from interpolation theory [4] and
Theorem 5 applies. El

A somewhat modified fixpoint argument provides our final result.
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THEOREM 6. Assume (H1)(i),(ii) and (4.26). Let Zad be convex and closed in
and assume we have (3.21) for each g E g, :- (GFZ" Z Zad}. Finally, we assume
that L[T], "= (L[T]GFZ z gad} is precompact in X. Then, one has )F )0"

Proof. By Lemma 2 we have F C )0 and, as earlier, need only show e )F for
each fixed o K:0.

Note that (3.21) just means that [o- LiT]g] 0 and this, for each g E G,,
means [o- LIT]G,] C K:o. As K:0 :- Ead is convex, since Zad is and E is linear, we
have X, "= 5(0 L[T],) C 0. On the other hand, we note that X0 := -5(L[T],)
is convex and is compact by the precompactness assumption so A’, is compact since
we easily see A’, o Xo.

Given any e > 0, one can then find a finite covering of A’, by e-balls which may be
taken centered at (j "j 1,..., J} with each j ]Co N A’, so there exist zj
such that Ezj . As in the proof of Theorem 2,we can find a continuous partition
of unity subordinate to this covering:

and then define C -C by

noting that C tad for A’, by the assumed convexity of A’ad. Clearly C A’, ---,

ad is continuous and, as earlier, a simple computation shows that

(5.46) [- E([ <_ e for E X,.

As already noted, for any z ad we have [- L[T]GZ ,, so the map:

- z := C [ L[T]GZ]
is a continuous selfmap of the compact, convex set X,.

By the Schauder Fixpoint Theorem this map has a fixpoint so, setting 2 "= C 6

;ad_ we have -L[T]G2. Using (5.46), we have I--TF2[ [_-[L[TIG2+T2][z
I- E21 <- e. Since this is possible for each e > 0, we have 6 F C F. Since that
holds for each 6 0, we have f:0 C F. D

6. Approaches to the hypotheses. Finally, we consider the verification of the
abstract hypothesis (H1) for more concrete settings e.g., such as those presented
in 2. We begin by noting that in connection with (H1) (ii), (iii) there may be an
advantage in introducing an auxiliary function space Y.

LEMMA 3. Suppose embeds continuously in a space which is compatible with
in the sense that the set Y , is dense both in and in , with

Yk eynx, Yk Y---, Yk -x=eynx.

Assume that, in addition to (H)(i), the linear operator L is continuous from V to
and that the nonlinear map F is Lipschitzian from to )) with Lipschitz constant
such that CIILII,,y 0 < 1. Then:

(i) One has (H)(ii) with GF Lipschitzian.
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(ii) If (in addition to the original hypotheses) one has a growth condition

(6.48) IFyly <_ ao / alyl

for F, then GF satisfies the growth condition (4.28).

(iii) If (in addition to the original hypotheses) one has

(6.49) {F(Lg + z) g e g0, z e
for each compact subset o

then GF(Z0) is precompact in . (Note that if (6.49) holds .for each bounded subset
Zo of Z, then (iii) gives (H1)(iii); a sufficient condition for this, in view of (i), is
that the embedding g is compact.)

Proof. Under the assumption < 1, the map: y [LFy + z] is a contraction
on Y so there is a unique fixpoint y Y(z), the solution of (3.15). One easily
obtains the Lipschitz constant 1/(1- ) for the solution map Y(.): z
and composing this with the Lipschitzian maps ’--, Y on one side and F on the
other gives the desired Lipschitz continuity for CF z Fy --, V. This gives
linear growth for Y(.) Y and composing that with (6.48) gives (4.28). The
compactness assertion (iii) is an immediate consequence of Lemma 2 in [14], applied
to the uniformly contractive family of maps: g F(Lg / z) (z E g0) whose fixpoints
give (F(Z0). W1

Note that our treatment of these problems presupposes well-posedness for the
equations and, for our application of fixed-point arguments, convexity of /’ad and
suitable compactness.

We now turn to a somewhat more general consideration of abstract settings giving
(H1). For this consideration our present concerns are essentially identical with those
of [15] and we recall the relevant discussion there in providing classes of settings
for which the relevant well-posedness and compactness can be verified. For this we
suppose A(.) generates a fundamental solution (evolution system) $ i.e.,

(6.50) (i) S(t, s) is a bounded linear operator on A’ with

IIS(t,s)ll _< M for 0 _< s _< t _< T;
S(t, s)S(s, r) S(t, r) for 0 <_ r _< s <_ t <_ T;
S(t, s) ---. as t s+ for e X;
OS(t, s)/Ot A(s) for t s and e :D :D(A(s)).

(ii)
(iii)
(iv)

This permits us to introduce the notion of a mild solution [9] of (1.2) or (1.4): the
linear map L will be given, in terms of S(.), by

(6.51) [Lvl(t) Ltv "= S(t, s)v(s)ds for 0 _< t g T

for suitable v(.). In this formulation, (1.1) corresponds to the nonlinear integral
equation5 (abstract Volterra equation of second kind):

x(t) 2(t + S(t, s)[f(s,x(s)) + [B(u)](s)] ds

5 Here 2(t) is the solution of the equation Az with the original initial conditions. With our
assumption that the problem has been formulated so as to have homogeneous initial conditions, this
term vanishes: 2 0.
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This is, of course, just the operator equation (3.15).
Now introduce (reflexive) Banach spaces Y, and spaces 1 and Y of Y- and

-valued functions, respectively, on [0, T]. We assume , are compatible with X
in the sense that the set Y X is dense both in Y and in X with

vk NX, vk v, vk VNX

and similarly for [,X]. It will thus be possible to make suitable extensions or
restrictions of S(t, s) so, e.g., the formal definition (3.14) may make sense for v in
or in .

We note that [15] provides four alternate sets of more concrete conditions on
X,, Y, S(..), f(..) under which one can verify (n). For convenience of reference we
present these here, converted to our present notation. For this, we take , to have
the form

(6.52) := LP([O,T] ), Lp’ ([0, T] )

and introduce another possible space compatible with X. We assume:
(C) Let each of the following hold:

() llS(t,,)ll,_ p, (t ), IIS(t,,)ll_ p (t ),
IIS(t,,)ll,_ , (t ,), IIS(t,,)ll_ (t ,);

(ii) [IS(t, s) S(t’, s)[[_z [S(t, s) S(t’, s)[[_z
t<t<Twithe=e(h)0ash:=t-tfor0st e,

0;

Is(t, )[/(, ) -/(, ’j I (t )l ’where

Pv ELq, p ELq’ Lq,
withl<p, p<oc, l</<p, and

ELq’, a E Lp, p EL1,

1/p + l/q= l/p’ + l/q’= l; 1/p + l/(l, 1/p’ + l/ < 1+1/.
To the set of conditions (C1) we may adjoin any of four alternative conditions:
(C2) Let any one of the following hold:

(i) For some Banach space 3 3) such that the embedding:
3) is compact, assume that for small 5 > 0 there exists M such
that

[[S(t,t- )[ M for t T.

(ii) For some Banach space ii such that the embedding
Y is compact, strengthen (C)(i) by requiring:

[S(t, s)[_ (t- s) ( replacing

(iii) For some Banach space such that the embedding:
is compact, strengthen the growth condition in (C1)(iii)

by requiring

y such that X y y is a compact embedding,
assume that for each > 0 there exists a Lp for which, (t, ), ,(t).
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LEMMA 4. Let X, 142, V, etc., be as above and assume (C1); we will norm ,g :=
Lid2 so L is an isometry. Then one has (H1)(i) and (n)(ii) as well as the growth
condition (4.28). If in addition, we assume (C2) (i.e., any one of the four alternative
conditions presented), then G is also compact:

+ (c:)

Proof. See [15] for details. We note here that only (C)(ii)is used to give (H)(i)
and that (C)(i),(iii) give a solution of (3.15) initially in 3 :- LP([0, T] y) from
which one obtains g := f(.,x(.)) e 12 by grasnoselskii’s Theorem (cf., e.g., [2]). One
then has x e ,1’ from x Lg + Lw and (H1)(i). The four alternative arguments for
compactness of G from (C2) use, among them, the Aubin Compactness Theorem [1],
the Arzela-Ascoli Theorem, and an argument from [14]. rn

Remark. The conditions above do not apply directly to boundary control (as in
Examples 2 and 3) but the arguments in [15] may be easily modifiable to treat this sit-
uation. Indeed, the arguments in [15] are fairly standard, using convolution estimates
from the form of (C)(i) as applied to the representation (6.51) and the modification
simply amounts to the corresponding use of a rather similar representation [3]

z(t) [Lw](t)= fo [(-A)oS(t s)][(-A)l-OF]w(s)ds

for the solution of

(6.54) Az, Mz w := B(u) E Yad.

Here, A (whose domain formally involves imposition of homogeneous boundary con-
ditions) is the infinitesimal generator of an analytic semigroup S on A’ and M is the
appropriate boundary operator; we have introduced the so-called "Green’s operator"
F:wvby

-Av 0, Mv w.

We then use regularity theory for the problem defining F, the relation of the Sobolev
spaces H2 := [L2, H]2o to the domain of (-A) (e.g., [7] or [8]) when A is a second
order elliptic operator, and the estimate (2.9).

We now turn to consideration of the convexity of Zad and ask: How restrictive an
assumption is this? We have already noted that we may replace .lad by any equivalent
set ad satisfying (3.17) and we shall now see that we may quite reasonably expect
to find such a closed convex set ad" We will actually work with Ytad (cf. (3.18))
and will find a natural setting for which ad - tad -d"dad (’’d closed convex
hull in Y). We first need a preparatory result, which we "dignify" as a theorem.

THEOREM 7. Let Yl2 have the form LP([O,T] 142)[1 _< p < oc] with I/Y satisfying
the technical hypothesis that6

(6.55) 142, := n([0, T] l/Y*) is dense in

Suppose a subset 14o C ) has7 the segment property:

6 It is known to be sufficient for this that lA; be reflexive or, somewhat more generally, that l/Y
have the Radon-Nikodym Property; cf., e.g., [6].

7 Typically, lgad has the form: lgad {u E ld u(t) bled(t) C bl a.e.} and so satisfies (SP) if,
say,/g := LP([O,T] bl) In this case, if B is defined pointwise in for (1.2), etc., then (SP) is
immediate for "ad"
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(SP) wo, weo=wse}4o (seS={densein[0, T]})
where, given wo and w, we set

ws(t) :-{w(t) for0<t<s; wo(t) for s t T}.

Then , the sequential weak closure of o in , is just the closed convex hull
o

Proof. We set Es "= {finite unions of intervals in [0, T] with endpoints in 8}; for
a Es, let X be its characteristic function and then for To, w o set

wa {W on a; w0 on [0, T]a} (1 X)wo + aWl
so, e.g., w as defined for (SP) is now W[o,s). Note that repeated application of
(SP) shows that each such w must also be in o. Note, also, that (SP) for o im-
mediately gives (SP) for its sequential weak closure " just consider approximating
sequences from o. Since o, we may assume, with no loss of generality,
that o is already (sequentially weakly) closed and only show that (SP) then implies
its convexity.

Now observe that for any constant (0, 1) there is a sequence {an } C Es such
that {Xa} is weak-* convergent to the constant function in L(O,T). To see this,
just partition [0, T] into n equal subintervals and (noting the assumed density of 8)
choose a sub-subinterval in each with endpoints in and having length approximately
OT/n; this gives an. The weak-* convergence to is then an easy computation.

Given any To, Wl o and (0, 1), we note, by repeated application of (SP),
that each w [Xw + (1 X)wo] is also in o. For any , the -duality
product {, Wl- w0) (taken pointwise in t) is a function in LB(O,T) C L(0, T) so for
the -duality we have

Zz<, Wl To> dt + <, To>
+

<, + <,
<, + (1

Since this holds for each in the dense subset , C *, it follows that w
[Wl + (1 -)wo] (weak convergence in ) so this is in o. This, for each such
To, Wl, , is just the desired convexity of o.

COROLLARY. Assume (H1). Let , ad be as in Theorem 7. Suppose S’w
z" , as in (3.18), is continuous with ES X compact and the graph
of GF o S is closed in sw x (’sT indicates the sequential weak topology). Then
ad d ":ad in the sense of (3.17).

Proof. Since ad C d, we automatically have similar inclusions in (3.17). It
is the converse which is effectively a corollary to Theorem 7.

Fix e F(Z:d where Z:d Sinbad] SO for each (fixed) > 0 there is
some w we ad such that ]- TSw] < ; set z Sw and g Gz. By
Theorem 7 there is then a sequence wk in ad with wk w. Since {zk := Sw}
is bounded we may, by (H1)(iii), extract a subsequence (still denoted by wk) with
gk GZk in . The closed graph requirement then ensures that # g so, in
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particular, L[T]gk L[T]g in A’. Since we also have ESwk - ESw by the assumed
compactness, this gives TSwk TSw. This shows that for some wk E ad we have

I- TSwkl < 2s and that, for each > 0, proves that we have E K:F(Zad). Of
course this applies for each f:F(ad). The arguments for f:0 and f:g are similar
but simpler.

Note that, with only a small modification of the hypotheses here, one can show
that the closures (say, in ,1") of the solution sets for (1.2), (1.4), (1.1) will be the same
for ad as for its (closed) convex hull Yad"
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SOME RESULTS FOR AN OPTIMAL CONTROL PROBLEM WITH
SEMILINEAR STATE EQUATION*

FAUSTO GOZZIt

Abstract. A control problem governed by a semilinear state eqution depending on a small parameter
e is considered. It is proven that, for e sufficiently small, the associated Hamilton-Jacobi equation has a
unique strict solution; consequently, the control problem can be solved by dynamic programming method.

Key words, optimal control, semilinear state equation, Hamilton-Jacobi equation
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1. Introduction. We are concerned with a dynamical system governed by the
following semilinear state equation:

(SE)
y’= Ay +f(e, y) + u on [0, T],

y(0) x, xH,

where A:D(A)c H- H is the infinitesimal generator of a strongly continuous semi-
group in a Hilbert space H, e is a real parameter, and f is a smooth function from H
to H which goes uniformly to zero (with its derivatives) when e-0; T is a fixed
positive constant.

We consider then the following optimal control problem (P):

(P) (1.1)

Minimize the functional

J(x, u)-- g(y(s))/-lu(s)l ds+qbo(y(T))

over all controls u L2(0, T; U),
where y is subject to the state equation (SE).

Here g and bo are smooth convex functions from H to H.
We treat this problem by the dynamic programming method studying the corre-

sponding Hamilton-Jacobi equation:

Ct( t, x) 1/214x t, x)l 2 + (Ax +f(e, x), ,( t, x)) + g(x) 0

(HJ) ’q’(t, x) [0, T] D(A),

,(T, x) 6o(X) Vx n.
If we set e =0, g(x) =1/2(Mx, x), and Co(X) =1/2(Pox, x), then the problem (P) reduces

to the well-known linear regulator problem, which has been extensively studied (see,
for instance, [7]). However, for the applications, the use of a linear state equation is
very restrictive.

Moreover, if g and b0 are general convex functions and e =0, the cost J is a
convex function on L2(0, T; H) and (HJ) admits a unique strict solution on [0, T]
(see [2] and [3]). We remark that if e 0 then J is generally not convex and the
method used in [4] only gives the existence of a local solution of (HJ) in some interval
[0, ].
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The viscosity solutions approach has recently been generalized by Crandall and
Lions (see [5]) to cover infinite-dimensional problems. They can prove, under suitable
hypotheses, existence and uniqueness of a viscosity solution (h of (HJ). However, (h
is not regular, and the classical method of dynamic programming based on the solution
of the closed-loop equation,

(1.2)
y’(s) Ay(s)+f(e, y(s))- dp( T- s, y(s))

y(0) x, x6H,

on[O, T],

cannot be used.
When the semigroup {etA}t>=O is compact it is possible to study (HJ) by variational

methods (see 1 ], for instance). In this case the existence of a feedback optimal control
can be proved; however, the solution b is still not regular and the closed-loop equation
(1.2) cannot be directly solved. For other results in this direction see [9].

The aim of this paper is to find, for [el sufficiently small, global regular solutions
of the Hamilton-Jacobi equation (HJ) and then to solve the control problem (P) by
using the classical argument of dynamic programming.

More precisely, under suitable hypotheses, for every given R > 0 we prove that
there exists g(R)> 0 such that for [e[-< g(R) equation (HJ) has a unique solution (he
in [0, T] x ER, where ER is the closed ball in H with radius R.

Then we fix an upper bound r0 for the norm of the initial state x, and we can
show that, if e is sufficiently small, the closed-loop equation (1.2) has a unique strong
solution y with supto,-3[y(t)l<-Cro for a constant C_>-1 and that there exists a
unique optimal control u such that supt[o,-llu(t)[<--_M(ro) where M is a given
function (0, +)--)(0, +o) depending only on the data. Moreover, we prove that the
optimal pair (u, y) is a regular function of the parameter e and we give an expansion
in a neighbourhood of e 0 in a special case.

Our hypotheses are that g and 4)0 are convex and sufficiently regular (two times
differentiable), g is strictly convex, and A-wI is strictly dissipative for some (o > 0.

We sketch briefly the idea of the proof of the main theorem. We consider the
approximating equation"

(HJ)

cht(t,x)=-l (ch(t,x)-ch,(t,x))+(Ax+f(e,x), dpx(t,x))+g(x)

V(t, x) [0, T] D(A),

6(0, x) 4,o(X) Vx e H,

where 4 is the convex regularization of b (see next section). Here the "bad" term
Ithx(t, x)12/2 is replaced by (4)(t, x)-c(t, x))/a (see 2).

When e 0 the solution (h of (HJ) is convex and it is possible to show that b
converges to the solution of (HJ) as a -)0 (see [2] and [3]). We are able to prove that
if e is sufficiently small, then the solution still exists globally and it is convex. Thus
it is possible to show the existence of the limit as a -)0.

2. Notation and preliminary results. We begin by specifying the notation we will
use throughout this paper. Let H be a real Hilbert space with norm [. [/q and scalar
product (.,.)/_/. With obvious modifications all the results of this paper can be adapted
to complex Hilbert spaces. We denote by (H) the Banach algebra of the linear
bounded operators from H into H. By E(H) we denote the set of all Hermitian
operators in (H), and we set

Z+ {T (H); (Tx, x)>-O, VxH}.
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Now let X, Y be two Hilbert spaces. Iff" X Y is a k-times Fr6chet differentiable
function, we set, for every r > 0,

(2.1) Ifl. sup {[f(h)(x)[" Ixl--< r}, h 0,.. ", k

(2.2) Ilf llh, SUp { Ifh(x) fh’(y)l }Ix- Yl
"lxl, lyl <- r, x y h 0, , k.

Note that if f is an (n + 1)-times Fr6chet ditterentiable function we have

(2.3) Ilfll.. Ifl .+ 1,r

For k N we define

Ck(X, Y) {f X Y, k-times continuously Fr6chet ditterentiable"
(2.4)

Iflh, < +oe, Vh 0, , k, Vr > 0},

(2.5) CkLip(X, Y) {f Ck(X, Y)" IIf[[ ,r < +oe, Vr > 0}.

If Y= R we write C(X) instead of C(X, R).
We remark that C(X, Y) and CkLip(X, Y) are Fr6chet spaces with the seminorms

h=O [flh, and Ilfll,r+Yh=olflh, (reN), respectively, and we say that f,f in
C(X, Y) if If, -fl, - 0 for 0,. , k and for every r > 0.

Now let b’[0, T] x HR and k>- 1. We say that b e B([0, T]; Ck(H)) if b
satisfies the following conditions"

(i) suPt[O,T] ]((t’" )]h,r < -t-Q0, for h 0," , k, for all r > 0,
(ii) 4" [0, T] H R is continuous,
(iii) bx "[0, T] x H H is continuous;

and, if k _>- 2,
(iv) ohf/OXh is strongly continuous for h 2,..., k, that is, the map

[0, T] x n H, (t, x) (Yl Yh-1)
OXh

is continous for all (y,. ., Yh-1) gh-.
Analogously we say that 4 B([0, r]; Clip(H)) if b e B([0, r]; Ck(H)) and

sup II(t,.)ll,</oo r>0.
te[O,T]

Moreover, we say that 4, - 4 in B([0, T]; C’(H)) if

(2.6) sup Ick(t,.)-ck,(t,.)l,,r-O fori=O,...,k, Vr>O.
te[O,T]

Finally, setting Y-,r={xH, Ixl<-r}, we similarly define the spaces C(E),
CkLip(--r), n([0, T]’, ck( r)), B([0, T]; CkLip(r)), and we set ][c,(r)= Z k,=o [b[,,, and
141 ci(r)--Ilc"()/ for 4 e ck(Er) and 4 e CkLip(Er), respectively.

Now we consider the regularization of a convex function (see [2, p. 5]) and we
recall its fundamental properties, which we will use in the following.

We denote by K (respectively, KR) the set of all convex functions b e CI(H)
(respectively, CI(ER)) such that b’(0)=0.

For b K we set

(2.7) b(x)=min 4)(y)+-alx-yl:Z;yH cR-{0}, xH.

We remark that the minimum exists and it is unique, due to the convexity of b.
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Moreover, setting

(2.8) x (1 + a6’)-l(x), a R, xH

we have

(2.9) (x) (x)+ I’(x)l2,

We now collect the properties of , we need, which are proved in [2, pp. 35, 42].
LEMMA 2.1. Let , K ] Cip(H); then , K f’l CZLip(H) and thefollowing

estimates hold for every R > 0:
(a) [ce[i,R [)[i,R, for 0, 1, 2;
(b) 2,R ( 2,R

(c) I ql,.R ----< Ib dpli,R, for i= O, 1;

LEMMA 2.2. Let 49 K CZLip(H), and set

(2.10)
1

[2.R,(x) =1 ((x)- 6(x))- I’(x)

Then for R > 0 we have
(i) [Ra,4]O,R < 11 =
(ii) [R bJl,R < a([[ 2

We observe that the same statements hold if K is replaced by Ke.
Remark 2.3. It is not dicult to show that if , K Clip(H) (k3), then

analogous estimates hold true for [[/,e, [- [,e, and [R,6[-l,e, i= 3,’’., k.

3. Global existence and uniqueness for the Hamilton-Jacobi equation. Consider
the following Cauchy problem:

(HJ)
,(t,x)---1/2lCx(t,x)12+(Ax+f(e,x), bx(t,x)>+g(x)

4,(0, x) 40(x) /x e/4.

V(t, x) 6 [0, T] x D(A),

Our hypotheses (as we said in the Introduction) are the following:
(i) A" D(A)c H- H is the infinitesimal generator of a strongly continuous

semi-group in H and there exists w R subject to

<Ax, x) <- olxl z Vx D(A).

(ii) f(e, .) Cip(n H), for all eR;f(e, 0)=0, (Of/Ox)f(e, 0)=0, for all eR;
f(e, x) -,o 0 uniformly on Cip(H, H).

(iii) g, 49o Cip(H)f-I K; <g"(x)z,z>>-zlzl 2, for all x, zH, for/x>0 fixed; that
is, g is strictly convex on H.

We recall this result about (SE).
PROPOSITION 3.1. Let x H, u L2(O, T; H); let 03 max {w, 0}. Assume that

(i)-(iii) hold true. We define

r= 2 e(Ixl. +/- lUIL2(O.T;.))- r(Ixl, lul).

Then there exists eo(r) >0 such that, for tel < eo, (SE) has a unique mild solution
y C([0, T]; H), and we have

(3.1) ly(t)] <= r and, ifoo > 0 ly(t)l Ix[ + lul L=<O,T.,.).
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Sketch ofproof It is a standard application of contraction principle and Gronwall
lemma (for similar arguments see [6] and [8, Chapter 6]). We consider (SE) in the
following integral form:

(SEI) y(t) ex + e(-[u(s)+f(e, y(s))] ds (Ay)(t).

Let B {y e C([0, T]; H); lYl--< r}. By simple estimates it follows that for e suciently
small, A defined in (SEI) is a contraction map on B. So there exists a unique solution
of (SE) on B. From the Gronwall inequality we easily obtain that the solution y is
unique also on C([0, T]; H) and that the estimates (3.1) hold.

In the following for every fixed r>0 we will suppose that I1<_-0(r).
We say that a function b B([0, T]; C[ip(ZR)f3 KR) is a strict solution of (HJ)

if b(., x) C1([0, T]) for all x D(A), and satisfy (HJ).
More generally, if b is defined only on [0, T] ER we say that b is a strict solution

on ER if the conditions above hold true on this ball.
THEOREM 3.2. Under assumptions (i)-(iii), for every R > 0 there exists g:(R)> 0

such that, if I 1_-< then the Hamilton-Jacobi equation (HJ) has a unique strict
solution dp :[0, T] x ER -> R and we have

b(t, .) Cip(ZR)fqKR Vt[0, T],

t[0,T]

4. Proof of Theorem 3.2. First we prove, by the method of successive approxima-
tions, the existence of a solution b for the integral form of the approximating problem
(HJ). Afterwards we show that b converges to a strict solution b of the Cauchy
problem (HJ) for c->0.

The uniqueness is easily shown by standard methods.
At the moment we assume that hypothesis (i) holds with o < 0, that is, A is a

strictly dissipative operator on H. We will explain later (see Remark 4.8) the generali-
zation of the proof to the case where o => 0.

4.1. The integral approximating problem. Using the characteristics method we can
write the approximating problem (HJ) in the following integral form (see [4]):

(t, x)= e-t/"dpo((O, t, x))

(4.1) + e-(t-s)/a g((s, t, x))+-- dp(s, (s, t, x)) ds

where sty(s, t, x) is the solution of the Cauchy problem:

(4.2)
"(s)---A(s)-f(e, (s)) for s [0, t],

sr(t)=x, xH, t[O,T],

that is, sr is the family of characteristic curves for (HJ) linearized.

4.2. Characteristics estimate. We show some fundamental estimates for the charac-
teristic curves.

PRor’osITION 4.1. Let (i), (ii) be true. We fix R > O. Let [0, T], x H with

Ixl <- R. There exists el(R) > 0 such that, if <-- I(R), then the Cauchy problem (4.2)
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has a unique mild solution (., t, x) on [0, t] and we have

’(s, t," Cip(H, H) Vs, [0, T],

Moreover, the following estimates hold:

(4.3)

(4.4)

(4.5)

(4.6)

s<=t.

Isr(s, t, x)[ <= Ix] e+’(t-)/e,
I(s, t, )I,R <= e+’(t-s)/e,

[xx(S, t, x)(z, z)] <-_If(e, )[2, [x(o, t, x)zlS e+O’(=-s/2 do,
(s, t,. 112, --< e+’’-s)/2[3lf(e, )[, + [If(e," I1=,31(, t," )ll,R do’.

Proof The proof of existence and uniqueness follows from Proposition 3.1. The
regularity with respect to x follows from the parameter-dependent contraction principle.
For the estimates it is sufficient to choose el(R) such that

(4.7) (Ax +f( e, x), x) <-_--{ lxl

and it is possible due to hypothesis (ii). Now by (4.7) the operator ,4 +f(e, is strictly
dissipative on

If Ixl <_-R, then Isr (s, t, x)[ <_-2R (see Proposition 3.1), and by applying Gronwall’s
inequality we obtain (4.3).

Analogously, ’, satisfies the Cauchy problem:

’,(s) -Ax(x)-fx(e, (s)),(s) for s e [0, T],
(4.8)

and again

x(S)=I, I(H)

<(A+Z(e,x))z,z>-lzl= Vx,,, VzH.

From Gronwall’s inequality (4.4) follows.
For the other estimates we observe that for every z e H we have

’x,(s)(z, z)=-Axx(S)(Z, z)-[fx(e, (s)),x(S)(Z, z)

(4.9) +Z(e, (s))(x(s)z, ff,x(s)z)] for s [0, T],

x(t) =0

and from Gronwall’s inequality (4.5) and (4.6) follow.

4.3. Convexity estimates. We now consider the application

(4.10) F;" B([0, T]; Cip(R)) n([0, T]; Cip(R)
defined by (see (4.1))

r:(t, x)=e-’/o((O, t,x))

(4.11) + e-(’-)/ g((s, t, x))+-- (s, (s, t, x)) ds.

Clearly, F; is well defined and (4.10) holds. We prove that, for e, a suciently small,
F is a convexity-preserving map
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LEMMA 4.2. Let R > O, C > 0 be fixed, and a [0, 1 ]. Let (i)-(iii) hold true. We
consider

{ flp B([O, T])’, Cip(,R) KR) sUch that sup
t[0, T]

Then there exists e(R, C)> 0 such that, for el <= (R, C), F is a convexity-preserving
map, that is,

F(,_) c: B([0, T]; Cip(-,R) ["] KR).

Proof First we remark that, for 4’ Cip(ER), we have b KR if and only if

(4.12) ("(x)z,z)>--O VXER, VzH, th’(O)=O.

Therefore we have to show that there exists e(R, C)> 0 such that for el <--e(R, C)

((Fch)(t,x)z,z)>=O Vcho%, VXER, VzH, and

(r26)x(t, o) =o Vt 6 [0, T].

Let e B([0, T]; Cip(ER)) be such that supto,r] (t," )l,g C. By differentiat-
ing twice (4.11) with respect to x we obtain

(F)(t, x) e-t/"(O, t, x)6(ff(0, t, x))

(4.13)
+ e-(’-/L(s, , x) g’((s, t, x))+ 4x(S, (s, , x)) ds,

(r;4)x(t, x) e-’/L(O, , x)g((O, , x))x(O, , x)

+ e-(t-s)/ * Sx( t,X)

(4.14) g"((s, t, x))+-- (s, (s, t, x)) (s, t, x) ds

+ e-’/L(O, , x)4;((O, t, x))

+ e_(_/ , 1
xx(S, t, x) g’((s, t, x))+-- x(S, (s, t, x)) ds,

and therefore

((F:b),o,(t, x)z, z)= e-t/’(b(sr(0, t, x))’,(0, t, x)z, ,,(0, t, x)z)

-(t-s/, g"((s, t, x))+-- qb,xx(S, (s, t, x))

(4.15) ,,(s, t, x)z, ,,(s, t, x)z) ds

+ e-’/’(,o,(O, t, x)(z, z), b((O, t, x)))+ e -(‘-s)/’

sr,x(s, t, x)(z, z), g’(r(s, t, x))+-- dpx(S, ’(s, t, x)) ds.
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By assumption (iii) the first two terms of (4.15) are positive. Concerning the last
two terms we show that they are smaller than the second one. We have by the inequalities
(4.3)-(4.6):

le-’/((o, t, x)(z, z), 4,((0, t, x)))l

<= e-t/ldo[,R[f(e, )[,R [Styx(S, t, x)z[ ds d& Ae,R

and

e-(,-s)/ .x(S, t, x)(z, z), g’(’(s, t, x))+-- b(s, t, x)) ds

<- e-’/ e/e Igll, /- C If(e,’)l, (, , x)zl dx ds

e-’/ Igl, +- C If(,’)la, I(, , x)zl e/ ds d

e-’/(lgl, + C)lf(e," )1, eS/l(s, t, x)zl ds a2 B,.

It follows that

A,+B,lf(e, ")1,(1o1, + Igl, + C) e-(’-’/l(s, ,x)zl ds.

Set e(R, C) such that for all el e(R, C), we have

(4.16) If(e, "), [O[,R+Ig[,,R+C’
then by assumption (iii) it follows:

((r2)(t,x)z,z)O.

Finally, by (4.13) we immediately get

(r2O)(t, o) o vt [o,

and the proof is complete.

4.4. Successive approximations.
LEMMA 4.3. Let (i)-(iii) hoM true. Fix R > O, and set

Let [el e(R, L). Consider the sequence {"},c B([0, T]; Cip(ER) KR) defined by

en there exists e(R)(O, e(R, L)) such that for e[ ez(R), we have:

(I) and also sup,o,r ["(t, ")[CLp(,)L(R),for all nN;
(I) ]"(t, .)-"-(t, .)[c(,(L(R)+ l)"+t"/a"n, for all nN;
(III) F2 is continuous on B([0, T]; C2(ER)).
Remark 4.4. This implies that there exists B([0, T]; Cp(ER) KR) such that

4" "- 4 in B([0, T]; C(ER))
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and therefore (by (III))

r(t,x)=(Fg,)(t,x) on[0, T]XER

and 4 is also a strict solution of (HJ).
We also remark that estimate (I) does not depend on a. This fact will be used to

prove the convergence of as a-> 0 in the next section.
Proof of (I). We use a recurrence argument. First we have that (I) holds true for

the function 0B([0, T]; Cip(ER))o After we suppose that (I) holds true for
o,..., thn-1. Then by using (4.12)-(4.14), and Lemma 2.1, we obtain

where

I’(t, ")[CLp(R) e-t/’lqbo[CLp(.R)T(O, t)+[glcLp(Z) e-(t-s)/" y(s, t) ds

-(t-s>/ln-(s," )[ Ciip(R)’)/(S, t) ds,

T(s, t) < e+(’-)/+(lf(e, )l, +lf(e,’)l -,T+ [If( e," )11 ,)( s ).

It is easy to see that, if we set ER--If(e,’)l=,R +If(e, =, T+ IIf(," I1=,, then
for e suciently small we have ER(--/2)e/2 and hence y(s, t)l, for all
s, [0, T]. Now by iterating the above estimate we obtain

1 k

I"(t," )[ Cip(R) e-t/lolcLip()
=okl a

+ Igl cLip() e_(t_s)/. __1 (t-s) k

k=O kt a k ds L(R).

Proof of (II). Using the same method as (I) we get

I(, .--(,.1- e-(’-s/(s, l-(s, .--(s, .1( s

and it is easy to prove that

(s,(+.

By iterating we get

[dpn(t, ")- dpn-l(t, ")[c(x) <
L(R) r

e_(t_/ (L(R)+ 1) (t-s) --1

a Jo (n-l)! a n-1

from which (II) follows.
Proof of (III). Let b, 4S B([O, T]; Cip(ER) f’l KR), and let

D= sup {I4’(t,"
t[O,T]

Then we have

sup {IF6(t,.)-r,b(t,.
t[O,T]

-(’-)/(D+ 1)[q(s," )- 4S(s," )l c2(,) ds

(D+I)T
sup Iq(t, q(t, )l=t t[0,T]

ds

and (III) is proved.
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Remark 4.5. If f(e,.)CkLip(H,H) and g, boCk(H) (k>=3) it is possible to
prove (by reducing the limit for lel) that bn B([0, T]; CkLip(ER)VI KR) and

b" "- ,b in B[0, T]; ck(ER)).
4.5. Convergence of 4 as a 0.
LMMA 4.6. We assume that (i)-(iii) hold. Let R 0 be fixed and let e(R) be as

in 4.4. Let B([0, T]; C:() KR) be the strict solution of (HJ).
en there exists B([0, T]; C[p() K) such that"
(a) o, in B([0, T]; C’(ER)),
(b) is a strict solution of the Hamilton-Jacobi equation (HJ),
(c) for all [0, T], (t,. Cip(Eg) KR).
Proof Due to the estimates in 4.4 (see Remark 4.4) the proof is completely

analogous to the one of [2, pp. 38-41, 98-99]; thus it will be only sketched.
Let a > 0, fl > 0. Then ff (we write for simplicity) fulfills the equation

(4.17)
1

chf(t, x)+- (cht ch)-(Ax +f(e, x), ch}= g(x)+ R,,,c, + Rt,,,

’( t, x) [0, T] x D(A) i"1

(0, x) 4,o(X) Vx H.

It follows, by using the integral form, that

14t(t, ")-4(t, ")1 c’(.) <- e-(’-)/14,’(s, .)-(s, ")1 c’(.)ds

Now by Lemma 2.2 and Gronwall’s inequality we get

16 (t, )- 6(t, )[ c’( N (a + )3L3(R)T,
so (a) is proved.

To show (b) we remark that, if x D(A), then "(., x) C([0, T]), and

67(t, x)= g(x)+R,(,,.(x)-[6(t, x)[:+(Ax +f(e, x), 6(t, x)),
so 47(’, x) o , in C([0, T]), and 4 is a strict solution.

To show (c) we apply Ascoli’s theorem exactly as in [2, pp. 40-41].
Remark 4.7. As in the previous section, iff(e,. ) Clip(H, H), g, o C(H) and

[el is suciently small, then it is possible to prove that

b ,--,o b in B([O, T]; ck-I(R)
and

dp t, C kL p ,R ("I KR /t[0, T].
4.6. Uniqueness. This also is standard and we only sketch the proof (see

[2, pp. 39, 99], [4] for more details). Let , 2 be two strict solutions of (3.1). Then
for a > 0 we have

i,t(t, x) - (i- i,a)+(Ax +f(e, x), i,x)+ g(x)+ Ra,

V(t,x)[0, T]xD(A) NER, i=1,2,

bi(O x)-- o(X) X H.
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By using the integral form (4.1) and applying Gronwall’s inequality we obtain

Ibl( t,. )- b2( t,. )l cl(R)--< 5cet3(R) T

and the uniqueness follows from the arbitrariness of a.

Now Theorem 3.2 is proved and we may set g(R)= e2(R) as in 4.4.
Remark 4.8. At this point, as we said in the beginning of this section, we show

that the result of Theorem 3.2 also holds true when the operator A is not strictly
dissipative. In this case we have, by the hypothesis (i):

(Ax, x) <- tolx]2 lx H for some to >- 0.

We proceed in this way (see [2, Remark 5, p. 46]. Set rl(t, x) d(t, e-2"x). Then (HJ)
reduces to

(HJ)

rlt(t,x):-1/2b(t)lrlx(t,x)12+(Alx+fl(e,x, t), rlx(t,x))+g(t,x

(0, x)= 6o(X) Vx H,

V(t, x) [0, T] x D(A),

where we posed

b(t)=e4’t,

f(e, x, t)= e2’f(e, x

A A 2to,

gl(t, x) g(x e-2’).

Now we can write (HJ) in approximating integral form as follows:

7(t, x) e-n(’)bo(’l(0, t, x))+ e

(4.18)

[ 1
g,(s, ’(s, t, x))+-- b(s)rl(s le(s, t, x)) ds,

where

B(t)
1 fot b(s) ds

and ’(s, t, x) is the solution of the Cauchy problem,

(4.19)
(Sr)’(s) -A,(s)-f(e, (s), s)

’(s) x, xH.

for s [0, T],

Now we can solve this approximating problem using the same method seen in 4.2,
4.3, and 4.4. The only differences are:

(1) The functions g, f are time-dependent, but this dependence is uniform on
[0, T] x ZR for all R > 0 (also for the derivatives), so it is sufficient to change the value
of the constants which appear in the proof. In this case all these constants depend on
T and they blow up when T goes to +.

(2) The factor 1/a is replaced by b(t)/a and t/a by B(t)=(1/a)ob(s)ds.
However, we can repeat all of our estimates using that b(t) is bounded on [0, T] and
b(t)b(s)=b(t+s).

Finally, the proofs of 4.5 and 4.6 are completely analogous by arranging the
constants.
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5. Solution of the control problem. In this section we apply the results of Theorem
3.2 to the solution of the control problem (P). We assume (i)-(iii) and for simplicity
we discuss only the case in which the operator A is strictly dissipative (that is, w < 0
in the hypothesis (i)). Anyway, all the results of this section also hold true in the
general case. The proof for the general case is the same: we have only to arrange the
constants. Let r, M>0 be fixed. Suppose Ixl_-<r, [U[t2(O,T;H)<=L(r). NOW set R=
r+x/M and le[ <- g.

Then, as seen in 3, the following statements hold true"
(1) The state equation (1) has a unique mild solution

yC([0, T];H) withly(t)l -<-R.

(2) The Hamilton-Jacobi equation (HJ) has a unique strict solution

b 6 B([0, T]; Cip(R) (’ KR).

Using these results we can solve the control problem (P) in a standard way.
LEMMA 5.1. Let r, M > 0 be fixed. Let x Er, U L2(O, T; H), with lUlL <--_ M. Let

R r+x/M and lel -< g(R). Let y be the mild solution of the Cauchy problem"

(5.1)
y’=Ay+f(e,y)+u

y(t)=x.

on [0, T],

Then the following fundamental identity holds for every t, x) [0, T] E

6(T-t,x)+l f
r

2 lu + thx(T- s, y(s))l2 ds

(5.2)
bo(y(T))+ g(y(s))+-lu(s)l as

J(x, u) ift O.

The proof is standard (see, for instance, [2, pp. 51-52], [7]). We only recall that
for lel < g(r+v/--M), expression (5.2) makes sense, due to statements (1) and (2).

Now we consider the closed-loop equation:

(5.3)
y’(s) Ay(s) +f(e, y(s)) qbx( T- s, y(s))

y(t)=x, xEr.

on[0, T],

We remark that, since bx(T-t,. is a locally Lipschitz monotone operator on
H, then (5.3) has a unique mild solution y C([t, T]; H). Furthermore, due to the
monotonicity of bx(T-t,. we have that

(5.4) [y(s)[<-[x[<--_r Vs[t, T].

Hence we can state the following theorem.
THEOREM 5.2. Let to> 0 be fixed. There exists 63(ro) > 0 such that for Ix] <- to,

[el < e3(ro), problem (P) has a unique optimal control u. Moreover, u is given by the
feedback formula

u(s) -dpx( T- s, y(s)),

where y (s) is the solution of the closed-loop equation (5.3) for O.
Proof Let

Mo Mo(ro) max {x/L(ro), L(ro), /2L(ro)}
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as in Lemma 4.3. First we observe that if lUlL2 > Mo, then J(u)> J(0), in fact,

J(x, O) g(yl(s)) as + 6o(yl)(T)),

where

which implies

and

y Ayl +f(e, Yl).

lyl(s)l--< Ixl e+’s/

yl(O) X,

vll

J(x, O) Igl 0,ro T+ 16ol 0,ro L(ro).

But

J(x, u) >-lul-16o(O)I- Tlg(O)l >- M- L(ro)

>-J(x,O) as Mo.
So we only have to minimize J for u L2(0, T; H), ]/,/]L2 Mo.
Now set e3(ro) g(ro+/- Mo) and let [el-< e3(ro). At this point we need only to

show that u given by (5.5) is such that ]U]L2<= Mo(ro). In fact, in this case it easily
follows by Lemma 5.1 that u is the unique optimal c.ontrol for (P) (see [2], pp. 50-54].

We have by (5.4)

16(T-s,y(s))l<= sup 16(T-s,’)l,,o
t[0,T]

<= L(ro).

It follows that

v/-L(ro) -< Mo(ro).

6. Regularity with respect to the parameter e. In this section we give a regularity
result for the solution of our control problem.

First of all we remark that iff Cip(H, H), then it is not difficult to prove that
the solution b of the Hamilton-Jacobi equation (HJ) and its spatial derivative bx
are (k-1)-times differentiable with respect to e (see Remarks 4.5 and 4.7).

For simplicity we assume that, for every x H,

o(X) 1/2(eoX, X),

(iv)
g(x) 1/2(Mx, x),

f(e,x)=ef(x),

w < 0 in hypothesis (i)

with Po, M 6 E+(H), f C2Lip(n, H), and (Mx, x) >= tzlxl 2, for all x H. Then if e 0,
the solution of Hamilton-Jacobi equation (HJ) is the quadratic form x 1/2(P(t)x, x),
where P(t) is the solution of the Riccati operator equation

(6.1)
P’=A*P+PA-P2+M on[0, T],

P(O) Po.
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PROPOSITION 6.1. Let (i)-(iv) hold. Fix any R > O, and let lel <- g(R). Then, for
every n N and for every x "R there exist the derivatives:

O O

Oe
dp(t, x)[:o,

Oe
qbx(t, x)l:o,

and we have

1

n! Oe"
qb(t’x)l=="(t’x)’

1
n[ 0e"

x(t, x)l :o ..x(t, x),

where qbo( t, x) 1/2(P( t)x, x), and for n >= 1, 4). is the strict solution of the equation

qb.,=((a-P(t))x, .,x)+ (/(x),
(6.2)

.(o, x) o.
Moreover, the following recursive formula holds:

4,(t, x) {f(U(t-s,O)x),d(,,_,(s, U(t-s,O)x)}ds

(6.3)

iO.n (chh,,(s, U(t-s,O)x), dp(,_h.),(s, U(t-s,O)x)) ds,
h=l

where U( t, s) is the evolution operator associated to A P( t). Similarformulas hold true

for the derivatives with respect to e of the function dp) (obtained by differentiating with
respect to x the corresponding formulas for qb).

Proof For every n N we consider the function

n ---e dp - P x, x edp e dpn

and we show that recursively

lim
(6.4)

.-.o

l uniformly on [0, T] ZR.
lim 3. (t, x) 0

For instance, in the case where n =0, we have that the function 6o(t, x)-
ch(t, x) -1/2(P( t)x, x) satisfies the following Cauchy problem in H"

6o,(t,x)=(F(t,x), 6o,(t,x))+eG(t,x) /(t,x)[0, T](D(A)f’IER),
(6.5)

6(0, x)=0 Vx

where

and

F( t, x) Ax -1/2[P(t)x x(t, x)]

G( t, x) (f(x), P( t)x).

Using the classical argument of characteristics, we obtain that

(6.6) 6o(t,x)= e a(s, (s, t,x)) ds ( t, x) e [0, T],
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where :(s, t, x) is the solution of the Cauchy problem in H:

O (s, t, x) -F(s, (s, t, x)) for s [0, t],
(6.7) Os

(t, t,x)=x forxER.
We observe that, due to the hypothesis (iv) and the monotonicity of b the Cauchy
problem (6.7) has a unique mild solution (s, t,x) C([0, T]; H) for every XER,
and that

I(s, t, x)l _-< Ixl,
This enables us to write (6.6) for every x Zn. Now by (6.6) and boundedness of G
on [0, T] it follows that

lim 6o(t, x) 0 uniformly on [0, T] .
e-->0

A similar argument can be repeated for the spatial derivative of 6o using that the
function E(t, x)= dp,,(t, x) satisfies the quasi-linear operator equation (see [2, p. 100]

Et( t, x) [A + ef’(x)]*E t, x) + Ex( t, x)[Ax + ef(x) E t, x)] + M

(6.8) on[O, T](D(A)ER)

E (O, x) Po.
Finally, we can recursively repeat the same argument also for every n
REMARI 6.2. Proposition 6.1 also holds if we have

Co(X) =1/2(Pox, x)+ O(x), g(x) =1/2(Mx, x)+ q(x),

where 0, r/ are smooth function with respect to e, vanishing for e 0. Moreover, 0,
must belong to Clip(H, H) with respect to x.

Note also that we have not used any additional regularity hypothesis on f
Finally, we have Proposition 6.3.
PROPOSITION 6.3. Let (i)-(iv) hold and let fCkLip(H,H) (k_->2). Then for

[-g(R), g(R)], and h 1,..., k-1 there exist (oh/oeh)u, (oh/oeh)y and

1 Oh 1 Oh
U(S) Uh(S),

ht Oe h ht-Oe h yts)=yhts)’

where we have

y’o(S) (A- P( T- s))yo(s), yo(0) x,

y(s) (A- P(T- s))yl(s)+f(yo(s))- I[ll,x(s yo(s)),

and, for h > 1,

y’h(S) (A- P( T- s))yh(s)- h.,(S, yo(S))

yh(O) =0.

yl(0) :0,

h-1 1 0+ f(yo(s))(y,(s),’’’, y(s))
r=l il+’"+ir=h--1 r! OX

i>>-1
h h-q 1 0

-Ji- ? E E Oq,x(S, yO(S))(Yil(S), yi(S))
=1 r=l il+...+ir=h--q r[ OX

ij>=l
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Moreover,

Uo(S)=-P(T-s)yo(s),

and, for h > O,
h h-q 1 0

Uh(S) --h,x( S, yo(S))- 2 r21 2 Iq,x(S, yo(S))(Yi,(S), Yir(S))
q=l il+...+ir=h-q r! Ox

ij>-l

For the proof we argue as in Proposition 6.1.

7. Examples. We give two examples.
Parabolic systems. Let H H(0, 1). We consider the parabolic state equation:

yt(t,x)=Axy(t,x)+ef(y(t,x))+u(t,x), t[0, T], xe(0,1),
(7.1)

y(O,x)=yo(x)eH(O, 1), y(t,O)=O=y(t, 1) Vte[0, T].

We denote by A the operator on H defined by

D(A) Ha(0, 1) CI n(0, 1), Ay Ay.

The control u is any element of L(0, T; H), and f is a smooth function R--> R such
that, if we define

F:H--> H, F(y)(x) =f(y(x)) Vx (0, 1),

then we havef Cip(H, H). For example, we can take f(z) z and use the fact that
H (0, 1) is an algebra.

We want to minimize the cost

(72) J(Yo u) [y(s)l,/ lu(s)l ds /- lY(T)I =
H

over all controls u e L2(0, T; H), where y is the mild solution of (7.1).
Now assumptions (i)-(iv) are verified. In particular,

(Ay, Y)H <- -Co]y]H Vy e D(A),

where Co > 0.
If ro is the supremum of the norm of the initial state Yo, we take Mo as in 5,

and we set ]e _-< e3(ro).
Then by the Theorems 3.2 and 5.2 there exists a unique optimal pair (u, y) for

problem (P), and the following feedback formula holds:

u(s)=-x(T-s,y(s)),

where is the strict solution of the Hamilton-Jacobi equation (HJ).
Furthermore, if F e Clip(H, H) (which is true if f(z) zZ), then the optimal pair

is k-times differentiable with respect to e and the expansion given in Proposition 6.3
holds.

We can repeat the same example in higher dimensions by setting H H(2),
where is an open bounded subset of R" with sufficiently smooth boundary 012 and
k > n/2 (so H is an algebra).

Hyperbolic systems. Consider the following optimization problem:

Minimize

J(Yo, Yl, u)= g(y(s),y’(s))+-21u(s)l2 ds+&o(y(T),y’(T))
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subject to

y"(s) + Ao(y)(s) + ef(y(s)) u(s), s [0, T],

y(0)=yo, y’(0)=yl, yo V, yl E,

where V, E are real Hilbert spaces such that V. E c V’ and the inclusion V E is
continuous and densely defined (V’ is the dual of V and E is identified with its own
dual). Moreover, u L2(0, T; E).

A0: V V’ is a linear continuous symmetric operator, and denoting by (.,.)o the
duality between V and V’, there exists to > 0 such that

(Aoy, y)o >- olyl Vy v.
f: V- E is a twice Fr6chet differentiable mapping with f(k) (k =0, 1, 2) locally

bounded and locally Lipschitz continuous. Finally, concerning the functions g and bo
we assume that

2g, bo CLip( V X E), b is convex, g is strictly convex.

We set H V E and we endow H of the usual Hilbert structure:

((v,, e,), (v:, e2)>=(AoVl, v)+(e,, e> for Vl, V2e V, el, ee E.

Setting Y(s)= (y(s), y’(s)) and Yo (Yo, Y), we can write our state equation as

Y’(s)+AY(s)+eF(Y(s))= U(s) forse[O,T],

Y(O) Yo, Yo H,

where

A=
Ao

U= (O, u), F(y, z) (O,f(y)) V(y, z) Vx E H.

Now, our problem is expressed in the form (1.2) in terms of the operators A and
F, and (i)-(iii) hold. We can proceed as in the previous example to solve the control
problem.

We recall a typical example of this situation. Let E L2(12), where f is an open
bounded subset of R with sufficiently smooth boundary 0f. Moreover, let

V= H(f), Ao -A,
and f(y)(z)=h(y(z)) for every zO, where h is a smooth (Cip at least) function
R R such that for some constants a, b > 0 we have

dih(w)
dw

_-<alw[3-i+b fori=0,1,2

(h(w)= w3, for instance). Finally let J be as in (7.2). Thus all our fundamental
assumptions are verified. In particular, f Cip(H, H), because H(lq) c L6().

REFERENCES

V. BARBU, Hamilton-Jacobi equations and nonlinear control problems, J. Math. Anal. Appl., 120 (1986),
pp. 494-509.

[2] V. BARBU AND G. DA PRATO, Hamilton-Jacobi Equations in Hilbert Spaces, Pitman, London, 1983.
[3] Hamilton-Jacobi equations in Hilbert spaces; variational and semigroup approach, Ann. Mat.

Pura Appl., 142 (1985), pp. 303-349.
[4] V. BARBU, G. DA PRATO, AND C. POPA, Existence and uniqueness ofthe dynamicprogramming equation

in Hilbert space, Nonlinear Anal. Theory Meth. A’ppl., 7 (1983), pp. 283-299.



768 FAUSTO GOZZI

[Sa] M.G. CRANDALL AND P. L. LIONS, Hamilton-Jacobi equations in infinite dimensions. Part I: uniqueness

of viscosity solutions, J. Funct. Anal., 62 (1985), pp. 379-396.
[5b] Hamiltonz-Jacobi equations in infinite dimensions. Part II: existence of viscosity solutions, J.

Funct. Anal., 65 (1986), pp. 368-405.
5c] ,Hamilton-Jacobi equations in infinite dimensions. Part III, J. Funct. Anal., 68 (1986), pp. 214-247.
[Sd], Hamilton-Jacobi equations in infinite dimensions. Part IV: Hamiltonians with unbounded linear

terms, J. Funct. Anal., 90 (1990), pp. 237-283.
[6] D. HENRY, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.

840, Springer-Verlag, Berlin, New York, 1981.
[7] J. L. LIONS, Optimal Control ofSystems Governed by Partial Differential Equations, Springer, Wiesbaden,

1972.
[8] A. PAZ, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-

Verlag, New York, Heidelberg, Berlin, 1983.
[9] Y. C. You, A nonquadratic Bolza problem and a quasi-Riccati equationfor distributed parameter systems,

SIAM J. Control Optim., 25 (1987), pp. 905-920.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 29, No. 4, pp. 769-785, July 1991

1991 Society for Industrial and Applied Mathematics

002

MODEL MATCHING AND FACTORIZATION FOR NONLINEAR
SYSTEMS: A STRUCTURAL APPROACH*

C. H. MOOG?, A. M. PERDON:, AND G. CONTE

Abstract. The model matching and the left factorization problems for nonlinear systems are investigated
using an approach based on the structural algorithm. Sufficient conditions for the solvability of the first and
necessary conditions, which in some cases and from a local point of view are also sufficient, for that of the
second problem are found in terms of equalities between ranks or structures at infinity.

Key words, nonlinear systems, model matching, factorization, structure algorithm
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1. Introduction. The problem of matching the input/output behavior of a model
by precompensating a given system has been studied in the linear case by various
authors and many results on the existence and the construction of general or special
solutions are, by now, available (see [8], [9], [12], [20], [22], [23], and [32]). In the
framework of nonlinear systems, the model matching problem was first considered in
a general form in [7]. In that paper, the desired precompensator was required to be
proper and the problem was tackled by reducing it to an equivalent disturbance
decoupling problem. Two conditions that are respectively sufficient and necessary for
the existence of solutions were obtained by using differential geometric techniques
(see [15]). Then, extending the results of [20] such conditions were expressed in terms
of equality of the structure at infinity, in the sense of [26], of the system and of a
suitable composition of the system and the model. The case in which the model is a
linear system was investigated in 16] and more recently in [4]. Necessary and sufficient
conditions for a restricted class of nonlinear systems have recently been given in 14].
Other contributions are found in [27] and, from a differential algebraic point of view,
in [28]. Remaining in a linear context, the model matching problem can be assimilated
to that of factoring the transfer function of the model through that of the system,
viewed as a left factor. The problem of factoring through a given right factor, which
is called left factorization problem, can therefore be viewed as a sort of dual of the
model matching one and, although less relevant in control theory, has received some
attention. Results, which parallel those concerning the matching, are found in 1 ], [2],
[12], [19], and [32].

In this paper we consider the model matching and the left factorization problems
for affine nonlinear systems in a general formulation, which does not demand the
compensator or the left factor to be proper, as well as in a stronger one, in which the
properness is required. Our approach is based on the structure algorithm that is
described in [18] and [31]. The algorithm is used as a tool both for defining the
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structural invariants, rank, and structure at infinity, which allow us to state conditions
for the existence of solutions, and for constructing such solutions. The results we
obtain can be summarized as follows. The model matching problem admits a solution,
respectively, a proper one, if the rank of the system and that of a suitable composition
of the system and the model are equal, respectively, if their structure at infinity are
equal. Note that the structure at infinity we refer to is that derived in [21] from the
structure algorithm and does not coincide with that defined, in a geometric way, in
[26] and considered in [7]. The sufficient condition we obtain is weaker than that of
[7], however it is not necessary, as shown by an example due to Huijberts [13]. A
nonstructural weaker condition is briefly discussed. The proof of the existence of a
solution, when the sufficient condition is verified, is constructive. The results holding
for the left factorization problem are the following. The problem admits a solution,
respectively, a proper one, only if the rank of the factor system and that of the parallel
composition of the same and the system to be factored are equal, respectively, if their
structure at infinity are equal. Conversely, the rank equality is not in general sufficient
and additional technical conditions are required to show, only locally and making use
of the implicit function theorem, the existence of solutions.

The paper is organized as follows. Section 2 contains some preliminaries concern-
ing the structure algorithm, the structure invariants defined by it, and their characteriz-
ation in terms of vector spaces of differentials [5], [6]. Section 3 contains the statement
and a discussion of the model matching problem, the related results that we already
mentioned, and some examples. Section 4 deals with the left factorization problem,
presenting and discussing its statement, the related results, and one example.

2. Notation and preliminaries. Consider a nonlinear control system of the form

(2.1a) [" 2 =f(x) + g(x)u,
(2.1b) Z y h(x),

where x(t) ", u(t) ’, y(t) 6 P, and f(.), the columns of g(.) and h(.), are
meromorphic functions of x; that is, they are elements of the fraction field of the
ring of functions of the variable x, which are analytic on a domain

Following [5] and [6], we associate to a chain of vector spaces over the field
Y{ of meromorphic functions of x, u,. ., u("- defined as follows Recall, first, that
denoting by u=(v,..., ) the components of (x, u,..., u("-), the action of the
partial derivative operator 0/0 on a meromorphic function ()= ()/0(u), where
(. and 0(. are analytic, is defined, by the usual rule of calculus, as

o o(
o( o ( ()o o( o(

Then, the differential of r/ is given by

(2.3) dr/(,) := d,.

Returning to the system , we view the time derivatives of the output y

0y
(2.4a) 3 )(x, U)=ox[f(x)+g(x)u],

y(k+) y(k+)(X U," bl (k))

Oy(’) Oy((2.4b)
Ox

[f(x)+g(x)u]+ u
=o Ou(



MODEL MATCHING AND FACTORIZATION 771

as functions of x, u,..., u (k), whose components are elements of YL Now we can
introduce the vector space spanned over Y{ by {dx, du, , du(n-)} and we consider
the chain of subspaces oc 1 c"" c n of g’ defined by

o span {dx},

(2.5) , span {dx, dp, ., dy’)}.
The notation dx stands for dxl, ", dx,,; du stands for dul, ., du,,,, and dyk) stands
for dyk) (k)..,ayp for any k_->0.

Associated with the chain 0 c qlc...c n we have the list of integers
r _-<. -< cr given by

k(2.6) trk dimx.
k

It has been shown in [5] and [6] that trl equals the integer pl, and (tri- ri_l) equals
the integer pi for _-> 1, where pi is obtained from the ith step of the structure algorithm,
or Singh’s inversion algorithm [18], [31]. In particular, tr equals the rank p of as
well as, in a suitable context, the differential output rank [10], [11]. It is useful, for
completeness, to recall here Singh’s inversion algorithm in a special form that will be
employed in the sequel. Given the system Y we may consider its input u as divided
into two subsets u (v, w), where v is viewed as a set of controls and w as a set of
parameters. In this case, we apply to the following algorithm, denoted by Singhv

Step 1. Calculate

Oh
(2.7) =O--[f(x)+gv(x)v+gw(X)W]=: fl(x w)+gl(X)V

and set G(x):= g(x) and Sl:=rank G(x). Permute, if necessary, the rows of the
output so that the first s rows of G(x) are linearly independent and decompose 3) as

where dim.fi Sl =: p. Then, eliminating v in the last rows, write

t t
and set (x) =: (x).

Step k + 1. Suppose that from Steps 1 through k we have

)71 =fl(x, w)+ ffl(X)V,

Yk fk(X, W, w(k-1) yk-1)Yl ,’’’, ,’’’, Yk-1, Yk-1)

+ (x, w,..., w-, Y, Y?-, A-1)v,

1) Ylfig yk(X, W," Wk- .-.k-1
,’",yl ,’",A),

where
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has full rank sk. Then

)k--fk+l(x, W,’" ", W(k), ffl )k),... )k, )k)
+ g+,(x, w,..., w(-l, , ?-1,

Define Gk+ := (g+i) and Sk+ := rank G+(x). Decompose ]k as

Yk= Yk+,

where dim fik+ Sk+--Sk =: Pk+. Then, eliminating v in the last rows, write

y+, =f+,x, w,..., w, , y?, ,
’,,, ..,?-’ ,++(x, w,..., w-+, +,(x, w,..., w, , ,

and set

Gk+ ]--

The above algorithm performs the inversion of 2, viewed as a system depending
on the parameter w, with respect to the input v when p := sn equals the dimension of
v. When w is empty Singh reduces to the usual Singh’s inversion algorithm.

The indices cri, si, and p contain essentially the same information and each of
them could be used in the following. We choose to state the next results in terms of
the pi, which have a direct interpretation as numbers of zeros at infinity of order (see
[21]), although the other indices are often used in proofs and calculations.

LEMMA 2.1. Let the systems

(2.9) T={2=f(x)+g(x) u,
yr=h(x)+h’(x)u

and

o [ =/o(z) + go(z)v,
(2.10)

y=h(z)

with outputs of the same dimension, be given, and let GT) denote the composite system

(2.11)
2=f(x)+g(x)u,

(GT) ]2 =/(z)+ g(z)v,
(yr h(x)- h(z)+ h’(x)u.

Then we have p(GT)= p(G) for all and, in particular, p(GT)= p( G).
Proof Let Y{’ denote the field of meromorphic functions in the variables x, z,

v,..., v(N-l) and the parameters u,..., u (N, where N=dimx+dimz. We denote
by gz/r the vector space spanned over Y{’ by {dx, dz, dT,’’’, dy()T}. Note that to
consider u,..., u(N as parameters instead of variables means that the differential
d(. is given by d(. )= (0(.)/Ox) dx +(0(. )/Oz) dz +Y-o (0(.)()) dv(). Following
the proof given in Theorem 2.3 of [7] we can show that p,(GT) dimx, iGT/ i--laT.
From this, since dy dy-dy %(x, u, u() dx- dy with % Y{’, it
follows that p,(GT) =dim spanc, {dx, dz, d, dy()}-dim spanc, {dx, dz,
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.., dy(-l)}, and hence pi,.,(GT)=dimspanx,{dz, dPc,"’, dy)}-dimspanx,{dz,
d9,’", dy-)}. Now, let {wl,’", Wr,} C {dz, dPG,’’’, dy)} be a basis over Y(’ of
gr, and let o5 be an element of {dz, d:9,’", dy()}\{wl, 0%}. We write o5

y2(x, z, v,. ., v(N-l), u,. ., u(N))oo2 with Y2 y(’ and, computing the derivatives with
respect to x, u,. ., u), we get

O03 O3O
Ox

y
Ox o O,

a_y o o,
Ou Ou

o 03’2
ou( Y ou( o O.

Therefore Oy2/Ox=O and Oy2/Ou OT2/ou(N)=o for all j, or, equivalently, y2

y2(z, v,..., v(N-). This says that {wl," "’, mr,} is a set of generators over the field Y{

of meromorphic functions in the variables z, v,...,v(-) of spanx{dz, dj,,
.., dy)} . Moreover, since Y{ c Y{’, dimx, r= dimx for all and the result

follows.

3. Model matching problem. In the nonlinear framework, the model matching
problem was considered in [7] and, in the case of a linear model, in [4] and [16].
Some further contributions are made in [27]. The formulation of the model matching
problem we give in the following differs slightly from that of [7].

3.1. Problem formulation. Let us now state the model matching problem (M.M.P.)
in the formulation that will be used in the sequel.

MODEL MATCHING PROBLEM (M.M.P.). Given a model

:i=f(x) + g(x)u,
T=

l.y.r= h(x

and a system G as in (2.10), find a proper compensator

H={=fH(,z,u),v= h,_,(, z, u)

with state space Rq and a map q :R"- Rq such that, denoting by Yen the output of
the composite system GH, we have that yT(U, X) --yI4(U, q(X), Z); that is, the difference
between the output of the model, viewed as a function of u and of the initial state x,
and the output of the composite system, viewed as a function of u and of the initial
states z and : q(x), does not depend on u.

In order to gain a better insight into the model matching problem we are consider-
ing, we now state it in a generalized form (G.M.M.P.), which includes in particular
the left inversion problem Specializing such formulation by requiring a proper com-
pensator we get the most interesting case from the point of view of control theory.

GENERALIZED MODEL MATCHING PROBLEM (G.M.M.P.). Given a model T as
in (2.9) and a system G as in (2.10) find an integer u->0, a possibly nonproper
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compensator

(3.2) H= {=fl(, z, u, u(")),
v= h,_,(, z, u, u()

with state space q and a map q .En_, q such that, denoting by YGH the output of
the composite system GH, we have that yT-(u, x) --yGn(tl, q9 (X), Z); that is, the difference
between the output of the model, viewed as a function of u and of the initial state x,
and the output of the composite system, viewed as a function of u and of the initial
states z and sc q(x), does not depend on u).

The M.M.P. is the special case of the G.M.M.P. for u 0.
Remark 3.2. (i) In the M.M.P. the requirement that yT(U,X)--yGH(U, q(X), Z)

does not depend on u amounts, in the linear case, to the equality of the transfer
functions of the model and of the composite systems. From this point of view, therefore,
our formulation represents the natural extension of the one currently understood for
the linear model matching problem (compare with the references quoted in the
Introduction and with [15] and [16]).

We recall that a stronger formulation of the M.M.P., requiring the equality of yr
and YGH, has been considered, only for a linear model, in [4]. Note that the problem
we stated qualifies as an exact M.M.P., as opposed to an approximate or an asymptotic
M.M.P., which could also be considered (see, e.g., [14]).

Let us consider the left inversion problem in the linear framework. The solution
provided by the Silverman algorithm [30]’has the form (3.2), where u is the inherent

integration order of the system [29], [25]. In the simple example given by T {YT =Y
and by

G={=v’y-- z,
we obtain

H:G-’:{
The difference between the outputs of the identity model T and of GH is yr-YH
y-z; the latter depends on the input y and is independent on the first derivative 3.

(ii) Roughly speaking, our formulation of the G.M.M.P. amounts to requiring
that yr(u, x)--yH(U, q(X), Z) depend only on a finite number of derivatives of the
input. In our framework, the independence of yT-(tl, x)--yGH(tl, qg(X), z) on u () is
technically expressed by the following condition"

(3.3) d(y-(u,x)-y14(u,q(x),z))(k)spanc{dx, dz, d,du,’",du(’-l)} fork->-0,

which says, in other terms, that ut does not appear in any time derivative of
yr(u, x)--yH(U, q(X), Z). In (3.3), ?7{ denotes the field of meromorphic functions in
the variables x, z, c, u, , u(+N) with N dim x + dim z + dim sc.

(iii) In dealing with nonlinear systems of the form (2.1), we must take into account
the presence of possible singularities. To cope with them, we will say that the M.M.P.
is solvable if there exists a compensator H of the form (3.2) and a map q, which
achieve (3.3) for all initial states x and z in an open and dense subset of the state
spaces and for all (sufficiently many times differentiable) input functions u(t), assuming
values in an open dense subset of n, while the system evolve on a time interval [0, t),
whose length may depend on the chosen initial conditions and on the input. In such
a case the pair (H, q) is called a solution of the M.M.P. The next examples will
illustrate our point of view.
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Example 3.3. (i) Let

T=I2=u’ and G =’=v’
I.yT x y z2

be the data of a M.M.P. The pair consisting of the compensator H {v u/2z and
of the empty function is a solution in the sense of Remark 3.2. In fact, for Zo 0, we
obtain yH(U, Zo)=o U(Z)dz+z for all input functions u(z) and for all t>0 such
that o u(z) dr+ z> O. Then, we have y(u, x) -y,(u, z) x- z2 and d(y(u, x)-
y,(u, z))() spanx {dx, dz}. In paicular, if, for example, the input is bounded by
]u(z)[ M, and the initial conditions Xo, Zo 0, are chosen, y-y is independent
from u over the time interval [0, z/M). It may be useful to note that v= u/2z is a
solution of the M.M.P. in the same way, that is with the same limitations, in which it
is a solution, in the sense of [17], of the disturbance decoupling problem with
disturbance measurement described by u, v, y x z2, where u is the disturbance
and v is the control.

(ii) Note that taking, for instance,

T= xu’ and G= { zv’
(YT X y Z,

contrary to what happens in the linear case, the identity compensator H { v u does
not give a solution of the M.M.P. In fact, yT--y,=(Xo--Zo) exp(’oU(z)dz) is
independent from u only if the initial states of the model and of the system coincide.
In this case a solution is given by the compensator

v=(/z)u,
where (t)",

and by id.
A structural condition under which a compensator exists and a procedure to

compute it are given in the following theorem.
THEOREM 3.4. e generalized model matching problem is solvable if

(3.4) p(GT)=p(G),

where GT) is the composite system (2.11).
Proof Applying Singh to (GT), we obtain

z,

N N(X. Z...’’’. ,(N). 1." *. N--1)..... YN-1. VN-1)

+
d (x, z, L," ",

0



776 C. H. MOOG, A. M. PERDON, AND G. CONTE

with rank # rows =p,,(GT) and where represents a suitable subset of rows
(i) )i"of Y)r, which will be useful to denote also as . r.i y We can choose constant values

Y1 (9.N-2)Y=
-,

\%
such that the generic rank of ( evaluated at Y is equal to the number of rows of (.
Then, solving for v the system

obtained by replacing with Y in (3.5), we get

v=(x,z,u,.., u , -",--, r,,’’’, rv-2, YN-2,

Now, denoting by Wo a vector of same dimension as x and by wi a vector of dimension
(N-i). dim , we set v N and we construct the compensator

(3.6) H

o =f(wo) + g(wo)u
0 1 0

10
Wi+

0

0 Y

for 1 -< <- N- 2,

v O(Wo, z, u, , u(, w, w_, Y_,)

and, letting q(x)= (x, 0,..., 0), we claim that (H, q) is a solution of the G.M.M.P.
In order to show this, let us first remark that, in (3.5), Yv is actually independent
from u (k), for all k. In fact, by Lemma 2.1 and the rank equality (3.4) it follows that
p(GT)=p,(GT) and we know from Theorem 2.3 of [7], that the dx, dz,
dlT"l dv-1) dlT)v are independent over the field Y{. So, if Ov/Ou(’ O,,
for some k-> 0, dYu does not belong to spanc {dx, dz, d’l,’’’, dU-", d,u},
then p(GT) > p(GT), contradicting the assumption.

Now let us consider the composite system (GH)"

i,= F(w)+ G(w)u,
(GH)= =/(z)+g(z)cb(w,z,u,...,

y he (z)

initialized at q(Xo)- (Xo, 0,..., 0), and the difference yr-y between the output of
(i by substituting thethe model and that of (GH). Recalling the notation Y y(. Y.i,

output of H to v in (3.5) and taking derivatives, we get
(N--l) (N-l)

Yr.i -..i =Y/ forl-<i_-<N-1,

)(N y(.u =0.T.N

Therefore d(yr--yH)(k) e spanx {dx, dz, dw, du,. ., du(N-l)} for all k. [-I

It is worthwhile to note that, although in 3.1 the compensator H is described
in a very general form, the construction illustrated in the proof of Theorem 3.4 always
produces a system whose state equations have the same form of those of the model.
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In particular, the derivatives of the input appear only in the output function
hH(, z, u,..., u()). A structural condition under which there exists a proper com-
pensator H, that is, one that does not depend on the derivatives of the input u, is given
in the next theorem.

THEOREM 3.5. The M.M.P. is solvable with a proper compensator H of the form

H= {’=fu(’, z, u),
v= hu(,, z, u)

if
(3.7)

for all i>= 1.

p(GT)=p(G)

Proof Assume that (3.7) holds; then, for all i, we have by Lemma 2.1 pi(GT)=
pi(GT). In particular, this implies that at the first step of the algorithm Singh applied
to (GT) we have

fq Fl(X, z, u) + v,L(,,, z, o
where actually O/Ou=O, since otherwise p(GT) would be strictly greater than
p(GT). Repeatedly applying the same argument, we get at the last step N

% PN(x,z,u, Y,..., ()) +
0

v

and, hence, v (x, z, u, , ., (-3)). Therefore the compensator obtained follow-
ing the construction described in the proof of Theorem 3.4 is, in this case, proper.

Example 3.6. (i) The M.M.P. concerning the model

2= + u,

X3
and the system

0 Z 0

i4= + v,
G=

0 1

yG--(z2-z3)
was considered in [7]. It was shown that the geometric necessary condition given in
the same paper is not verified, although the compensator

-+(-sr 1)u,d-+z +z3
H=

sr + uV
2/( + Z3 + Z3 Z3
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provides a solution of the problem (see [7, Ex. 5.4]). It can be easily checked that (3.7)
is verified, that is, pi(GT)= pi(G). Then, applying the procedure illustrated in the
proof of Theorem 3.4, we get the proper compensator-- q- U,

,_,,-   )000,
V

(Z4-- 2-- UlZ3-- U2)/(2-- Z3-- Z4)

Clearly, by removing the unnecessary equations 2, 3 & and 4 u2, we obtain
another compensator, say H", which solves the problem. Now, the .change of variables

Z4--2 transforms H" into H.
(ii) Consider the model

and the system

0 v,

( Z

Yc;
z2 Z3

for which p(GT) p(G). Note that, since

ot
Vl(T) dr+ zI(O

V2(T dz-exp Vl(T dr exp v, (o-) do- V2(T) dz

q-za(O)q-z3(O) exp (ff vl(’r)dr)
and Yr. =0, contrary to what happens in the linear case, it is not possible to find a
compensator H such that y-- Yen 0 for u 0, also when we are allowed to choose
the initial condition z(0). Applying Singh to (GT), we get

and then, in fixing constant values Y for , we are obliged to choose # 0. Taking,
for instance, Y (), we get v (G), which represents by itself a compensator H
that solves the problem.

Remark 3.7. The conditions of Theorems 3.4 and 3.5 are not necessary for the
existence of solutions to the G.M.M.P. and the M.M.P. as pointed out by the following
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example due to Huijberts [13]. Let

and

X2

X4

Xl

0 0

0 1 u2

0 0

f= 0 + 1

0 0
G=

y z3

21

By applying Singh’s algorithm to G, we get pl(G)=p2(G)=p3(G)=2. The same
procedure applied to (GT) gives

f’GT1 X3 ’{- Ul Vl

.GT2 X4 /)2,

GT3 X2 + Z2(GT2 X4- 1 ),

and then

YGT3 f2GT1 .qt- Z2(YGT X4 --(.GT1- X3- Ul)(.GT2 X4)"

So pl(GT)= 2, p2(GT)= 3 and the sufficient conditions of Theorems 3.4 and 3.5 are
not satisfied. However, the compensator

= /
ul

0
u2

t) --0,

and q)= id give a solution to the M.M.P.
From (3.5) we get the equality

(3.8)
+ [JN(X, Z, H,’’’, U (N-2), ’rl,

and, by derivation of n, the equalities

(3.9) 9+"-) o+,(x, z, u,..., u+"), ;’,

rn--2),
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from which it can be understood that a weaker condition for the existence of solutions
to the M.M.P. is, in particular, that there exists a vector of functions

such that
(i) 0 Y’)/Ou =0 for all k;
(ii) Substituting Y(x, z) and its derivatives for

and its derivatives in G, the generic rank is equal to the number of rows;
(iii) Substituting Y(x, z) and its derivatives for

and its derivatives in /N,’", n+q, respectively in , all the coefficients of the
monomials in u,..., u (n+q), and respectively, all the coefficients of the monomials in
fi,. ., uN), are zero. Such a condition is verified in the example above for Y(x, z)=

4. Left factorization problem. It is well known [2], [12] that in the linear case
(3.4) and (3.7) are necessary and sufficient conditions for solving the G.M.M.P. or the
M.M.P., and also when no feedback connection between the state of the system G
and the precompensator H is allowed. In such formulation, the linear G.M.M.P.
amounts to the problem of factoring the transfer function of the model T through a
possible left factor, represented by the transfer function of G. It is then, natural, from
an abstract point of view, to also consider the dual problem, which consists of factoring
the transfer function of T through a possible given right factor (see [1], [2], [12], and
19]). In the more general case we are considering, this leads to the following formula-

tion for what we call the left factorization problem.

4.1. Problem formulation.
LEFT FACTORIZATION PROBLEM (L.F.P.). Given a model T as in (3.1) and a system

(4.1) H
f gl-l Z)U,
v: h,_,(z),

find a proper compensator

= {=fo(, ),
yo h(, v)

with state space q and a map q:E" -* [q such that, denoting by Y/4 the output of
the cascade GH, we have yr(u, Xo)-yH(u, q(Xo), Zo)=0 for any initial states x0, Zo.

GENERALIZED LEFT FACTORIZATION PROBLEM (G.L.F.P.). Given a model T as
in (2.9) and a system H as in (4.1), find an integer u>=0, a possibly nonproper
compensator

(4.2) G={=f(’ v" " vv)):
y h(:, v,. ., v ),
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with state space q, and a map q" n _. q, such that, denoting by Yen the output of
the cascade GH, we have

(4.3) y-(u, Xo)- y,(u, q(Xo), Zo) =0

for any initial states Xo, Zo.
Remark 4.2. The same considerations as in Remark 3.2 apply to the present

situation. Therefore a solution (G, q) will be one that achieves (4.3) for all initial states

Xo and Zo in an open and dense subset of the state spaces.
The first result we have in this framework is the following theorem.
THEOREM 4.3. The G.L.F.P. is solvable only if

(4.4) P H
p(H)’

where 7-
H is the system consisting of the state and output equations of T and H.

Proof We start by proving the theorem under an additional technical assumption
on the system H. Assume that the maximal regular controllability distribution* of
H contained in ker dhH is locally well defined, i.e., that the regularity conditions of
[15, 6.4] are satisfied. Denoting by the distribution spanned by gn(z), we assume
that the following holds:

(4.5) dim (*,)= m-p(H).

Now let the regular feedback u c(z)+ fl(z)w be a "friend" of *,, and let us denote
Tby () the system obtained by compensating (T,) with u=a(z)+(z)w. By (4.5), the

action of the feedback u=a(z)+(z)w transforms H into the system H that, up to
a change of coordinates, is of the form [15] l=fi(Zl)+g(z)Vl, 2
f2(z,, Z2)+ g2(z, Zz)W, V h(zl), where w (#1, #e), #1 (w, , wp) and p p(H).
Hence we have

(4.6)
ov(k)(w, Zo)=0

Ow

for all i=> p + 1 and all k. Moreover, if (G, q) is a solution of the G.L.F.P., we have
that the output trajectory Y(w, Xo, q(Xo), Zo) of the cascade composition between ()
and the system

d={-=f(,v,’",v(),y =y- he((, v," ", v()),
initialized at (Xo, q(Xo), Zo), is identically zero. This, together with (4.5), implies

oy(k(w, XO, q(Xo), ZO)
OW

Oy-)(w, Xo, Zo)
Ow

Oy w, Xo, Zo)
Ow

Oy-)(W, Xo, Zo)
Ow

Oy (w, Xo, Zo)
Owi

0 for all i_-> p + and all k.

(k)yo(w, Xo, q(Xo), Zo)
Ow

Oy)(y(w, Zo), q(Xo))

Owi

Oy)(y(w, Zo), q(Xo)) Oy(w, Zo)
Oy Ow

Therefore, p() is not greater than p(H) and, as a consequence, p()= p()= p(H).
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The general case can always be reduced to the previous one. In fact, if (4.5) does
not hold, we can pick p(H) independent output components ofH that can be decoupled
with a regular dynamic state feedback [10], [3], [24]. Then, the extended system He
verifies dim (Je rl L*E)= m-p(He). Since any solution of the G.L.F.P. concerning
T and H also solves that concerning Te and He, and since the regular dynamic state
feedback does not affect the rank of the systems, the conclusion follows from the first
part. E]

In general, (4.4) is not sufficient for the solvability of the G.L.F.P. However, under
(4.5) and an additional technical condition, which essentially assures the possibility
of locally expressing z as a function of the output and its derivatives, it is possible to
get a local result. More precisely, it is possible, for any Zo in an open and dense subset
of the state space, to find a neighborhood @o and to show the existence of a compensator
G and a map p that achieve (4.3) for z @o. In this case, we will say, that the L.F.P.
is locally solvable.

THEOREM 4.4. The G.L.F.P. is locally solvable if the following conditions hold:
(i) p( r (H)"-)=O
(ii) dim (FIL2*)= rn-p(H);
(iii) 2i=>o (p(H) si) n, where n dim z, So 0, and the s are obtained by applying

Singh’s inversion algorithm to H.
Proof We consider a friend of *, u a(z)+(z)w, as in the proof of Theorem

4.3 and we use the notation introduced there. By the rank equality p() p( H)=pT (H),
since (4.6) holds, the input components w, with i>_-p + 1, do not affect the output of
(). By applying Singh’s inversion algorithm to we get

(4.7)

where is a meromorphic function of its arguments and, in particular, it is defined
for all z in an open dense subset of the state space. Moreover, using arguments such
as those in [17, 4], we can show that, by (iii), the Jacobian matrix

whose elements are obtained by applying Singh’s algorithm to H, has rank n. Then,
for any Zo in an open and dense subset of the state space, there exists a neighbor-
hood @o of Zo such that z X(v, t,..., v(")) for z @o. By substituting in (4.7), we
then get, #l=O(v, t,..., v()). Now, writing the state equation of () as 2=
fl(x, z)+ gl(x, z)# + g2(x, z)#2, : =fz(z)+ g3(z)w, we can consider the system

j=f(, X(V, 0,..., v(")))+g,(, X(V, 5,. ., v(")))6(v {),...,
G=

y h((),

[.y h(sC),

and we claim that (G, p), where q is the identity map, is a solution of the G.L.F.P.
relatively to @o. In fact, by inspection, we see that the output trajectory
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Y(w, Xo, q(Xo), Zo) of the system

=f,(x, z)+ g,(x, z), + g(x, z),,

=f2(z)+g3(z)w,

=f((, z)+ g(, z),

y=h(x)-h(()

is identically zero for all w. Inverting the feedback u=a(z)+(z)w, we obtain
y(u, Xo) y,,(u, (Xo), Zo).

Example 4.5. Let the systems

T={2=u,yr=x
and

2 Z2

H u,
) ZI

be given. Conditions (i) and (ii) of Theorem 4.4 are clearly verified as well as (iii) is,
since p(H)= 1, dim z =2, s =0, s2 1. In this case there is no need to apply any
feedback. By Singh’s inversion algorithm we get u q,(z, v, t,/5) (/5-2z2)/2z and
v z 0, t 2z z2 0. Since

Oz f; 2zz2/ z Z

has rank 2 for z 0, we can express z as a function of v, z3 in the neighborhood of
any point for which z 4 0. In particular, here we have

X(v, t) for Zl > 0.
z

Then, the compensators

G, I=-t}2/2v I /5-152/2v
2x/- and G2 =-v-

y y
together with the identity map, are local solutions of the G.L.F.P., respectively for
Zl > 0 and for Zl < 0.

When a proper compensator is sought, the necessary condition (4.4) must be
strengthened into the equality of structures at infinity, and we obtain the following result.

THEOREM 4.6. The L.F.P. is solvable with a proper compensator

y h(, v)

on& f

(4.8) P’ H
pi(H)

for all >= 1.

Proof Let Y{ denote the field of meromorphic functions in the variables
(x,z,u,...,u(U-)), where N=dimx+dimz. By definition p()=dimspanx{dx,
dz, d9r, dO,..., dy(, dv(}-dim spanc {dx, dz, djr, dO,..., dy( , dv(i-)}. Denot-
ing by Y{’ the field of meromorphic functions in the variables (x, z, s, u,. ., u(U-),
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since neither T nor H depend on we have pi(,)=dimspanc,{dx, dz, d,
dr;r, di), dy dv(i)}-dim spanc, {dx, dz, d, dfT, dO,..., dy 1, dv(i-)}. Since

YH yT, we can substitute dy(kGH into dy for all k in the equation above, thus
pi()=dim spanx, {dx, dz, d, dGn, dO,..., dy, dv()}-dim spanx, {dx, dz, d,
d29, dO,..., dy(-u1), dv(-)}. Moreover, by the properness of (GH), we also have
that dy(k)

n spanx, {dx, dz, d, di), dv)} thus p( rH) dim spanx, {dx, dz, d, dO,
.., dv()}-dim spanx, {dx, dz, d, dO,..., dv(i-l}. Let Y{" denote the field of mero-

morphic functions in the variables (z, u,..., u("-l), where n =dim z. Since

spanx,, {dz, du, dfi,..., du-} for all k-<_ n, we finally get

p(r) dim spanx,, {dz, dO, , dv(i}- dim spanx,, {dz, dO, , dv-)} p(H).. Conclusion. The model matching and the left factorization problems for non-
linear systems have been considered in the framework of a structural approach based
on Singh’s inversion algorithm. The result obtained on the model matching problem
consists of a computable sufficient condition that also allows us to derive a procedure
for constructing a solution, if any.

Necessary computable conditions for the existence of solutions of the left factoriz-
ation problem have also been found. Under additional technical assumptions, one of
the previous conditions has also been shown to be sufficient for assuring the existence
of local solutions. However, in this case, the proof is not entirely constructive, since
it makes use of the implicit function theorem.

Note added in proof. Further results on the problem have recently been obtained
by Huijberts in "A nonregular solution of the nonlinear dynamic disturbance decoup-
ling problem with an application to a complete solution ofthe nonlinear model matching
problem," Memorandum No. 862, University of Twente, 1990.
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MARKOV DECISION PROBLEMS AND STATE-ACTION FREQUENCIES*

EITAN ALTMAN AND ADAM SHWARTZ?:

Abstract. Consider a controlled Markov chain with countable state and action spaces. Basic quantities
that determine the values of average cost functionals are identified. Under some regularity conditions, these
turn out to be a collection of numbers, one for each state-action pair, describing for each state the relative
number of uses of each action. These "conditional frequencies," which are defined pathwise, are shown to
determine the "state-action frequencies" that, in the finite case, are known to determine the costs. This is
extended to the countable case, allowing for unbounded costs. The space of frequencies is shown to be
compact and convex, and the extreme points are identified with stationary deterministic policies.

Conditions under which the search for optimality in several optimization problems may be restricted
to stationary policies are given. These problems include the standard Markov decision process, as well as
constrained optimization (both in terms of average cost functionals) and variability-sensitive optimization.
An application to a queueing problem is given, where these results imply the existence and explicit
computation of optimal policies in constrained optimization problems.

The pathwise definition of the conditional frequencies implies that their values can be controlled
directly; moreover, they depend only on the limiting behavior of the control. This has immediate application
to adaptive control of Markov chains, including adaptive control under constraints.

Key words. Markov decision process, average cost, constrained optimization, state-action frequencies,
nonstationary control

AMS(MOS) subject classifications. 90B50, 60G17, 60J10, 93E20

Introduction. An important issue in optimization problems is the reduction of the
space of policies over which we optimize. This is motivated by the need to reduce the
complexity of the search for optimal policies, and by the desire to restrict attention to
those policies that are easy to implement. Indeed, in many optimization problems we
first show that it is possible to restrict the optimization to the class of stationary policies.
This simplifies the search, since many computational methods are available in the
stationary case. Furthermore, the implementation requires relatively little memory.
Conditions that ensure that we may indeed restrict the search of optimal policies for
Markov decision processes to stationary policies (or even to deterministic stationary
policies) are an active area of research (see, e.g., Borkar [9], [10], Cavazos-Cadena
[12], Dekker and Hordijk [14], Sennott [28], [29] and references therein).

On the other hand, it is of interest to know how flexible we can be in the choice
of policies, in a way that does not change the values of average cost criteria. This is
the case in adaptive optimization, where we often use on-line estimation schemes to
generate an approximation of the optimal control (the certainty equivalence approach).
The goal in this case is to achieve the same performance as in the case of full information.

These two issues are treated in this paper in the framework of the following
question. For a given policy, what are the quantities that determine the values of
average cost functionals? Fix a state x and an action a. For each t, consider the
(random) number of times the process visited state x and action a was used by time
t. It turns out that in many cases average costs are determined by the limits (in time)
of the expectations of such "state-action frequencies." For each time t, consider the
(random) ratio of the number of uses of action a while in state x, to the number of
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Electrical Engineering, Technion--Israel Institute of Technology, Haifa, 32000 Israel.

$ The research of this author was performed in part while he was visiting the Mathematical Sciences
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visits tO state x. Below we show that the pathwise limits of these "conditional frequen-
cies" are the more basic quantity, in that they determine the expected state action
frequencies.

We deal with countable state and action spaces, and obtain classes of policies
that achieve every possible state action frequency; we term such classes "complete."
In the finite case, some questions of completeness are investigated in [2], [15], and
[22]; Derman [15] gives conditions for the completeness of Markov policies. Hordijk
and Kallenberg [22] strengthen this result to Markov policies having just one accumula-
tion point of the "matrix" of frequencies. Derman [15] and, later, Hordijk and
Kallenberg [22] give conditions for the completeness of stationary policies. Two time
sharing policies were introduced by Altman and Shwartz 1 ]-[3], who show that under
the conditions of Derman [15], completeness depends on pathwise limit properties
only, and in particular may be achieved using deterministic (but nonstationary) policies.
In this paper we show that in the countable case the space of achievable frequencies
is a compact convex set whose extreme points are frequencies obtained by deterministic
(stationary) policies. This extends the geometric characterization given in the finite
case by Derman [15], Hordijk and Kallenberg [22], and Altman and Shwartz [2].

We give conditions under which some classes of policies (such as the stationaries)
are "sufficient" in the countable case for several optimization problems, including
optimization under several constraints. These results allow the use of steady-state
analysis of systems, which simplifies the search for optimal policies considerably. It
becomes possible to translate results on performance, which in many cases deal with
"steady state," into results concerning optimization (see, e.g., Altman and Shwartz ],
[3]). Previous results on the sufficiency of stationary policies in the case of countable
state space dealt only with the minimization (or maximization) of a single criterion.

Then, we introduce a larger family of"sufficient" policies--the action time sharing
(ats) policies--which is characterized by the existence of a with probability one limit
to the conditional frequencies. In contrast with the standard "small" classes of policies
such as the stationary policies, these policies are flexible enough to be useful for
adaptive problems, as they have the following .important property: the expected
frequencies (and thus the cost) achieved by any policy depends only on the (pathwise)
limiting behavior of the control mechanism. More precisely, it depends only on the
limit of the conditional frequencies, described above. Therefore it is possible to use
nonstationary algorithms based on real-time estimation of unknown parameters, and
still obtain optimality. Moreover, whereas existing results on adaptive control of
Markov chains consider only the optimization of a single criterion, the present results
can be used to obtain adaptive controls under more general criteria, such as constrained
optimization. An application of these ideas in the case offinite state and action spaces
is given in Altman and Shwartz [2, 5], [4]. The computation of optimal policies of
the ats type is equivalent to the computation over the more restricted class of stationary
policies, and the implementation is just as simple.

After introducing the model and some notation, 1 provides the basic motivation
by introducing the standard Markov decision problem and a constrained optimization
problem. In 2 we derive conditions under which the frequencies determine the value
of optimization criteria, and under which stationary policies or other complete classes
of policies are sufficient for the two optimization problems. In 3 the basic results
concerning the completeness of the stationary policies and the role of the conditional
frequencies in determining the behavior of the process are derived. Since the state and
action spaces are countable (and thus not compact), a tightness condition is used. The
literature concerning the tightness problem is extensive; in 4 we adapt some applicable
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results. The case where tightness does not hold is treated by imposing conditions on
the cost, under which tight policies are "better" than nontight ones. In 5 it is shown
that the space of frequencies is compact, and has the geometric characterization as
the convex hull of the frequencies of stationary deterministic policies. This has implica-
tions to the existence of.optimal policies in constrained optimization problems. Finally,
we apply and extend the results of the previous sections. In 6 we treat a queueing
network, and in 7 an equivalence between the constrained optimization problem and
an associated linear program (which is well known in the finite case [15], [22]) is
extended to the countable case. Section 8 treats some lesser known optimization
problems involving variance.

1. The model and the problems. Let {X,}7= be a discrete time process defined on
the countable state space X {0, 1,... }. At time an action A, from the countable
action space A is taken. Denote by A(x) the set of actions available when in state x.

hn :- (X, A, X2, A2," , Xn, An) is the history of {Xt}. Denote the transition prob-
abilities for the controlled Markov chain by

(1.1) P,ay:=P(Xn+=y]Xn=x;An=a)=P(Xn+=ylh,_=h,X=x;An=a).
A policy u in the policy space U is defined by u {Ul, u2," }, where u, is applied

at time epoch t, and u,(-Ih,_, X,) is a conditional probability measure over A. Each
policy u induces a probability measure pu on the space of paths (which serves as the
canonical sample space f). The corresponding expectation operator is denoted by Eu.

A Markov policyf U(M) is characterized by the dependence of u,(. h,_, X,)
on X, only; i.e., u,(. h,_, X,)= u,(.IX, ). A stationary policy g U(S) is characterized
by a single conditional probability measure u(.IX,)=px over A, so that PA(x)lx-- 1;
under g, {Xt} becomes a Markov chain with stationary transition probabilities, given
by Pgxy =aeA(x) PgalxPxay The class of stationary deterministic policies U(SD) is a
subclass of U(S), and every g U(SD) is identified with a mapping g" X-* A, so that
for each x, p. 6g()(. is concentrated at one point a A(x).

Let c(x, a) be a real valued function on X x A, possibly unbounded, and let

We assume throughout that for each u, the cost C’(u) is well defined. This will usually
follow from uniform integrability assumptions on c(X,, A,), or from a condition that
c(.,. is bounded below. The optimization problem OP involves the minimization of
average cost functionals"

(1.2a) x(U) lim C’x(U),

(1.2b) _Cx(u) lim C’(u).

These include the standard "positive" and "negative" Markov decision problems.
Given the constants Vk, 1 <_-- k <_- K, the constrained optimization problem COP is defined
as

(1.3a) minimize x(u) subjectto l(u)<-Vk, l<-_k<-_K,

(1.3b) minimize _C(u) subjectto l(u)<-Vk, l<-k<-_K,

where O(u) is defined similarly to (2(u) with c(x, a) replaced by dk(x, a), and both
c(x, a) and dk(x, a) may be unbounded. For finite state and action spaces, a solution
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to the constrained optimization problem based on linear programming was already
obtained by Derman [15] and Hordijk and Kallenberg [22], and some variables of
this linear program are limits of the state-action frequencies (1.4).

These expected state-actionfrequencies (Derman 15]) and expected statefrequencies

-T 1 T

fx,,(Y, a):=- 2 P"(Xs=y,A,=a]X=x),
s--.=l

(1.4)

are key quantities in the analysis below. Let the "matrix" {fx,u(Y, a)}y,a denote a generic
accumulation point of the infinite ’matrix’ { fx,,(Y, a)}y,a as T- oe (i.e., an accumula-
tion point in a countable-dimensional space with one coordinate for each state action
pair), and let {jQu(y)}y denote any accumulation point of the infinite vector {f’,,(y)}.
Let Fx,, denote the set of all limit matrices f,,, (., ). Any class of policies U’ determines
a set of accumulation points L,(U’):= ,u, F,, and the set of all such limits is
denoted by L := U,_ t Fx,,. We use the abbreviations L(S):= L(U(S)) and L(D):=
L(U(SD)).

The following definitions are useful for the sample-path analysis of 3. Let
fr(y,a):=(1/T)E "

s=l I{X y, A a} denote the sample-path frequency at which the
event of being at state y and choosing action a occurs till time T. The expectation of
the random variable f r(y, a) under u starting at x is thus f,,(y, a). The frequency
at which the event of being at state y occurs till time T. is denoted by fr(y)=
(l/T) E r.__ I{X =y}. Finally, f(a]y):---fr(y, a)[f(y)] is the frequency at which
action a is chosen conditioned on being in state y, until time T. If f(y)= 0 define
fr(a]y) := 0. Denote byf(y, a) (respectively, f(y)) any accumulation point offr(y, a)
(respectively, f

Let g be a stationary policy. The following standard result will be frequently used.
LEMMA 1.1. Assume that under g the process {Xt}L1 has one positive recurrent

class, and thatfrom any transient state, absorption into the recurrent class occurs in finite
expected time. Then

f,g(y, a)= rg(y)pgly limf’(y, a) Pg a.s.

For the last equality to hold, it suffices that absorption occurs with probability one.
A class of policies U’ is called complete if L U {Fx,,," u’ U’ and F,,, is a

singleton}. U’ is called weakly complete if

u’ U’ singleton}.L,VI sr’] sr(y,a)=l cU{F,,," andFx,,isa
y,a

--tNote that for each t, f,,(y, a) can be considered as a probability measure over X x A.
The condition ,of,,(y, a)= 1 for every limit point f,,(y, a) of a subsequence
{f’x’;,(y, a)}, is equivalent to tightness of this set of measures [8]. Thus weak complete-
ness considers only tight frequencies.

A class of policies U’ is called sufficient for an optimization problem if for any
policy u there is a policy u’ U’ that performs at least as well. The motivation for
studying questions of completeness and the spaces of frequencies is provided in 2
below, where the connection between completeness and sufficiency is established. Note
that sufficiency does not imply existence of an optimal policy, but rather that the search
for "good" policies can be restricted to any subclass that is sufficient.

The following assumptions are used frequently in the paper:

(A0) At each state x, the set of available actions A(x) is finite.
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(A1) Under any policy g U(S) the state space contains a single positive recurrent
class, and absorption into the positive recurrent class takes place in finite
expected time.

It follows from Fisher [18] that under (A0) and (A1), if there are no transient
states under any policy in U(SD) then the chain is ergodic under each policy in U(S)
if and only if it is ergodic under each policy in U(SD) (see also 5, Corollary 5.3).

(A2(u)) Given a policy u, the expected frequencies {fx,u(Y, a)}, are tight.

(A2) Assumption (A2(u)) holds for all policies u U.

(A2*) The family of stationary probabilities corresponding to policies in U(SD)
is tight.

Remarks. (i) The issue of tightness is treated in 4. In Lemma 4.1 we show that
under the appropriate conditions, (A2) is equivalent to (A2*). We give simple verifiable
sufficient conditions for (A2*), and develop some methods for the nontight case.

(ii) Assumption (A2(u)) depends on the initial state x, even when (A1) holds.
For example, let u’ be a policy that violates (A2(u’)) (e.g., the policy constructed in
[17]). Let g be a policy for which (A2(g)) holds (under (A1), this holds for any
stationary policy). If u equals u’ whenever Xo x and otherwise uses g, then clearly
(A2(u)) holds for all initial states except x. Throughout the paper, reference to (A2(u))
will implicitly assume a fixed initial state, which is omitted from the notation.

To make the discussion more concrete, we cite Theorem 3.2, whose proof is given
in {}3.

THEOREM 3.2. Under (A1) the class of stationary policies is weakly complete.
As will become clear in 3, the property of completeness does not depend on

stationarity; it is more naturally defined through conditional frequencies. This will be
seen to provide a large degree of flexibility, which can be applied in a straightforward
manner to adaptive optimization problems [4].

2. Sufficiency and completeness. The aim of this section is to establish the relation
between optimization problems and state-action frequencies, and in particular between
sufficiency and completeness. In the case of finite state and action spaces it is known
that the time average expected cost has a representation as a linear function of the
expected state-action frequencies (e.g., [15]). We extend this result to the countable
case, and establish sufficient conditions under which the costs (1.2a) and (1.2b) can
be represented as linear functionals (2.4) of the frequencies. The advantage of this
approach is that it deals directly with the cost functionals, and therefore applies to
many classes of optimization problems. In the following sections we investigate the
optimization problems OP and COP, and show the connection between completeness
and sufficiency. In particular, we present conditions under which the search for solutions
of OP and COP can be restricted to those policies for which the costs have the linear
representation (2.4) in terms of the frequencies. Similar results are obtained in 8 for
other optimization problems. These results motivate the further investigation of the
achievable frequencies under various classes of policies, which is carried out in 5.
We will be especially interested in finding out which classes of policies are complete.
This will indicate when a class of policies is sufficient for the optimization problems
OP and COP, or, in other words, whether we may restrict the search for optimal
policies to smaller classes of policies. Moreover, as will become clear is 3, this
approach identifies the key quantities that determine the costs, and allows for a flexible
choice of controls while keeping the cost fixed.
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The results of this section concerning optimization problems are given under
condition (A2), which is a rather strong "uniform stability" assumption. In 4 we
provide natural sufficient conditions for (A2), and also show how the results can be
extended when tightness does not hold.

2.1. Representation of costs through frequencies. Unlike the case of finite state and
action spaces, the time average expected cost in the countable case need not even have
a representation as a function of the expected state-action frequencies.

Counterexarnple 2.1. The deterministic case. Let Pxy l{x + 1 y} and c(x, a) 1
for all states and actions. The action is thus irrelevant to both the dynamics and cost
and we may assume that there is just one possible action. Under any policy u we
clearly have fx, (Y, a) 0, while C(u) 1.

In this example (A1) does not hold. Counterexample 3.5 in 3 presents a case
where (A1) holds but (A2) does not, and which exhibits similar behavior.

Lemmas 2.2 and 2.3 provide conditions under which a linear representation (2.4)
holds. Fix an initial state x and a policy u. Since by assumption C’(u) is well defined,
the definitions imply

(2.1) (u) lim -tfx,u(y,a)c(y,a).
y,a

Let {Sn}n be a subsequence along which the limit is obtained, i.e.,

(2.2) C(u) lim Z f",,(Y, a)c(y, a).
y,

Using diagonalization, choose a further subsequence { tn }, so that ft,% (y, a) --> jQ (y, a),
for all y and a.

LEMMA 2.2. Assume (A1) and let {c(Xs, A.)}s be uniformly integrable under P.
If (A2(u)) holds then the costs (1.2) are a function (2.4) of the fx, defined above. If v
is a policy such that F, {f,,} and {c(X,, A.)}s are also uniformly integrable under
P, then C(u)= C(v) and C_x(u)= C_(v).

Proof Consider first the cost function defined through (1.2a). Note that for each
--tt, f,(., can be considered as a probability measure over X A, and the cost c(.,

-tcan then be viewed as a random variable over X A. The convergence f",(y, a)-
f,(y, a) for all y and a thus translates under (A2(u)) into weak convergence of
probability measures along tn. As {c(X, A.)}, is uniformly integrable with respect to
P, c(.,-) is also uniformly integrable with respect to { -fx,u},, this follows from the
fact that for every function h,

(2.3) 2 -’ [h[c(X, a)]lx, x].y,,f,(y, a)h[c(y, a)] E,
,:,

This weak convergence of jz,, implies the convergence of c(. in distribution, and
combining this to the uniform integrability of c(.,. we finally obtain [8]

(2.4) Cx(u) 2 f,(Y, a)c(y, a).
y,a

The argument for (1.2b) is identical. The last claim is now immediate since f,u

It is not difficult to establish the following converse to Lemma 2.2. If (2.4) holds
for each limit point f,u in F, and c satisfies oe > > c(y, a)> e > 0, for all y, a, then
(A2(u)) holds. But for an arbitrary c (2.4) may not imply (A2(u)) (for example, c=0
provides no information).



792 E. ALTMAN AND A. SHWARTZ

Next, we discuss the representation (2.4) for stationary policies. Fix g U(S) and
an initial state x, and let 0 X be recurrent under g. With the standard convention that
inf:=oe, define r(1):=inf{t-> 1: Xt=0}, r/(k+ 1):=inf{t> r/(k): Xt=0}, where
r/(k) =ee implies r(k+ 1) =oe.

LEMMA 2.3. Assume (A1) and let g U(S). Then (A2(g)) holds, and the representa-
tion (2.4) for the costs (1.2) holds whenever one of the following is true: (i) {e(Xs,
are uniformly integrable with respect to Pg; (ii) c is bounded from below and (A3(g))
holds; iii c is bounded from above and A3 g holds, where

[,(1)-i ]Eg E [c(X, &)l[X, x oo
s--1

(A3(g))
implies Eg ]c(Xs, As)llX1 x

rt(1)

Note that if, under g, x belongs to the recurrent class then (A3(g)) always holds
(see the proof below). In particular, when there are no transient states under g, (A3(g))
holds.

Proof The first claim follows from Lemma 1.1, and (i) is obtained by combining
this with Lemma 2.2.

To prove (ii), consider first a cost of the form c(x, a) c(x). Recall that the initial
condition is fixed, and is omitted from the notation below. Denote by -k:
E[rt(k + 1)- rt(k)] the expected time between consecutive visits to state zero under
g. (We call such a period a cycle.) From Chung [13], under (A1), -:= -k is independent
of k. Denote the (sample) cost over the kth cycle by Y(k):=
set Y(k) := 0. Assume that

n()

Denote by W:= Eg[ Y(1)] the total expected cost during the first cycle. Since c is
bounded below, (A1) implies that (*) is equivalent to W being finite. From Chung
[13] it follows that under (A1), (*), and (A3(g)),

(2.5) ((g) _C(g)= C(g)=__W= y -c(y).
’7" yeX

g whereas the tightness impliess Ya,fx,g(Y, a)=But as g is stationary, fx.g(y) ry
fx,g(y). Hence

(2.6) C(g) f,g(y)c(y)= 2 f,u(Y, a)c(y).
yX y,a

Next, if (*) does not hold then W=oe. Denote cM(x): c(x)l{c(x) <- M}, and define
W, Y(k), and C(u) as before, but with c(x) replacing e(x). The following
monotone convergence holds pathwise:

r/(2)-- r(2)--

Y(1)= c(Xs) lim c4(Xs) lim Y(1).
s=r/(1) M->oo r/(1) M->oo

Clearly, C(g)-->limM_o C(g) =lim_o W/ W/" by (2.5) and the monotone
convergence theorem. Thus C(g)= W/-, i.e., all but the last equality in (2.5) hold
independently of (*). It then follows from (2.5) that

W gcM g(2.7) oe= lim lim Y wy (Y)= 2 wyc(y)
Mocx ’7" Mc yX yX
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using the monotone convergence theorem. The argument leading to (2.6) now implies
(2.4).

Finally, we allow the cost to depend on the action. Let g’(x):= Eaa(x)p]lxc(a, x).
Note that

E f,g(y)(y)
yeX

E Z f,g(Y)PalyC(Y, a)= Z f,g(Y, a)c(y, a),
yX aA y,a

since fx,g(y)ply=fx,g(y, a), and where changes of order of summation are justified
since c is bounded below. The proof in the case the cost bounded from above is
identical. [3

That (A3(g)) is necessary can be seen through the following example. Let X be
the positive integers and let A := {a}. Let Poao 1, and Pxa0 0.5, Pa(+)=0.5 for x> 0.
With c(y, a)= by, (A3(g)) is violated and (2.4) fails to hold whenever b->2.

2.2. Optimization and frequencies. Using the previous lemmas we next discuss
optimization under the expected average cost criterion.

LEMMA 2.4. Assume c(x, a) is bounded below, and let C(u) denote either of the
costs (1.2). If
(2.8) C(u) lim 2 -’f;,(y, a)c(y, a)

nooo y,a

for some u and sequence {In} then for any accumulation point fx, of -’{f;:.}, C(u) >=
Ey,af,(Y,a)c(y,a).

Proof Assume first that c is positive and let {sn} be a subsequence of {t,} such
that f:,-f, for all (a, y). An application of Fatou’s lemma, where c is considered
as a r-finite measure yields

(2.9) Cx(u) lim Y fZ(Y, a)c(y, a)>= Y lirn fx:,(y, a)c(y, a)= E f,u(Y, a)c(y, a).
y,a y,a n-oo y,a

In general, shifting c to obtain such a measure, the same argument applies.
COROLLARY 2.5. Let u and v be two policies such that F,, {fx,}, and f,, fx,,

for some accumulation point f,, Fx, Assume that under v the representation (2.4)
holds and c(x, a) is bounded below. Then C(v)<- Cx(u), where Cx(u) stands for either

of the costs (1.2).
The following theorem gives conditions under which the search for optimal (or

e optimal) policies can be restricted to a subclass of policies.
THEOREM 2.6. Consider the problem of minimizing Cx (u) (or minimizing C_ (u)).

Assume (A1) and (A2) and let U’ be complete. Then U’ is sufficient ifone of thefollowing
assumptions holds"

(i) { c(Xs, AL)}. is uniformly integrable with respect to Pu for each u U.
(ii) For each u’ U’ (2.4) holds and c(x, a) is bounded below.
Proof. (i). For any u U, there exists a v U’ satisfying the hypotheses of Lemma

2.2, and sufficiency follows. The proof of (ii) follows from Lemma 2.4 and Corollary
2.5.

Note that the question of existence of optimal policies is not raised here.

2.3. Constrained optimization. The reason for restricting problem COP to cost
functionals D defined through (1.2a) is that, when the constraints are defined through
(1.2b), a complete class of policies may not be sufficient, even if the state and action
spaces are finite. For example"
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Counterexample 2.7. Optimization under a constraint. Let X {x}, and A {p, q}.
Set c(x, p) d(x, q) -1, d(x, p) c(x, q) =0. Define _C and _D through (1.2b). The
objective is to minimize _Cx (u) under the constraint _Dx (u) =< -0.5.

In the finite, single class case, it is well known that the class of stationary policies
achieves all possible frequencies. It is easy to see that the best stationary policy g
chooses p or q with equal probability, and _Cx(g)=-0.5--_Dx(g). Consider the policy
u that uses p at times (2n)2-< t< (2n+ 1)2 n--1,2,.., and action q at the remaining
epochs. Then _C(u) _D (u) -1, and we conclude that there is no stationary optimal
policy.

THEOREM 2.8. Consider problem COP (1.3a) and (1.3b). Under (A1) and (A2)
the stationary policies are sufficient if one of the following holds;

(i) {c(Xs, As)} and {dk(Xs, A.)}, 1 <- k <- K are uniformly integrable with respect
to pu for each u, or

(ii) c(x, a) and dk(x, a), 1 <--k <- K are bounded below and (A3(g)) holds for all
g U(S), with respect to c and d k, 1 < k < K.

Remark. It clearly suffices to check (A3(g)) for those policies that satisfy the
constraints (see also 4).

Proof Consider first (1.3a). Fix an arbitrary policy u. Let tn be a subsequence
such that C(u) limn y,,f,u(y,a)c(y,a), and such that the limits (y, a)-->

fx",u(Y, a)d (y, a) exist. According to Corol-fx,u(Y, a) for all y and a, and lim,_ 2y, --t k

lary 3.3 the class of stationary policies U(S) is complete, hence there exists a stationary
policy g such that fx,g =f,,. Under assumption (i), Lemma 2.3 implies that (A2(g))
holds, and so Lemma 2.2 implies Cx(g) C(u). Finally,

/k(u) lim f’,,(y, a)dk(y, a) > lim -f..,(y,a)dk(y,a)y,a y,a

E f,.(Y, a)dk(y, a)= ff)(g),
y,a

where the next to last equality is validated by the arguments of the proof of Lemma
2.2. This proves the theorem under assumption (i).

Under (ii), since (A1) implies that f,g is a singleton, Lemma 2.3 and Corollary
2.5 can be invoked to conclude ((g) -< tx(u) and /)k(g) _< /)k(u for each k, and the
proof for (1.3a) is concluded. The proof for (1.3b) is identical.

Finally, we consider an arbitrary complete class.
COROLLARY 2.9. Assume (A1) and (A2) and consider COP (1.3). Let U’ be any

complete class ofpolicies. Assume (2.4) holds for all u’6 U’ and for c and d k. Then U’
is sufficient if one of the following holds;

(i) {c(X, As)} and {dk(x, AL)}., 1 <--_ k <- K are uniformly integrable with respect
to P for each u, or

(ii) C(x, a) and dk(x, a), 1 <-- k <= K are bounded below.
Proof Stationarity is used in the proof of Theorem 2.8 solely to guarantee that F

is a singleton and the representation (2.4) holds.

3. Completeness: action time sharing. In Theorem 3.2 we prove that the class of
stationary policies is weakly complete under (A1), and complete (Corollary 3.3) under
the additional assumption (A2). This and the results of 2 allow us to recover and
extend classical results, concerning optimality of stationary policies.

The classical approach to Markov optimization problems relies on the specific
class of stationary policies, and on their statistical properties. In contrast, the point of
view taken here is to find weak sufficient conditions for a class of policies to be
complete. The class of "action time sharing" policies introduced below includes the
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stationary policies. However, the novelty of this approach is expressed in Theorem
3.6, which states that the frequencies achieved by "ats" policies depend only on their
pathwise conditional frequencies. This implies (Theorem 3.7) that completeness can
be achieved within subclasses other than stationaries: for example, using deterministic,
nonstationary policies.

> 0, and aca(y a 1 for each y X.Fix a := { a y, y X, a A(y)}, where a y

DEFNI3"ION. A policy u is an "action time sharing" (ats) policy with parameter
a, and is denoted as c if for every state y that is visited infinitely often pu almost
surely and any action a,

fT(a y)-ay asT pU a.s.

Thus an ats policy c alternates between several actions at each state so as to achieve
a prescribed (state dependent) limiting relative frequency for each action. There are
no restrictions as to how the limiting frequencies fT(a[y), are achieved, and there are
many ways such a policy can be realized.

A realization of an ats policy with parameter a is a mapping h from the space
S of all possible collections a to the space of all policies U. Given such a mapping
h, let Uh (ats) :-- h (S) denote the subclass of ats policies of the form c h (a) for
some a S. For example, setting Pa[y--Oy defines a stationary policy, where PIy are
the conditional distributions. We thus recover the class of stationary policies, where
the realization is by randomly choosing the actions using unfair dice. Another possible
realization of ats policies is through the use of a counter for each y 6 X, a A(y). We
then choose in a deterministic way which action to use for every state, so that the
appropriate conditional frequencies are achieved.

The main result of this section, Theorem 3.7, states that under (A1) and (A2),
Uh(ats) is complete for any h (see the definition of completeness in 1). Moreover,
the frequencies fx,(Y, a) depend only on the parameter a, and not on the realization

h(a) (Theorem 3.6). We proceed to investigate the completeness of stationary
policies, and will then turn to ats policies. But first we need a technical lemma.

LEMMA 3.1. Under (A1) for any transition matrix Pg, g U(S) there exists a
measure zr such that

(.) (y)-> E (z){P"].
zcX

The measure is finite, is unique up to a multiplicative constant, and in fact zr(y)=
Ez,, r(z)[P]z.

Remark. This result is well known when there are no transient states (see, e.g.,
[27, Thm. 1.10, p. 67]).

Proof Existence. Let R and T denote the recurrent and transient classes under
g. By Theorem 1.10 of [27, p. 67], there exists a finite measure , unique up to a
multiplicative constant, such that

’(Y) E (z)[Pg]zy.
zGR

Define the measure on X by (y)= (y) for y R and (y)= 0 otherwise. Then it
is easy to check that solves (3.1), in fact with equality. To prove uniqueness, let
be a solution of (3.1). Iterating (3.1), we obtain for every n > 0

(.) (y) E (z)[(P)"]z 2 (z)[(P)"]z.
zX zR
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Again, by Theorem 1.10 of [27, p. 67], there exists {zr(y),y R}, unique up to a
multiplicative constant and independent of n, such that for all y R, zr(y)= zcR zr(z)
[(Pg)"]zy. But this and (3.2) imply that r satisfies zcr r(z)[(Pg)’]zy =0 for all y R
and all n. Fix some y R; by (A1), for each z T there exists a finite n such that
[(Pg)’]zy>O. Thus we conclude zr(z) =0 and the uniqueness is established. 13

THEOREM 3.2. Under (A1) the class of stationary policies is weakly complete.
Proof First note that Fx,g is a singleton for any stationary policy g. This follows

from the existence of a unique stationary probability, under (A1). Pick any frequency
matrix sr L, that is achieved, say, by a policy u U. To establish the theorem we need
to show that whenever -’{f,,}, is tight, there exists a policy g U(S) so that f,
Thus let u be a policy such that {f’,,}, is tight. Let { t,}, be an increasing sequence of
times (chosen by diagonalization) along which lim,_ jT,?,(y, a) := f,,, (y, a) sr (y, a)
and lim,_ f’,;,(y) := jQ,(y) exist for all y and a A(y). Note that for each y,

(3.3) f.u (Y) lim f’x’;u(Y) lim 2 f;;u-’ (y, a)
noo acA(y)

and by tightness and the convergence f,",,(y, a)--> f,,(y, a), the probability measures
f’,;,, n 1, 2,... converge weakly (see the Portmanteau theorem in [8]), so that

(3.4) f,,(y)= lim -’ -’f;5,(Y, a)= 2 lim f;5,(Y, a 2 f,u (Y, a ).
n-->oo acA(y) aA(y) acA(y)

Set/3 := f,,,(y, a)[f,,,(y)] -1 whenever f,,,(y) O. If fx,,(y)=0 then the/3 are chosen
a__ 1 By (3.4), Y,a fl 1< 1 for all a, and cA(y) Y cA(y)arbitrarily but such that 0 </3y

for every y. Define the stationary policy g by PIy =/3. Then

(3.5) Pxy E Pxay.
aA(x)

Since for every s > 1 we have P,{X y} -,z., P{Xs-1 z, As-1 a}Pzay, we get after
some algebra

(3.6) -’ 1 1
f,,(z, a)Pz,, -f,"(Y) P{Xl Y} y -,

z,a
E P,{X, z, A, a}Pz,y.
z,a

Since the left side of (3.6) converges along the sequence t, to f,,(y), so does the right.
Fix y and consider Pz,y as a g-finite measure on X x A. Applying Fatou’s lemma we
obtain using (3.6)

(3.7) fx,,(Y) lim E f,?,(z, )Pz,y=> E fx,,(z, a)Pzay
z,a z,a

since the last term in (3.6) is bounded by -1. From (3.5), (3.7) and from the definition
of/3y we obtain

(3 8) f,,(y) > E f,,(z) Pg
zyo

From (3.8) we conclude that f,, is an excessive measure with respect to the transition
matrix Pg. It follows from (3.4) that -’{fx,-,(. )},o are tight, and hence f,,(. is in fact
a probability measure But under (A1), Lemma 3.1 implies that f,, zr g. Using the
definition of/3 and g this finally implies that

(3.9) st(y, a)= f,,(y, a)= fx,,(y) "/3] rg(y)ply=f,g(y, a)
by Lemma 1.1. 13

From Theorem 3.2 we immediately obtain Corollary 3.3.
COROLLARY 3.3. Under (A1) and (A2) the class of stationary policies is complete.
Combining this with the theorems of 2 we thus conclude that, under the relevant

assumptions, the stationary policies are sufficient for problems OP and COP.
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Assumption (A2) is used to guarantee that -’y,a fx,u(Y, a) 1 and that ’.aA(y) y
for every y. Assumption (A0) guarantees the latter; note that it does not imply that A
is finite.

COROLLARY 3.4. Under (A1) and (A0), for every policy u and a matrix fx,u(.,. ),
there exists a stationarypolicy g and a constant 0 <-_ 6 <- 1 such thatfx, (Y, a) 6. f,g (y, a),
y X, a A(y). Under (A2), 6 1.

Proof Following the proof of Theorem 3.2, observe that f,,(.) is an excessive
measure due to (3.8) and is thus, by Lemma 3.1, proportional to 7r g. But f,,,( "," is
clearly a subprobability measure, i.e., y,a f,, (Y, a) =< 1. Thus by the argument of (3.9),
fx,,(y, a) 6. f,g(y, a), y X, a A(y). If (A2) holds then it is a probability measure,
and 6 1 by Theorem 3.2. [3

Remark. If under every u U(SD) there are no transient states then 6 in Corollary
3.4 is always strictly positive; moreover, f,,(y)> e(y) uniformly in u U (see, e.g.,
[18]).

Before we show that f,s depends only on c, we present a Simple example that
demonstrates the importance of (A2), and shows that a condition such as (A0) is
necessary for (A2).

Counterexample 3.5. Countable action space. Consider problem OP with X-- {x}
and A= {1, 2, }, and let c(x,a)=l+a -. Clearly, X,=x for all t. Under any
stationary policy g, C(g)> and a_A(x) fx,g(X, a)=fx,g(x)= 1. Let u be the non-
stationary policy that chooses action a at time t. Clearly, we have C(u)= 1,
Z,(x,a)=O,Z,(x)=.

This example demonstrates that even under the unichain assumption, the expected
state-action frequencies may not be tight while the expected state frequencies are, and
the average expected cost is not necessarily a function of the expected state action
frequencies. Moreover, the stationary policies are not complete, and due to the noncom-
pactness of the action space, the cost achieved by some nonstationary policy can be
strictly smaller than the cost of any stationary policy. This is in contrast with the case
of finite state and action spaces (see Derman [15]).

A counterexample where both (A1) and (A0) hold yet (A2) is not satisfied is
presented in Fisher and Ross [17]. They show that indeed without (A2) the stationary
policies may be incomplete.

THEOREM 3.6. Under (A1) and (A2), F, {f,} is a singleton. Moreover, f,
depends only on and is independent of the realization h.

Proof Let v c h (c) be some ats policy with parameter c. Define the stationary
policy g by PIy c. By the strong law of large numbers, g is also an ats policy with
parameter c. The proof is concluded by showing that fx,(Y, a)= fx,g(y, a). Since the
initial state is fixed, we suppress it in the notation of P and E. Let

M, := l{Xs y}- Y l{Xs_l x, a_ a}Pxay.
s-----2 s=2 x,a

Then for any u, M, is a P" martingale and by the stability theorem (e.g., [20, Thm. 2.22])

(3.10) liml[l{Xs=y}- l{Xs-1--x, as-1 a}Pxay]=O PU a.s.
t- s=2 s=2 x,a

Let N be the P-null set of o for which either (3.10) orthe convergence in the definition
of the ats policy v do not hold. Fix w f-N and an arbitrary increasing sequence
of times t,. Using diagonalization, construct a subsequence s, to t, along which for
all y and a, fs,, (y, a), f. (y) and f- (a Y) converge to some limits f(y, a), f(y), and
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f(aly), respectively Note that from the definition of the ats policy v it follows that
f(Y) =af(Y, a) pv almost surely. For that to we have from (3.10) for all yX:

(3.11) f(y) lim Y f,,-)(x, a)Pxay.
x,o

An argument as in (3.7) and (3.8) implies

(3.12) f(y) >= f(x, a)Pxay.

From the definition of the ats policy v it is easy to see that

(3.13) f(x) f(a Ix)f(x fx, a).

From (3.12) and (3.13) we obtain, since all terms are nonnegative

(3.14) f(y)> xxf(X [ ceapxay]= f(x)Pg
xy"

aA(x) xX

Using the same argument that followed the proof of Corollary 3.4 we obtain for all y X"
g(3.15) f(y) (to, {Sn}) 7re

for some constant satisfying 0_-< 6 _-< 1. Thus, for all y, z in X,

lim [f"(y)Trg(z)-f"(z)Trg(y)] =0.

Since the sequence {tn}n was arbitrary, we conclude that in fact

lim [ft(y),rrg(z)-f’(z),rrg(y)] =0

and this holds for PV almost surely But by the bounded convergence theorem,

lim [Ef (y)Trg(z)- Ef (z) 7rg (y)] lim f’,(Y)Trg(z) fx,-’ (z) rg (Y)] 0.

By assumption -t{fx,v}, is tight. Fix any subsequence {rn}n such that -rfx’,’ - f, Then
f,(y)Trg(z)=f,(z)Trg(y). However, the only probability measure that solves this
equation is f,v 7r g, and we conclude that f’,-> 7rg. From the definition of the ats
policy v and the bounded convergence theorem, we have

lim Ela]-f’(y a){f’(y)]-ll =0.

Thus, using the bounded convergence theorem and the tightness (A2),

(3.16) lim f,(y, a lim Ef’(y).
a

lim -tfx, v(y) Oy yg(y)

7rfor all a, y. Finally, Lemma 1.1 implies fx,g (Y, a) ay
depends only on a and not on c this concludes the proof.

Combining Theorem 3.2 and Theorem 3.6 it follows that the completeness is
determined by the a only, so that complete classes can be easily generated.

THEOREM 3.7. Under (A1) and (A2), for any realization h’S,- U, Uh(ats) is

complete.

4. Tightness. The issue of tightness for Markov decision processes has been
investigated extensively. It is easy to see that, in general, unless the sets A(x) are finite

,., ?.?:! ,... .t hold. In the compact case, Lemma 4.1 provides a simple
:,i,:: ".. ,.,.: !:’,: (,A2). We describe briefly several approaches that provide

.i;:-.i,..,i ,1;?.,:, r tightness in this compact case (i.e., under (At))).
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If compactness of the actions is not assumed, we can usually construct a policy
u for which (A2(u)) does not hold, so that (A2) will not hold. However, since the
tightness appears in connection with the optimization problems, we derive conditions
on the cost functions that guarantee that the search for optimal policy can be restricted
to policies satisfying (A2(u)). This extends the results of 2.2 and 2.3 to cases where
(A2) does not hold.

LEMMA 4.1. Under (A0) and (A1), (A2) implies (A2*). If in addition there are no
transient states, then A2 is equivalent to (A2*).

Proof It is shown in the proof of Lemma 7.3 of [10] that, under (A0) and (A1)
and when there are no transient states, (A2*) implies that for each state x and policy
u the expected frequencies { -’fx,,(y)}, are tight. To see that the converse holds assume
(A0) and (A1) and let gi be a sequence of policies in U(SD) such that the sequence
of corresponding invariant distributions 7ri is not tight. Clearly, -’fx,gi(Y) -> Try(y) for all
x, y. Thus we can find an increasing sequence {t} and construct a policy u where
ut(’lHt_l, Xt) gi(xt) for t< t<- ti+l such that -tf;,u fx,, and Ey fx,,(Y) < 1. Thus it
suffices to show that { -’fx,,(y)}, is tight if and only if {f’,,(y, a)}, is tight.

By definition, {-’f,u(Y)}, is tight if and only if for any e > 0 there exists a compact
(finite) set K(e)X such that y(f,.(y)> 1 e, and similarly for {f,u(y, a)},.
Given K(e), let K’(e) := {(y, a)" y K(e), a A(y)}. Then K’(e) is compact and since

(4.1) 2 (y,a)f’,,(y) -,
fx,

aA(y)

we have (y,.):,()f,u(y, a) (y):() f,.(y) > 1 e. To prove the converse, given
K’(e)cXxA let K(e):={y’(y,a)K’(e) for some aA(y)}. The same argument
now concludes the proof.

Assumption (A2*) is quite common in the literature on controlled Markov chains
with a countable state space, and sufficient conditions are available. Borkar [10, III]
shows that (A2*) is equivalent to the time between visits to some recurrent state being
uniformly integrable under all u U(SD). The whole IX in [10] is then devoted to
different sufficient conditions for that uniform integrability. Hordijk [21] presents

g , pgseveral sufficient conditions for (A2*), in terms of the measures Px,K .-/yc: xy,

(i) The set of probability measures {P(X2 .IX1 x)" x X, g U(S)} is tight
[21, Lemma 10.3, 10].

(ii) Given any e > 0 there exist a finite set K(e) and an integer N(e) such that
for allxXandgU(S),

[(p)N()] >l-e.x,K(e)--

(iii) The simultaneous Doeblin condition. There exist a finite set K, a positive
integer n, and a positive real number c such that [Pg],t; -> c for all x X and all
g U(S) [21, 11.1].

Two other assumptions that are equivalent to (iii) above (and are thus sufficient
for (A2*)) are presented in Theorem 11.3 of [21]. To formulate these conditions, denote

g,APx,B :-- Pg{X, B, X - A, < s < fIX x}, mg(X, A):= E
t=2

g,s(iv) There exist a finite set K, c > 0, and n such that .--2 Px, > c for all x X
and g U(S).

(v) There exist a finite set K and a real number b such that for all x X and
g U(S), rag(x, K) <-_ b.
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In the absence of tightness, it may be possible to restrict the optimization problem
to a subclass of policies under which tightness holds, if the structure of the costs makes
it unprofitable to use nontight policies (see also Borkar [10]).

LEMMA 4.2. Assume there exists a sequence ofincreasing compact (i.e.,finite) subsets
K of X x A such that U K X x A, and such that the cost function c(y, a) satisfies
(4.2) lim inf {c(y, a); (y, a) ; Ki}

Then for any policy u such that C, (u) < oo (or C_x_ (u) < oo), the frequencies { fix,u(.
are tight.

Proof By (4.2), c(x, a) is bounded below, say by B. Assume {fx,u(., .)} is not
tight. Then there exists some e>0 and an increasing sequence {tl} such that

tly,),fx,,(y, a)> e. Let c:=inf {c(y, a)" (y, a)#_ K}. Clearly, ((u) > ce-]B] But
by (4.2) lim_ c =oo, and hence C(u)=o, contradicting the hypotheses. The proof
using _C is identical, l-]

A complete class of policies (or even a weakly complete class of policies) may
thus be sufficient even when the tightness assumption (A2) does not hold.

THEOREM 4.3. Assume (A1) and consider the problem of minimizing C(u). Let U’
be a weakly complete class such that (2.4) holds for each v U’. If c(.,. satisfies the
conditions of Lemma 4.2, then U’ is sufficient for OP.

Note that the stationary policies are in fact weakly complete (Corollary 3.4) and,
under (A3(g)), satisfy (2.4).

Proof From Lemma 4.2 we conclude that if {f,,}t is not tight (so that for some
limit point ,y,a fx,u(Y, a)< 1), then necessarily C(u)=oo. Thus we may limit the
optimization to policies u for which {f’,,}, is tight, so that y,a fx,u(y, a)= 1. By (4.2)
c(.,. is bounded from below, and hence by Corollary 2.5 U’ is sufficient.

Similarly for the constrained problem COP, we may relax (A2) in Theorem 2.8.
THEOREM 4.4. Assume (A1) and considerproblem COP. Let U’ be a weakly complete

class such that (2.4) holds for each v U’. If either c( .,. or dk( "," ), some k satisfies
the conditions of Lemma 4.2, then U’ is sufficient for COP.

Proof The proof is similar to that of Theorem 4.3.
Next we present another method that provides conditions for sufficiency in cases

that the tightness does not hold. It is a generalization of conditions that Borkar [9]
introduced for the case of instantaneous cost that depends only on the state. Following
[9], c(.,. is said to be "V-almost monotone" if there exists a collection of compact
sets {Ki} as in Lemma 4.2 such that lim inf{(y, a); (y, a) K}_-> V.

LEMMA 4.5. Assume (A0) and (A1) and let U’ be a weakly complete class ofpolicies
such that every u U’ satisfies (2.4). If c(.,.) is V-almost monotone and C,(u’)<= V,
some u’6 U’, then U’ is sufficient for OP.

Proof Note that c(.,. is bounded below. Consider first the minimization of C,
fix an arbitrary v, and note that if C(v) _-> V then we are done. Thus assume C(v) < V

?t.,(y,and let t, be a subsequence such that Cx(v) lim,_.Yy, a)c(y, a) and f,%
converges to some f,. By Corollary 3.4, there exists a g U(S) such that 6f,g=f,
for some 0-< 6 <_-1. By completeness there exists a u U’ such that 6f,,, f,. Let
be such that inf{c(y, a); (y, a) K}=> V-ei. For every we have

Cx(v)= lim [ , f’x%(y, a)c(y, a)+ f (y, a)c(y, a ])(y,a) K (y,a )g K

>= , fx,(Y, a)c(y, a)/ lim f,n,(y, a)c(y, a),
(y,a)G K (y,a) K
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lim E f a)c(y, a) >= V- Ei) lim E f a)
(y,a)K ’n--oo (y,a)K

f%(y, a)
ncx (y,a) K

Using the fact that each term on the right converges to f,(y, a) and that f, f,u,
we get

C(v) => 2 fx,u(Y, a)c(y, a)+(V-e) 1-8 f,u(Y, a)
(y,a)Ki (y,a)Ki

By taking - c we obtain C(v) _-> C(u) + V(1 6) or 6C(v) >- 6C(u) + (1 )
(V-Cx(v)). Since the last term is positive, Cx(v) > C(u) that establishes the proof.
The proof for _C is identical.

In the following lemma we apply the method of Lemma 4.5 in order to generalize
Theorem 4.4.

LEMMA 4.6. Assume (A0) and (A1). Let U’ be a weakly complete class ofpolicies
such that every u U’ satisfies (2.4) for c and d k, <--_ k <- K. Assume c( is Vo-monotone
and d k

",. is Vk-monotone, 1 <-- k <= K. If there exists a policy u’ U’ such that C,, u’)
Vo and Dkx(u ’) <-- Vk, <= k <-_ K, then U’ is sufficient for COP.

Proof. The proof is the same for both C and _C. Note that without loss of generality,
we may take the sets Ki to be the same for all costs c and d k. Fix v U’ and note that
if C(v)-> Vo or for some k Dk(v)> Vk then we are done. Thus assume Dk(v)--_< Vk
for k=l,...,K and C(v)<_-Vo. Choose a subsequence {tn}n such that Cx(v)-

f%(Y, -tsuch that hmn_,y f2(Y, a)dk(y, a), 1 <--_ k K, andlimn_ _ty, a)c(y, a) and
n---oo

< K Dk > "=----’lim f,% exist. Then for l_-<k= (v)=llmn_oy,af(y,a)dk(y,a) and by
choosing u as in Lemma 4.5 we obtain by the same argument C(v) >-
C(u)+(1-8)(Vo-Cx(v)) and Dk(v)>--Dk(u)+(1--8)(Vk--Dk(v)). Hence
C(v)>-Cx(u) and Vk>-Dx(V)>-Dx(U that concludes the proof.

5. Achievable frequencies. In this section we describe the geometry of L,. For the
case of finite state and action spaces Derman [15] has shown that under (A1), Lx is
closed and convex, and its extreme points correspond to policies in U(SD). In Theorem
5.1 we extend this result to the countable space. Let co B denote the convex hull of
the set B, and B, its closed convex hull. Let r/be a function from the integers onto
all pairs (x, a) and fix 0 < p < 1. Define a metric d on the set of subprobability measures
on XxA.

(5.1) d(sr,, st2):= E [l(’r/[J])-
j=l

We will use henceforth the product topology induced by this metric. Throughout this
section we assume that

(AI’) The state space forms a single positive recurrent class under any policy
g U(S).

To prove Theorem 5.1, we need to introduce PTS ("policy time sharing") policies
[2]. A PTS policy is specified through the stationary policies ui, i= 1, 2,. ., l, a state
z, and by an /-dimensional vector parameter a {a l, a2," ", at}, where ai--> 0 and

Yi ai 1. Fix a state z that, due to (AI’) is positive recurrent under each ui. Call the
period between two consecutive visits to states z a cycle. A PTS policy v with parameter
a is any policy that uses a fixed ui during each cycle, and for which the relative number
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of cycles during which ui is used converges to ci, pv almost surely, i= 1, 2,..., 1.
Such a policy is denoted c. It follows immediately from the results of [1] and [3] that
for any initial state x, F,,a is a singleton, and

(5.2)
i=1

where yi cir[Y= cgrj]- and r is the mean recurrence time of state z under u.
THEOREM 5.1. Under (AI’) and (A2), Lx Lx(S) is compact. Moreover, L,=

co {Lx(D)}=-d-d {L(D)}.
Proof. By Corollary 3.3, L(S)= L. To prove compactness, let {sc} c Lx. Using

diagonalization, choose a subsequence {:,}i that (for notational convenience) is
denoted {’}, such that (x, a)-(’x, a) for some ’, for all x, a. ’ may all be
considered measures over X x A, and (x, a) ’(x, a), where " is (possibly subproba-
bility) measure. Our aim is to find a policy u that achieves sr. By (A2) this implies that

" is a probability measure.
By Corollary 3.3 there exists a stationary policy g that achieves ’. Let ei := d (’, ’),

so that lim_,oo e 0. Consider the nonstationary policy u, that uses g until the time
t:=min{t" d(sr,f,)-<e}, and uses gi until between ti_ and ti:=min{t> ti_"
d(sr,, -,

f u,) < e}. The fact that t, < oo can be proved by induction using the following
fact. Suppose the policy u uses gn from time s onward, and let X.(z)=
P"(X zlX, x). Then

ft,,(y, a)=_tf,..(y a)+ ly-- E Xs(Z) [Pg"],
zX r=l

where Pg,, is the transition matrix under g.. It then follows easily that lim,_ f,,(y, a)

Thus d(’, -tf;u)<d(,,)+d(, f-’x",u)<2e,= and we obtain along the subsequence
{ t,}., f,, sr. By (A2) " is a probability measure, so that Lx is closed and sequentially
compact, hence compact.

To prove the convexity, recall (the first part of the proof) that L, L(S). Suppose

= flfx,u,+(1-fl)fx,u2 for lgl, b/2 U(S). A PTS policy u such that fx,, sr is obtained
by setting a,:=(13/r,)(13/r+(1-13)/r2)-*, and a2 l-a, (this follows from (5.2)).

Since L,, is compact and convex in o, by the Krein-Milman theorem it is the
convex hull of its extreme points. Next we show that all extreme points of L, correspond
to deterministic stationary policies. Let g bd a stationary nondeterministic policy. Then
for some state z e X and actions a, and a2 in A(z), the probability a to use action a
under the policy g is strictly positive. Consider the stationary policies ui that coincide
with g in all states except for state z. In state z policy ui uses action ai with probability
al+ a2. Then according to (5.2), the PTS policy
and u2 achieves fx,g-- Yf,,,+ (1- Y)f,,2" Therefore fx,g is not an extreme point in L,,
and since for every policy u there is a g e U(S) with f,,=fx,g this concludes the
proof.

Theorem 5.1 enables us to strengthen theorem 2.6 as follows.
COROIIA 5.2. Assume (AI’) and (A2) under the uniform integrability assump-

tion, or under the assumption that c is bounded from below, the class of deterministic
policies is sufficient for problem OP (with C defined through either (1.2a) or (1.2b)).

Proof By Lemma 2.3, the cost of a stationary policies has the representation (2.4).
An argument as in the proof of Theorem 5.1 then shows that the cost of any nondeter-
ministic policy is a convex combination of the costs of two other stationary
policies.
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Another conclusion from Theorem 5.1 is that under (AI’) and (A2) the state
frequencies are bounded from below by a positive (state dependent) constant, uniformly
in the policy.

COROLLARY 5.3. Under (AI’) and (A2), for each yX there exists a constant
A(y)> 0 such that fx, (Y) > A(y) for all policies u U.

Proof Suppose the claim does not hold. Then there exists a sequence gn of
stationary policies and some state z such that limn_.oo fx,g,,(z) 0. We can then construct
a subsequence nk along which lim,_. f,,g,,(y) exists for all y X. Using Theorem 5.1
and (3.3), (3.4) there exists some stationary policy g achieving this limit, hence
f,g(z)=O, which contradicts (A1). [3

Remark. Fisher 18] showed that if the state space forms a single positive recurrent
class when using any deterministic policy g U(SD) then (AI’) holds. He then obtained
the same result as in Corollary 5.3 using only the weaker condition (A0) instead of (A2).

Finally, we use Theorem 5.1 to strengthen Theorem 2.8. Theorem 2.8 states that
we may restrict our search for optimal policy for COP to the stationary policies. But
it does not say that an optimal policy exists. We show that this is indeed the case.

COROLLARY 5.4. Consider problem COP. Assume (AI’) and (A2) and either
(i) Both c(y, a) and dk(y, a) are bounded from below; or
(ii) Both c(y, a) and dk(y, a) are uniformly integrable with respect to {iTs,g}, g

u(s).
If there is any feasible policy then there exists an optimal stationary policy.

Proof According to Theorem 2.8 we may restrict to the stationary policies in
searching for optimality. We first show that C(. and D(. are lower semicontinuous
functions of the frequencies f,g. Let {’,} be a sequence of frequencies, achieved, say,
by the stationary policies {gn} (i.e., rn(.," fx,,,(’," )) converging to sr. According to
Theorem 5.1 there exists a stationary policy g such that sr f,g. Under (i) this implies
by Fatou’s lemma (using c(.,. as a measure) that the cost function C(g) satisfies

(5.3)

C,(g) E (Y, a)c(x, a)= E lim n(Y, a)c(y, a)
y, y,

<_-lim n(Y, a)c(y, a)= lim C(gn)

and similarly

(5.4) D(g) E lim n(Y, a)dk(Y, a)<--lim Dgx(gn),
y,

which establishes the lower semicontinuity for the case (i). If (ii) is assumed, then in
fact we have continuity. To see that, note that the compactness of L,(S) (Theorem
5.1) implies by Prohorov’s theorem that {srn} are tight, hence converge weakly. As in
the proof of Lemma 2.2, consider now c(y, a) and d k(y, a) as "random variables" on
the space X x A. The weak convergence of {fin} implies the convergence of c(., and
dk(., in distribution, and combining it with (ii) we obtain C(g)= limn_o C(gn)
and Dk(g) limn_.o ck(gn).

We thus have lower semicontinuity under either (i) or (ii). This implies that the
D(lx) <-_ Vk, <-_ k<= K} is compact, since it is obtained as theset Hv := {/x /xe L(S), k

intersection of the compact set L(S) and the inverse map of the closed sets (-ee, Vk]:
Finally, by the lower semicontinuity of C(. on II v we conclude that C,(. achieves
its minimum on IIv, i.e. there exists an optimal stationary policy for COP. VI

6. Application to a queueing system. In this section we apply Theorems 2.6 and
3.2 to investigate a constrained problem in the following discrete-time queueing model.
At time t, M,k customers arrive to queue k, 1 <-k_-< K. Each input stream is received
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Mt} are independentin an infinite capacity buffer. Arrival vectors M, {Mr,’"
from slot to slot, form a renewal sequence with finite means Ak. During a time slot
(t, + 1) a customer from any class k, 1 <_-k_<-K may be served, according to some
policy, which is a prespecified dynamic priority assignment. If served, with probability
/k it completes its service and leaves the system; otherwise it remains in its queue. A

x2, .,x } and it represents ageneric element of the state is given by x {x,
K-dimensional vector of the different queue sizes. Altman and Shwartz [1], [3] solve
a problem with constraints on the average sizes of several queues. They find an optimal
nonstationary time sharing policy, using a linear program. The recurrence properties
of this system as well as bounds and representations for average cost functionals for
general cost functions are obtained in Makowski and Shwartz [25].

Below we present conditions for the completeness of stationary policies, and the
existence of optimal stationary policies for COP with several constraints. Sufficiency
is proved for costs that are nonlinear in the queue sizes. We then solve the general
constrained problem with linear costs (generalizing [1], [3], [26]). Throughout we
restrict to nonidling policies; using coupling (as in [11]) it can be shown that when
the costs are positive and increasing (in the number of customers), idling leads to no
improvement.

6.1. Completeness and sufficiency of stationary policies. We first show that (A1)
and (A2) hold. We assume the standard stability condition on the traffic intensity

K
p := Y: A/ < 1. This is a sufficient condition for (A1) (see [25] or [26]). In order
to show that (A2) is satisfied, we use Lemma 4.2. Let c(x, a) = x . The average
cost is then finite and does not depend on the policy (this follows from the c rule
[5], [6], [11]). Therefore (with the obvious choice of Ki) all conditions of Lemma 4.2
are satisfied, and (A2) holds. Hence we obtain, using Theorem 2.8, Corollary 3.3, and
Corollary 6.1.

COROLLAI 6.1. Under the foregoing assumptions on the queueing model, the
stationary policies are complete. If c(x, a) and dk(x, a) are bounded below then the
stationary policies are sufficient for COP.

If c(x, a) and d k(x, a) are not bounded from below then the stationary policies
are still sufficient for COP, provided {c(X,,A)}, and {dk(X,,As)}L are uniformly
integrable with respect to pu for each policy u (Theorem 2.8). In [25], Makowski and
Shwartz give the following sufficient conditions (P1) and (P2)for the uniform integrabil-

K
ix kity. For any K-dimensional vector x let [x[ denote Y:

(P1) There exists an integer 3’ > 1 such that E[IM, ] < and E[IXI]
Note that both expectations are independent of the policy.

(P2) There exist 0< < 3’- 1 and L such that [c(x, a)[-< L(1 +[x[).
These results establish that the search for optimal, or e-optimal policies may be
restricted to the stationary policies. This allows the application of steady-state analysis,
of the type used in queueing theory, to problems OP and COP.

6.2. Solving COP with linear cost functions. Consider the linear cost function
k: :

dx for 1 <i<M, where c and d are non-c(x, a):= k: CkX and di(x, a) Ek:l
negative constants. This COP problem was solved in [1] and [3] for the case M 1,
and for the case d 6i(k) and M < K using "PTS" policies over the set of K!
priority policies g. It is shown [1] and [3] that under the condition p < 1 and EIX[ <
all the zi (defined below (5.2)) are equal, and the cost under c is given by

(6.1) Cx()-- E iC(gi)
i:1
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with a similar linear expression for Dk(d). Denote by/ the optimal policy among all
PTS policies for problem COP. From (6.1) it follows that/3 can be obtained by solving
the following linear program"

(6.2) (LP) Find a that minimizes ceiC(gi)
i---!

subject to aD(g) <- V, l <-_ k <-_ K, ci l, ce >= O
i---=1 i=1

for 1 <= i<=/.

Based on Theorem 2.8(ii) we show in the following theorem that/3 is in fact overall
optimal.

THEOREM 6.2. The PTS policy obtained by solving LP is optimal for COP.
Proof Following [3] we define the average size of queue k by

(6.3) J(u) := lim
1
E. [ xkIXI=X]t-,

Consider the class U’ of all policies satisfying

K K

(6.4) C(u)= . ckk(u) and D(u)= . dkX(u),-k I<--j<=M.
k=l k=l

Note that U(S)c U’ and U(PTS)c U’ (this is obtained by applying Lemma 2.3 to
compute (u)). According to Theorem 2.8(ii) U(S) is sufficient hence U’ must be
sufficient. Reference [3] shows that PTS policies are "Pareto optimal" in the following
sense. For any policy u there exists a PTS policy w such that Jk(w) _--< Jk(u), 1 _--< k=< K.
This implies that/3 is optimal over U’, and since U’ is sufficient, this implies that/
is overall optimal. [q

This result illustrates the usefulness of the present approach. There are several
results reducing optimization problems for queues to computable problems (such as
linear programs). However, the optimization is usually carried out over a class of
policies that is smaller than U’ above (e.g., in [19] the optimization is carried out over
the class of "steady state" policies). Results on sufficiency then allow to conclude
optimality over the class U of all policies.

7. Second application: a linear program formulation for COP. Below we present
a linear program that we show to be equivalent to COP. Such linear programs have
been introduced for the case of finite state and action spaces (e.g., Derman [15] and
Hordijk and Kallenberg [22]). In the finite case these are the most important method
to compute optimal policies for COP (an alternative linear program is described in
[2]). We use a different approach by which we obtain a similar linear program for the
countable case. Naturally, we cannot expect to find explicit solutions for COP using
an infinite-dimensional linear program, but this approach can be used to shed some
light on the structure of optimal solutions for COP. Consider the LP.

Find {z*(y, a)}y,a that minimizes C(z):-y, c(y, a)z(y, a) subject to

(7.1a) Z z(y, a)Py,<-_, z(v, a), vX,
y,a

(7.1b) 2 dk(y, a)z(y, a) <= V, <= k <= K,
y,

(7.1c) 2 z(y, a)= 1, z(y, a)>= O.
y,a



806 E. ALTMAN AND A. SHWARTZ

THEOREM 7.1. Assume (A1) and (A2) and assume either that (i) c and d k are
bounded below, and (A3(g)) holds for all stationary g, with respect to both c and d k,
1 <- k <-_ K, or that (ii) {c(Xs, A.)}s and {dk(xs, As)}s, 1 <-_ k <-_ K are uniformly integrable
under pu for all u U.

(i) Ifthe stationarypolicy w isfeasiblefor COP, then {z(y, a)} satisfies (7.1), where

(7.2) z(y, a)= ry Paly.

(ii) Ifg is an optimal stationary policyfor COP then there exists an optimal solution
for LP satisfying

(7.3) z*(y, a)= ry

(iii) Conversely, let {z(y, a)} satisfy (7.1). Then the policy w is feasible for COP,
where

z(y, a)
(7.4) P]Y -"aA(y) z(y, a)

whenever the denominator is nonzero, and otherwise p ly are chosen arbitrarily but such
that P.ly is a probability measure.

(iv) If z* solves LP, then the stationary policy g is optimal for COP, where

z*(y, a)
(7.5) Pgaly ,aAy z*(y, a)

whenever the denominator is nonzero, and otherwise Pga]y are chosen arbitrarily but such
that Pg.I; is a probability measure.

Proof To prove (i) we note that z(y, a) as defined in (7.2) satisfies (7.1c) since
r and p.l are probability measures. Next we note that z(a, y) =f,w(a, y), thus (7.1b)
is satisfied since its left side is equal to Dk(g) by Lemma 2.3. Similarly, (7.1a) is
satisfied since by definition y is invariant under the transition Pyv=a PyavPa]y.

To prove (iii), let z(y):=Ay z(y, a) and substitute (7.4) in (7.1a) to obtain

(7.6) z(y) Z z(v)P.
X

Following Lemma 3.1 and using (7.1c) we obtain z(y)= w(y)=f,w(Y). By (7.4) and
by the fact that f,w(y, a)=f,w(Y)’Ply we obtain z(y, a)= W(y)ply=f,w(y, a). It
then follows by Lemma 2.3 and (7.1b) that Dk(w) Vk, 1 k K, and therefore w is
feasible for COP.

Parts (ii) and (iv) follow from the fact established above that (7.1) and (7.4) define
a one-to-one correspondence between the z’s that are feasible to LP and the stationary
policies w’s that are feasible to COP. Moreover, under this correspondence, it follows
from Lemma 2.3 that the value C(z) of LP is equal to C(w), which establishes the
proof.

8. Extensions. In this section we outline some applications of our methods to
lesser-known optimization criteria, involving variance minimization.

8.1. Variability sensitive optimization. The variability sensitive optimization prob-
lem VSOP was studied in the finite case by Filar, Kallenberg, and Lee [16] and later
by Bayal-Gursoy and Ross [7];

(8.1)
!

Maximize Rx(u):= lim - E Eu[r(c(Xs, As), C(u))],
t s=
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where r(.,. is called the variability function. Taking r(x, y)= x-A(x-y)2 the VSOP
obtains the interpretation of finding a policy u that has high expected average reward
but low expected variance. Other variability criteria and other variability functions are
treated in the finite state-action space in [7] and [16].

In Theorem 8.1 we present conditions that ensure the sufficiency of classes of
policies for problem VSOP. We will use r(x, y)= X--A(x--y)2. Note that when A =0
this reduces to problem OP.

THEOREM 8.1. Consider problem VSOP. Assume (A1) and (A2) and let U’ be
complete. If {c2(X, A)} is uniformly integrabte with respect to pu for each u, then U’
is sufficient.

Proof First note that Rx(u) is equal to

(8.2) lim 2 f,u(Y, a)[c(y, a)-Ac(y, a)]+A 2 f,(Y, a)c(y, a)
y, y,

Let t, be any subsequence of that achieves the lim in the expression above, and
along which f,% (y, a) fx,, (y, a) for all y and a. Following the same weak convergence
arguments that were used in 2.1, we obtain from the uniform integrability

(8.3) Rx(u)= f,,(y, a)[c(y, a)-Ac(y, a)]+, f,(y, a)c(y, a)
y, y,

Thus R(u) can be represented as a function of the expected state-action frequency,
so completeness implies sufficiency. [3

As a simple corollary, for bounded cost completeness implies sufficiency.

8.2. The problem with constraints. VSOP can also be considered in the framework
of optimization under constraints. Kawai [23] introduced the problem of minimizing
the variance of some cost subject to a single constraint on the expected average cost.
He treats the case of finite state and action spaces, and restricting to the stationary
policies he finds an optimal solution. Kurano [24] finds a policy that is optimal among
the stationary deterministic policies for the same problem as Kawai yet with general
state and action spaces.

Using similar arguments as above, we show below that any complete family of
policies (e.g., the stationary policies) is sufficient for the problem of Kawai; hence the
solution that Kawai finds is overall optimal. Moreover, using the same kind of assump-
tions as in Theorem 8.1 we show (using arguments as in the proof of Theorem 2.8)
that these are sufficient for the case of countable state and action spaces, and for more
than one constraint on expected average cost functionals.

Denote the variance under a policy u with initial state x by R(u) through (8.1)
with r(x, y):= (x-y). Given K real numbers V,. ., VK, define the following con-
strained problem"

(CVSOP) minimize R(u)

subject to /)k(u) _--< Vk, 1 _--< k -< K.

References [23] and [24] consider the case V= V that is (e) close to the supremum
of the optimal expected average cost. The meaning of CVSOP is then to find a policy
that minimizes the variance among all policies that are e-optimal for OP.

THEOREM 8.2. Consider problem CVSOP. Assume (A1) and (A2) and let U’ be
complete. If {c2(X, A)} and {dk(Xs, A)} 1 <- k <- K are uniformly integrable with
respect to P" for each u, then U’ is sufficient.
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Proof The variance is given by

R,(u) lim Y -’ e2fx,.(y,a)c(y,a) -Z -’fx,.(y, a) (y, a)
t--> y,a y,a

By diagonalization, there exists some subsequence tn along which limn_f’-,,(y, a)
f,,(y, a) for all y and a, such that

R,(u) f,.(y, a)c(y, a) 2 f..(Y, a)c2(Y, a).
y,a y,a

(similarly to the way (8.3) is obtained).
The rest of the proof now follows the same lines as the proof of Theorem 2.8.
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STABILIZABILITY OF TIME-PERIODIC PARABOLIC EQUATIONS*
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Abstract. Second-order parabolic equations with time-periodic coefficients in [0, +oe[ f([l is a regular
bounded domain in R") are considered, with input acting either in the interior or on the boundary of fl.
Stabilizability results that are similar to some of the known results concerning the autonomous case are

given. Abstract evolution equations techniques are employed.

Key words, asymptotic behavior, stabilizability, evolution operator in periodic parabolic problems
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1. Introduction. We consider nonautonomous parabolic problems defined on a
bounded domain in R with regular boundary 0f and exterior unit normal vector
P(X) (/21(X), ",

ut( t, x) .4( t, x, O)u( t, x) + dp( t, x), t>O, x,
(1.1) u(O,x)=uo(x), x,

(x,o)u(t,x)=O, t>0, x,
v,( t, x) ,4( t, X, O)v( t, x), > O, x ,

(1.2) v(0, x) Vo(X), x ,
(x,O)v(t,x)=(t,x), t>0, x6Ol.

Here 4(t, x, 0) ao(t x)Dij+ hi(t, x)Di+ c(t, x)I is any elliptic operator with smooth
coefficients, T-periodic with respect to time, and (x, 0) is either the trace operator
on 01l or any mixed nontangential boundary operator with smooth coefficients:
3(x, O)u [3(.)Du + y(.)u (the summation convention is used throughout). The
inputs b, q, are of the form

(1.3) b(t, x)=((t)f(t))(x), b(t,x)=((t)g(t))(x),

where f, g have values in general Banach spaces Y, Z, respectively, and (t), (t)
are linear T-periodic operators belonging to L(Y, LP(II)), L(Z, LP(01I)), respectively.

The stabilizability problem consists in finding sufficient conditions on the data in
order that for each Uo, voLV() there are f:[0, +[--> Y, g:[0, +c[->Z such that
the solutions u, v of problems (1.1), (1.2) decay asymptotically to zero as t-> +, in
the strongest possible norm. Obviously, for such a problem to be significant, we assume
that the free systems (with f--0, g--0) are not asymptotically stable.

Systems of the type (1.1), (1.2) arise in several fields, like heat conduction and
diffusion problems (see, e.g., [23, Chaps. 3, 5]).

We work in a Lv space setting (1 < p < +c) to avoid technical difficulties. However,
since we employ an abstract evolution equations approach, other topologies could, in
principle, be considered. In fact, our analysis is based on the representation formulas
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for the solutions of (1.1), (1.2).

(1.4) U(t, )= G(t, O)uo+ G(t, s)cfl(s, ds, >-O,

(1.5) v(t, )= G(t, O)vo+ G(t, s)H(s)q(s, ds, >-O,

where G(t,s)L(LP(f), W2’p()) is the evolution operator of the free system,
G(t,s)=O/Os G(t,s) and H(s) is either the Dirichlet mapping D(s) or the mixed
mapping M(s) relevant to the elliptic operator M(s,., 0), i.e., H(s)g is the solution z
of the problem

(1.6) g(s,.,O)z----O inf,, (.,O)z=g in012

(see [17] for formula (1.5)). Therefore, throughout the paper we consider a more
general situation: we are given a couple of Banach spaces X, D (D being continuously
embedded in X), and a family of generators of analytic semigroups A(t) D X with
A(t+ T)= A(t), such that there exists an evolution operator G(t, s) for the linear
problem u’( t) A( t)u( t).

In 2 we state some asymptotic behavior properties (in the X-norm and in the
D-norm) of the functions u, v defined in (1.4), (1.5). Such properties are consequences
of results in [16] (where a Floquet theory for abstract parabolic equations has been
developed) and [17] (where differentiability of G(t,s) with respect to s has been
shown, together with formula (1.5)). Floquet theory deals with asymptotic behavior
of the evolution operator: as in ordinary differential equations, an essential role is
played by the spectra of the linear operators

(1.7) V(s)= G(s+ T, s), sR.

In particular, in our examples (1.1), (1.2), the free systems are not asymptotically stable
if and only if some eigenvalues of V(s) have modulus greater or equal to one (we
recall that the nonzero eigenvalues of V(s) are independent of s, whereas the corre-
sponding eigenvectors may depend explicitly on s).

In 3 we study stabilizability of abstract parabolic equations:

(1.8) u’(t) A(t)u(t) + (t)f(t), > 0; u(0) Uo,

where (t) L(Y, X) and (t + T) (t), Y being any Banach space. We find a
stabilizability result that generalizes the well-known results concerning ordinary
differential equations (see [11]). Precisely, we fix w _-> 0 such that no element of the
spectrum of V(s) has modulus e-, and we show that the following conditions are
equivalent:

(i) For every Uo in the closure of D there is a continuous f’[0, +03[ Y, with
e’f(t)[] y bounded, such that lim sup,_.+ Ile’’u(t)] o < +03.

(ii) For every A C with IAI > e- we have (denoting, as usual, adjoint operators
by *)

(h-V(0)*)x*=0, s-,(s)*G(T,s)*x*=O in[0, T]=:>x*=0.

In 3.2 we apply the result of (1.1), with

(1.9) Y: Rk, ( t)(y, ,..., Yk): I)i( t, )Yi,

where tdpi(t,.) belongs to C"(R;LP()), qbi(t+T,.)=dpi(t,.), i=l,...,k, and
bl," ’, bk are linearly independent. We find that system (1.1) is stabilizable in the
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W2"p-norm if an algebraic condition, involving the functions bi and the eigenfunctions
of V(s)*, holds. Precisely, we require that for each eigenvalue A of V(0) with ]A]-> 1
there is s [0, T[ such that, denoting by {sc*, sc*(A)} any system of generators of
ker (A- V(s)*), we have k-> N(A), and the matrix

(1.10) [Aji(s)]--[(i(s, "), j’)]i=l,...,k;j=l,...,N(A)
has rank N(A) (we identify, as usual, (LP(I))* and LP*(l))(1/p+ l/p*= 1), setting
(f g*)= af(x)g*(x) dx). In the particular case of the one-dimensional heat equation
with time-periodic coefficients (see [23, Chap. 5])"

u,( t, x) a( t)Uxx( t, x) + c( t)u( t, x) + y(t)b(x), 0 < x < l, > 0,

(1.11) u(0, x) Uo(X), 0 < x < 1,

u(t,O)=u(t,l)=O, t>0,

with a(t), c(t) > 0, b LP(0, 1), the evolution operator is G(t,s)=exp[A a(s) ds+
c(s) ds] (where eTM is the semigroup generated by the second derivative operator

with zero boundary condition), and the stabilizability condition is the following"
For each ken such that c(s) ds-zr2k21-2a(s)ds>O, we have toh(x)
sin (zrkx/l) dx O.

In 4 we consider boundary stabilizability. Formally, the results are similar to
the previous ones. In the case of Dirichlet boundary condition ( 4.1) we fix w _-> 0
such that no eigenvalue of V(0) has modulus e-, and we show that the following
conditions are equivalent"

(i) For every Uo LP() there is a regular function g’[0, +[ -* Z (with e’g(t) ]z
bounded) such that lim sup,_+ ]]e’u(t)llw2.,,(a)< +,

(ii) For every A e C with ]A > e-r we have

(A-V(O)*)x*=O, s-(s)*[O--
Ov

G( T’ s)*x*) =-0 in[0, T]x*=0.

Here O/Ov.,. denotes the conormal derivative (at the boundary) at the time s" O/Ov.f=
aq(s, )Dif(" )uj(" ).

In particular, in the case where Z WZ-/e’(O), (s) 1, condition (ii) is fulfilled
(at least in the self-adjoint, C case) thanks to a result in [19]. In the case where
Z= R, (t)(z, ., z) q(t, )zi (where 0(t,. are regular, T-periodic, linearly
independent functions with values in W-/P’e(O)), (ii) is fulfilled provided a full
rank condition holds, i.e., there is s R such that k->_ N() and the matrix

(1.12) [B0]

has rank N(A) (again, we identify (LP(O))* and LP*(01)), setting (f,g*)=
of(x)g*(x) drx, and, as before, {sc*, sc*Nz)} is any system of generators of
ker (A V(s)*)).

In the case of mixed boundary condition ( 4.2) we find quite similar results, with
0/0, replaced by the trace operator. For instance, in the case of the time-periodic
heat equation with Neumann boundary condition,

u,( t, x) a( t)Au( t, x), x , > O,

(1.13)
u(O,x)-uo(x), x,
o

u(t, X) z(t)(t, x), > 0,
Op
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the unique eigenvalue of G(T, 0) with modulus greater than or equal to one is one
and the corresponding eigenspace is one-dimensional (it consists of the constant
functions), so that the system is exponentially stabilizable provided there is s such
that La q’ (s, x) dcrx 0.

Concerning the literature on the subject, a considerable amount of papers have
been devoted to stabilizability (in fact, feedback stabilizability) in autonomous prob-
lems, both in the case of distributed and boundary inputs (see, for instance, [5], [18],
[21], [12], [13], [4], and the references quoted there). To the author’s knowledge,
stabilizability in nonautonomous parabolic problems has not yet been studied.

We remark that abstract and concrete feedback stabilizability results could be
obtained from ours (at least, in the case where X, Y are Hilbert spaces, i.e., p 2)
using the theories developed in [7] and [8]. Concerning problem (1.8), it has been
shown in [7] that if the system is stabilizable then there is an optimal pair (U*o,f*)
minimizing the cost functional

(1.14) J(uo f)= (]]u(t)][ 2
x + Ilf(t)ll) dr,

and, denoting by u* the solution of (1.8) with data (U*o,f*) we have f*(t)=
-4p( t)* Q( t)u*( t), where Q(t) L(X) is the unique positive T-periodic solution of the
Riccati equation

(1.15) Q’(t)+A(t)*Q(t)+Q(t)A(t)-Q(t)(t)(t)*Q(t)+I=O, tR.

From [6] it follows that the evolution operator generated by A-opOp*Q is exponentially
stable (see 3 of [7]): therefore we get the feedback F( t) -cI)( t)* Q(t).

A similar procedure may be employed in problem (1.2): in this case, the study of
the corresponding Riccati equation is much more complicated. Solvability of initial
value problems for such equations was shown in 1], where the existing results for the
autonomous case ([13], [9]) were extended to a larger class of nonautonomous
equations. The result of also implies, as remarked in [8], the existence of a unique
positive T- periodic solution of the Riccati equation. Arguing as before, we can construct
a feedback operator.

2. Asymptotic behavior in abstract parabolic Cauchy problems. Let X, D be Banach
spaces, with norms [1. II, , respectively, D being continuously embedded in X. We
consider a time-periodic initial value problem:

(2.1) u’( t) A( t)u( t) +f( t), > O, u(O) x.

The linear operators A(t) are subject to the following assumptions (0<c < 1, T>0):

(2.2)

(i)
(ii)
(iii)

t-A(t) Ca(R; L(D,X)),
A( + T) A( t), R,
For each R, A(t) generates an analytic semigroup esA(’) in X and
there is c-> such that C-’]]X]]D<= ]IX]] + ]]A(t)x]] =< C]]X]]D for every
xD, tR.

Then there is an evolution operator G( t, s) L(X, D)( >= s), such that for
every locally a-H61der continuous function f:[0, +oo[-> X and for every x in the
closure of D, problem (2.1) has a unique solution u C[0, +oo[; X) cl(]0, +oo[; X) f3
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C(]0, +oo[; D), given by the variation of constants formula:

Io(2.3) u(t)=G(t,O)x+ G(t,s)f(s) ds, t>=O.

Iff is continuous in [0, +oo[, then the function u defined in (2.3) is the unique strong
solution of (2.1). For this and other properties of G(t, s) we refer to [20] for the dense
domain case, and to [15] for the nondense domain case.

Some regularity properties will be described through the interpolation spaces Xo
(0 < 0 < 1) defined by

(2.4) Xo (X, D)o,

(see, e.g., [22]). To treat asymptotic behavior as +co, we introduce certain functional
spaces consisting of exponentially decaying functions" for any Banach space B, to >- 0
and 0< cr < 1, we set

Co,([O, +c[; B)= {u C([O, +[; B); sup Ilu(t) e’ll, < /},
t>O

(2.5)
Ilullto,+c;) sup Ilu(t) e’ll,

t>O

(2.6)

c2([o, +o[;

={uC,o([O,+oo[;B); o<.,<,sup tlu(t) e’-u(s)e"ll(t-s)-"<+c},
=sup Ilu(t) e’ll+ sup Ilu(t) e’-u(s) eS[[z(t-s)-,

t>0 t>s>O

(2.7)
C’o ([0, +oo[., B)= {u C’([0, +oo[., B)’, u, u’6 C,o ([0, +oo[., B)};

In the limiting case to=0, C0([0, +c[; B) consists of bounded functions, and
C([0, +oo[; B) consists of uniformly H61der continuous functions. It is easy to see
that if u belongs to C2([0, +eo[; B), then

(2.8) sup
O<s<t

We now recall some results of [16], which generalize to the infinite-dimensional case
the known asymptotic behavior properties of the evolution operator for ordinary
differential equations. We define the period map (Poincar6 map) by

(2.9) V(s) G(s + T, s), s R.

Denote by o-(V(s)) the spectrum of V(s), and fix to => 0 such that

(2.10) or(V(s)) f"l {A C; IA[ e-T} , s R.

Since s - V(s) is uniformly continuous (in fact, c-H61der continuous due to [15, Prop.
3.6]) with values in L(X) and o-(V(s)) is closed for every s, then, setting

(2.11)
( V(s)) ,( V(s)) t_J :( v(s)),

o-,(V(s)) {A C; IA[ <

sR,

(V()) { C; IAI > e-’T} VsR,
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we have

(2.12) sup {Ihl; h

Two families of projections may be defined as follows"

(2.13) P(t) =-1-- f (A- V(t))- dA, P2(t)=(I-P(t)), t6R,
2ri

where C(0, r) is the circle centered at 0 C with radius r>0. The restriction of
the evolution operator G(t,s) to the subspace P2(s)(X) is well defined also for
t<s, and we have, for every e>0 sufficiently small (e< T- log(e-T/p),
e < T-’ log (p2/e-’r))

(i) liG(t,s)P,(s)llL(x)kl(e) e-(+)(t-), t> s,

(2.14) (ii) IlG(t,s)P,(s)llc(x,o)k(e)(t-s)-’ e-(+)(t-), t> s,

(iii) JIG(t, s)P(s)ll(,) k:() e+)’-), s

(see [16, Props. 2.3(i), 2.7(i)]).
PROPOSiTiON 2.1. Let (2.2), (2.10) hold, let f belong to C([0, +[; X), and let x

belong to the closure of D in X. en the function u defined in (2.3) belongs to
C([0, +[; X) if and only if

(.5 e(Ox G(o, se(sg(s s.

If (2.15) holds, and, in addition, f belongs to C,([0, +[; X), then u belongs to
C,o([a, +[; D) for every a > 0; in particular,

(2.16) sup Ilu(t) e’ll,<-t-oo foreacha>O.

If (2.15) holds, and, in addition, f belongs to C,o([0, +[; Xo) for some O ]0, 1[, then
u’ and A(. )u(. belong to Co,([a, +[; X) for every a > 0; in particular (2.16) holds.

Proof The first part of the proposition was proved in Proposition 3.10 of [16].
Moreover, if f belongs to C([0, +[; X), in particular, it belongs to C([0, a]; X)
for every a>0, so that, by Propostions 3.5(ii) and 2.6(i) of [15], u belongs to
C([a/2, a]; D)(3 C+([a/2, a]; X). Consequently, by Lemma 1.1 of [15], u’(a)=
A(a)u(a)+f(a) belongs to X. Analogously, iff belongs to C,o([0, +[; Xo), then it
belongs to C([0, a]; Xo) for every a>0, so that, by Propositions 2.5 and 3.5(iii) of
[15], A(t)u(t) belongs to Xo for 0<t-<a; in particular, A(a)u(a) belongs to Xo.
Moreover, condition (2.15) implies easily

(2.17) P2(a)u(a) G(a, s)P2(s)f(s) ds,

so that we can apply Proposition 3.10 of 16] to show the last part ofthe statement.
Under some more regularity assumptions on A(. ), i.e.,

(2.18) t-A(t)CI+(R,L(D,X)) for some a ]0, 1[,

we can show that s G(t, s) is differentiable for > s with values in L(X, D). In the
sequel, together with the function u defined in (2.3), we will be concerned also with
the function

(2.19) v(t) a( t, O)x + Gs( t, s)f(s) ds, >= 0,
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where f has values in some interpolation space Xo, 0 < 0 < 1. v is well defined, since
(see [17]) for every a > 0 there is Ma > 0 such that

(2.20) IIGs(t,s)lltxo,)<=Ma(t-s) -1, O<=s<t<-a.

In order to deal with asymptotic behavior of v(t), we establish some estimates for
Pi(t)Gs(t, s), 1, 2.

LZMMA 2.2. Let (2.2), (2.10), (2.18) hold. Then:
(i) For every tR, the function s G(t, s)P(s) is differentiable in ]-, t[ with

values in L(X, D and

0
(2.21) Os(G(t,S)Pl(S))=Pl(t)Gs(t,s), t>s.

Moreover, for every e [0, T-1 log (e-r/p)[ there is C(e) > 0 such that

(i) -s G( t’ s)P(s))x

<-_C,(e)(t-s)- e-+)’-)l[X[Io, t>s, xXo,
(2.22)

0-(G(t’s)PI(s))x D

Cl(e)(t-s)-e-<+<t-llx]lo t>s, x6Xo.
(ii) For every R, the function s G(t, s)P(s) is differentiable in R with values

in L(X, D and

(2.23)

0
--(G(t,s)P2(s))=P2(t)GL,(t,s), t>-s,os
o
--(G(t, s)P2(s))= G(t, r)P2(r)G(r, s)= G(t, r)G(r, s),
Os

t<--s<r.

Moreover, for every e 6[0, T- log (pz/e-’T)[ there is C(e)> 0 such that

os(G(t,s)P(s))x <-_c=()e(+)(’-S)llxllo, t<=s, x6Xo.
D

Proof (i) Since G(t, s)P(s)= Pl(t)G(t, s) for every t> s, we have, for t> s, t> s+ h"

h-[ G( t, s + h)Pl(S + h) G( t, S)Pl(S)] P( t)h-l[ G( t, s + h) G( t, s)].
Therefore G(t,.)P(.) is differentiable in ]-, t[ with values in L(X), and (2.21)
holds. Since G(t, s)= G(t, r)G(r, s) for t> r> s, then G(t, s)= G(t, r)G(r, s), so that
G(t,. )P(. is differentiable in ]-, t[ with values in L(X, D), and

(2.25) P(t)Gs(t,s)=Pl(t)G(t,r)G(r,s)=G(t,r)P(r)Gs(r,s), t>r>s.

If => s + 2 we get, choosing r s + 1 and using estimates (2.14) and (2.20) with a 1,

(G(t,S)Pl(S))X + --(G(t,S)Pl(S))X <-2Mlkl(e)
Os D

If _-< s + 2 we choose r= (t + s)/2 in (2.25), and, again using (2.14) and (2.20) we find

Os
(a(t, S)Pl(S))X <-_ k,(e) e-2’+)M2 Ilxll0,

Os
(G(t, s)P(s))x <= k(e) e-(+M Ilxllo.

D

By the arbitrariness of e we get estimates (2.22).
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The proof of (ii) is analogous; to show (2.24) we can use the second equality in
(2.23) with r= 1 + s, and estimate (2.14)(iii).

Now we are ready to prove a result similar to Proposition 2.1.
PROPOSITION 2.3. Let (2.2), (2.10), (2.18) hold, and let x belong to the closure of

D, fbelong to C([O, +[; Xo) ]’or some 0 ]0, 1[. Then the function v defined in (2.19)
belongs to C ([0, +[; X) if and only if

(2.26) P2(O)x--- fo- O--
Os

(G(O, s)P2(s))f(s) as.

If (2.26) holds, and, in addition, f belongs to C([O, +[; Xo) with 0 + fl > 1, then v is

differentiable for > O, v(t) f( t) belongs to D for > O, and

(2.27) v’(t)=A(t)[v(t)-f(t)], t>O.

Moreover, v’, A(. )[v(. -f(. )] belong to Co([a, +[; X) for every a > O, and we have

(2.28) sup ]](v(t) -f(t)) et][ D < C(a, w, 0)(]lxl[ + ]]fllcgto,+t;xo).

Proof First of all, we note that, due to estimates (2.22) and (2.24), the functions

t,s)P,(s))]f(s) ds, t>O,

belong both to C([0, +[; X) (in fact, v belongs to C,o([0, +[; D)).
For every t_->0 we have v(t)--Pl(t)v(t)+ P2(t)v(t). Hence, using (2.23) we get

v(t)-v,(t)-vz(t)=G(t,O)P2(O)x+ -s(G(t,s)P2(s)) f(s) ds

=G(l, 0) P(O)x+ (G(O,s)P(s)) f(s) ds de2G(,0)y,

where y belongs to Pa(O)(X). Since sup,>o [le’G(t, 0)y + for every y P(0)x
(X){0}, then v belongs to C([0, +[; X) if and only if y =0, i.e., (2.26) holds.

Let now (2.26) hold, and let f belong to C([0, +[; Xo), with 0+> 1. For
every t>0 we have, by Corollary 2.6 of [17] and equality (2.21),

os (’ se(s]f(s as

ioe()G,(, s)[f(s)-f(t)] ds+Pl(t) G,(t, s)f(t) ds

o[6(t,s)P(s)][f(s)-f(t)]ds+P(t)[f(t)-G(t, Og()],

so that

;ov(t)=G(,O)P(O)(x-f(t))+ (G(t,S)Pl(S))[f(s)-f(t)]ds+P(tg(), 0.

Therefore, by estimate (2.22)(ii), v(t) P(t)f(t) belongs to D for every > 0 and also
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using estimates (2.14)(ii) and (2.8) we get, for => a > 0,

I[l)’(t)--Pl(t)f(t)] e)tllD< t-lk’(O)( []x]]+supt>o I[f(t)l])
-11- C1 E-e(t-s)(T--S) 0+-2 dsllfllcg(to,+ot;o)

a-’kl(O)llxll + [a-’k,(0)

+ C,(),(, o)’--F(O+

so that vl- Plf belongs to C,([0, +oe[; D). Since v2 also belongs to Co([0, +oe[; D),
and P2 is bounded with values in L(X, D) (see (2.13)), then v2-P2f belongs to
Co([0, +o[; D). Therefore v-f= vl+ v2-(P+ P2)f belongs to Co([0, +oe[; D).
Moreover, by Remark 2.8 of [17], v-G(.,O)x belongs to C(]0,+oe[;X), and
d/dt(v(t)-G(t,O)x)=A(t)[v(t)-G(t,O)x-f(t)] for t>0. Since G(.,O)x also
belongs to C1(]0, +o[; X), then v belongs to C(]0, +oe[; X), and (2.27) holds.
Formula (2.28) now follows easily.

3. Stabilizability for distributed parameters systems. Here we apply the asymptotic
behavior results of the previous section to prove some stabilizability theorems. We
begin ( 3.1) with an abstract stabilizability result generalizing the well-known one
[11] concerning ordinary differential systems. We apply such a result to a distributed
interior control problem ( 3.2).

3.1. Stabilizability in abstract parabolic periodic problems. Throughout the section
we use notation from 2 and we assume that (2.2), (2.8) hold. We denote by Y another
Banach space, with norm II" Y, and consider the problem

(3.1) u’( t) A( t)u( t) +(t)f( t), > O, u(O) x,

under the following assumptions on the linear operators @(t)" Y- X (0< a < 1)"

(3.2) t-->(t)e C(R; L(Y,X)), (t+ T)=(t) VtR.

For every x in the closure of D and f C([0, +oe[; Y), problem (3.1) has a unique
strong solution u, given by the variation of constants formula,

(3.3) u( t) G( t, O)x + G( t, s)(s)f(s) ds, >= O.

We want to find necessary and sufficient conditions on the family {(t); R} in order
that for every x belonging to the closure of D there is f: [0, +oe[- Y such that the
(strong) solution of (3.1) decays exponentially as t- +oe. Due to Proposition 2.1, the
problem is not trivial if

(3.4) cr(V(s)) fq {A C; [A[_-> 1} for some s e R.

We fix, once and for all, a number o ->0 satisfying (2.10), and we assume (see (2.11))"

(3.5) For every s R, o2(V(s)) consists of a finite number of eigenvalues with finite
algebraic multiplicity.

It can be easily shown that the nonzero eigenvalues of V(s) do not depend on s.
Therefore we can set

(3.6) gr2 de--f r2(V(s)) VsR.
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Again, it is easy to see that A belongs to o-2 if and only if the problem

(3.7) v’( t) a( t)v( t) + tv( t), R,

with c e- has a nontrivial T-periodic solution.
TSEOREM 3.1. Let (2.2), (2.10), (3.3)-(3.5) hold. The following conditions are

equivalent"
(i) For every x in the closure ofD there isf C,([0, +[; Y) such that the solution

u of (3.1) belongs to C([O, +[; X);
(ii) For every C with I1 e- we have

(A-V(0)*)x*=0, (s)*G(T,s)*x*=O foreachs[O, T]x*=0.

Ifone of the equivalent conditions (i) or (ii) holds, thenfor each x belonging to the closure
ofD there is f belonging to C2([0, +[; Y), such that u belongs to C([a, +[; D) for
every a > O.

Proof (i)(ii) Assume by contradiction that (ii) does not hold. Choose A C
with I1 e- and x* 0 such that Ax*= V(0)*x*, (s)*G(T, s)*x*O in [0, T].
Let x P2(0)(X) be such that (x, x*)= 1. By assumption there is f C([0, +[; Y)
such that u belongs to C([0, +[; X). Taking nT, n N, we have

(u(nr),x*)=(G(nr, O)x,x*)+ (G(nr, s)(s)f(s),x*) ds

=<x,(V(O)*)"x*>

+ (f(s+kr),(s)*G(r,s)*(V(O)*)--x*)ds
k=0

A enT

Sin IAenTl=(lA eT)+ as n+, then sup,>ollU(t)e’l]=+, so that u
does not belong to C([O, +[; X). By contradiction, (ii) holds.

(ii)(i). Assume by contradiction that (i) does not hold. Due to Proposition 2.1,
this means that the map

-c([0, +[; ge(0l(x, f= G(0, se(s(sf(s s,

is not onto. Since P(O)(X) is finite-dimensional (by assumption (3.5)), 7 is not onto
if and only if

*. (e(o(xl* (c([0, +[; g*

is not one to one, i.e., there is x* P(0)*(X*){0} such that (s)*P(s)* x G(O, s)*x*
(s)*G(O,s)*x*=O for s0. Setting s=+nT, we get ()*G(0,)*x

(V(0)*)-x*=0, for 0NN r and nN, and hence, for every C with

=<o*<x.) II(<o*x* we have

(3.8) ()*(o, )*(- (v(0)* ’)-ix* <le(o*(x*)- 0, 0 N

By assumption (3.5), the set { (V(0)* wTle(o*(x*)- ;1 > e- } is finite. Since
-1((- V(0)le(o).(x.)) is holomorphic in its domain of definition, then (3.8) holds for

-1 --wTevery in the resolvent set of (V(0)le(o).(x.)) with 11 > e Then by (3.8) we get,
for A e p(V(0)*), I1
(3.9) ()*G(0, )*(A V(O)*)-(V(O)e(o.(x.)-lx* =0, 0<=Z=<



820 ALESSANDRA LUNARDI

Again using assumption (3.5), we find that (3.9) holds for every Ap(V(0)*).
Let o-2={A,.-.,AN}. Then, since x*P2(O)*(X*), we have x*=P2(O)*x=
N Pa.(O)*x* where P,.(s)= 1/27ri c(,i, (A- V(s))-’ dA i= 1,... N, and e > 0 isi=1

sufficiently small. Since x* 0, there is i {1,..., N} such that Px(O)*x* 0. Since

I is an eigenvalue with finite algebraic multiplicity, there is m N such that (I-
V(0)*)mp,x, 0 and y, def= (i V(O),)-px,O.y, belongsobviouslytoker(
V(0)*), and from (3.9) we get, multiplying by ik (k Z) and integrating over C(I, e),

()* G(O, )*(V(O)*)kp,x* 0 for each k Z

so that

()*G(0, )*y* ()*G(0, )*( V(O)*)m-’P,x*=O.
This contradicts assumption (ii). Therefore (ii) implies (i).

Now let one of the equivalent conditions (i) or (ii) hold. Arguing as in the proof
of (ii)(i), we can see that the mapping

r c;([o, +[; Y) Pz(O)(X), rf= G(O, s)P(s)(s)f(s) ds,

is onto. The statement now follows applying Proposition 2.1. S

3.2. Applications to distributed control problems. Here we consider the problem

u,(t, x) (t, x, o)u(t, x) + y(t)O(t, x), > o, x ,
(3.0) u(0, x) Uo(X), x ,

Nu(t,x)=O,

where the linear operator (t, x, 0) is given by

(3.11)

and

s4(t, ", o)f ao(t, )Dif+ bi(t, )Dif+ c(t, )f,

(a) ao( t, X) aft(t, x), %( t, X)i >= 11=,
(3.12) (b) ai( + T, x) ai( t, x), bi( + T, x) bi( t, x), c( + T, x) c( t, x),

(c) t-ao(t,’), t-bi(t,’), t-c(t,’)6C"(R;C(Q)).

The boundary operator N is either the trace operator on 0f or else any mixed
nontangential differential operator:

(3.13) (g)(x):fli(x)Dig(x)+’g(x)g(x), xEOf,

with

(3.14)

We choose p > 1 and we set

(3.15) X LP(f), D= {6 W2’P(D); Nth =0}.

Then the operators

(3.16) A(t)" D- X, A(t)th M(t, x, 0)6

satisfy assumption (2.2) due to [3] and [2]. The evolution operator G(t, s) generated
by {A(t); R} is compact because D is compactly embedded in X; therefore the
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spectrum of V(s) consists of isolated eigenvalues (except the point z =0) with finite
algebraic multiplicity, and it is independent of s. Hence, assumptions (2.10), (3.5) are
satisfied by any to _-> 0 such that no complex number with modulus e -to- is an eigenvalue
of v(0).

We choose

(3.17) Y--Rk, (t)(y, ,..., Yk) 49(t," )Yi,

and we assume that 41," ", 4k are linearly independent and such that

(3.18) tci(t ") Ca(R; X), dpi(t-k- T, ")--qi(t, ") VtcR.

For every A c tr(V(0)*) let 1", , *N( be linearly independent functions in LP*()
(l/p+ 1/p* 1) spanning the eigenspace of V(0)* with eigenvalue A. Then for every
s [0, T] the mapping p(s)*G( T, s)* ker (A V(0)*) - (Rk)* Rk may be represented
(with respect to such a basis) by the matrix

(3.19) [Aji(s)] [( G( T, s)tj(s, ), *i )]i=l,...,N(a),j=l,...,k.

Hence, the result of Theorem 3.1 can be reformulated as follows.
PROPOSITION 3.2. Fix any to >-- 0 such that no eigenvalue of V(O) has modulus e-to.

Then the following statements are equivalent"
(i) Foreachuo LP() thereareyl, Yk Co([0, +[; R) such that thesolution

u of (3.1 O) satisfies
sup [[eto’u(t, .)l[L(a<+, sup [[e%(t,.)[[w.,(<+oo Va>0;
tO ta

--toT(ii) For each h or(V(0)) with Ihl> e and for each y cRU(a\{0} there is s

[0, T] such that [Aji(s)]y 0, where [Aji(s)] is the matrix defined in (3.19).
From Proposition 3.2 we get the following sufficient condition for the stabilizability

of system (3.10).
COROLLARY 3.3. The following conditions are equivalent:
(i) For each h or(V(O)) with Ih[ > e-to, we have N(A) <= k, and there is g [0, T]

such that the rank of the matrix Aji () defined in (3.1 9) is N(h);
(ii) For each h cr(V(O)) with [hi > e-tot we have N(A) _-< k, and there is [0, T]

such that, denoting by {X*,""", X*()} any system ofgenerators of ker (h- V(g)*), the
rank of the matrix

is N(A).
If either (i) or (ii) holds, then conditions (i) and (ii) of Proposition 3.2 hold, so

that system (3.10) is stabilizable.

Proof Since G( T, s)*: ker (h V(0)*) - ker (h V(s)*) is an isomorphism, then
{:*,’’’,*N()} is a basis of ker(h-V(0)*) if and only if {G(T,s)**,...,
G( T, s)*(*u(} is a basis ofker (h V(s)*). Therefore, conditions (i) and (ii) are clearly
equivalent. Moreover, if (i) holds, then for every y RU(X\{0} we have [Ai(g)]y O,
so that (ii) of Proposition 3.2 holds.

4. Stabilizability in boundary control problems. Here we consider a parabolic initial
value problem nonhomogeneous at the boundary,

(4.1)

v,( t, x) s4( t, x, O)v( t, x),

v(O, x) vo(x), xef,

t>0, xf,

l(x,O)v(t,x)=qt(t)g(t)(x), t>O, x6Oa,
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where, as before, f is a bounded open set in R with C2 boundary 0f, the linear
operator (t, x, 0) is defined in (3.11) and its coefficients satisfy assumption (3.12),
and Y3(x, 0) is either the trace operator on 0f or the differential operator defined in
(3.13), with coefficients satisfying (3.14), g(.) is a function with values in a Banach
space Z, and xp(t) is a linear (time periodic) operator in L(Z, LP(Of)), for some p > 1.

(a) t->ao(t,.),t->bi(t,.), t->c(t,.)6C+(R;
(4.2) (b) x->ais(t,x)C((l), x->bi(t,x)C*((), x-->c(t,x)6C(fi), VtR,

(c) sup Ila0(t, .)]lcfi)+sup ][bi(t, ")]]c,fi+ sup
tR tR tR,x-

and we choose, as before, X L’(f), D= {4) W2"(fl); 3b =0}. Due to assumption
(4.2)(a), the function --> A(t) (defined in (3.16)) belongs to C+(R; L(D, X)), so that
there exists G(t, s) L(X, D) for > s (see [17]).

4.1. The Dirichlet boundary condition. In this case, D is the space
W"(). We assume that

(4.3) O6 p(A(t)) It R,

so that for each tR the Dirichlet mapping D(t)L(WZ-/"’(Of), W"(f)) is well
defined by D(t)y z, where z is the unique solution of the elliptic boundary value
problem

(4.4) g(t, x, O)z 0 in f, z[aa Y

(see [3]). Concerning the linear operators (t), we assume that

t---> (t)E CI(R, L(Z, LP(OE)))(’I C(R, L(Z, W2--1/p’P(o’))),
(4.5)

(t+T)=(t), tER.

In [17] we showed that for every : C1([0, +oo[; L(Of))ffl C([0, +oo[; W2-/P,P(Of))
the function D(. )if(. belongs to C([0, +oo[; Xo) for each 0 < 1/2p, and, if Vo belongs
to L(fl), then problem

w’(t)=(t,’,O)w, t>O, w(O,’)=Wo, 3w(t)=(t), t>O

has a unique solution w C([0, +[; LP(f))fq CI(]0, +[; LP(f))f-) C(]0, +[;
W2’p(f)), given by the representation formula

W( t) G( t, O)wo + G( t, s)D(s)(s) ds

G(t, 0)(Wo O(0)(0)) G(t,s)-s[D(s)(s)]ds+D(t)(t), >-_0.

Therefore, if g belongs to C([0, +eel; Z), problem (4.1) has a unique solution v such
that t- v(t, .) belongs to C([0, +oe[; L(a))Cl cl(]0, +o[; LO(a)) C(]0, +o[;
W’P(f)), and v is given by

v(t, )-- G(t, O)vo+ G(t, s)D(s)(s)g(s, ds

(4.6) =G(t,O)(vo-O(O),I(O)g(O,.))- G(t,s)[D(s)4,(s)g(s,.)] ds

+ D(t)*(t)g(, .), >_-0.
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We want to find sufficient conditions on the data to ensure that for every Vo X there
is g C1([0, +c[; Z) such that v(t, .) decays exponentially as t--> + in the W2,p

norm. We use notation from 2.
THEOREM 4.1. Let (4.2),...,(4.5), (3.12)(a) hold, and let w>=O be such that

o( V(s)) ["] {A c C; ]Z]-- e-T} for each s R. Then the following statements are
equivalent:

(i) For every Vo LP() there is g6 cl,o([0, +o[; Z) such that t-> v(t, .) (where v
is the solution of (4.1)) belongs to C,([0, +c[; LP(I’));

(ii) For every A C with [AI > e-)T we have

(A-V(0)*)x*=0, qt(s)*[O-(G(T,s)*x*)]=O foreachs[O,T]:=kx*=O,

where O/OvsO ao(s, )DiO( )v( and we identify G( T, s)*x* with the function f
W2"P*(I)) such that (G( T, s)*x*)(y) y(x)f(x) dx for each y LP().

If one of the equivalent conditions (i) or (ii) holds, then for every Vo Lp() there
is g C([0, +[; Z) such that t-> v(t, belongs to Co([a, +[; W2’P()) for each
a>0.

Proof The proof is quite analogous to that of Theorem 3.1, therefore some steps
will be only sketched.

First, from 17] it follows that if > s, then G(t, s)*x* belongs to D(A(s)*) %f {y*
X*: the mapping D--> C, x->(A(s)x, y*) has a continuous extension to X}, and

Gs(t, s)*x* -a(s)*G(t, s)*x*.

Moreover, a simple integration by parts argument shows that for each y* D(A(s)*)
wz’P*() W’P*(I)) we have a(s)*y*=Do(ao(s,.)y*(.))-D(b(.)y*(.))+c(.)y*(.)
and

D(s)*A(s)*y*= O-- y*.

Therefore

(4.7) D(s)*(Gs(t,s)*x*=- O--(G(t,s)*x*), t> s.
0r’s

Due to equality (4.7) and the first representation formula in (4.6), the proof of (i) (ii)
is the same (with obvious modifications) as the corresponding one in Theorem 3.1.

Now let one of the equivalent conditions (i) or (ii) hold; then for every Uo LP(-)
there is g C([0, +[; Z) such that lim sup,_+ ]le’u(t, )[[ L,’()< +. We show that
also lim sup,.+ [[e’u(t,. )[] w.( < +.

Since v(t,. belongs to C([O, +[; LP()), then by Proposition 2.3 we have

P(0)Vo [G(O, s)P2(s)]D(s)*(s)g(s) ds.

As remarked before, s D(s)(s)g(s) belongs to C([0, +[; Xo) for each 0 < 1/2p;
therefore, by Corollary 2.6 of [17], we can integrate by pas to get

o+ 0
(4.8) P(O)[vo-D(O)(O)g(O)]= O(O,s)P(s) o[D(s)(s)g(s)] ds.

Since s (s)g(s) belongs to C([0, +[; L(O)) C([0, +[; W-/P’(O)), then,
by using Proposition 3.1 of [17], we can see easily that vv(t,.) belongs to
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C([O, +[; LP(f))CI C’(]O, +[; LP(f))Yl C(]O, +o[; W2,e(f)), and it may be rep-
resented by the second formula in (4.6). Since s-D(t)(t)g(t) belongs to
Co([O, +ce[; W2’p(f)), then tv(t,.) is in C([a,+[; We’P()) for every a>O if
and only if the function

z(t)=G(t,O)[vo-D(O)(O)g(O)]- G(t,s) os[D(s)*(s)g(s)]ds, tO,

does. Since d/ds D(s)(s)g(s) belongs to C([0, +[; Xo) with 0>0 and (4.8) holds,
the last statement of Proposition 2.1 implies z C([a, +[; W2’p(o)) for every
a>0.
THZORZM 4.2. Under the previous assumptions and notation, let Z W2-1/p’P(o),
(s) I for each s. en system (4.1) is stabilizable, provided (t,., O) is formally
self-adjoint, and OO and the coefficients of (t,., O) are of class C for every t.

Proof For each x* X*, G(T, s)*x* is the solution of

u’(s) -A(s)*u(s), s < , u( T) x*,

so that, setting T-s, we have G(T, s)*x* v(T-s), where v satisfies

v’(t)=A(T-t)*v(t), t>0, v(0) x*.

Now, a result of 19] ensures that the set {(t, x) [0, T] x 0; v(t, x) 0/0 v(t, x) 0}
has Lebesgue measure zero. Therefore s O/O(G( T, s)*x*) cannot vanish identically
in [0, T], and we can apply Theorem 4.1, which implies the statement.

4.2. Applications to bounda control problems (I). Under the previous assumptions
and notation, we consider in paicular the case where

(4.9) Z =R,
and

(t)(y,,..., y)= d/,(t,.)y,

bi(t, ) C’(R; LP(O))f) C(R; W2-’/P’P(O)),
(4.10)

ti(tq- T, ")=i(t, ") VtR.

Applying Theorem 4.1 we get results similar to the ones of Proposition 3.2 and Corollary
3.3; the proof is also similar and it is omitted.

PROPOSITION 4.3. Let (4.2), (4.3), (4.9), (4.10) hold, and let w 0 be such that no
eigenvalue of V(O) has modulus e-[ en the following statements are equivalent:

(i) For each vo LP() there arey Yk CI([O, +[’, R) such that the solution
v of (4.1) satisfies

sup Ile’v(t,.)ll,.<+, sup Ile’v(t,.)ll=...<+ Va>0;
tO ta

(ii) For each (V(O)) with > denote by {,. .,} any basis of
ker (A- V(0)*) and set

(4.11) [Ai(s)] O(s, ),
Ou i=,,...,N(),=l,...,k

en for every y RN(){0}, there is s [0, T] such that [Aji(s)]y O.
Condition (i) and (ii) hold if one of the following equivalent conditions is satisfied:
(iii) For each A (V(0)) with ]AI> e-r we have N(A) k, and there is g[0, T]

such that the rank of the matrix [Aji () iS N(A);
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(iv) For each A r(V(O)) with I1> e-oTwe have N(A)_-< k, and there is g[O, T]
such that, denoting by {X* X*N()) any system ofgenerators of ker (A- V(g)*), the
rank of the matrix

is N(A). [

4.3. The mixed boundary condition. The space D is now D={g W2’p(-);
3(x, 0)g =0}, where 3 is the differential operator defined in (3.13). Assuming again
that (4.3) holds, we may define the mixed mapping M(t) by M(t)g z, where z is the
unique solution of the elliptic boundary value problem (1.6).

The assumptions on the linear operators (t) are the following:

(4.12)
-> (t) 6 C’ (R, L(Z, LP(Ofl))) C(R, L(Z, W’-I/P’P(Of))),

(t+T):(t), tR,

where

1 1
(4.13) >-+--.

2 2p

The linear mapping M(t) belongs to L(LP(Ofl), WI-I/P-’P())
W2’p(f)) for each tR and e>0 (see [3] and [14]; in fact, in [14] more regularity
assumptions are made in order to treat a larger class of boundary value problems, but
the reader can check that in this regularity problem our hypotheses are sufficient).
Moreover, assumption (4.2) implies also that t--> M(t) belongs to CI(R; L(LP(O),
WI-1/P-e’P(,)))[’’) CI(R; L(WI-1/P’P(o"), W2’p([-))). On the other hand, by [10] we
have

1
Xo B’P(f) for 0 <----,

2 2p

with equivalence of the respective norms, so that, recalling that WI-1/p-e’P(’-) is
continuously embedded in B1o21/P-’P(I), we also get

-> M(t) CI(R; L(Z, Xo)).

Therefore, for every g, C([0, +[; LP(O()) C([0, +[; WI-1/P’P(O)), we have

t-> M(t)qt(t)6 C([O, +oo[; Xo)f-) C([O, +oo[; W2’p(f)), 1 1

2 2p

Under such regularity assumptions, it can be deduced from [17] that, for every
Woe LP(), the problem

w’(t)=sg(t,’,O)w, t>O, w(O,’)=Wo, lw(t)=O(t), t>O,

has a unique solution w C([0, +ee[; LP(fl)) C1(]0, +oe[; LP(f))CI C([0, +oo[;
W2’P(f)), given by the representation formula

w(t) G(t, O)wo+ G,(t, s)M(s)O(s) ds, >--O.
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Therefore, if g:[0, +c[- Z is locally/3-H61der continuous, then problem (4.1) has a
unique solution v such that t v(t, .) C([0, +c[; LP(f))f) C1(]0, +c[; LP(f))tq
C([0, +[; W2’p(f)), given by

v(t,’)=G(t,O)vo+ G(t,s)M(s)(s)g(s,.) ds, t>-O.

The following result, concerning stabilizability for problem (4.1), is quite similar to
the one of Theorem 4.1.

THEOgEM 4.4. Let (4.2), (4.3), (4.12), (4.13), (3.12)(a) hold, and let w >= 0 be such
that or(V(s)) {A C; [AI e-’T} for each s R. Then the following statements are

equivalent:
(i) For every Vo LP() there is g C([0, +oo[; Z) such that t--> v(t, .) (where v

is the solution of (4.1)) belongs to Co,([0, +oo[; LP());
(ii) For every C with [hi > e-’r we have

(h- V(0)*)x*=0, (s)*[(G(T,s)*x*)lo]=O foreaehs[O, T]=>x*=0,
where we identify G( T, s)*x* with thefunctionf6 W2’v*() such that G( T, s)*x*)(y)
y(x)f(x) dx for each y LP().

If one of the equivalent conditions (i) or (ii) holds, then for every Vo LP(’) there
is g C([0, +oo[; Z) such that t- v(t, .) belongs to Co,([a, +o[; W2,e()) for each
a>0.

Proof It is similar to the one of Theorem 4.1. Concerning D(A(s)*), it is well
known (see [14]) that there are a first-order boundary operator * *(s,., 0), and
a zero order boundary operator of. (with ’4 c*(s, x)ck(x), c*(s, x) 0 for any
x 0) such that for every couple of regular functions u, v we have

[v(x)((s, x, o)u)(x)- u(x)(sC*(s, x, o)v)(x)] dx

f [u(.)*v(.)- u(.)Cf*v(.)] do-x,

where *(s,., 0) is defined in (4.7). Then D(A(s)*)= {y* wz’P*(): @*y* 0}, and
A(s*)y*= g*(s,., O)y*. Integrating by parts we easily get

(M(s)*A(s)*y*)(x) -c*(s, x)y*(x), s R, x Of, y* D(a(s)*),

so that

M(s)*G(t, s)*x* c*(s, )G(t, s)*x, Vx* X*=

and we have to apply Propositior 2.3 instead of Proposition 2.1.

4.4. Applications to boundary control problems (II). We again consider the case
where

(4.14) Z-- Rk, xI( t)(yl ,’’’, Yk)= li( t," )Yi,

and, for some/3 6 ]1/2, 1[

t-> Pi(t, ) CrY(R; LP(o))CI C(R; W2-1/P’P(O)),
(4.15)

thi( + T,. thi(t," VtR.

Applying Theorem 4.1 we get a result similar to the one of Proposition 3.2.
PgoPOSTION 4.5. Let (3.12)(a), (4.2), (4.3), (4.14), (4.15) hold, and let oo>=O be

such that no eigenvalue of V(O) has modulus e-. Then the following statements are

equivalent:
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(i) For each Vo Lp (1) there areYl, , Yk C ([0, +[; R) such that the solution
v of (4.1) satisfies

suplle"v(t,.)[IL)<+c, suplle’v(t,.)llw2.)<+ Va>0;
t>=O ta

(ii) For each A 6 or(V(0)) with e denote by {*1," ", *} any basis of
ker (A- V(0)*) and set

(4.16) [Aji(s)] [(qj(s,. ), (G( T, s)*/*)10n)]i=,...,ua),=,...,k.
Then for every y Ru\{0}, there is s [0, T] such that [Ai(s)]y O.

Conditions (i) and (ii) hold if one of the following equivalent conditions is satisfied"
(iii) For each A 6 or(V(0)) with IAI> e-’r we have N(A) =< k, and there is g[0, T]

such that the rank of the matrix [A(g)] defined in (4.16) is N(A);
(iv) For each A 6 or(V(0)) with IAI> e-’r we have N(A)-< k, and there is g6[0, T]

such that, denoting by {X* ," ", X*NX)} any system of generators of ker (A- V(g)*, the
rank of the matrix

EBji E(tj, )(ilOE)]i=l,...,N(A),j=l,...,k

is N(A). [3
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A PERTURBED PARALLEL DECOMPOSITION METHOD FOR A CLASS
OF NONSMOOTH CONVEX MINIMIZATION PROBLEMS*

KHALIL MOUALLIF’, VAN HIEN NGUYEN:]:, AND JEAN-JACQUES STRODIOT:I:

Abstract. A perturbed parallel decomposition method for solving the following model problem is

presented: minimize fo(X)+Yi=l fi(x) over all x in Nn, where fo is differentiable and strongly convex, and
the f/’s are closed, proper, and convex (but not necessarily differentiable). An important feature of the
proposed method is the ability to split the given problem into independent subproblems that contain only
individual functions; in that way the algorithm is suitable for parallel computation. The approach also
allows for inaccuracies and duality gaps during the iterative process. Furthermore, convergence is established
under perturbations on the f/’s in the epiconvergence sense (and under inexact minimizations at each
iteration). Relations of the method with the recent work of Han and Lou on the same model problem are

also discussed. From the theoretical point of view, this paper represents a significant improvement on the
parallel decomposition algorithms of Han and Lou.

Key words, decomposition technique, parallel optimization algorithm, nonsmooth convex programming,
variational convergence
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1. Introduction. This paper presents a general perturbed parallel decomposition
method for solving the following nondifferentiable convex optimization problem:

(P) minimizef0(x) + f(x) over all x En
i=1

where f0" En
_
E is differentiable and strongly convex with modulus a (see, for example,

Rockafellar [23]) and for all 1,. ., m, each f is a closed proper convex function
from En into the extended real line E kJ {+c} (see Rockafellar [22]). We do not assume
the f’s to be differentiable. Note that the f’s are allowed to take the value +; this
fact is important since it permits us to model implicitly the constraints that may be
imposed on the choice of x. For consistency, we assume that

CI domf/ ,
i:1

where domf/ is the effective domain of f/ defined by

domf {x "lf(x) < +}.

In the method we propose here, the problem (P) is first perturbed (that is, the f/’s
are replaced by functions f, which approximate the f’s in the sense of epiconvergence;
see, for example, Attouch and Wets [3], [5]) and is then dualized in the sense of
convex analysis (see [22]) to obtain a problem that is a nonsmooth unconstrained
convex problem, which in turn is solved by applying the so-called auxiliary problem
principle (see, for example, Cohen [10]). An important feature of our method is that
the problem (P) (or rather, its perturbed form) is decomposed into independent
subproblems that contain only individual functions f (or rather f); in this way the
algorithm is suitable for parallel computation. In our approach we also allow the
solutions of the perturbed "primal" and "dual" programs, which are alternately and
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repeatedly solved during the parallel iterative process, to be inaccurate. Note that this
property is very important, especially as far as applications and computations are
concerned; exact solutionsnif they do exist--may be difficult, if not impossible, to
find. In the general framework that we work with in this paper (that is, under
perturbations and with inexact minimizations) we are able to show that, under fairly
mild conditions, the method has attractive convergence properties both in the "primal"
space and in the "dual" space.

The motivation for this paper comes from the observation that the model problem
(P) represents a fairly broad class of problems that may arise in various situations.
For example, the present method can be applied to the following constrained optimiz-
ation problem (although we are mainly concerned with the unconstrained problem (P))"

minimize fo(x)

subject to xC171 71C,,

where fo is as above, and for all i= 1,..., m, each Ci is a nonempty closed convex
set of Nn. For consistency, we assume that the set C1 f3 71 C, is nonempty. Then,
the problem (P) may be rewritten in the equivalent form

(1.1) minimize f0(x) + Y 6 (xl Ci) over all x
i=1

where 6(. Ci) is the indicator function of Ci defined by

0 if X Ci,
6(xlCi) +c otherwise.

Clearly, the problem (1.1) (therefore, the problem (P)) is a problem of the form (P)
since the functions 6(’[Ci):fi are obviously closed, proper, and convex. Note that
this example (P) includes as a special case the well-known projection problem of a
given point in " onto the intersection of a finite number of convex sets of (see 14]).

Another instance where the model problem (P) arises is when we want to

minimize fo(x) + (c, z
i=l

(1.2)
subject to Aix+Bizi<-b for i=l,...,rn

X [n, Z [ni,

where fo is as above, c ", b [m, Ai, and Bi are m x rt and mi ni matrices,
respectively, whereas (-,.) denotes the Euclidean inner product in [ (for all i-

1,..., m). Then, it is known (see, for example, Lasdon [16]) that, under reasonable
assumptions, the functions

f(x) =min {(C i, zi)lz n,, Bizi <_ bi_Aix}

are finite real-valued, convex, and piecewise linear (polyhedral). Then, the problem
(1.2) can be restated as the model problem (P). Similar ideas are.also encountered for
other decomposable problems in stochastic programming (see, for example, the state-of-
the-art tutorials of Wets [27] and Varaiya and Wets [26]) and in structural optimization
(see, for example, Barthelemy [8] for a useful survey).

Our method is closely related tonbut is different fromthat proposed by Han
and Lou [13] for the model problem (P) ("Algorithm II for (B)"). The main differences
with this recent work are twofold. First of all, the derivation of the method is entirely
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different here from that described in [13]. Roughly speaking, in [13] Han and Lou
begin by presenting a basic decomposition method for solving the following optimiz-
ation problem ("Algorithm I for (A)"):

(A) minimize p(y, ., y,,,)+ gi(Yi) over all Yl
i=1

where p "n,++"m is a convex, ditterentiable function whose gradient mapping is
Lipschitz continuous, and gi:-i_oLl{+oo} is closed, proper, and convex for all
i= 1,..., rn. Then, through duality theory, they transform the model problem (P) into
a dual problem that has the form of (A), and apply their basic decomposition technique
to the dual so that they can also decompose the model problem (P) and solve it in
parallel.

A second difference between our approach and the one of Han and Lou [13] is
that we allow for inaccuracies and variational perturbations during the parallel iterative
process. Our development therefore encompasses that of Han and Lou for the case of
the model problem (P). One ofthe implications of our development is that an additional
regularity assumption made in [13] is proven to be superfluous. This arises from the
fact that they did need a duality theorem for the dual programs they had to consider.
As a consequence, our convergence results are more general. Details are discussed
in 4.

Note that our method is also related to the proximal point algorithm in convex
programming (for a survey, see Lemaire [17]), but with a simultaneous utilization of
a gradient method for the differentiable part of the objective function.

The remainder of the paper is organized as follows. The method is derived and
stated in 2. Its connections with Han and Lou’s "Algorithm II for (B)" [13] are
established in 3. There we show that the "Algorithm I for (A)" of Han and Lou [13]
can also be derived in the same way as in 2, that is, by applying the auxiliary problem
principle. Convergence results for the method are presented in 4. Finally, we end
the paper with a conclusion section.

We use the following notation and terminology. Rn denotes the n-dimensional
Euclidean space with the ordinary inner product (.,.) and the associated two-norm

I1" II. All vectors are column vectors. However, for convenience, a column vector in
-,+2 is denoted by (xl, x2), even though xl and x2 are column vectors in and n2,
respectively.

All the definitions and most of the notation concerning convex analysis are those
of Rockafellar [22]. For instance, the conjugate of a convex function f, denoted by
f*, is given by

f*(y) sup {(x, y)-f(x)}
X

and the subdifferential of f at if is given by

Of(if) {yl"lf(z)>-f(i)+(z-if y) for all z

2. Derivation-of the methol. In this section, the general perturbed parallel
decomposition method will be proposed for solving the model problem (P). Before
doing this it is necessary to recall (see Wijsman [29]) the following definition of
epiconvergence of a sequence of closed proper convex functions. Epigraphical analysis
provides a very rich and unified tool to study a broad class of problems that includes
variational problems, generalized equations, and mathematical programs, and has
received much attention during the last decade (see, for example, Attouch [2], Attouch
and Wets [3], [5], and Rockafellar and Wets [24]).
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Let {,b k} be a sequence of closed proper convex functions from R" into R t_J {+}
and suppose 4 is a function satisfying the same hypotheses. Epiconvergence of {bk}
to 4 may be characterized by the conjunction of these very tangible local conditions"
At each x

(i) Whenever {xk} X, then lim inf &k(xk) (X);
(ii) There exists a sequence {xk} convergent to x for which lim k(xk)= (X).

We will write

& epi-lim k

for "{&k} is epi-convergent to ."
As in Lemaire 18], the model problem (P) is embedded in a family of parametrized

problems by peurbing the functions f (for i= 1,..., m) in replacing them by the
functions f (for i= 1,..., m, and k N) satisfying the following condition"

(2.1) f epi-limf (i= 1,..., m),

where, of course, the functions f are also closed, proper, and convex. Thus, we are
led to consider the approximating problems

(Pk) minimizefo(x)+ Z f(x) over all x
i=1

For illustration purposes, we consider the problem (P) here again. It was shown
in 1 that the problem (P) is equivalent to the problem (1.1), which is of the form (P)
with

f (" [Ci) for i= 1,..., m.

For each i= 1,..., m, we consider penalty functions f (where k M) satisfying the
following conditions (compare with Auslender, Crouzeix, and F6dit [7])"

(H1) f"" is convex for all k

(H2) ff+ for all k;
lim f(x) 0 if x C,
k+

(H3)
lim f(x) + otherwise.

Then, it follows immediately from Attouch [2, Thm. 3.20] that

epi-limf=6(.[Ci)=f for all i=l,...,m.
k+

Note that if the constraint set C, for 1,. ., m is defined by

Ci={xGn[gi(x)O},

where g" " is convex, then we can takef as the classical exterior penalty function

or as the exact penalty function

where

f/ rf(max {0, gi})

f/k r/k max {0, gi},

O<r/-<rf+’ and lim rf=+o.
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In these conditions, it is easy to see that the functionsf satisfy the above assumptions
(H1)-(H3); that is, they are perturbations off in our sense.

For discussion of other examples off verifying (2.1), we refer to Attouch and
Wets [3], Mine and Fukushima [21], Attouch [2], and Alart and Lemaire [1].

We now turn to the perturbed problem (Pk). We take the Fenchel dual (see [22,
Thm. 31.1]) of (Pk) to obtain a nonsmooth dual convex problem, namely,

(P*) minimize fo*(Y) + f (-y) over all y N.
i=1

By Theorem 16.4 of Rockafellar [22], if

(2.2) ri (domf/) #
i=1

(ri stands for the relative interior) then the second term of the objective function of
(P*) is such that

() inf 2 (f)*(’)l’,’’’, Ym N, 2 Y
i=1 i=1 i=1

Because of this equality, we consider from now on (even in the cases where the
hypothesis (2.2) does not hold) as the Fenchel dual program of (P) the following
problem:

(D) minimizef Y + 2 (f)*(-Y) over ally,...,ye.
i=1 i=1

It should be pointed out that, in this paper, we do not assume that the regularity
condition (2.2) (or a similar condition on ri (dom f)) holds. As a consequence of this,
we do not necessarily have a duality theorem for the dual pair (P) and (Dg). Another
way of expressing this is to say that our approach allows for duality gaps between
these primal and dual programs during the parallel iterative process. This propey is
impoant because it may not always be possible or desirable to generate dual solutions
that close the duality gap.

The following result is the key to the derivation of the method. To state it some
new terminology must first be introduced.

Let Fo:Ru be a differentiable convex function and let G :Nu NU {+} be
a closed proper convex function depending on a natural integer k. We are concerned
with the following (master) problem for each fixed k in N:

(MP) minimize Fo(y) + G(y) over all y Nu.
Now let K:NN be a differentiable and strongly convex function depending on k
and consider the following function J)"N N U {+} depending on some eN and

e > 0 defined by

(2.3) J(y)=K(y)+(e,VFo(y)-VK(y),y)+eG(y) for all yeRU.
Then we have the following fundamental lemma that Cohen [10, Lemma 2.2] called
the auxiliary problem principle.

LUMMA 1. For each fixed k N, we have that solves the (auxiliary) problem
k(APg) minimize Jy(y) over all y

if and only if solves the master problem (MP).
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Proof The following statements are equivalent:

37 is an optimal solution of (APk) :> OOJ(y)

<=> O VFo(.9)+OGk(y) by [22, Thm. 23.8]).

<=> 37 is an optimal solution of (MPk). [-]

To find such a 37 N (whose existence is ensured under reasonable conditions)
Cohen [10] proposed to use, for each fixed k I, a kind of fixed-point algorithm.

Let a sequence of differentiable and strongly convex functions {Kk} and a
sequence of positive numbers {ek} be chosen. The index j denotes the iteration
index. Cohen’s algorithm [10] can be described as follows"

Initialization Step
Choose a point yO u, let j 0, and go to the main step.
Main Step
Let y+ be an optimal solution to the following auxiliary problem"

(APk) minimize Kk(y)+(ekVFo(y)--VKk(y),y)+ekGk(y) for all y.
If lieJ+-yll or IFo(y+)/ Gk(y+)- Fo(y) Gk(y)l is below some desired

tolerance, then stop; otherwise, replace j by j / 1, and repeat.

Set for each fixed k

and

(2.5) Gk(y)= (fk).(_y)
i=1

for all y (y,..., y,,) m.,. Also we set m.n N. Then, clearly, the Fenchel dual
problem (Dk) is of the form of the master problem (MPk), to which Lemma 1 applies.
Indeed, because fo" " was supposed to be differentiable and strongly convex with
modulus a, it is known (see, for example, Han and Lou [12, 2] or [13, 3]) that the
conjugate function fo*’" of fo is also differentiable everywhere, strictly convex,
co-finite, and

(2.6) Vfo* (Vfo) -1.

Thus, the function Fo’N-, as defined by (2.4), is differentiable and convex. On
the other hand, because the functions f"- (_J {+c} were assumed to be closed,
proper, and convex, it is easy to see (by Rockafellar [22, Thm. 12.2]) that the conjugate
functions (f)..n

_
(_j {+} of f also have the same properties. For each k N,

the function Gk’N tA {+c}, as defined by (2.5), is thus obviously a closed proper
convex function.

However, for obvious reasons, we do not want to solve each dual problem (Dk).
So it is natural to consider a diagonal process to generate the sequence {yk}k" At
the kth iteration, in order to compute yk+ from yk, we only solve the auxiliary problem
(APkj) with j--k. Moreover, for each k, we suppose that ekk 1 and Kkk(y)
(1/2A)lly[I for all yN, where hk>0. This kind of quadratic core K kk has often
been used to ensure convergence; in particular, it is akin to the proximal point algorithm;
for example, see Rockafellar [23] and Lemaire [17].
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In other words, from a starting point yO r, a sequence {yk}k will be generated
step by step as follows: for each k N, yk+l is the optimal solution to the problem

(ADk) minimize(1/2Ak)llyll2+(VFo(yk)--(1/Ak)yk, y)+Gk(y) for all yN.

Then we can write

k+l(2.7) y arg rnin {(1/2Ak)lly- yk + AkVFo(yk)ll2+ Gk(y)}

because

(1/2Ak) ]]y --y k + fo(f ) / a (y) (1/2Xk) ily 112 + (V Fo(yk) _(1/Ak)yk, y)

+ Gk(y) + term independent of y.

Now remember from (2.4) and (2.5) that

VFo(y) VFo(Yl, Ym)

and

Ok(Y) E (f)*(--Yi),
i=1

and that 11" denotes the Euclidean norm in N r.,, in such a way that we can get the
following splitting of yk+l, as defined by (2.7), into individual components (i=
1,...,m)"

y+l=argmin (1/2Ak) yi-y+AkVf*o yf +(f)*(-y)
Yi’

Thus, we easily obtain that

(2.8, y)+:argmin {(1/2A)[y-y[Z+(y-y,,Vf(y,))+(f)*(-y,)}.
yiG i=1

Consequently, the characterization of optimality says that

Oo((1/2Ak)] ._yll2+(._y,f(
Convex analysis calculus then gives

OE (1/Ak)(y+ --y))+ Vf (i=, Y)-o(f)*(-Y+’)"
Equivalently, we have

y Rockafellar [22, Thm. 23.5], this is in turn equivalent to
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that is,

We can then express this differential inclusion as

(2.9) y)+’ arg min
yi i=1

To evaluate Vfo*(i=l Y) in (2.9), we want to avoid the conjugate function fo* in
computation. For this purpose, we may calculate Vfo*(2i=l y) by solving the following
problem:

(F) minimize fo(x) x, y over all x R n.

To see this, let x k be a solution of (F). Then we have the following equivalence"

fo(x" 2 y) o x y)
i=1 i=1

From (2.6), we obtain

(2.10) xk Vfo* y

which was what we wanted.
Until now, we have been dealing with the method in its perturbed form involving

exact minimizations. Now we will take inexact minimizations into consideration. To
this end, let us introduce m+ 1 sequences of nonnegative numbers" {e}k for i=

0, 1,..., m. Also let {Ak}k be a sequence of positive numbers.
To make our notation simpler, we set

This and (2.10) give that (2.9) is equivalent to

z+= arg min {(1/2Ak) ]]y + hk(Zi- Xk)]l 2 +f(z)},
Zi [t

(2.11)

Taking all these into account, we are now in a position to state our general
perturbed parallel decomposition method as follows.

THE METnOO (in its general form). Let ,k > 0 and e) _> 0 for 0, 1, , m and
k=0, 1, 2,.... We start with any point yo= (y,..., y0m)etm’". We then calculate
X
0 n, then y (y, , Ym) X by doing the following computation:

(a) Compute xk by

(2.12) x k e eo-arg min fo(x)- x, y

(b) For i= 1,..., m, we compute y+ by

z+1 e- arg min {(1/2Ak) ]ly) + Ak(zi- xk)]] 2 +f(zi)},
ZiG

(2.13)
yk+= yki + Ak(zk+--xk ).



PERTURBED PARALLEL DECOMPOSITION 837

As usual we let

e arg min b(x) { "lb(X) _< inf 4 + e}
x

for any function 4 :En
_
E (3 {+}.

At this point, a few remarks are of interest. Steps (a) and (b) of the method are
realized with only approximate minimization in the subproblems. The subproblem in
Step (a) contains only the (differentiable strongly convex) function fo. Each of the m
subproblems in step (b) contains only one (nondifferentiable convex) function f/.
These m subproblems in step (b) are independent of each other and can be solved in
parallel by using any nonsmooth convex minimization algorithm (see especially Auslen-
der [6]; see also Fukushima [11], Kiwiel [15], Strodiot and Nguyen [25] and the
references cited therein). Therefore, in the proposed method, the parallel decomposition
takes place with respect to the set of "constraints" f or ratherf (as opposed to with
respect to the set of varaibles x). Note that the objective function of each subproblem
in step (b) (which is defined by an approximation f/ off) is not only approximately
solved but also depends on an approximate solution to the subproblem in step (a).

3. Connections with the work of Han and Lou. In 13] Han and Lou give a parallel
decomposition algorithm to solve the model problem (P). Because in the present paper
we are concerned with the same problem (P) (with the same assumptions on the
problem functions fo andf (i 1, , m)), it is natural to establish here the relationship
between our method and the one proposed by Han and Lou. In order to facilitate the
understanding of the analysis of this section we first briefly recall Han and Lou’s
algorithm ("Algorithm II for (B)") in [13].

HAN AND LOU’S ALGORITHM. Start from a point yO= (yO,..., y0)m in m.n and
a sufficiently large number a (>0) Having yk 1,’’’, Ym) at the kth iteration, we
do the following:

(a) Compute xk by solving the problem

(3.1) minimize fo(x) x, y
i=1

(b) For i- 1,..., m, we solve the problem

(3.2) minimize a[[yi][ 2 +f(Zayi- 2ay + xk) over all Yi n
to obtain the optimal solution y/+1 (ith component of yk+l (y+l,...

Now, the relationship we just mentioned above can be laid out as in the next result.
PROPOSITION 1. For the model problem (P), Han and Lou’s algorithm as defined

by (3.1)-(3.2) is a particular case of our method as defined by (2.12)-(2.13) with the
following special choices"

f f for all l, m and all k ,
ke 0 for all i=O, 1,..., m and all k.

Proof The proof is immediate from the derivation of our method in the previous
section (see (2.9), (2.10), and (F)) in taking 1/2Ak a for all k t. [3

On the other hand, recall that in 13 ], the authors started with a basic decomposition
method optimization problem they called problem (A) ("Algorithm I for (A)"); see

for the definition of (A). The algorithm that they proposed for solving this problem
(A) (and from which they derived, through duality, their "Algorithm II for (B)") can
be stated as follows.
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Start from a point yO=(yO,...,yO,,) in ",++nm and a real number a>0. At
the kth iteration, having yk=(yl,. .,y)"1+’+"’, we compute yk+l=
(yl+, +,) .,+...+.Y G in doing the following

(a) Calculate

(3.3) z k (z, , z) 7p(y’) ", +’"+".,.

(b) For i= 1,. ., m, find y+l ,, by solving the problem

(3.4) minimizeallyi-yll2+(yi-y,z)+gi(yi) over all

Then, it is not difficult to see that Han and Lou’s "Algorithm I for (A)" as defined
by (3.3)-(3.4) can also be viewed as a particular case of our method as defined by
(2.7), or equivalently (2.8). Indeed, it suffices to take

Fo(y) p(y), G(y) Y, gi(Yi), Y (Yl ,’" ", Ym) [n+...+n,, [N
i=1

and

1
-a for all kN.

2,

We conclude this section with the following remark. As Han and Lou [13, 4]
point out, their "Algorithm II for (B)" is the one considered in [12] for the case of
minimizing the constrained problem (P). Consequently, our method may also be viewed
as generalizing the first parallel algorithm of Han and Lou [12] to solve (P).

4. Convergence of the general method. This section presents our analysis of conver-
gence for the general method as defined by (2.12)-(2.13) to solve the model problem
(P). We begin by studying an estimate on the distance between the solution and an
epsilon-solution for a problem of minimizing a strongly convex function (see also
Auslender [6] and Auslender, Crouzeix, and F6dit [7, Lemma 2.2]).

LEMMA 2. Let th" " [ U {+} be a closed proper strongly convex function (with
modulus fl > O) and let e > O. Let be the exact solution to the problem of minimizing
over and suppose that is an e-minimizer of the same optimization problem. Then

(4.1)

Proof By Proposition 6 of [23] we have

4,()L) >- 4,()z) / (/3/2)ll)z-)L .
On the other hand, from the definition of ff,

()___ ()z) + e.

Combining this with the preceding inequality yields (4.1).
For any closed proper convex function b ""-t.J {+} and any real number

A > 0, we set

(4.2) bx(x) inf
EI

These functions b,, for , > 0, play a fundamental role in optimization theory and are
called Moreau-Yosida approximates (of index I of b). It is well known that b"
is a closed convex function. The unique ff N" for which the infimum in (4.2) is attained,
is denoted by prox (xl1b) and is characterized by

(4.3) (1/,)(x-prox (xl,b)) 0b(prox (xl1b)).
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This point prox (xlhb) is called the proximal point, and the mapping prox (. ]hb) the
proximal mapping associated with hb. It is nonexpansive, as shown below:

(4.4) []prox (x[hb)-prox (x’lhb)]]___ [[x-x’[[ for all x,x’".

More detailed information on this can be found in Br6zis [9], Attouch [2], and
Rockafellar [22], [23].

For subsequent use, define the functions g and g (for all i= 1,..., m and all
k ) by letting

(4.5) gi(y)=f(--yi) and g(yi)=(f)*(-yi) for allyi.
The next theorem provides the first impoant step in obtaining results of conver-

gence for our general method for the model problem (P).
THEOREM 1. Under the same assumptions and with the same notation as above,

there exists a sequence {e}k ofpoints in and a sequence {ek}k ofpoints in m.,
kwhere ek (e,. ., e) for all k, such that

(4.6) x=Vf y +eo
i=1

(4.7) y+=prox y-AVf y Ag + ei
i=1

where the errors e and e satisfy the following estimates"

(4.8) Ilell 42e/a for all k eN,

(4.9) Ilell 24+2/ .foralli=l,...,mandallkeN.

Proo It follows from (2.10) that

(4.10) Vf(y): =argminxe {fo(x)-(x,= y)}.
So, using (4.10), (2.12), and Lemma 2, we obtain

because the function fo(’)-{’,: Y}’N N is strongly convex with modulus a.

Then, it suffices to set

in order to get the desired results (4.6) and (4.8).
To show that we have (4.7) and (4.9) let us define, for i= 1,..., m and k N,

the points y+ and +1 as follows"

(4.12) += arg min {(1/2) I1 +f<(1/)(i-)+x)}
yi

and

(4.13) f+l prox (y- hgVfo* (,_l y) hkgki).
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Now, recall that yk+l, which was defined by (2.13), can be written as

(4.14) yk+, ek_ arg min {(1/2Ak)llyill2+f.k,((1/Ak)(yi__yki)+xk)}
Yin

(to see this, it suffices to set y y + A(zi-x)).
Let

e/=y/+l--)/+1.
Then we have immediately (4.7). Let us prove that we have the estimate (4.9) for e/.
We have

(4.15) e/ II-< I[Y/+ -Y/+’ / [lY+ +111.
Because the function (1/2)ll-112+f((1/)(.-yi)+x)’-{+} is strongly
convex with modulus 1/A, we deduce from Lemma 2 and the definition of )7/+1 (see
(4.12)) and of y/+ (see (4.14)) that

(4.16)

It remains to estimate the second term of the right-hand side of (4.15) in order
to finish the proof of the theorem. For this purpose, let us write the following equivalent
statements"

(4.12) o ki+’+ofik((1/Ak)(yki+l--yki )+Xt)
(1/At,)(yki+l-- yki )+ X e 0(fk)*(--.9k+l)

: Oe (1/a,)(yk+l--yk )+X’--o(f )*(--yki+)

e Oe (1/a,)(yki+’ yk )+ X" +ogk (yk +’) (see (4.5))

y+1= arg min {(1/2a)]]y-y +ax 2 + g(y)}.
Yi

That is, we have

(4.17) 2+1= prox (y- AkxklAkg).
Because the proximal mapping is nonexpansive (see (4.4)), it follows from (4.13),
(4.17), and (4.11) that

ae/.
This inequality together with (4.16) and (4.15) gives the desired result (4.9), and the
proof is finished.

Before stating the next corollary, we recall that the functions Fo and G, defined
for all y (y,..., Ym) Nm., were introduced in 2 by (2.4) and (2.5), respectively
(see also (4.5)).

COROLLARY 1. For all k N, we have

(4.18) y+ =prox (y-VFo(y)lG)+ e,
where the error e saisfies the following estimate"

(4.19)

where e max{e
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To prove Corollary 1 the following lemma is used.
LEMMA 3. For each 1, , m, let bi" ni --> LJ {+oo} be a closed proper convex

function. For N= nl+ + n,, define the function .1 -> t_J {+oo} by letting

(4.20) (y) Z (y,) for all y (y, ., Ym) .
i=1

Then is a closed proper convex function, and we have, for all A > O,

(4.21) (Y)= (6i)a(Yi)
i----1

and

(4.22) prox (y[A)= (prox (ylIA#I), , prox (y,lAb,)).

Proof The proof of the fact that is closed, proper, and convex is omitted here
because it is easy. To prove (4.21) note that, for A > 0, we successively have

a(Y) =inf{(1/2A)llz-yl]2+(z)]z (zl,’", z,)

=inf 2 [(1/2A)llzi-yil[ =+chi(zi)]l z
i=1

2 inf{(1/zA)llzi-yill=+ I)i(Zi)lZi n’}
i=1

E (6i)(Yi),
i=l

where (bi) denotes the Moreau-Yosida approximate of index A of bi.
On the other hand, to prove (4.22), let us set

z prox (ylh) (zl," ", z) .
Because of the characterization (4.3) of the proximal point, we have

(1/A)(y-z)mO(z).

By virtue of Lemma 4.3 of McLinden [19], this inclusion is equivalent to

(1/A)(yi-zi)mochi(zi) for alli=l,...,m;

this means that

zi =prox (yilA4i) for all i= 1,..., m,

and the lemma is proved.
Proof of Corollary 1. The formulation (4.18) is a direct consequence of (4.22),

(4.7), and the fact that

7F(Y):TF(Y"’" ’Y)=(Tf*( Yi) ’Tf*( Yi))
On the other hand, the estimate (4..19) is immediate from (4.9).
We now give a first convergence theorem of the general method. To state this we

introduce the following Fenchel dual program of (P)"

(D) minimize fo* Yi + f*(-Yi) over all Yl e Nn," ", Ym
i=1 i=1



842 K. MOUALLIF, V. H. NGUYEN, AND J.-J. STRODIOT

THEOREM 2. Consider the general method as defined by (2.12)-(2 13) Let {xk}k_O
and {yk}k>_ be the sequences it generatesfrom an arbitrary initial point yO ,,.n. Suppose
the following"

(a) O<_A<--Ak <--A <2a/m for all k6;
(b) f epi-limk+f for each 1,. m;
(c) limk+ e k =Oforeach i=0,1,...,m;
(d) e sequence {yk}ko is bounded.
en the sequence {xk}kO converges to the unique solution of (P) and any accumula-

tion point of the sequence {yk}ko is a solution of the Fenchel dual program (D) of
(P).

Before giving the proof, let us notice that under the hypotheses of Theorem 2,
the Fenchel dual program (D) of (P) admits a solution.

Proo By hypothesis (b), for each i= 1,..., m, {}ko is a sequence of closed
proper convex functions epiconvergent to . Then, by viue of a theorem of Wijsman
[29] (see, for example, Attouch [2, Thm. 3.18]), epiconvergence of their conjugate
functions to that of also occurs"

f/* ei-+lirn (f/k), for each i= 1,..., m.

But this is equivalent to (see (4.5))

gi eri-+lm gk for each 1,. ., m.

Using Theorem 6 of McLinden and Bergstrom [20], we obtain

(4.23) G epi-lim Gk,
k---t-eo

where, of course,

G(y) Y g,(Yi) and Gk(y) E gk(yi) for all y (Yl,’" ", Ym) m.n.
i=1 i=1

On the other hand, combining assumptions (c), (a), and the estimate (4.19) of
Corollary 1 gives

(4.24) lim Ile"ll 0.

Because fo is strongly convex with modulus a, it follows from (2.6) by a simple
computation, that Vfo* is Lipschitz continuous with constant l/a, and consequently
VFo is Lipschitz continuous with constant m/a. This fact, together with hypothesis
(a), (4.18), (4.23), (4.24), and hypothesis (d) allow us to invoke Theorem 2 of Lemaire
[18] to conclude that the Fenchel dual program (D) has at least one solution and that
any accumulation point of {yk}k_O (its existence is guaranteed by hypothesis (d)) is a
solution of (D). This proves the second part of the theorem.

To prove the first part of the theorem, let us begin by showing that the sequence
{Xk }k_>O is bounded. To see this, note that the sequence {=1 yk}k>_O is also bounded
in N" because IIY,= y)ll -<,/-N Ily"ll and {yk}k_>O is bounded by assumption (d). Since
Vfo* is Lipschitz continuous with constant I/a, we deduce that the sequence
{Vfo*(Y= yk)}k_>O is bounded. Hence, it follows from (4.6), (4.8) of Theorem 1, and
hypothesis (c) that the sequence {Xk}k>_O is also bounded.

If it can be shown that any accumulation point of {Xk}k>_O solves (P), the first part
of the theorem will be proven since (P) has a unique solution.
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We therefore consider a subsequence {x}>_o of {xk}k>_o converging to
Since {Yk}_>o is bounded, by taking a further subsequence, if necessary, we can find
a point 37 (371, , 37,,) N’" such that y (y, , y) 37. On the other hand,by
(4.6) and (4.8) of Theorem 1, we have, for all j N,

(4.25) x * eoVf (yl+ + ym)+

with

(4.26) eo II-< /2eo/a.
By passing to the limit j + in (4.25) and (4.26), we see that

(4.27) Tfo* (
i=1

k.because 7fo* is continuous and eo0 as j +c (hypothesis (c)). It follows that

(4.28) 2 Yi--- Tf0(’)o
i=1

Now, by the first part of the proof, we know that 37 is a solution of (D). Therefore,
we have the following characterization of optimality:

o v Fo(Y) + o O(y).

This implies immediately that

or equivalently (see (4.27)),

o e -of*(-y

Thus (see [22, Thm. 23.5]),

Hence we have

so that (see (4.28))

at-Ogi(fii) for all i= 1,..., m,

for all i= 1,. ., m.

for all i= 1,. ., m.

i=1 i=1

because [i-----1 0f/(’) 0(Ei: f)()). This completes the proof of the theorem. [3

In connection with the work of Han and Lou [13], it is worth mentioning that
our Theorem 2 is a generalization and an improvement of Theorem 3.2 of [13]. It is
a generalization because it suffices to take, in the theorem above: A, 1/2a for all
k,f/=f for all i=l,...,m and all k,and e/=0forall i=0,1,...,m and
all k, in order to obtain the convergence of the sequence {x}k to the optimal
solution of (P). It is also an improvement because, not as in [13], the theorem above
holds true without any regularity condition. Moreover, not as here, there are no

convergence results in Theorem 3.2 of [13] concerning the sequence {Y}k.
Note that hypothesis (d) of Theorem 2 is crucial, and must be checked in each

particular case. Nevertheless, we have the following convergence result.
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THEOREM 3. Under the same notation as in the preceding theorem, suppose the
following"

(a) O<_A<Ak <<2c/m for all k;
(b) fk<fk+l for each i= 1,..., m and atl k z, and f=supkfk for each

i=l,...,m,
(c) limk_+ ek=0 for each i=0, 1,..., m;
(d) the solution set of the Fenchel dual program (D) is a nonempty bounded set.
Then any accumulation point of the sequence {yk}k is a solution of (D) and the

sequence {Xk}k converges to the unique solution of (P).
Proof In view of Theorem 3.20 of Attouch [2], hypothesis (b) implies

f epi-lim fk for all 1, , m.

Consequently, as in the first part of the proof of Theorem 2, we have

G epi-lim G.
On the other hand, as the sequence {fk}k is monotone increasing, the sequence

of their conjugates {(fk)*}k is monotone decreasing, so that the sequence {gk}k is
also monotone decreasing. Hence, from the definition of Gk, we have that

(4.29) {Gk}k is monotone decreasing

According to Theorem 3.20 of Attouch [2] again, we get

(4.30) G=cl(infGk)’ken

Gkwhere cl denotes the closure (of the convex function infk ).
Now, to show the theorem, it suffices to show that the sequence {yk}keN is bounded,

because of Theorem 2. But first we deduce from assumption (d) that the problem (D)
has a finite optimal value inf (D) N. Note that the solution set of (D) is also the level
set

L= {y U]Fo(y + G(y) < inf (D)}.

As it is nonempty and bounded by hypothesis, it follows from Corollary 8.7.1 of [22]
that the set

S-- {y eUlFo(y)+ G(y) < /}

is bounded for every y . As a consequence, the function Fo + G is coercive; that is,
we have

(4.31) lim (Fo(y) + G(y))

From Corollary 1, the fact that VFo is Lipschitz continuous and (4.29)-(4.31), we can
conclude, by using Proposition 4(iii) of Lemaire [18], that the sequence {yk}k is
bounded, which completes the proof of the theorem. [3

An example of functions fk (for 1, , m, and k N) that satisfy assumption
(b) of Theorem 3 has been given in 2 (see (H1)-(H3)). Another instance is provided
by the class of casting functions due to Wets [28, 6].
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In view of Theorem 3, it is important from a practical standpoint, to study when
the solution set of the Fenchel dual program (D) is nonempty and bounded. To ensure
this, we use the Fenchel duality theory. More precisely, we conclude this section on
this matter with the following result.

THEOREM 4. The notation being the same as above, if the condition

(4.32) int (domfl) f) flint (domfm)

is satisfied, then the solution set of the Fenchel dual program (D) of (P) is a nonempty
bounded set.

Before giving the proof, let us note that condition (4.32) holds true automatically
if the functions f are finite real valued (for an example, see (1.2)).

Proof By Theorem 27.1 of [22], we know that the solution set of the Fenchel dual
program (D) of (P) is a nonempty bounded set if and only if

(4.33) 0 int (dom (Fo+ G)*).

Therefore, to prove the theorem we need only to establish that hypothesis (4.32) implies
that (4.33) holds true. Using Theorem 16.4 of [22], we have

(4.34) dom (Fo + G)* dom Fo* + dom G*

because

ri (dom Fo) f) ri (dom G) ri (dora G) .
Start by determining the set dom Fo*. To do this recall that

So, using Theorem 16.3 of [22] and the fact that domfo* =Nn, we get

(4.35) dom Fo* {(x ,. ., Xm) []m.n Xl Xm}.

We now use hypothesis (4.32) to determine the set dom G*. Let 9 6 Nn be such that

9 f’l int (dom f).
i=1

This gives

(4.36) 0 -(,..., X)+ [I int (domf).
i=1

Because gi(yi)=fi*(-yi) by definition, we have g*i(Xi)=fi(--Xi) for i= 1,..., m. It
now follows that dom g/* --domf. Thus, from (4.36), we obtain

Hence,

(4.37)

0(g,...,g)+int domg*
i=

0 (:,. ., :) + int (dom G*)

because

G*(x,, x)= 2 g* (x)
i=1
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and

dom G*= I-I dom g*
i-----1

(see McLinden [19, Lemma 4.3]).
On the other hand, the set (g,..., :)+int (dom G*) is an open set. It follows

from (4.37) and (4.35) that

0 (,..., ) +int (dom G*) dom Fo*+dom G*.

Hence, we deduce from (4.34) that

0 int (dom (Fo+ G)*),

which is precisely (4.33) and this completes the proof. [3

Note that condition (4.32) holds true automatically if the functions f are finite
real valued (for an example, see (1.2)).

5. Conclusions. We have presented a convergent perturbed parallel decomposition
method for minimizing the model objective function fo+Yi=l f/. The method allows
for approximate minimizations, duality gaps, and epigraphical perturbations during
the iterative process.

At the present time, there are no rate-of-convergence results relating to our
decomposition method. With respect to this topic the notion of variational semidistance
due to Attouch and Wets [4] seems to be the main technical tool to employ. This is a
subject for further research.
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ON EIGENSTRUCTURE ASSIGNMENT BY GAIN OUTPUT FEEDBACK*

CALIXTE CHAMPETIERt AND JEAN-FRANCOIS MAGNI$

Abstract. In this paper, the eigenstructure assignment of linear multivariable control systems is studied
from a geometric point of view. For the class of systems in which the number of outputs plus the number
of inputs exceeds the number of states, genericity properties relative to this problem are derived. It is shown,
without any assumption on the genericity of the system, that the pole assignment can be carried out by
choosing some closed-loop eigenvectors almost freely. The crucial point is that all the expected degrees of
freedom in pole assignment are so described without redundancy, which fully justifies the practical interest
of such techniques. Despite the technicality required for the derivation of intermediate results, the main

result, which is an eigenstructure assignment algorithm, is very easy to implement because it is only based
on the computation of certain sums and intersections of characteristic subspaces. Furthermore, it is shown
how the basic tools developed here can be used to tackle the problem of finding a necessary and sufficient
condition for exact pole assignment.

Key words, linear systems, multivariable control, output feedback, pole assignment, eigenvector
assignment

AMS(MOS) subject classification. 93B

1. Introduction. Since the fundamental paper of Kimura [7], the pole assignment
problem for systems satisfying m +p > n (where n, rn, p stand, respectively, for the
numbers of states, inputs, and outputs), has received much investigation. It was shown
in this paper that for a given triple satisfying the above condition, an almost arbitrary
set of distinct closed-loop poles was assignable by gain output feedback. The use of
the characteristic subspaces, which were introduced in this reference, enlightened various
problems in linear system theory and was at the origin of the eigenvector assignment
techniques as in Moore [13]. Simultaneously, a similar result appeared in Davison and
Wang [2]. This result is less general because it is based on genericity assumptions with
respect to the input and output matrices--therefore on the controllability and observa-
bility indices--of the considered system. In fact, as we will demonstrate in the present
paper, the difficulties that arise for pole assignment are closely related to these indices
(these difficulties are even more severe when it is not assumed that rn +p > n). As the
indices of practical systems do not often satisfy generic properties, this kind of
assumption is to be avoided as far as possible. Among the various contributions that
followed the fundamental work of Kimura, let us mention more specifically that of
Fletcher [4] in which are discussed the proofs given in [7].

The simultaneous assignment of both eigenvalues and eigenvectors has also
received much attention. In the specific case where the assumption m +p > n is satisfied,
Mielke and Liberty 12] proposed an algorithm based on the approach of [2] for freely
assigning p-1 eigenvectors while the remaining degrees of freedom were used for
assigning the n-p + 1 other eigenvalues. It is worth noting that in this work as well
as in the work of various other authors, only descriptions of eigenstructure assignment
procedures are given, the cases in which the corresponding algorithms may fail are
not studied.
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Another domain of interest which followed the contribution of Kimura is the
problem of exact pole assignment. The first result obtained in this field is due to
Fletcher [3], who proved that a set of n distinct real eigenvalues or a set of n distinct,
nonreal, self-conjugate eigenvalues could exactly be assigned. The first result concerning
the pathologies when a mixture of real and nonreal numbers are to be assigned is
given in Magni [8] in terms of a necessary condition. It is shown in Magni [9] that
this necessary condition is as well sufficient. This proof is given in the self-contained
set of papers: [5], [6], [10].

In this paper we first study, from a geometric point of view, the properties of the
characteristic subspaces. Some of the results obtained are also useful for more general
pole assignment problems as, for instance, those presented in Magni and Champetier
11]. Our main result concerns the genericity relative to the choice of the eigenvalues

within their corresponding characteristic subspaces. We prove that the eigen-
values/eigenvectors assignment can be performed iteratively, almost any choice at each
step of the algorithm being such that the algorithm will not fail until p- 1 eigenvectors
and n eigenvalues are assigned. We show as well that the set of pathologic eigenvalues
is finite and the cardinal of this set is estimated from above. A numerical example
shows that this set may not be empty. It is in this study of the genericity of the choice
of the degrees of freedom exhibited by the proposed algorithm that our contribution
with respect to previous results of the literature lies. An advantage of the approach
adopted here is that, despite some difficulties arising in some proofs, the final assignment
procedure is extremely simple to implement and only the computation of certain
intersections and sums of characteristic subspaces is required. The intermediate result
concerning the number of pathological eigenvalues which might appear during the
assignment of the p- 1 eigenvectors allows us to provide an alternative proof of the
above-mentioned necessary and sufficient condition for exact pole assignment.

2. Characteristic subspaces. In this section, the definitions and various properties
of the (A, B) and (C, A) characteristic subspaces are recalled. We shall consider a
complete (i.e., controllable and observable) triple (A, B, C), where the matrices B and
C are assumed to be of full rank"

0
B A C

First, let us recall the definition of these subspaces.
DEFINITION 2.1. For any complex number A, the (A, B)-characteristic subspaces

5(A) is defined by (A) _a (A- AI)-11m B and the (C, A)-charaeteristic subspaces
by -(A) & (A- AI) Ker C.

(Note that with "(A-AI)-1’’ being applied to a vector space, it is not necessary
that the matrix (A-A/) be invertible to define 5(A) as above.) For notational con-
veniences, we shall denote C the following set {C [_J {}}. O() will stand for Im/3
and -(c) for Ker C. Note that for any vector s 5(A) it is clear that there exists a
unique vector w called the input direction corresponding to s defined by (A- AI)s -Bw.
In this paper, the input directions will be used only for explicit computations of gain
feedback matrices.

Elementary properties of the characteristic subspaces will be needed in this paper.
Their proofs (scattered in various papers, see, for instance, [3], [8], [11], [18]) can be
derived in a straightforward way by considering the Brunovski canonical form. Let us
state some of them. If rn < n, (A) 5(A’) for any (A, A’)Q2 such that A A’. The
dimension of 5(A)fq 5(A’) is equal to the number or controllability indices equal to
one and the dimension of O(A) + O(A’) follows easily. If p < n, if(A) -(A’) for any



850 C. CHAMPETIER AND J. F. MAGNI

(h, h’) 2 such that h h’. Within some proofs given in this paper (Lemma 3.5, Lemma
4.3 third case), the knowledge ofthe characteristic subspaces on the Brunovski canonical
form will be required and the reader will be referred to the literature cited above.

Both subspaces defined below will play a key role in the sequel"

(1) Go-- (A), Co-- E 3-(A).

Let Po and mo denote, respectively, the numbers of observability and controllability
indices that are equal to one. The following properties of these subspaces are well
known.

LEMMA 2.2.

dim Go =mo and Go ow(h) fq (h’) for any (, ’) s.t. h A’;

dim o n Po and o 3-( + 3-(’) for any , ’) s.t. ’.

Note that for h=c and h’=0, we have o=ImBA-ImB and o
Ker C + A Ker C. Finally, we recall two lemmas, the proofs of which can be found in
[8] or [10].

LEMMA 2.3. If n m +p 1 with m < n and p < n, then, there exists no more than
one real number such that

LEMMA 2.4. lfpo P 1, then o tA 3-(h ).
The vocabulary and the classical notations of the geometric approach will be

extensively used. The reader is referred to the basic literature in this field [17], [16].
Let us first recall the definition of the induced and restricted subsystems. If 5e is
(A, B)-invariant and (C, A)-invariant, we can define the subsystem induced modulo
5: (A(mod), B(mod), C(mod0)) and the subsystem restricted to 5:
(a]0, B[0, CI0) by the commutative diagram of Fig. 2.1. Following [1] and [14] we
can state the following property. Let (A, B, C) be a complete triple and ow an (A, B)-
invariant and (C, A)-invariant subspace. Then, there exists at least one output feedback
K which satisfies (A+ BKC)c (such a feedback will be said to be admissible).

FIG. 2.1. Definition of the induced and restricted subsystems.



ON EIGENSTRUCTURE ASSIGNMENT 851

Moreover, for any admissible feedback K, we have AvU Ac r(A+ BKC) where Av
and A are the fixed spectra defined by the following lattice:

A Ak
(2) 0 , F,Se ,N ,.
Furthermore, AF is the set of the invariant zeros of the triple (A, S, C) where S is any
mapping such that Im S 5e and A- is the set of the invariant zeros of the triple
(A, B, E) where E is any mapping such that Ker E 9. In fact, it is a more specific
version of this result which will be used.

PROPOSITION 2.5. Let A {A1," ", An} be a set of complex numbers. Assume that
there exists a subspace satisfying the following properties"

(i) dim p;
(ii) 5= Span {sl," , sp} with si (hi) for i= 1,. p;
(iii) A;= W with A= {hp+l,"" ", h,} (el lattice (2)).

Then, there exists a unique output feedback gain K satisfying

tr(A + BKC) A and (A + BKC)si hisi for l, p.

This gain is given by K [wl," ", wp](C[sl,. ., Sp]) -1 where the vectors wi are the
input directions corresponding to the vectors si.

Proof It is straightforward to show that W is equivalent to S + Ker C W.
Since dim 5 p, we have ow f3 Ker C 0. So, 5 is (C, A)-invariant. Consider the input
directions w corresponding to &. As f3 Ker C 0, there exists a unique gain K such
that [wl,’’’, Wp]= KC[sl,’’’, Sp] which is equivalent to (A+BKC)& hi& for i=

1,-..,p. Therefore, this gain is admissible, and A’Fcr(A+BKC). Hence, r(A+
BKC) A.

The construction of the subspace 5 given in Proposition 2.5 can be used in order
to assign the whole spectrum. But the third condition on 5 remains to be clarified.

THEOREM 2.6. Let (C, A) be an observable pair, 5 a (C, A)-invariant subspace
defining the lattice

The following properties are equivalent"
(i)
(ii) dim 5e f’) (fl) dim 0 Ker C;
(iii) dim 5e f) -(/3) > dim 0 Ker C.

More precisely, if A’F, then dim 5f f) -(/3) dim 5f 0 Ker C + r(), where r(fl) is

the geometrical multiplicity of the eigenvalue .
Proof Let P(fl) be the polynomial matrix defined by

p( [A oS]
Let us consider, for a given complex number/3, the mapping F defined by

F" 5e -(/3) Ker P(fl),

where v e Ker C, x (A- eli)v, x -Sw. As x e and is of full rank, w exists and
is unique; as x -(), there exists a vector v Ker C such that x (A-I)v. This
vector is unique since the pair (A, C) is observable. Then the mapping F is well
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defined. Furthermore, it is clear that F(x) Ker P(fl). It is straightforward to show
that Ft is linear and bijective. So,

for all/3 6 C, dim ow if(/3) dim Ker P(/3).

The rank property of P(/3) allows us to state that, if/30 is an invariant zero of the
triple (A, S, C), for all/3 which is not such a zero we have

dim 0 -(/3o) dim 0 -(fl) + r(/3o)

where r(flo) is the geometric multiplicity of/30. As r(flo)> 0<=>/3o A, it suffices to
show that dim 0 (3 Ker C dim0 -(fl) to prove the proposition, ow being (C, A)-
invariant, there exists an input injection G such that (A + GC)c . For any complex
number/3 o-(A+ GC)( A), (A+ GC-I) is bijective and (A+ GC-I)= 5L
Furthermore, the (C, A) characteristic subspaces being invariant by input injection,
(A+GC-I)-()= -(). It follows that (A+GC-I)(bKer C)=fq -(fl).

Comment 1. From Theorem 2.6 and its dual counter part, it is easy to characterize
controllability and complementary observability subspaees in terms of characteristic sub-
spaces. Clearly, if (C, A) is an observable pair and 5 is (C, A)-invariant, is a
complementary observability subspace if and only if for all /3 C, dim (q -(/3)=
dim 0fqKer C. If (A, B) is a controllable pair and ow is (A, B)-invariant, 5e is a
controllability subspace if and only if for all A C, dim b fq 0(A) dim 5 f3 Im B. Note
that this result can be viewed as a corollary of Theorem 7.1 of [15].

Finally, we will need the following results.
LEMMA 2.7. Let b be (C, A) and (A, B)-invariant, b() and -() denote the

characteristic subspaces of (A + BKC, B, C) induced modulo (where K is an admissible
feedback), and AF denote the fixed spectrum corresponding to the lattice (2).

(i) Im (B(mod b))- 7r(Im B);
(ii) Ker (C(mod b)) r(Ker C);
(iii) (A) ,n-((A)) for all A C\AF
(iv) -(/3) 7r(-(/3 )) for all C.
Proof Let us denote/- B(mod 5e) and ’ C(mod )./-- 7rB yields (i). From

the commutativity of the diagram of Fig. 2.1, we have

Ker C 7r Ker (CTr)= 7r Ker (Tr’C)= 7r(5+ Ker C)= 7r(Ker C),

hence (ii) is satisfied. Moreover, it is easy to see that 7r(Se(A)) c ow(A). In view of the
dual counterpart of Theorem 2.6 from the relation

we have

that is,

dim 7r(ow(A)) dim 5(A)- dim 5e(A),

dim -rr((A)) dim Im B dim 0 0 Im B,

Part (iv) can be proved in the same manner by using (ii).

dim 7r(ow(A))=dim 7r(Im B) dim Im/}=dim

3. Degrees of freedom in pole assignment by output feedback. Our main result
concerning the available freedom for eigenvalue/eigenvector assignment is stated in
Theorem 3.1 below. The whole section is devoted to its proof. To describe our results,
a notion of iterative genericity is required. A property depending on an iterative choice
in linear spaces will be said iteratively generic if it is generic at the first step in the
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sense where it is true except perhaps on a thin subset (i.e., a semialgebraic subset of
nonmaximal dimension) of the first linear subspace, then, a nonpathologic choice
being performed, the property remains generic with respect to the choice of a second
vector in the second space, and so on.

3.1. Statement of the main result and description of the algorithm. The eigenstruc-
ture assignment procedure presented here requires a special treatment for the assign-
ment of the pth eigenvector. This is considerably simplified if it is assumed that this
special eigenvector corresponds to a real eigenvalue. Otherwise polynomial approaches
must be used. So, it will be assumed that the set of eigenvalues to be assigned satisfies
a slightly restrictive condition of admissibility. A finite set A {A,. ., A.} C is said
to be admissible if Ai Aj for ij and if there exists a partition of A consisting of
three self-conjugate disjoint subsets of the form A {A,..., Ap_}, {A,} and A2
{Ap+,..., A,}. Now we can state our main result.

TEOEM 3.1. Let (A, B, C) be a complete triple in ,m satisfying
m + p > n and A be an admissible set of n complex numbers. Then (except perhaps for a

finite subset of values of A,..., Ap_) the property

dim 0’(A,) m +p n

is iteratively generic with respect to the selection of vectors si6 (Ai), i: 1,"" ", p--1
such that si= if Ai=-, where

(s,..., sty_ Furthermore, given a generic vector Sp in 5’(Ap), wep-1) with p-1--
have (sl, ", sp) f3 Ker C 0 and the output feedback K given by

K=[w... w](C[s,...,s])-
(where wi is the input direction associated to si) is the unique real gain such that
o(A+ BKC) A with sl," sp as eigenvectors associated to A1,’’’, Ap.

For synthesizing modal control laws, it is very important to have at one’s disposal,
without redundancy, all the degrees of freedom remaining after having chosen the
pole to be assigned. Note that various pole assignment methods given in the literature
waste degrees of freedom in "linearizing" the problem. Here the problem considered
is naturally "linear." Let us check that all the degrees of freedom appearing in Theorem
3.1 are available without redundancy. There are mp entries in the gain matrix. Therefore
after pole assignment it must remain exactly mp-n free parameters. The choice of
the p- 1 first eigenvectors performed in m-dimensional subspaces, uses (p- 1)(m 1)
degrees of freedom. Furthermore, the choice of the pth eigenvector being performed
in an (m +p- n)-dimensional subspace, m +p- n 1 additional degrees of freedom
are used. It is easy to check that mp-n=(p-1)(m-1)+(m+p-n-1).

The eigenvectors si appearing in the above theorem are recursively chosen in order
to construct the lattice given in Fig. 3.1 (in this lattice, Oi denotes the subspace
Span {sl,"" ", si}; if Ai is complex, we take Ai+I i and s+l s). From Proposition
2.5, it is clear’that Theorem 3.1 will be proved if we can construct a subspace
satisfying the lattice of Fig. 3.1 for a generic choice of the vectors sl," ", Sp_. The
proof of such a result is the object of the sequel of this section. The lattice diagram
(2) suggests that when 5i is made invariant, the set of assigned poles is exactly
"A [_J A’:. Note that in Fig. 3.1 the maximal controllability subspaces are not specified
It will appear in the proof given below (see (5)) that for i= 1,..., n-p we have
Yt* 0. For i> n-p, Yt is no longer equal to zero. But in view of Proposition 2.5,
the spectrum of the subsystem restricted to 5i is nevertheless freely assignable by
choosing a special gain feedback instead of considering any admissible gain feedback.
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FIG. 3.1. Illustration of the algorithm by a lattice diagram.

3.2. Initialization of the construction of the lattice. The subspaces 5ei, i=

1,..., p-1 appearing in Fig. 3.1 will be iteratively constructed. The main difficulty
lies in the initialization of the procedure. The construction of i+ from i is easier
and will be treated later. The following proposition deals with the initialization of the
procedure in the case where the involved eigenvalue is real.

PROPOSITION 3.2. Let (A, B, C) be a complete triple satisfying m +p > n. There
exists no more than one real number such that for any A \{}, for almost every
vector s 6e(A), the subspace b =(s) satisfies

(3) b f’l Ker C-0,

(4) for all fl C, f -(fl) O,

(5) ifm<n, 6e(-I Im B 0.

Proof. Clearly, if m < n, 5e(A) Im B for all A C. So, 5e(A)ffl Im B is a proper
subspace of A(A). In view of the dimensions of 6e(A) and Ker C, it is clear that
(A) f’l Ker C is a proper subspace of A(A). The proposition will be demonstrated if
we show that the set

(A) I’1 U -()

is thin in 5e(A). Let Po be the number of observability indices equal to one. Two cases
must be considered.

1) p-Po 1. Then, from Lemma 2.4

Ker C U U -(/3) o.
It remains to show that Co fq ow(A) is a proper subspace of . Assume that 9(A)c o.
As n =< m +p 1, we have n P0 =< m, i.e., dim o =< dim ow(A). Hence,

(6) o 9(A).

So necessarily n m +p- 1. From Lemma 2.3, there exists no more than one value ]
of A such that (6) is satisfied.
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2) p -Po > 1. From now on, it is assumed to be different from . From the definition
of the (C, A) characteristic subspaces, there exist p polynomials Pi, i= 1,..., p in
n + 1 complex variables such that

(7) X=(Xl, ,Xn) T E -(j) iff Pi(xl,’’" ,x,,/3)=0 for i= 1,...,p.

Consider the set OW(A,/3) c C n+l consisting of the points (Xl,""" Xn, ) satisfying

x (xl, x,) r e ow() f -(fl).

This set is a closed algebraic subset in Cn+ defined by the n-m+p polynomial
equations: those appearing in (7) together with the linear equations in x,..., xn
satisfied by any vector x belonging to OW(A). Let r be the algebraic dimension of this
subset and assume that r > m 1. This means that there exists no more than n + 1 m

algebraically independent polynomials PI, 1,. ., n + 1-m such that

(x,/3)ow(it,/3) iff P(x,/3)=0.

Then, for any/30 C, the subspace ow(it) f) -(/3o) is of dimension >= m 1 (this subspace
is described by the equations /3 =/30, P’i(x, flo)--0 for i=l,...,n-m+l). As
dim -(/3o) n p < m dim ow(it), we must have -(/3o) c ow(it) for all /30, i.e. from
Lemma 2.2, Co c ow(it). From Lemma 2.3, it which contradicts the hypothesis. So
dim ow(it,/3 _-< m 1, and the set ow(it) f3 (_]c 3-(fl), which is the projection of ow(It,/3
on ow(it), is contained in a semialgebraic subset of dimension -<m- 1. ]

The complex case is much more intricate.
PROPOSiTiON 3.3. Let (A, B, C) be a complete triple satisfying m+p > n. There

exists afinite subset .. C such thatfor all it 6 C\(R ),for almost every vector s OW(A),
the subspace OW (s, g) satisfies

(8) dim OW= 2,

(9) own Ker C =0,

(10) OWf-) ,-(fl) 0 for all fl e C,

(11) ifm<n-1, OW0 Im B =0,

(12) ifm>-_n-1, OW+Im B .
The cardinal of .. can be estimated from above as follows:

ifp>=4, Card "z’<=2(n-p),

ifp=3, Card E <_- 4(n -p).

Proof In a first step, a vector in ow(it) such that (10) is satisfied will be constructed
(such a vector will be called admissible) and an estimation of Card will be given.
In a second step, we will show that almost every vector in ow(it) is admissible.

Step 1. Construction of an admissible vector and estimation of Card . The basic
idea for constructing an admissible vector consists in decreasing the order of the system
to deal with. This artifice is needed to avoid the treatment of numerous special cases.
In fact, in that way, only three cases (see Lemma 3.5) are to be considered. To decrease
the order, we are going to use a result (Proposition 3.10) which will be proved in the
next section. This proposition is used here in a case where only real eigenvalues are
assigned; in this case its proof is independent of the results stated in Proposition 3.3
(it depends only on Proposition 3.2). As n-p-< m-1, from Proposition 3.2 and 3.10,
n-p distinct real eigenvalues of the triple (A, C, Br) can be assigned by output
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feedback. More precisely, this pole assignment can be achieved by choosing a subspace
R satisfying

dimR=n-p, 2=
R is a complementary observability subspace of the pair (A r, BT);
Rf3ImCT=0;
R f-IKer B T =0;
There exists a feedback K such that the spectrum of (AT+ CTKTBT)IR is a
set, denoted by A, of n-p distinct real numbers arbitrarily chosen.

With respect to the triple (A, B, C), the subspace 5 R - satisfies
dim=p, oW=;
ow is a controllability subspace;
ow + Ker C C (hence 5 f3 Ker C 0);
+ImB=C (hencedimImB=m+p-n);
cr(a + BKC)(mod ) A;
A corresponds to the fixed spectrum of the lattice (2) defined by

From now on, the spectrum A and the gain K will be fixed. Consider the triple
(,,/, 7), restriction of the triple (A + BKC, B, C) to ow. The number of states, outputs,
inputs of this system are, respectively, n’=p, p’=p (because oWCIKer C =0), m’=
rn +p n. Obviously, the characteristic subspaces of the triples (A + BKC, B, C) and
(A, B, C) are equal and so, the characteristic subspaces 5(A) of the triple (,g.,/, ()
are given by the dual counterpart of Lemma 2.7:

(13) ;(A) ow(A) f O

An admissible vector will be searched in the subspace (A).
LEMMA 3.4. There exists a finite set with Card <-n-p such that for all

A C\, for all s O(A), we have

forallC\, (s, g) f-] -(fi) 0,

for all , dim (s, g) f-] -(fl) 1.

Proof From Theorem 2.6 as ow f3 Ker C 0 and the fact that the elements of A’F
are distinct, we have

(14) for all/3 C\A, (s, g)VI -(/3) =0,

(15) for all/3 A, dim (s, g) f) 3-(/3) <_- 1.

As (A)c 5 and Y= , the lemma is proved (necessarily
The proof of the following technical lemma is straightforward by using the

Brunovski canonical form.
LEMMA 3.5. (i) Assume that n’_> 3, m’=> 2. Let 0 C\N and sl, s2 be two indepen-

dent vectors in S(O). Then, for almost any vector s3 5(0), we have

(SI, gl) f’] ($2, g2) (S1, gl) (’ ($3,

(ii) Assume that n’>= 4, m’= 1. Let 01 C\. Then, for all O C\( U {01, 01}),
for all Sl ff( 01), for all s2 ff( O2)(sl 0, s 0), we have

(iii) Assume that n’= 3, m’= 1. Let 01, O2 C\ such that O2 : {01, }. Then, for
any 03 C\ such that 03- {01, 0-1, 02, O-2}, for any s (0) (i 1, 2, 3) such that s O,
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we have

The following lemma gives more information about the number of pathological
A for a given/3 in the set cI) of Lemma 3.4.

LEMMA 3.6. For any ap, there exists a finite subset ..() of C.\ satisfying
Ifn’>=4, Card (fl)=<2;
If n’= 3, Card E(/3) -<_ 4;
For any A C: ..( ), for almost any s (A), (s, g)f3 3-(/3) 0.

Proof Let/3 . Three cases are to be considered.
(a) n’=>3; m’_>-2. Let 0C\; assume that there exist two independent vectors

sl,s2 5(0) such that (sl,g)f-I 3-(fl)O and (s2, gz)f3 3-(/3)s 0. Then, from Lemma
3.4, dim (s, g)V! 3-(/3)= 1 and dim (s2, g2)VI 3-(/3)= 1. From (15), this means that
(s, gl) 3-(fl) (s, g) f-I 3-(/3), which is equivalent to (s, g) VI ($2, g2) (") 3-(/ 0. SO,
from Lemma 3.5(i), for almost all vectors s3 5(0), we have (s3, g3) 3-(/3)= 0 (other-
wise we would have (sl, g)VI 3-(/3) s (s3, g3)VI 3-(fl), that is dim 5 VI 3-(/3) 2). So, in
this case, Card E(/3) 0.

(b) n’=> 4; m’= 1. In this case, the above argument used with Lemma 3.5(ii) leads
to Card ..(/3) -< 2.

(c) n’= 3; m’= 1. In this case, from Lemma 3.5(iii), Card E(/3)-<4.
The previous technical results can be summarized in the following lemma.
LEMMA 3.7. There exists a finite subset .. C\ such that

Ifn’=p>=4, Card.._-<2(n-p);
Ifp 3, Card _-< 4(n p);
For any AC\RU.., there exists sSe(A) such that for any flC, (s,}
-(/) =0.

Proof From Lemmas 3.4 and 3.6, we can take .. z ..(/3) and choose s

generically in 5(,) for any A ’.
Step 2. Genericity of admissible vectors. We will show now that if there exists

one admissible vector in 5(A), almost every vector in 5(A) will be admissible as well.
The following supporting lemma will be used.

LEMMA 3.8. Let P(x, fl),..., Pn(x, fl) be polynomials in the complex variables
x (,m and C such that there exists Xo satisfying

for any fl C, there exists 1, n such that Pi (Xo, ) # O.

Then, the algebraic set

U= {x s.t. there exists s.t. Pl(X, ) =0,. ., P,(x, fl) =0}

is thin in C m.
Proof If at least one of the considered polynomials is constant with respect to

but is not identically equal to zero, it is clear that T" is thin. Otherwise, it is clear that
there exists at least two polynomials that depend on /3. Assume that P is such a
polynomial. So its leading coefficient is not identically equal to zero (LdczP(x)O).
It is straightforward to construct another polynomial P(x, ) as a linear combination
of P,..., P, such that P(xo,) and P(xo,) have no common root and with

LdczP’(x) O. By a continuity argument, the property relative to the common roots
is true in a neighbourhood of Xo. As the leading coefficients are not identically equal
to zero, there exists x arbitrarily close to Xo satisfying:

P(x, ) and P(x, ) have no common root,
Ldc(P,(x,)) O,
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* Ldc(P(x,)) O,
i.e., Rest(P1, P)(xl)0. So, Rest(P1, P)(x)0. Therefore, as

V {x s.t. Rests(P1, P)(x)=0}, V is thin.

The fact that admissibility is a generic condition can now be proved.
LEMMA 3.9. Let A C\(f’I..). Then, for almost every s (A), we have

forattC, (s, g) f-I 3-(/3) 0.

Proof Let 3-(fl) be the rational matrix such that 3-(fl)= Im T(fl). Let h be a
given complex number in C\(f-I..) and S be a matrix such that 5e(h)= ImS. We
have to prove that the set

V(A) {x C" such that there exists flC s.t. (Sx, S)f3 3-(/3) 0}

is thin in C’. We have

x V(A) iff there exists fl C s.t. rank Sx Sx T() <- n p + 1.

Let (Pi)ii be the minors of order n-p+ 2 of the matrix [Sx Sx T(fl)]. Clearly, the
Pi’s are polynomials in x, if,/3 and

x V(A) iff there exists/3 C s.t. P(x,),/3) =0.

From Lemma 3.7, there exists at least one admissible vector, i.e.,

there exists Xo C such that for all/3 C, there exists I s.t. P(xo, 9o,/3) 0.

Lemma 3.8 concludes the proof.
Step 3. End of the proofofProposition 3.3. Consider the restricted system construc-

ted in Step 1. By construction, for any s 5(h) ffl oW, we have (s, g) Ker C 0. So,

dim (Ker C + ow(h)) _>- dim Ker C + 1,

dim (Ker C + 5e(A) + oW(h)) >_- dim Ker C + 2.

From the Kimura lemma (see Lemma 1 of [7]), for almost any vector s 9(A), we
have that (s, g)(’1Ker C =0. Furthermore, using the Brunovski canonical form, it is
clear that almost any vector s 5e(h) satisfies the properties (11) and (12). So, the
properties (8) to (12) are independently satisfied by almost any vector s oW(h). As a
finite union of thin subsets is thin, almost every vector of 5e(A) satisfies all ofthem.

3.3. Reeursive construction of the lattice. To construct 0+1 from 5f, the proposed
approach consists in applying the results of the previous section to the subsystem
induced modulo . The genericity of the properties obtained relative to this subsystem
will be recovered for the subsystem induced modulo +1 and so on.

PROPOSITION 3.10. Let (A, B, C) be a complete triple satisfying m +p > n. Consider
an (A, B)-invariant subspace i with the following properties.

(i) There exists a self-conjugate set of distinct complex numbers {A1,’",
such that

5i=(Sl,... ,si) with siSg(Ai) and Sk=g ifAk=
(ii) oW f’) Ker C 0;
(iii) 5ei f-) -(/3) 0 for any C;
(iv) 5i O Im B O if <- n m.

Let Aibe a real number (respectively, a complex nonreal number) and assume that <- p 1
(respectively, < p 1). Then, there exists a finite set ..i+1 C (cf Propositions 3.2 and
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3.3 for a majoration of Card ..i+1) such that if1i+ {/1, i} J ..i+1 then, for almost
any si+ b(Ai+), the subspace bi+ (Sl," si, si+) (respectively, i+2=
(s,. ., si, si+, s-+l)) satisfies the same properties (i)-(iv) than bi. Furthermore,
--i c i+

Proof This result will be proved only in the case where A/I is real, the demonstra-
tion in the complex case being identical. Let be a subspace satisfying the properties
(i)-(iv). As 6ei n Ker C--0, there exists an output feedback, ga,in K such that 6e is
(A+BKiC)-invariant. Let us consider the system (.,B, C) induced by (A+
BKC, B, C) modulo 6e. Let 6(A) and -(fl) denote the characteristic subspaces of
the induced system. It is well known that the pair (/,/) is controllable (cf. [17]). As
b n Ker C =0 and b n -(/3)--0 for any /3 C, the pair (ft., ) is observable (cf.
Comment 1). Furthermore, if r __a dim /6ei,/ - dim Im (, rh A dim Im/, we have

=n-i,

(16)
=p-i (as6einKerC=0),

rfi=m fori<-n-m (as thenbImB=0),

=n-i for i>n-m.

So, in any case, the induced system satisfies the condition r < rh +/ and Proposition
3.2 may be applied to the induced system. Thus, there exists no more than one real
number such that for any A+I [\{}, for almost any vector /i+1 (/i+1), we have

ffi+l) 0 Ker C 0,

(17) (gi+)f-) -(fl)=0 for all/3 C,

(g+)nlmB=0 ifi<n-m.

In the sequel, we will assume that A/ {A, , Ai} U {}. The two following lemmas
will achieve the proof of the proposition.

LEMMA 3.11. For almost any vector si+ 6e(A+), the subspace b+l b +(S+l)
satisfies the conditions (i)-(iv) of Proposition 3.10.

Proof. From Lemma 2.7, we have

(18) 7r(Im B) Im B,

(19) 7r(Ker C) Ker t,
(20) 7r(0(A)) 5(A) for all A{A,..., Ai},

(21) 7r(-(/3))=-(/3) for all/3eC.

Now, consider a vector s’+l e 5(A+) satisfying (17). From (20), we can associate to

s’+ a vector s+ e b(Ai+) such that 7r(oW+l)= (+). Using the fact that if , N, are
three subspaces in a space such that c g, n =0 and 7r()n 7r() =0, where
7r is the canonical surjection from onto Z/, then n 0. Equations (18)-(21),
oWi+ satisfy properties (i)-(iv) of the proposition. Furthermore, the genericity of s’+
in 5e(A+) corresponds obviously to the genericity of s+ in 5e(A+). []

LEMMA 3.12. Let .. be the set of the eigenvalues which cannot be assigned at the
kth step of the algorithm. Then .. ..+ for 1, , p 2.

Proof Assume that A is a "pathological" eigenvalue at the first step of the
algorithm. This means that for any s b(A), there exists/3 C such that (s, g) n -(/3)
0. Let 7r be the projection from onto 2f/oW and let g____a 7r(s). In view of (21), we have

r((s, g) n -(/3 )) = (g, --) n -(/3 ).
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As OWl -(/3)= 0 by construction, we have

(s, #)n 3-(/3) 0(, Y)N 8-(fl) 0.

So, if A is pathological at the first step, it is still pathological at the second step.
Therefore it remains pathological all along the algorithm.

Note that the subspaces , 1,..., p- 1 so constructed from a generic choice
of vectors si OW(Ai) satisfy the lattice given in Fig. 3.1"

1. OW is (A, B)-invariant (from (i));
2. is (C, A)-invariant (from (ii));
3. , OW (from (iii) and Comment 1);
4. ; 0 if <- n rn (from (iv));
5. By construction, the eigenvalues are assigned as desired.

3.4. Final step of the construction of the lattice. Now, the subspace OWn of the lattice
must be constructed. In the following proposition are pointed out the degrees of
freedom appearing in this construction.

PROPOSITION 3.13. Consider a subspaee OWn_, (s,, ., sn_,) satisfying conditions
(i)-(iv) of Proposition 3.10. Let Ap be a real number and let A2 {An+l,""", An} be a
self-conjugate set of complex numbers, so that A {A,,. ., A,} is admissible. Then the
subspace

OW’(An) OW(An) N ("(Ap+l) 0 ’p--l) N... n (,-(A.) (R) owe_,)

satisfies
1. dim OW’(An) rn +p n > 0;
2. For almost every vector snOW’(Ap) the subspace OWe =(sl,’’’,Sp) satisfies

OWn n Ker C 0 and the spectrum induced modulo OWn is A2.
Proof Consider the system induced modulo OWp_, (the related canonical surjection

is denoted by r). For this system, we have (cf. (16)) r n-p+ 1, rfi n-p+ 1,/ 1.
Thus, for all A C, OW(A) . Furthermore, as OWn-1 n Ker C 0 and ApE {A,, ,
the relations (18) to (21) are satisfied. So, as Ker r OWp_,, we have

(22) 7r(OW’(Ap))-- -(Ap+l) N... N -(A,).
Considering the special form ofthe characteristic subspaces on the Brunovski canonical
form, it is straightforward to see that dim ,-(Ap+l)N... (’l (A,)= 1 and ,-(Ap+I)N

N -(A,) n Ker C 0. Therefore from (22),

(23) dim (OW’(Ap))= 1

and

(24) r(OW’(Ap) (l (Ker COWp-1))=0.

Furthermore, as OW(Ap)n OWp_ Ker r]OW(Ap), we have

dim OW(Ap) n OWp_ dim OW(Ap)-dim Im

=dim OW(Ap)- dim f

(25)

(26)

SO

(27) dim OW(Ap) N OWp_, m + p n 1.

From (23) and the fact that OW’(Ap)n OWp_, OW(Ap)n o’Qp_l we have

dim 6e’(ap) dim 6e’(ap) N 6ep_, +dim rr(Se’(ap)) m +p n.
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Hence (i) holds. Furthermore, (24) leads to

n (Ker C ..ff’_,) c ..p_,.
Therefore, oW’(ap)71 (Ker C(]gp_l) is contained in oW(ap)f-)Op_ As this subspace is
a hyperplane of 5e’(ap) (from (27)), we deduce that for almost any vector Sp b’(ap),
the subspace p=(s,..., Sp) satisfies OWp fqKer C =0. Moreover, by construction,
0p f-)S-(Ai)# 0 for i-p+ 1,..., n. From Theorem 2.6, this means that the spectrum
induced modulo OWp is {ap+l, An}"

The construction of the subspace bp (s, , Sp) from a generic choice of vectors
sic oW(Ai), i--1,..., p-1 and sp oW’(Ap) completes that of the lattice given in Fig.
3.1. So, Theorem 3.1 is demonstrated.

3.5. Illustrative example. Let us consider the following numerical example:

0 0 0 2

0 0 1 0
B-

5 3

0 0 0 6 4

0 0 0 0 2 2

C= 0 1 0 0

0 0 0

(i) The generic case. Assume that {A1 =-2+2i, A2--2-2i,/3---2, /4---1}. We
have to choose a vector in (-2+ 2i). It is straightforward to check that

b(-2+2i)

5 0

0

-12+4i 2

-28 -4i 2

Assume that s, =[5+5i, 10, 4-8i, -4-32i] r. The vector s2 is fixed as being equal to
g. It remains to find s3 in the subspace 5e’(-2) 5e(-2) (-(-1) + (s, s2)). As -(-1)
Im [0, 0, 1, 1 r, we obtain s3 [-1, -0.5, -1, 3] r. Now the input directions wi are given
by solving (A- aI)s -Bw for 1, 3. The following numerical values are obtained:

Wl=
102+56i

w3=
-8.5

Finally, the feedback gain is given by K [w, v?, w3](C[s, g, s3])-"

K=
7.2 7.6 -2.5

We are now going to illustrate the pathologies that may occur (but which are avoided
by choosing generic eigenvalues and eigenvectors).

(ii) First class ofpathologies. Assume that the same eigenvalues are to be assigned.
If the vector sl is selected as being equal to [5, 0,-12+4i,-28-4i] r, then as -(/3)
Im [0, 0, 1, -/3] , there exists obviously a value of/3 for which (S1, gl) (’] -(/) 0 (this
value is/3 1). It is the pathology corresponding to equation (10). Now if s is selected
as being equal to [5,-2,-12,-28-8i], clearly (s, gl)fq Ker C #0 (see (9)). Note
that it is clear that almost any other choice of s does not induce such pathologies
provided that the vector of the first and the second entries of sl is not colinear to a
real vector.
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(iii) Second class of pathologies. This numerical example has been especially
worked out in order to exhibit another kind of pathology which does not appear
generally. If A1 -1 + i, we have

o(-1+i)

0 0

1-i 1

2 0

0 2

Clearly, for all choice of sl in this subspace, it is clear that there exists a value of/3
denoted fl(sl) such that (s, ) 71 -(/3(sl)) # 0. The set of such complex numbers was
denoted . Its cardinal was only estimated from above in Proposition 3.3, this numerical
example shows that it is not empty for some system. (Note that similar pathologies
have already been pointed out [8], [10] but only for real numbers.)

4. A necessary and sufficient condition for exact pole assignment by output feed-
back. In the case where m +p > n, Kimura [7] and Davison and Wang [2] have shown
that it was possible by using output feedback to assign the poles of a complete triple
arbitrarily close to any prescribed set of eigenvalues. The algorithm developed in 3
also deals with this kind of approximative assignment Nevertheless, our results are
much more precise since we have shown that only a finite number of eigenvalues
cannot be assigned (and that it is possible to assign up to p- 1 eigenvectors arbitrarily
closed to prescribed vectors in (A, B)-characteristic subspaces). The preciseness of
Propositions 3.2 and 3.3 can be used, furthermore, to improve these results by deriving
a shortened proof of the necessary and sufficient condition for exact pole assignment
given in Magni [9], [10]. At each step of the algorithm used in the previous section,
the eigenstructure assignment was relative to induced subsystems (see Fig. 3.1). Here,
as we are not concerned any more with eigenvector assignment, we have, as an
additional freedom, the possibility of considering at each step, either induced or
restricted subsystems. It is this additional freedom which permits us to cope with exact
assignability. Let us recall the main result of [9] or [10].

THEOREM 4.1. Let (A, B, C) be a complete triple satisfying re+p> n. A self-
conjugate set A of n distinct eigenvalues being given, here exists an output feedback gain
K such that tr(A + BKC)= A if and only if the three following conditions do not hold
simultaneously:

1. n=m +p-l, p and m are even
2. A contains exactly one real eigenvalue denoted by ;
3. Co= 5(.) or 3o -(,).
Note that the real number denoted X in Theorem 4.1 is the one defined by Lemma

2.3 and that both conditions o ow(X) and Y3o 3-(X) are equivalent (see [8]). The
proof of the necessity of this theorem can be found in [8]. The sufficiency was proved
in two steps. The first step [3], [6] is relative to the case whereA ;. The second
step deals with the general case [9], [10]. The preciseness of Proposition 3.3 allows
us to derive shortened proof of the first step. Let us state the result which corresponds
to this first step.

PROPOSITION 4.2. We have a complete triple (A, B, C) such that m +p > n with n
even. For all self-conjugate set A of n distinct complex nonreal numbers, there exists a
gain output feedback K such that tr(A + BKC)= A.

This result will be proved by downwards recursion. The following lemma concerns
the final step of the recursion.

LEMMA 4.3. If tn A- p > n with m <= 3 and p <= 3, Proposition 4.2 is true.
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Proof If rn n or p n, we can conclude by using state feedback or output
injection. So, we have only to consider the following cases (n being even):

1. m=3, p=3, n=4;
2. m 2, p 3, n 4 with controllability indices {2, 2};
3. m 2, p 3, n =4 with controllability indices {3, 1}.
First case. The sets of controllability and observability indices are both {2, 1, 1}.

Considering the Brunovski canonical form for 5e(A), we have (see 2)

dim %= 2, dim 5e(A)= 3, dim 5e(Z)+ 5e()=4.

So, from the Kimura lemma [7, Lemma 1], almost all vector s 5e(h) will satisfy

(28) (s, ) % 0,

hence from (1)

(s, g) (3 3-(/3) 0 for all/3 C.

Furthermore, from the fact that b(h) Im B, it is clear that almost all vector s 6e(h)
satisfies

(29) dim ((s, g) + Im B) 4.

So, from Comment 1, the system (A(mod (s, g)), B(mod (s, g)), C(mod (s, g))) is con-
trollable and observable. As it has two states, one output, and two inputs, it is pole
assignable by output injection.

Second case. The observability indices being {2, 1, 1}, we have

dim 0 2.

If 5e(A)c 0, we have ow()c %, hence ow(A)+0()= 0, which is nonsense since
dim ow(A)+ ow() 4 (obvious considering the Brunovsky canonical form). So, dim %+
ow(A)->3 and dim 0+oW(Z)+oW(A)=4. From the Kimura lemma [7, Lemma 1], it
follows that almost any s oW(Z) satisfies (28). Furthermore, it is clear that dim Im B +
0(A) 3 and dim Im B + ow(A) + ow(A) 4, therefore, as above, almost any s ow(A)
satisfies (29). Considering the subsystem induces modulo (s, g), we can conclude as
above.

Third case. To conclude as in the above case, it suffices to prove that

dim (%+ (A) + 5’()) 4.

If this condition is not satisfied, we have

because dim (b(A)+Se(A)) =3 (still considering the Brunovski canonical form). Let
,V be another eigenvalue of A, so, A {Z, , A’, ’}. Now, we will show that we cannot
have simultaneously

o=0(h)+() and ooW(h’)+ow(’),

which concludes the proof since either h or h’ can be assigned. Now, assume that the
above conditions are satisfied. Then

(30) o (o(z)+ oo()) (oo(z ’) + oo(’)).
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This relation will be written on the controllability canonical basis. In this basis, A, B,
take the form

0 1 0 0 0 0 1 0

A 0
(31) A=

0 0 1 0
B=

0 0
ow(A)= 42 0* * * * 1 0

* * * * 0 1 0 1

Let us define XlX2X3X4 as follows"

Ker C Im [xl, x2, x3, x4] r

From (30), the vector[0, 0, 0, 1] r lies in o. As o Ker C + A Ker C and as dim o 2,
we must have

xl x2 0

rank x2 x3 0
-2.

x3 * 0

x4 * 1

If Xl -0, then necessarily x2 0, hence x3 0, so o Im B which, in view of (30) and
(31) is a nonsense. If X150, take Xl--1 and X2--E. Then, X3--E

2 and [1, e, e 2, 0]Tc
(b(A) + 5e(X))fq (9(A’)+ 0(’)). Hence, e A or X and e A’ or ’ which contradicts
the fact that the elements of A are distinct. [3

Proof of Proposition 4.2. The proof is performed by downwards recursion until
conditions of Lemma 4.3 are encountered. Three initial configurations are to be
considered.

Case 1. p >- m and p >_- 4. In this case, since n is even, n < m +p =:> n < 2p =:> n <=
2p-22(n -p) _-< n -2. From Proposition 3.3, the number .=. of complex eigenvalues
which cannot be assigned satisfies Card .=. -<_ 2(n p). So, there exists a complex number
in A which can be assigned. Let s, g be the assigned right eigenvectors. At the next
step, the system (A(mod (s, g)), B(mod (s, g)), C(mod (s, g))) will be considered. This
system has n 2 states, p 2 outputs, min (n 2, m) inputs. If n 2 min (n 2, m),
the algorithm stops by the use of an output injection. Otherwise, it reduces to one of
the three cases considered here.

Case 2. m >-p and m => 4. This is the dual case of the previous one. A pair of left
eigenvectors is assigned; the next step is relative to a restricted system.

Case 3. m <_-3 and p <= 3. In this case, Lemma 4.3 can be used to conclude. [3

5. Conclusion. In this paper we have studied the genericity of eigenvalue/eigen-
vector assignment for control systems in which the number of outputs (p) plus the
number of inputs (m) exceeds the number of states (n). Intermediate results occurring
in this proof have permitted us to obtain a necessary and sufficient condition for the
exact assignability of a set of distinct poles. Maximal controllability subspaces and
minimal complementary observability subspaces have been characterized in terms of
the dimension of their intersections with the characteristic subspaces. It is this charac-
terization that is the key to all results we have obtained here. It is worth noting that
the main difference between the work presented in this paper and the work that is to
be done for dealing with more general systems (m +p_-< n) lies in the fact that here
(except in the proof of Theorem 4.1 relative to a very special case which is detailed
in [10]) it was possible to construct complementary observability subspaces at each step
of our algorithm. When m+p <-n the property of complementary observability
must be released. The fact that some eigenvalues might be induced by constructing



ON EIGENSTRUCTURE ASSIGNMENT 865

noncomplementary observability subspaces must be viewed as a positive fact as far as
these induced eigenvalues can be almost arbitrarily chosen. While some of the results
obtained in this paper are sufficiently general so as to cope with these problems, some
others are to be amended for instance by introducing degeneracy conditions on systems.
In this field, numerous problems are still open (see Magni and Champetier [11] for
further discussions).
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Abstract. Estimation algebra turns out to be a crucial concept in the investigation of finite-dimensional
nonlinear filters. In an earlier paper by the authors, a necessary and sufficient algebraic condition was

derived for an exact estimation algebra to be finite-dimensional. In this paper, the investigation of the
properties of finite-dimensional exact estimation algebras is continued, and some structure and partial
classification theorems for such algebras are proved.

Key words, nonlinear filters, solvable Lie algebra, estimation algebra, elliptic partial differential equation
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1. Introduction. In a previous paper [1], we introduced the concept of an exact
estimation algebra. A simple algebraic necessary and sufficient condition was proved
for an exact estimation algebra to be finite-dimensional. We also provided a detailed
examination of the relationship between finite-dimensional exact estimation algebras
and finite-dimensional nonlinear filters. This paper is in essence a continuation of our
earlier study of exact estimation algebra, and we strongly recommend that the readers
familiarize themselves with the results in [1]. However, every effort will be made to
make this paper as self-contained as possible without too much duplication of the
previous paper.

In this paper, we will prove some structure and partial classification theorems of
exact finite-dimensional estimation algebras. The class of nonlinear filtering systems
with an exact estimation algebra can be characterized by the solutions of some family
of Riccati partial differential equations. These equations are the focal point of this
study. We will provide two alternative existence proofs of these equations and examine
their uniqueness properties.

2. Basic concepts. In this section, we will recall some basic concepts and results
from 1 ]. The idea ofusing estimation algebras to construct finite-dimensional nonlinear
filters was first proposed in Brockett and Clark [2], Brockett [3], and Mitter [4]. The
motivation came from the Wei-Norman approach [5] of using Lie algebraic ideas to
solve linear time-varying differential equations.

Consider a filtering problem based on the following signal observation model:

(2.0)
dx( t) =f(x(t)) dt + g(x( t)) dr(t), x(0) Xo,

dy(t)=h(x(t)) dt+dw(t), y(0) 0,

in which x, v, y, and w, are respectively, En, E,, Era, and m-valued processes, and v
and w have components that are independent, standard Brownian processes. We further
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assume that n p, f, h are C smooth, and that g is an orthogonal matrix. We will
refer to x(t) as the state of the system at time and to y(t) as the observation at time t.

Let p(t, x) denote the conditional probability density of the state given the
observation {y(s): 0_-< s =< t}. It is well known (see [6], for example) that p(t, x) is given
by normalizing a function r(t, x), which satisfies the following Duncan-Mortensen-
Zakai equation:

(2.1) act(t, x) Lotr( t, x) at +
i=1

where

1 02 0

i=1 i=1 OXi i=10Xi 2i=1

and for 1,. ., m, Li is the zero-degree differential operator of multiplication by
hi.2 Cro is the probability density of the initial point x0. In this paper, we will assume
that O-o is a C function.

Equation (2.1) is a stochastic partial differential equation. In real applications,
we are interested in constructing state estimators from observed sample paths with
some property of robustness. In [7] Davis studied this problem and proposed some
robust algorithms. In our case, his basic idea reduces to defining a new unnormalized
density

(t, x) exp h(x)iYi(t) ty(t, x).

It is easy to show that :(t, x) satisfies the following time-varying partial differential
equation

(2.2)

d(t, x)__ Lob(t, x) + E yi(t)[Lo, Li](t, x)
dt i=1

+- yi(t)[[Lo, Li], Li](t, X), :(0, x) ro,

where [-,-] is the Lie bracket defined as follows.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

IX, Y], is defined by

[X, Y] X( Y)- Y(X)

for any C function r.
DEFINITION. The estimation algebra E of a filtering problem (2.0), is defined to

be the Lie algebra generated by {Lo, L,..., Lm}, or E=(Lo, L1,"" ", Lm)L.A.. If in
addition there exists a potential function th such that f Och/Ox, for all 1 -< -< n, then
the estimation algebra is called exact.

From now on, unless stated otherwise, we assume the estimation algebra of (2.0)
is exact. We use Vp to denote the column vector (Op/Ox, , Op/Oxn) . Hence, Vb =f

If p is a vector, we use the notation Pi to represent the ith component of p.
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Define D O/Oxi--fi, and r/= 2i=1 ofi/Oxi "{- 2i=1f+ E,=, h. Then,

(2.3) Lo= ,=,

Recall that f--O)/Oxi. Hence,

(2.4) --A’+IVI+ 2 h2
i"

i=1

In [8] the two matrices [1 and J, were introduced, f is the matrix whose i, j
element is Of/Oxi-Of/Oxj. Note that all exact estimation algebras are characterized
by the fact that f 0. J, [oZrl/Oxi Oxj] is the Hessian matrix of 7.

In [1], we proved the following structure theorems.
THEOREM 1. Let E be afinite-dimensional exact estimation algebra. Then hi, , h,

are polynomials of degree at most one.
THEOREM 2. Let F(xl,. ., xn) be a C function on . Suppose that there exists

apath C :R R" and 6>0 such that lim,_,oo IIC(t)ll =oe and lim,__,oo supu(c(,) F -co,
where Ba(C(t)) {x n IIx c(t)ll < /. Then there is no Coofunction q on satisfying

COROLLARY 1. Let F(Xl, ", Xn) be a polynomial on . Suppose that there exists
a polynomial path C -" such that lim,_.oo C (t)II oo and lim,_.oo F C (t) -oo.
Then there is no Coo function p on satisfying

(2.5) A0 + IV g,]2 F.

THEOREM 3. Suppose E is an exact estimation algebra. Then, E isfinite-dimensional
Tif and only if Vhi J, is a constant for <-i<-m and allj=O, 1,

THEOREM 4. Suppose E is an exact finite-dimensional estimation algebra. Then it

has a basis consisting ofone second-degree differential operator Lo, first-degree differential
operator(s) with constant coefficients for the o/oxi terms, and zero-degree differential
operator(s) affine in x. Moreover, ifX and Y are in E with degree less than or equal to

one, then IX, Y] is a constant.
Theorem 5 follows from Theorem 4.
THEOREM 5. An exact finite-dimensional estimation algebra is solvable.
To show the relevancy of studying finite-dimensional exact estimation algebra in

nonlinear filtering problems, we proved in [1] that a system defined by (2.0) with a
finite-dimensional exact estimation algebra admits a universal finite-dimensional filter
and provided an explicit Lie-algebraic method to construct such a filter.

Given the importance of the estimation algebra, a natural question arises as to
whether we can classify all finite-dimensional exact estimation algebras up to Lie-
algebraic isomorphism. Theorems 4 and 5 provide a starting point for solving this
problem. In Theorem 6, we provide a more explicit structure theorem for an important
subclass of finite-dimensional exact estimation algebras. A second question that arises
naturally is whether we can classify all filtering systems with finite-dimensional exact
estimation algebras up to state-space diffeomorphism. This is apparently a very difficult
problem and requires a careful study of partial differential equations of the type (2.4).

This clarifies the original statement of Theorem 5 of [1].
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The connection between these types of equations and the nonlinear filtering problem
was first noted by Benes (see [9]). The properties of these equations, however, are not
well known. In Theorems 9 and 12, we provide some answers in regard to the existence
and uniqueness of the solutions of these types of equations. Our result here is far from
providing a reasonable classification theory of systems with finite-dimensional exact
estimation algebras, but it may be viewed as a necessary first step.

3. Classification theorems. If E is finite-dimensional, then the matrix

(3.0) m--[Vhl, vhm,Jnvhl, ,Jnvhm,J2vhl, ,J2vhm, "]

is a constant matrix and

are all linear functions in E. If the rank of M is n, we say that the corresponding
estimation algebra has full rank. In this case, it is easy to describe the Lie algebra
structure of the estimation algebra.

THEOREM 6. Suppose E is ofmaximal rank. Then it is a real vector space ofdimension
2n+2 with basis given by 1, Xl, x2,"’, xn, D1,’’’, Dn, and Lo. Moreover, 71 is a

polynomial of degree at most two and the quadratic part of 71-i=1 h is positive

semidefinite.
Proof Since the columns of M represent gradient vectors of functions in E and

M is a constant matrix with rank n, there are constants ci’s such that xi / ci is in E for
1,. ., m. It is easy to show the following relations:

Lo, Xi / Ci] ---- Dj, X / C Di,
j=l

1 if =j,
[D,,x+c]=

0 ifij,

Lo, D,] - D, D, + [D
j=l " 71 2 OXi

071/0x is a polynomial of degree at most one, for all 1 -< -<_ n. Hence E is a real vector
space spanned by 1, xl," ", xn, D1," "’, Dn and L0. The fact that the quadratic part
of 71--2i=1 h2 is positive semidefinite again follows from Theorem 2. [3

Theorem 6 implies that all exact finite-dimensional estimation algebras with
maximal rank come from Benes filters (see [9] for details concerning Benes filters).

For any filtering system defined in (2.0) with an exact estimation algebra, (2.4)
assigns a characteristic 71. Theorem 6 implies that if the estimation algebra is finite-
dimensional with maximal rank, then this mapping maps the given system to a quadratic
polynomial. In order to develop a classification of systems with finite-dimensional
estimation algebras, we need to know the range of this mapping restricted to such
systems. We also need to understand the properties of the inverse of this mapping. In
the following, we will provide some partial results to these questions. The key to these
questions is a complete understanding of the existence and uniqueness properties of
(2.5).

Let q be a C function defined on ". Extend -A + q in the standard way to act
on a closed subspace of LZ([n). It follows from the definition that the first eigenvalue
A1 of the operator -A + q is equal to

,, inf. ]V4,le ax+i q2 dx
(3.1)
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where infimum is taken on all nonzero C functions with compact support. The
following theorem by Fischer-Colbrie and Schoen is well known (see [10]).

THEOREM 7 10]. Let q be a C function defined on [n. Then there exists a positive
function , satisfying the equation A-q 0 on " if and only if the first eigenvalue A1
of --A + q on is nonnegative.

Assume now that the estimation algebra is finite-dimensional and has maximal
rank. Then by Theorem 6, we know that

(3.2) rt 2 h, q,
i=1

where q is a polynomial of degree two with quadratic part positive semidefinite. Recall
that

Putting this into (3.2), we have

(3.3)

=A+IV[2+ 2 h/.
i=1

A6 +lV6lz-- q.

Let u= e. Then Ou/Oxi=(Och/Oxi)ee and 02u/Ox2=(O2ch/Ox2 + (Och/Oxi)2) e 4, hence

(3.4) Au-qu=O.

We observe that (3.3) has a C-solution 4) if and only if (3.4) has a C positive
solution u.

THEOREM 8. Let q be a quadratic polynomial in Xl,’’’, xn. Let I1 be the first
eigenvalue ofthe operator -A + q. Then is nonnegative ifand only ifunder an orthogonal
transformation and a translation, q can be written in the form

aix2i--c,
i=1

where ai and c are constants, ai >= O, and c <-,: x/i.
Proof. Suppose that x (x , xn) r Ay yo, where A is an orthogonal matrix

and Yo is a constant vector. Then Ay Ax, and the first eigenvalue of the operator
-Ax + q is nonnegative if and only if the first eigenvalue of -Ay + is nonnegative
where (l(y) rl(x(y)). Hence after an orthogonal transformation and a translation,
we may assume that

q(x) Y aix2i -t- bix c,
i=1 i=/+1

where ai, bi, and c are constants, ai O, for i- 1,. ., L
By Theorem 7, we know that A >= 0 if and only if (3.4) has C positive solution

if and only if (3.3) has C solution. In view of Theorem 2, this implies that bi 0 and
we have that ai >-0 for i-- 1,. ., n. Hence it remains to prove that the first eigenvalue
of the operator -A + r- c is nonnegative if and only if c <- 2i=1 /, where r i=l aixi
This is equivalent to proving that the first eigenvalue A of the operator -A+ r is
2i:,/.
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Denote Co 2i=1 x//. Let be a C function with compact support. Then

)Waix2 dx
i=1

+ d-2 x,
i=1 i=1

+ x
i=

i ex+co
= kOx

Co g dx.

Hence I’ >= Co. On the other hand,

is an eigenfunction of-+ r with eigenvalue co, so co >= I’ Hence co
ToaM 9. Suppose E is a finiCe estimation algebra of maximal rank. en under

an orchogonal transformation and a translaion, can be wriuen in the form

+ aixi C,
i:1 i:1

where ai and c are constants, ai O, and c i:l.
Proof This result follows from Theorems 7 and 8.

4. Alternative proof. Theorem 9 provides a constraint that the coefficients of (2.0)
must satisfy so that the system has a finite-dimensional estimation algebra of maximal
rank. It is a first step in providing some classification results of all finite-dimensional
exact estimation algebras. In the following, we provide an alternative proof of these
results by applying a technique pioneered by Li and Yau [11]. In fact, Theorem 12
sharpens the results stated in Theorem 9.

THEOREM 10. Consider the following equation:

(4.0) + IVl2
aixix c,

ij=l

where (x, , x,) ", c and the constant matrix A (a) is positive semidefinite.
en for any smooth solution of (4.0) defined on ", has at most linear growth,
namely,

lV(x)lc(+lxl), xeU"

for some constant C.
Proof Let u =-. After oahogonal change of coordinates, (4.0) becomes

{4.) -a, + Iv, a,x .
i=1
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Let v Yi=l 5x/ x i. It is easy to see that

(4.2) -Av + 17 vl2 A,x- Co,
i=1

where Co "=1. Let w u- v. Then subtracting (4.2) from (4.1), we get

+ + IV.[ -IV
(4.3) =-A(u-v)+V(u-v) V(u-v)+2V(u-v) Vv

=-Aw+lVwl2+2Vw
where x.y represents the standard inner product between vectors x and y. Denote
F--[Vw[ 2. Direct computation yields

AF= ZX(Vw Vw)

(4.4) -2 ( 02W 2 +2(yaw). Vw
i,j:l \OXi OXj/

_->-lAw +2V(F+2Vv. Vw+c-co).Vw.
n

If 72V and V2w represent the Hessian of v and w, respectively, then

4V(Vv. Vw)" Vw=4[V2vVw+VZwVv] Vw

(4.5) -> 4IV2wV v] Vw 4[V wV w] V v

=2V(Vw. Vw). Vv=2VF. Vv.

Putting (4.5) into (4.4), we have

2
AF>=-(F+2Vv Vw+c-co)Z+2VF Vw+2VF. Vv

n

2 F2 4
(4.6) >-- +-F(2Vv. Vw+c-co)+2VF. V(v+w)

2 F2 8 F3/2 4(c- Co)=>- ]Vvl +2VF. V(v+w)+F.

2Denote r2=y= x. For a>0, the function (a2-r2)2F achieves its maximum at

Xo e B(0) {x e N" "]xl < a}. At that point,

which implies

(4.7)

Also at the point Xo,

(4.8)

V[(a2- F2)2F] =0,

4rFVr=(a2-r2)VF.

0 A[(a2- r2)2F]

a 2 ra)2AF q- 27(a2 r2)2" VF+ FA(a2 r2)2

(a 2 r2)2AF-8(a2- r2)rVr VF+[8r2-4n(a2- r2)]F.
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Using (4.7), we get

(4.9) (a2- r2)2AF-24r2F-4n(a2- r2)F <=0.

Using (4.6), we have

(4.10)
(a2-r2)2[ FZ-8n F3/IX7vl + 27F. 7(v+w)+

-[24r2+4n(a2- r2)]F-<_0.

4(c- Co)

Dotting (4.7) with 7(v+ w), we get

(4.11)
(aZ-r2)V(v+w) VF=4rFVr. (Vv+Vw)

-4rFlX7 v1-4rF3/2.

Putting (4.11) back into (4.10) and dividing it by F, we have

(4.12)

2
(a r)ZF _8 (a2 r2)2F1/21V vl_ (a2 r2)[8 rl vl + 8rF1/2

+ 4(a r2)
c Co [24r + 4n(a2- r2)] < O.

By denoting M =(a2- ra)F1/2, (4.12) becomes

2 M2- ae- r2)lV vl + 8rlM
+ [4(a2_ rZ)

c-

n
Co 4n( a rZ) 8r( a2- rZ)lx7v1-24r] -<0.

Noting the fact that IVy]-< clr and r =< a, we can see that

M <-_. ca3,

where cl and e are constants. The inequality

M max (a- r2(x))F1/2(x)
Ixl<=a

max (a2-
Ixl<=a/2

>= max F1/2(x)

_-3a2 max IVw4 Ixl<_a/2

yields the estimate

max ]Vwl < C3a.(4.13)
Ixl--<a/2

Combining (4.13) with the relation w= u-v, we can conclude that IVu] has at most
linear growth. [3
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Remark. We can also deduce the above theorem by making use of Theorem 1.3
of [11].

THEOREM 11. If C < x/--, and A > O, then

(4.14) -u"+(u’)2=Ax2-c, u(O)=a, u’(O)= b,

has a global solution for any a and small
Proof. Let v u’. We have

v’= v2- Ax2 + c, v(0) b.

Suppose (A, B) is the maximum open interval containing zero, such that v exists.
Define two auxiliary functions:

v+(x)=ex+k, v_(x)=-x-t.

We have that
2v+ v+ + Ax2 c e ex + k)2 + ,X2

C

( e2)X 2kex + e c k2).
Choose e > 0, such that

A-ez>0 and e-c>O.

This is possible because x/ > c. Choose k > 0 small enough, so that

A e2)X2 2kex + e c k2) > 0,

By the standard comparison theorem [12], we have

v(x) < v+(x) for x [0, B),

as long as v(0) b < k v+(0).

then

x [0, B].

Similarly, we can show that if 8 is sufficiently large, so that

A--t2<0 and 3+c>0,

v’- v_+Ax2-c (A- 62)x2-216x-(6+c+/2) <0
for all xe [0, B].and l=>0.

The comparison theorem again implies that

v(x) > v_(x) for x e [0, B),

if v(0)= b > -l v_(0).
This implies that when -1 < b < k, B oe. Otherwise, as v(B) is bounded, we can

extend v beyond B, a contradiction to the hypothesis that (A, B) is the maximal interval
on which v is defined.

Similar arguments show that A =-oe when ]bl is sufficiently small.
Remark. If A--0, then we can prove by direct integration that there is a global

solution to (4.14) if Ibl is small enough.
THEOREM 12. Consider the following equation:

(4.15) A+IVI:z= aijxixj-c,
i,j=l

where (x , xn) ", c and the constant matrix A (aij) is positive semidefinite.
Let {A,. , An} be the eigenvalues ofA and Co = v/-. Then we have the following"
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(I) (Existence). When c < Co, there is a family of C solution of (4.15) with 2n
parameters such that [VC[ has at most linear growth at , namely,

IV(x)l _-< c(1 + Ixl),
for some constant C.

(II) (Uniqueness). When c Co, there is a quadratic polynomial, uniquely deter-
mined up to a constant, which satisfies (4.15). Moreover, this is the unique
solution up to a constant if either one of the following conditions holds:
(i) rank A 0 (namely, A 0), or

(ii) rank A _-> n 2.
(III) (Nonexistence). When c > Co, there is no smooth solution to (4.15).
Proof. Let u =-. After an orthogonal change of coordinates, (4.15) becomes

(4.16) -Au+lVul2= Aix-c.
i=1

For part (I), let c=i__ 1C with ci <v/. By Theorem 11, there is a 2-parameter
family of solution of the

(4.17) -u"+(u’i /)2 __AiX2i__Ci"
It is easy to see that u(x)--Y.=I Ui(Xi) satisfies (4.15) and that IVul has at most linear
growth at o. To see that there is a 2n-parameter family of such solutions to (4.16),
note that n- 1 parameters come from the different ways of decomposing c into ci’s so
that c--i-- ci, n parameters come from ui(0), and the last parameter comes from the
arbitrary constant added to the whole solution.

For part (II), it is clear that there exists a uniquely determined quadratic polynomial
solution. If in addition the first rank condition is satisfied, we need only to prove that
the only solutions of

(4.18) -Au+lVul2=0
are constants. Taking = e-", (4.18) can be written as

(4.19) A =0.

It is equivalent to prove that (4.19) has no positive solutions other than constants.
However, this is well known to be the case.

Next, assume the second rank condition is satisfied, that is, rank A_-> n-2. Let
v(x) =v/ x. Note that v(x) satisfies

(4.20) -Av --IV/)[2 liX2i_ CO
i=1

Subtracting (4.20) from (4.16) and letting w--u-v, we get

(4.21) -Aw+2Vv.

Define B(r) {x :lxl-< r, 1, 2, , n}. Multiplying by e- and integrating on both
sides of (4.21), we get

0-----fB e-2V(-Aw+2Vv’Vw)+ fR e-2VlVwl2

(r) (,-)

f,, -V’(e-ZVw)+ f,, e-2V[w[2

(r) (r)

B(r) (r)
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where i is the unit outward normal of OB(r). By the Schwartz inequality, we get

fU(r)
(4.22)

e-lV wlZ fo e-2Vw t <= fo e-Z[Vwl
B(r) B(r)

Denoting f(r) Br) e-2}V w] 2, g(r) B(r) e-2, (4.22) becomes

(4.23) (f(r))2<- f’(r) g’(r).

Supposing f(r0) > 0 for some r0, we have

f’ 1
(4.24) >

Integrating (4.24) over (r0, +oe), we have

l lff’ff(oo- ro
(4.25) ar ar.

Jt ro

Other the other hand,

g(r) e-= exp (-x) dxi
(r) i=1

It is easy to see that
(i) If rankA= n, g’(r)O as r.
(ii) IfrankA=n-l,g’(r)c>0as ro.
(iii) If rank A n 2, g’(r) cr as r .

In all of the above three cases, the right-hand side of (4.25) is divergent. The contra-
diction says that f(r) O, namely, w is a constant. So u v+ const.

For pa (III), the statement holds even if A is degenerate. Since eo =l < c,
2we can find 6 small such that Z= (+6)<e. Let v=Z=(+6)x, v satisfies

i=1 i=1

Subtracting (4.26) from (4.16) and letting w u-v, we get

-w+27v.

Using the same argument as before, but without assuming the rank condition on A,
we can show that u--v+const. So u cannot be a solution to (4.16). A contradiction
and no smooth solution to (4.16) exists. [3

Remark. Equation (4.15) may have other solutions in addition to those listed in
part (I). Some examples are given on page 86 of [9].
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STRUCTURE AT INFINITY OF STRUCTURED DESCRIPTOR SYSTEMS
AND ITS APPLICATIONS*
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Abstract. The generic structure at infinity of the transfer matrix of a descriptor system is investigated
under the physically reasonable assumption that the coefficients in the equations are classified into indepen-
dent physical parameters and dimensionless constants. For such a structured descriptor system, the generic
structure at infinity is characterized in terms of an independent assignment (or weighted matroid intersection)
problem. This leads to necessary and sufficient conditions for the generic solvability of the exact matching
problem for a (singular) descriptor system and for the generic solvability of the disturbance decoupling
problem for a nonsingular descriptor system. The obtained conditions can be checked by efficient matroid-
theoretic algorithms.

Key words, structure at infinity, disturbance decoupling, model matching, descriptor system, structural
approach, mixed matrix, matroid-theoretic algorithm

AMS(MOS) subject classifications. 93C05, 05C50, 15A15, 93A15, 94C15

1. Introduction. In this paper we present a structural approach to the structure at
infinity of the transfer matrix of a general class of physical systems that have a so-called
descriptor representation. This research is also motivated by the disturbance decoupling
problem (DDP) and the exact model matching problem (EMMP), which are counted
among the fundamental problems in control theory.

To introduce the DDP for the general class of descriptor systems, we first consider
the well-known linear finite-dimensional time-invariant system described by

(1) (t) ax(t) + Bu(t) + Gd(t), y(t) Cx(t)

with state x(t) Rn, input u(t) R’, disturbance d(t) R and output y(t) R p. The
DDP for system (1) consists of finding a constant matrix K such that with the feedback
u(t)- Kx(t) the transfer matrix of the closed-loop system satisfies

(2) C(sI-A-BK)-IG=O.
A geometric condition for the solvability of DDP is given by Wonham [31] in

terms of (A, B)-invariant subspaces. Furthermore, it is shown in Emre and Hautus [5]
(see also Bhattacharyya, Gomes, and Howze [3, Thm. 3]) that DDP is equivalent to
EMMP, that is, that DDP is solvable if and only if there exists a strictly proper rational
matrix X(s) such that

(3) C(sI-A)-IBX(s) C(sI-A)-IG.
In the spirit of the structural or generic approach initiated by Lin 15], the generic

solvability of DDP is considered by van der Woude [32], and independently by
Commault, Dion, and Perez [4], under the assumption that the nonzero entries in the
coefficient matrices in (1) are independent parameters. A graph-theoretic necessary
and sufficient condition for the generic solvability of DDP is then derived on the basis
of two observations. One is that the solvability of EMMP can be expressed in terms
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of the structure at infinity of the two transfer matrices in (3), and the other is that the
generic structure at infinity of a transfer matrix can be characterized in terms of linkings
in a signal-flow type of graph associated with the system. Similar graph-theoretic
characterizations of the generic structure at infinity are obtained by Suda, Wan, and
Ueno [27], and for a restricted case by Kobayashi and Nakamizo 12]. Other investiga-
tions on the generic number of zeros are made by Reinschke [25], S/Ste [26], and
Svaricek [28].

It has been gradually recognized, however, that the standard form (1) is not very
suitable for representing the structure of a system in that the entries of the matrices
in (1) are usually not independent but are algebraically related to one another. In this
respect, the so-called descriptor form

(4) F(t) Ax(t) + Bu(t) + Gd(t), y(t) Cx(t),

considered in this paper, is more suitable, where we assume throughout that A-sF
is nonsingular.

In this paper we adopt the physically plausible framework introduced by Murota
[17]-[20], in which the notion of mixed matrices is used to obtain results concerning
the generic or structural controllability and the fixed modes of physical systems. Here,
we also use the notion of mixed matrices, but now we are interested in the generic
structure at infinity of the transfer matrix of physical systems. Therefore, inspired by
the previous works, we derive a characterization for the structure at infinity of the
transfer matrix of a descriptor system and we present an algorithm by which the
structure at infinity can be computed in an efficient way. In addition, we indicate how
the algorithm can be used to check the solvability of two versions of DDP for descriptor
systems.

Rephrasing the above, we discuss in this paper the structure at infinity and the
solvability of DDP under the assumption that the entries of the coefficient matrices in
the descriptor equations (4) are classified into independent physical parameters and
dimensionless fixed constants. We develop a combinatorial characterization of matroid-
theoretic nature for the structure at infinity, based on the characterization of dynamical
degree given by Murota [17], [18] using the structural framework mentioned above.
As an application of the obtained characterization we give a necessary and sufficient
condition for the generic solvability of DDP for the descriptor system (4) with nonsin-
gular F. This condition can be checked efficiently by a matroid-theoretic algorithm
that is guaranteed to run in polynomial time in the size of the control system.

This paper is organized as follows. In 2 we present some known facts about
rational function matrices and mixed matrices. In 3 we summarize some results on
the solvability of DDP. In particular, the solvability of DDP is expressed in terms of
the maximum degrees of minors of polynomial matrices associated with the system.
In 4 we describe a physically plausible mathematical model in which mixed matrices
are used and on the basis of which a method of structural analysis is developed. In
5 we show that the problem of determining the maximum degrees of minors of a

polynomial mixed matrix is reduced to an independent assignment (or weighted matroid
intersection) problem. Finally in 6 we give an illustrative example.

2. Preliminaries.
2.1. Rational function matrix. Let F be a field, and denote by F[s] and F(s),

respectively, the ring of polynomials and the field of rational functions in s over F. A
rational function f(s) =p(s)/q(s) F(s) with p(s), q(s) F[s] is called proper (respec-
tively, strictly proper) if degf(s)_-<0 (respectively, degf(s)<0), where degf(s)=
deg p(s)-deg q(s) and deg (0)=
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We call a matrix a proper (respectively, strictly proper) rational matrix if its entries
are proper (respectively, strictly proper) rational functions. A square proper rational
matrix is called bicausal if it is invertible and its inverse is a proper rational matrix.
Since the proper rational functions form a Euclidean ring, any proper rational matrix
can be brought into the Smith form [24], which in control literature is sometimes
referred to as the structure at infinity. From this we see further that any rational matrix
can be brought into the Smith-McMillan form at infinity, as stated below.

LEMMA 2.1. Let P(s) be a rational matrix. Then there exist bicausal matrices U(s)
and V( s such that

P(s) V(s) ( F(s)O ) U(s),

where

F(s) diag (s-q, s-’),
r-rank P(s), and tk (k 1," ", r) are integers with tl <=" <-- tr. [-]

The integers tk (k 1," "’, r) are uniquely determined, and are referred to as the
orders of the zeros at infinity of P(s) when P(s) is proper. In this paper we use the
notation

and

Ordk P tk (1 <-- k <- r)

ord P- t ,’’’, tr).

An alternative characterization of ord P can be given in terms of the degrees of
minors of the matrix P. Let R and C denote the row set and the column set of P, and
P[I, J] be the submatrix of P with row set I

_
R and column set J

_
C. For a square

rational matrix P(s) we define

6(P) degs det P(s).

Furthermore, for a (possibly nonsquare) rational matrix P(s) and for I0 R, Jo C
and k_-> max ([Io[, IJol) we define

(5) 6k(P; Io, Jo)=max {6(P[I, J])lI
_

Io, J
_

Jo, III- J[- k}

and

(P) O(P, 0, 0).

Using the Cauchy-Binet formula, the following can be shown from Lemma 2.1.
LEMMA 2.2. For 1 <-- k <- r,

k

ordj P --6k(n). [-]
j=l

In the particular case where P(s) is given as

P(s)=C(sF-A)-’B
with nonsingular sF-A, the above lemma can be formulated as follows.

LEMMA 2.3. For 1 <= k <- r,

ordj (C(sF- A)-’B) -6,+ Io Jo + 6(A- sF)
j=l C
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where Io and Jo are, respectively, the row and column sets corresponding to the n n
nonsingular submatrix A- sF.

The following lemma can be shown using Lemma 2.1 and Lemma 2.2 (see, e.g.,
[53, [243, [32]).

LEMMA 2.4. Let P(s) and R(s) be proper rational matrices with the same number
of rows. There exists a proper rational matrix X(s) such that P(s)X(s)= R(s) if and
only if
(6) ord P(s) ord (P(s) R(s)). [3

Note that (6) implies

rank P(s) rank (P(s)]R(s)).
2.2. Mixed matrices. Let K be a subfield of a field F. A matrix D is called a mixed

matrix with respect to F/K if

D=Q+T,

where

(i) Q (Qo) is a matrix over K, and
(ii) T (To) is a matrix over F such that the set of its nonzero entries is algebraically

independent over K.
(In this paper, the entries of the matrix Q will represent fixed constants, whereas

the entries of T will denote independent system parameters. A concrete example of
mixed matrix is given in 6. See Murota [18], [21] for more background about this
section.)

The following identity due to Murota and Iri [23] is fundamental. It can be
translated nicely into the matroid-theoretic language and enables us to compute the
rank of D by an efficient matroid-theoretic algorithm using arithmetic operations in
the subfield K only. Recall that the term-rank of T is defined as the maximum size of
a submatrix T[/, J] for which there exists a one-to-one correspondence (permutation)
zr: I - J such that Tr(i) # 0 for all I, i.e.,

term-rank T= max {z[ z [I[ [JI, :lzr(one-to-one) I J, ’i I, T() 0}.

LEMMA 2.5. For a mixed matrix D Q + T,

rank D=max {rank Q[R-I, C- J] +term-rank T[I, J][I
_
R,J_ C},

where R and C are the row set and the column set of D.
Let Ko

_
Fo be fields, and

(7) D(s)=Q(s)+T(s)

be a polynomial matrix such that
(i) Q(s) is a polynomial matrix with coefficients from Ko, and
(ii) The set of nonzero coefficients of the entries of T(s) is algebraically indepen-

dent over Ko.
Then D(s) is a mixed matrix with respect to Fo(s)/Ko(s). The following identity,

noted by Murota [17], [18], is an extension of Lemma 2.5. Recall that 6(. is defined
as in 2.1.

LEMMA 2.6. Let D(s) Q(s) + T(s) be a square polynomial mixed matrix as above.
Then

6(D) max {6(Q[R-I, C-J])/(T[I,J])[lll--lJ[,I R,J_ C},

where R and C are the row set and the column set of D.
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Proof The expansion

det (D) Y {+det Q[R-I, C-J]. det T[I,

shows that

6(D)-<_ max {6(Q[R-1, C-J]) + 6(T[1,

Conversely, let (I, J) (I*, J*) yield the maximum on the right-hand side, and consider
a term (monomial in the nonzero coefficients in T[I*,J*]) in det T[I*,J*]. The
algebraic independence of the nonzero coefficients in T guarantees that this term is
not cancelled out but remains in det D. Hence, the above inequality is in fact an
equality.

2.3. Independent assignment. Let G (V, E) be a directed graph with vertex set
V and edge set E. The initial and the terminal vertex of an edge e E are denoted by
0/e and 0-e. G=(V, E) is called a (directed) bipartite graph if the vertex set V is
partitioned into two disjoint parts as V= V+ V- in such a way that all edges are
directed from V/ to V- (i.e., 0/e V/ and 0-e V-). A matching is a subset M of E
such that IMI=IO+MI=Io-MI, where O+M {0+ele M}, etc. See, e.g., [16] for more
about matchings.

A matroid is a pair M (U, 2) of a finite set U and a nonempty collection N of
subsets of U such that:

If B, B2 and b B B, then there exists b2 B2- B1 such that (B (_J { b})
{bi}E .

A subset of U is called a base if it belongs to . All bases of M have an equal
cardinality, which is called the rank of M. A subset of U is said to be independent if
it is contained in a base. See, e.g., [14] and [29] for more about matroids.

Suppose that a bipartite graph G (V, E) is given and, furthermore, that two
matroids, say M+ and M-, are defined on V+ and V- in terms of the families of bases
+ and -. A matching M is an independent matching if0+M and 0-M are independent
in M+ and M-, respectively. A matching M is an independent assignment if 0+M e +

and 0-M -.
Suppose further that an integer weight ’(e) is given for each edge e E, i.e.,

: E - Z. The weight of a matching M is defined by (M) ’(e). The independent
assignment problem (IAP) is to find an independent assignment M with maximum
weight. It is known that lAP is equivalent to the weighted matroid intersection problem.
There are a number of very efficient algorithms for finding a maximum independent
assignment. See, e.g., [7], [8], 11 ], 13], 14], and [29] for more about IAP (or weighted
matroid intersection problem) and algorithms, and [10], [18] for its applications to
engineering problems.

3. Solvability of disturbance decoupling. In this section we summarize some of the
standard results on the solvability of DDP. We start by considering a problem that is
very much related to DDP. This problem, called the modified disturbance decoupling
problem (MDDP), for system (1) consists of finding matrices K and H such that with
the feedback u(t) Kx(t) + Hd(t) the closed-loop system satisfies

(8) C(sI A BK)-I(G + BH) O.

For a descriptor system (4) with nonsingular F, versions of the two decoupling
problems DDP and MDDP can be formulated in a straightforward way by observing
that descriptor systems (4) with nonsingular F can be transformed into systems of
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type (1) by a premultiplication with F-. In that case, DDP for (4) amounts to finding
a matrix K such that

(9) C(sF-A-BK)-IG=o

and MDDP to finding matrices K and H such that

(10) C(sF- A- BK)-’(G + BH) O.

It can be shown with the results of Emre and Hautus [5] (see also Bhattacharyya,
Gomes, and Howze [3, Thm. 3], Hautus [9]) that DDP (respectively, MDDP) then is
solvable if and only if there exists a strictly proper (respectively, proper) rational
matrix X(s) such that

(11) C(sF-A)-IBX(s) C(sF-A)-IG.

It then also follows from Lemma 2.4 that MDDP is solvable if and only if

ord C(sF-A)-lB=ord C(sF-A)-I(BIG).(12)

Noting that

(13)

is equivalent to

rank C(sF-A)-lB=rank C(sF-A)-I(BIG)

(14) rank (A-sF ) (A-sF B )C
rank

C O

and using Lemma 2.3, we see that (12) holds if and only if

(15) tSn+k C
Io, Jo (nq-k

C 0

for k 1,..., min (m, p), where Io and Jo are, respectively, the rows and columns
corresponding to the n x n submatrix A-sF. For later reference we define

(16) D(s)=(A-sF B
C O

The solvability condition for DDP is obtained from the observation that there
exists a strictly proper rational matrix X(s) satisfying (11) if and only if there exists
a proper rational matrix X(s) satisfying (11) with G replaced by sG. That is, DDP is
solvable if and only if

(17) a,+k
C

Io, Jo tn+k C O
Io, Jo

for k 1, , min (m, p).
As an extension of (3) we will say that EMMP is solvable for (4) (possibly with

singular F) if there exists a strictly proper rational matrix X(s) such that (11) holds.
Summarizing, we can state the following.
LEMMA 3.1. (1) The MDDP for (4) with nonsingular F is solvable if and only if

(15) holds true for k 1,. min (m, p).
(2) The DDP for (4) with nonsingular F is solvable if and only if (17) holds true

for k 1,. min (m, p).
(3) The EMMP for (4) (possibly with singular F) is solvable if and only if (17)

holds true for k 1, , min (m, p).
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In this paper we restrict ourselves to nonsingular descriptor systems when we
consider DDP or MDDP. DDP for singular systems (with singular F) has been
investigated recently by Banaszuk [1], Banaszuk, Kociecki, and Przyluski [2], and
Fletcher and Aasaraai [6].

4. Structured system. In this section we give a mathematical formulation for the
generic solvability of DDP and the generic structure at infinity for descriptor systems
(4) using the structural framework of Murota [17], [18]. First, we briefly summarize
two physical observations relevant to analysis of combinatorial structures and describe
a mathematical model that represents the combinatorial structure of a system fairly well.

The standard state space representation (1) of a dynamical system has been useful
for investigating analytical and algebraic properties of linear systems. Also the investiga-
tions of structural properties of linear systems until recently have been mainly based
on systems of the type (1). However, as mentioned before in 1, it has been gradually
recognized that systems of type (1) are not powerful enough for the modeling of general
physical systems. The reason for this is that due to the incidence structure of a physical
system, some of the variables describing the system may be algebraically related to
one another. Such relations cannot be incorporated in system descriptions of the form
(1), but can be incorporated in those of the form (4). Therefore, systems of the type
(4) form a more general framework for the investigation of structural properties of
physical systems.

The mathematical model adopted here is based on two different physical observa-
tions. One is the distinction between "accurate" and "inaccurate" numbers, and the
other is the consistency with respect to physical dimensions.

The first observation, due to Murota and Iri [23], is concerned with how we
recognize the structure of a system. When a system is written in the form of (4) in
terms of elementary variables, it is often justified to assume that the nonzero entries
ofthe matrices F, A, etc., are classified into two groups. One group ofgeneric parameters
and the other group of fixed constants. In other words, we can distinguish the following
two kinds of numbers, together characterizing a physical system:

1) Inaccurate numbers. Numbers representing independent physical parameters
such as resistances in electrical networks, which, being contaminated with noise
and other errors, take values independent of one another, and therefore can
be modeled as algebraically independent numbers; and

2) Accurate numbers. Numbers accounting for various sorts of conservation laws
such as Kirchhoff’s laws, which, stemming from topological incidence relations,
are precise in value (often +1), and therefore cause no serious numerical
difficulty in arithmetic operations on them.

We may also refer to the numbers of the first kind as "system parameters" and to
those of the second kind as "fixed constants."

This observation can be translated into a mathematical assumption using the
notion of mixed matrices. That is, we assume that the matrices F, A, etc., in (4) are
mixed matrices with respect to F0/Q (where Fo is a sufficiently large field and Q the
field of rational numbers) expressed as

F= QF + TF, A= QA + TA, etc.,

where Qv, QA, etc., are matrices over Q, and, furthermore, we assume that

(A1) The collection of nonzero entries of Tv, TA, etc., are algebraically independent
over Q.
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Then D(s) of (16) is a mixed matrix with respect to Fo(s)/Q(s), accordingly expressed
as

(18)

with

D(s) QD(S)+ TD(S)

Q o r.(s)
T o

The second observation, due to Murota [17], is concerned with the "accurate
numbers," i.e., with QD(S) in (18). The "accurate numbers" usually represent topologi-
cal and/or geometrical incidence coefficients, which have no physical dimensions, so
that it is natural to expect that the entries of Qv, QA, etc., are dimensionless constants.
On the other hand, the indeterminate s should have the physical dimension of the
inverse of time, since it corresponds to the differentiation with respect to time.

Since the system (4) is to represent a physical system, relevant physical dimensions
are associated with both the variables and the equations, or alternatively, with the
columns and the rows of D(s). Choosing time as one of the fundamental dimensions,
we denote by -cj and -ri the exponent to the dimension oftime associated, respectively,
with the jth column and the ith row. The principle of dimensional homogeneity then
requires that the (i,j) entry of D(s) should have the dimension of time with exponent
cj ri.

Combining this fact with the observations on the nondimensionality of
etc., and on the dimension of s, we obtain

(19) QD(s) =diag (st,, sr-+p) QD(1)" diag (s-C,, s ’).

It can be shown by purely linear-algebraic arguments without reference to physical
dimensions (cf. [17], [18]) that a polynomial matrix QD(s) can be represented as (19)
with some (nonunique) r and c if and only if

(A2) Every nonzero subdeterminant of QD(s) is a monomial in s over Q.

Hence, the principle of dimensional homogeneity comes down to assuming (A2). It
should be emphasized that this algebraic assumption (A2) expresses the physical-
dimensional consistency among the "accurate numbers" or "fixed constants."

The mathematical model used here for structural analysis consists of (4) or (16),
which satisfy (A1) and (A2). Adopting this model, we will give combinatorial charac-
terizations of the following:

1) The properness of the transfer matrix of a descriptor system (possibly with
singular F), i.e., 61(C(sF-A)-lB);

2) The structure at infinity of the transfer matrix of a descriptor system (possibly
with singular F), i.e., ord (C(sF-A)-IB);

3) The solvability of DDP and MDDP for a descriptor system with nonsingular F;
4) The solvability of EMMP for a descriptor system (possibly with singular F).
It should be obvious that the special case of the present model with QD(s)=0

reduces to the conventional framework of a structured descriptor system in which all
the nonzero entries are assumed to be independent parameters; note that (A2) is
satisfied trivially when QD(s) 0.

From Lemma 2.3 and Lemma 3.1 it follows that the characterizations above can
be obtained by solving the problem below. Note that a combinatorial characterization
(cf. [18, 19]) derived from Lemma 2.5 for the rank of a mixed matrix is already
available.
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PROBLEM. Find a combinatorial characterization to 6k(D" Io, Jo) for a mixed
matrix D(s) of the form (7) (not necessarily of the form (16)) such that Q(s) satisfies
(A2), where Io and Jo are specified row and column subsets, and k_-> max (]Io],

Remark 4.1. In this paper we consider models for which among others, assumption
(A1) is satisfied. Denoting by - the collection of the nonzero entries of TF, TA, etc.,
it is clear that assumption (A1) on algebraic independence of - is introduced to
investigate "generic properties" of the family of descriptor systems parametrized by -.

The four properties listed above are in fact generic properties with respect to this
parametrization -. For example, the solvability of DDP is characterized in terms of
the degrees of minors in s, as stated in Lemma 3.1(2), and the degree of each minor
remains constant outside an algebraic variety in the space of -. This shows that the
solvability of DDP is a generic property.

Hence, our combinatorial characterizations to be obtained are valid for almost all
parameter values of -, and can fail only for "combinations" of the values of - that
are algebraically dependent over Q. To reiterate, our results yield "generic" conditions
for the system-theoretic properties, where the "genericity" is defined with respect to -.

There is another point to be noted about the significance of the generic solvability
of DDP and MDDP. Even though Lemma 3.1(2) may hold for a particular system,
this does not mean that the generic value of the left-hand side of (17) is equal to the
generic value of the right-hand side of (17), for k 1,..., min (m, p). This is because
the equalities may be satisfied, and hence DDP may be solvable, for a special combina-
tion of the parameter values of - that are algebraically dependent over Q, while
generically at least one of the equalities is violated. Thus, the usual solvability of DDP
does not imply the generic solvability of DDP. The same holds of course for the
solvability of MDDP. Note that this stands in sharp contrast to the structural controlla-
bility. Namely, if a system is controllable in the usual sense, then the system must be
structurally controllable.

5. Combinatorial characterization. In this section we give a solution of the follow-
ing problem.

PROBLEM. Find a combinatorial characterization to 6k(D; Io, Jo) (cf. (5) for
notation) for a mixed matrix D(s) Q(s)+ T(s) as in (7) such that Q(s) satisfies (A2),
i.e.,

(20) Q(s) =diag (s,li 6 R) Q(1). diag (s-.,Ij 6 C),

for some ri Z and c Z, where R and C denote the row and the column set of D,
and where Io

_
R, Jo- C and k => max (1Io[, IJo[) are specified, l-]

Before considering the general case we explain our approach for the special case
that Io Jo=0. That is, we will first consider a combinatorial characterization for
6k(D) 6k(D; O, 0). After that we indicate how the obtained result can be extended
to the general case.

First note that Lemma 2.6 for 6(D) can be extended for 6k(D) as follows.
LEMMA 5.1. Let D(s)= Q(s)+ T(s) be a polynomial mixed matrix as above. Then

6k(D) max {3(Q[I,, J,])+ 3( T[I2, J2])[

Ilil [Ji[, I R, J C 1, 2);

II, + I&l k I, i"’1 & J, r"l J o},

where R and C are the row set and the column set of D.
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Proof By definition,

6k(D)=max {6(D[I, J])I III-I11- k.
The claim follows immediately from Lemma 2.6 applied to 6(D[I, J]).

We will reformulate Lemma 5.1 above as an independent assignment problem
(IAP). Note for k-<_rank D there exists a tuple (I, J;I, J2) as above such that
Q[I, J] and T[I2, J2] are nonsingular, where, for example, Q[, ] is assumed to be
nonsingular. Suppose the maximum in Lemma 5.1 is attained by (I, J1; 12, J2).

We associate with D a bipartite graph G G(D) V, E) having vertex bipartition
V V+U V- with

V+ RT- U Re U Co, V- R U C,
where R- and Re are disjoint copies of R, and Co is a disjoint copy of C. By
qo" R U C Re Co and qT" R RT- will denote the natural correspondences between
the copies. The edge set E is defined by

E {(qo(i), i)[i R} {(qo(j), J)]J 6 C}
U {(PT(/), i)li R}U{(q:,T(i),j)[ To #0, i6 R, j6 C}.

Since T[I2, Je] is nonsingular, we may associate with (I, J;I, J2) a matching
M in G defined by

M {(qo(i), i)]i R- I} U {(qo(J),J)[J J}
(21) U {(qT(i), i) 6 I} U {( qVT( i),j) 6 I2,j J2,j 7r(i)},

where zr is a permutation zr’I- J2 such that T=()# 0 (for all i I). Then

O+M (Re qo(I,)) U q::’O(J,) U qT(I1 U I:),

O-M=RUJUJ_.
We now show that M is an independent assignment in G with respect to matroids

appropriately defined on V+ and V-. First we define

= {(I, J)IQ[I, J] is nonsingular, I1
_

R, J1 C},

.Q {(q90(I,) qOQ(J))] (1, J)
and next we consider two families of subsets of V+ and V-, respectively, defined as

/+- --{U+ V+I(Ro- U+, Cor"l- { u- =_c__ V-]U-_R, IU-I=IRI+k}.
These two families, + and -, define matroids, as claimed below.

LEMMA 5.2. (1) +k forms a base ofa matroid, say M+ M, of rank IR]/ k., M+

is the direct sum of a linear matroid of rank RI representable over Ko and a uniform
matroid of rank k.

(2) { forms a base family of a matroid, say M-= M-, of rank R + k; M- is the
direct sum of a uniform matroid of rank k and a free matroid of rank RI.

Proof (1) Put Ii= ql(Ro U+) and J= q(Cofq U+) and note that Q[./1, J]
is nonsingular if and only if the column vectors of the compound matrix Q.(s)=
(II Q(s)) corresponding to (R-I)U J form a basis, where the column set of Q(s) is
identified with R C. Observe further that the assumption (A2) implies that columns
of ((s) are independent if and only if the corresponding columns of (1), which is
a matrix over Ko, are also independent. This shows that the condition (R
U/) E 5o in the definition of / defines a linear matroid on Re Co that is represent-
able over Ko. The second condition, being equivalent to IR fq U+I k, defines a uniform
matroid on R- of rank k. Hence, M/ is the direct sum of the two matroids as claimed.
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(2) Similarly, M- is the direct sum of a free matroid on R and a uniform matroid
of rank k on C.

Since O+M + and O-M - by the construction, we see that the matching M
associated with (I1, J1; I2, J2) is in fact an independent assignment in G with respect
to M+ and M-.

Conversely, an independent assignment M determines a tuple (I, J; I2, J2) such
that I f3 I2=, J 0 J2 =, and both Q[I1, J] and T[I2, J] are nonsingular. In fact,
these subsets are determined by the following relations"

I,=qg’(Ro-O+M), J,=qgl(coO+M),
I2=qrl(RTO+M)-I1, J2--(C["IO-M)-JI.

Next we will introduce a weight function r. E--> Z with reference to the degrees
of the entries of Q(s) and T(s). Using the numbers ri and cj in (20), we define, for e6 E,

-ri ife=(cpo(i),i) iR,

(22) ’(e) -cj if e (qo(j),j), j C,
deg.Tj ife=(qr(i),j), iR, jC,
0 ife=(q-(i),i), i6R.

Then from (20)-(22), we see that

st(M)
iE R--II JEJ1 i 12

8(Q[I, J])- ro+
i 12

where

(23) ro ri.
iR

In addition we have

E deg, r/r(i)-- ( r[ 12, J2])
i 12

for an appropriate choice of 7r. Therefore, we have the relation

max (M)= max {,3(Q[I,J1])+6(T[I2, J2])}-ro,
M (ll,Jl;12,J2)

where the maximum on the left-hand side is taken over all independent assignments
M, and that on the right-hand side is over all tuples (11, J1; I2, J2) having the properties
stated before. Combining the above identity with Lemma 5.1, we obtain the com-
binatorial characterization for 6k(D). In the case where k IRI--IcI, this result reduces
(essentially) to the result for (D) obtained by Murota [17], [18].

THEOREM 5.1. For D(s) of (7) having property (20) and for k >-0,

6k(D) max st(M)+ ro,
M

where the maximum on the right-hand side is taken over all independent assignments M
in the bipartite graph G(D) with matroids defined by +k and - and ro is defined by
(23).

The ideas expounded above for the case that Io Jo 0 can be extended to the
general case. To this end, we consider an IAP on the same graph G(D) but with
slightly different matroids M+-- M+k(Io) and M- =M{(Jo) defined by

y3 + + U+ V+ + U+k(Io)={ [(RQ-U CQ(-] ),Q,
Rw f-) U+

_
qw(1o), U+I- IRI + k},- ;(Jo) {U-_
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In the spirit of Lemma 5.2 we can prove that M+ is the direct sum of a linear matroid
of rank IRI representable over Ko, a uniform matroid of rank k -Ilol and a free matroid
of rank Ilol, whereas M- is the direct sum of a uniform matroid of rank k-IJol and a
free matroid of rank IRl+lJol. The weight function " remains unchanged. The main
result of this paper is now stated.

THEOREM 5.2. For D(s) of (7) having property (20) and for Io R, Jo C and
k => max (llol, J01) a speciqed before,

6k(D; Io, Jo) max (M)+ro,
M

where the maximum on the right-hand side is taken over all independent assignments M
in the bipartite graph G(D) with matroids defined by -(Io) and -(Jo), and ro is

defined by (23). [3

The established characterization provides us with an efficient and practical way
of computing 6k (D; Io, Jo) by means of well-established algorithms for the independent
assignment problem (see [7], [8], [11], [13], and [14] for algorithms). It then follows
from the arguments in 4 that we have efficient algorithms for checking the properness
of a transfer function matrix, for computing the structure at infinity of a transfer
function matrix, and for testing for the solvability of EMMP, DDP, and MDDP.
Remember, however, that the algorithms yield "generic" results for descriptor systems,
where the "genericity" is defined with respect to the parametrization by the nonzero
entries of the T-part (cf. Remark 4.1).

In an application of the above result to the structure at infinity, we have to compute
6k(D; Io, Jo) for k= n+ 1,..., n+r with D, Io, and Jo fixed (see Lemma 2.3). This
means that we have to solve r problems in the same bipartite graph, but with different
matroids M(Io) and M{(Jo) for k= n+ 1,..., n+ r. However, these matroids are
closely related to one another in the sense that an independent matching for k kl is
also an independent matching for k kl + 1. In the standard augmenting algorithm
for IAP, we can therefore use the maximum weight independent assignment M for
k k as the starting independent matching for the problem with k k + 1; M is to
be increased by one in size.

In another application of the above result to the solvability of EMMP, DDP, or
MDDP we have to compare tk(Dl" Io, Jo) with 6k((DIlD2); Io, Jo) for each k (see
[15] and [17]). Here we may regard the graph G(D1) as a subgraph of G((DIlD2))
and an independent assignment in G(D) is also an independent assignment in
G((DIlDz)). This means that, once a maximum weight independent assignment is
found in G(DI), the test for the equality 6k(D; Io, Jo)=6k((D]Dz); Io, Jo) can be
done simply by detecting a negative-length cycle in the auxiliary graph used in standard
implementations of the algorithms for IAP.

A special case of Theorem 5.1 is used in van der Woude [33] in the computation
of a splitting of the external variable of a linear structured system in AR-form into an

input and an output in such a way that the output depends on the input in a
nonanticipative way (cf. Willems [30]).

A variant of Theorem 5.2 is used by Murota [22] in designing an efficient algorithm
for computing the Smith normal form of a polynomial matrix D(s) of (7) having
property (20).

6. Example. This section presents an example that illustrates the method proposed
in 5 in comparison with the graph-theoretic method of van der Woude [32] (and
also Commault, Dion, and Perez [4] and Suda, Wan, and Ueno [27]). We will compute
the structure at infinity of the transfer matrix P(s)--C(sF-A)-B of a descriptor
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system (4) (n =6, m 2, p 2) defined by

A-sF=

-; o

-k 0

-k
0

S

1 0 0 0

0 1 0 0

-sml 0 -1 0

0 -sm2 1 0

0 0 -1 f
0 0 0 1

C=
0 1 -1 0

We regard { ml, m2, kl, k2, f} as independent free parameters. (This example represents
a small mechanical system consisting of two masses m and m2, two springs k and
k2, and one damper f (see [18, 18]).) We have the mixed matrix

-s 0 0 0 0 0 0

0 -s 0 1 0 0 0 0

-k 0 --sm 0 --1 0 1 0

0 -k2 0 --sm2 0 0 1

0 0 0 0 -1 f 0 0

-s s 0 0 0 1 0 0

1 -1 0 0 0 0 0 0

0 0 -1 0 0 0 0

D(s)

which can be decomposed as (18) with

-s 0

0--s

0 0

0 0
Qo(s) o o

mS S

1-1

0 0

To(s)

0 0

0 0

-k 0

0 -k2

0 0

0 0

0 0

0 0

and

1 0 0 0 0 0

0 0 0 0 0

0 0 -1 0 1 0

0 0 1 0 0 1

0 0 -1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

-1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-sml 0 0 0 0

0 --sm2 0 0 0

o o o f o
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0

0

0

0

0

0

0
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Note that QD(S) admits an expression of the form (20) with

rl r2 1, r3 r4 rs 2, r6 1, r 0, r8 1,

C C2 --0, C C4 1, cs 2, c6 1, c7 c8 2.

(These numbers are determined from the physical dimensions associated with variables
and equations, although they are not unique from the mathematical point of view (see
[18, 18]).)

We denote the rows of D by w (i-1,..., 6) and y (i= 1, 2), and the columns
by x (j= 1,...,6) and u (j= 1, 2). That is,

R {w,]i 1,..., 6}U {Yl, Y2},
c {x ]j- 1,..., 6} U {b/l,

The subsets Io and Jo specified in Lemma 2.3 are given by

Io= {wi l, .,6}, Jo= {xj lj l, .,6}.

The associated graph G(D) V, E) has 40 vertices (1V+1 24, ]V-] 16) and 29 edges
with weight " of (22) (see Fig. 1). Among those edges, 24 edges represent the correspon-
dence between copies, and the remaining 5 edges denote the independent parameters
as listed below, where we use the short-hand notation Or(Wi)= w[:

parameters: tn m2 k k2 f
Tedges" (w[, X3) (W4, X4) (W’, X1) (W:, X2) (W5T, X6).

weights: 1 1 0 0 0

By Lemma 2.5 we see that A-sF is in fact nonsingular with rank equal to 6, and,
furthermore, by Lemma 2.6 that 6(A-sF)= 4. On the other hand, Lemma 2.5 reveals
that D(s) is singular with rank D(s)= 7 although term-rank D(s)= 8. Hence,

rank P(s) rank D(s)- rank (A-sF)= 1.

By solving the IAP with matroids M-(Io) and M(Jo), we find an independent
assignment M with maximum weight ’(M) =-7; for example, such M is given by
(21) with I {W1, W2, W3, W5, W6, Y2}, J {Xl, x2, x3, x5, x6, lgl}, I2 {w4}, J2 {x4}.
Since ro 10, we obtain

67(D(s); Io, Jo)= st(M) + ro 3.

It then follows from Lemma 2.3 that

ord P(s) =-3+4= 1.

RT C CQ

(-1)
7.//(1) (-) .

FIG. 1. Graph G(D) of example ((.)" weight).
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For comparison let us apply the graph-theoretic method of van der Woude [32]
to this example. We first transform this system into the standard state space form (1)
to obtain a fourth-order system (n 4) with

0 0 0

-kl/m 0 -f/ml f/m
0 -k2/m2 f m2 -f/mz]

0 0

= o o
1/ml
0 1/m2

= 0 0 1

We denote the transfer matrix of this system by

Note that P(s)= (s).
The associated digraph ( is depicted in Fig. 2. As is easily seen, ( admits a

Menger-type vertex-disjoint complete linking (of size 2) from {ul, u2} to {Yl, Y2}. This
means (see, for instance, [18, Thm. 7.2] and [32, Thm. 6.2]) that if the nonzero entries
of ,, / and ( were algebraically independent, then

rank P(s) 2.

Furthermore, the graph-theoretic criterion of van der Woude [32] tells us that

FIG. 2. Graph of example ( stands for a pair of edges in opposite directions).
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1 ord/3(s) is equal to the minimum number of vertices x contained in a vertex-
disjoint linking of size k from {ul, u2} to {Yl, Y2}, and hence that

ordl/3(s) 1, ordz/5(s) 2,

provided again that the nonzero entries of A,/, and were.algebraically indep.endent.
However, in the present example the conclusion that rank P(s)= 2, and ord P(s)= 1,
ord2 P(s)--2, is incorrect because the entries of the matrices are not algebraically
independent.

From the previous it is clear that the correct conclusion is that rank P(s) 1 and
ord/(s) 1. Therefore, in the case of algebraically related entries the structure at
infinity of a physical system can be determined better by the matroid-theoretic method
developed in this paper than by the graph-theoretic method of [4], [27], or [32].

Acknowledgments. The comments of the anonymous referees were helpful in
revision.
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NECESSARY CONDITIONS FOR OPTIMAL CONTROL OF
DISTRIBUTED PARAMETER SYSTEMS*
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Abstract. The Ekeland variational principle is used to prove a maximum principle for the optimal
controls of a general semilinear evolutionary control system in a Banach space with strictly convex dual.
The boundary constraint is of general type which includes the optimal periodic control problem as a special
case.

Key words, maximum principle, Ekeland’s variational principle, optimal control, distributed parameter
system
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1. Introduction. Necessary conditions for optimal control of lumped parameter
systems were derived by Pontryagin et al. [29] (see also [6]-[9], [28], [30]). Butkovskii
[7] was the first to discuss the optimal control problems for distributed parameter
systems. The maximum principle as a set of necessary conditions for optimal control
of distributed parameter systems has been studied by many authors. Since it is well
known that the maximum principle may be false for distributed parameter systems
(see [4]), there are many papers that give some conditions ensuring that the maximum
principle remains true. We refer the readers to [1], [4], [5], [11], and [26] for some
results of this aspect. We note that the above-mentioned references discuss the cases
for distributed parameter systems or functional differential systems with no end con-
straints and/or with the control domain being convex. Thus, they do not include the
Pontryagin original result as a special case. It was Li and Yao [25] who proved a
maximum principle, for distributed parameter systems in some Banach spaces with
finite-codimensional target set, which covered the Pontryagin result. Fattorini [18],
[19] proved a maximum principle for distributed parameter systems in some Hilbert
spaces under the condition that the reachable set of the variational system is of finite
codimension. Xu [31] proved a similar result in a uniformly convex Banach space.

Problems with general end constraints (meaning that the initial and the terminal
states of the system belong to some subset of the product space of the state space; see
2 for details) for lumped parameter systems were formulated by Berkovitz [6] and

he pointed out that, by increasing the dimension of the state space, such problems can
be reduced to the one with separated end constraints, studied by Pontryagin et al.

Colonius [10], Li [23], and Li and Chow [24] considered the optimal periodic
control problems for functional differential systems. They proved the maximum prin-
ciple under some technical assumptions. Li and Chow [24] and Jin and Li [22] studied
the problems with general end constraints for functional differential systems and derived
the necessary conditions for the optimal controls.

In this paper, we use Ekeland’s variational principle to prove a maximum principle
for the optimal controls of a general semilinear evolutionary control system in some
Banach space with general end constraints which contains the periodic optimal control
problem as a special case. We should note that unlike the finite-dimensional case, we
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could not simply use the argument of [6] to reduce such a problem to the one with
separated end constraints.

2. Optimal control problem, maximum principle. In this section, we give the basic
framework of our optimal control problem. We will also state the main result of this
paper--the maximum principle, the proof of which will be given in 4.

Let X and Y be Banach spaces with the embedding X Y being dense and
continuous. We denote the dual spaces of X and Y by X* and Y*, respectively. We
assume the following:

(HO) X* is strictly convex.

By [2] and [3] (see also [15]), we know that if X is reflexive, then, by changing
the norm to an equivalent one, we may assume that X* is strictly convex. Also, if X
is separable, we may also do the above (see the proof of Theorem 4 of [12], see also
[13], [14]). Thus, we see that (H0) is general enough to cover almost all cases that
interest us (e.g., X C([-r, 0]; n), L(n), etc.). Next, let U be a given metric space.
For T> 0, the admissible control set is the following:

We let

0ad-- L(0, T; U).

A={(t, s) [0, T] x[0, T]lO<-s<t<= T},

A={(t,s) 6[O, T] [0, TllO<-s<-t<=T).
Now, our optimal control problem can be stated as follows.
PROBLEM C. Minimize

(2.1) J(u(" ))= f(t, x(t; u), u(t)) dt,

subject to the evolutionary distributed parameter system with the constraints on the
initial and terminal states and the control"

(2.2) x(t;u)=G(t,O)x(O;u)+ G(t,s)f(s,x(s;u),u(s))ds, O<=t<-_T,

(2.3) (x(0; u), x( T; u)) S c X x X,

(2.4) u(.) ad
TO understand our problem, let us make the following hypotheses.

(H1) The evolution operator G: A -( Y, X) is strongly continuous in A and there
exist constants M > 0 and 0=< a < 1, such that

M
(2.5) Ila(t,s)ll(,x<-_(t_s) V(t, s) 6 A.

Moreover, the operator G" A--> (X, X) is also strongly continuous and

(2.6) G(s, s) I Vs [0, T],

where I is the identity operator on X.

(H2) The mappings f" [0, T] x X x U -* Y, fo. [0, T] x X x U --> and their Fr6chet
derivatives fx and fo are strongly continuous.

(H3) The set S c X x X is convex and closed.
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Remark 2.1. By general end constraint, we mean that the initial and the terminal
states of the system satisfy (2.3). In [25], Li and Yao considered the case of

S {Xo} x Q,
with Xo X given and Q X being of finite codimension. On the other hand, Li and
Chow [24] studied the optimal periodic control problems, which corresponds to the
case where

s={(x,x)lxX}.
Now, we let ti(.) be an optimal control and )(. )-= x(’; Eo, ti(. )) be the corre-

sponding optimal trajectory of the system (2.2) with the (optimal) initial state :o. We
denote

(2.7) B(t)=fx(t,g(t),a(t)) Vt[O, T],
and for any y Y, we define an operator Gl(t, s) through the following equation:

(2.8) G(t,s)y=G(t,s)y+ G(t,r)B(r)G(r,s)ydr, O<-_s<t<-_T.

It is not hard to show that al(’," is well defined and that it satisfies [11]

(2.9) Gl(t,s)y=G(t,s)y+ G(t,r)B(r)G(r,s)ydr VxeX, O<=s<t<=T.

Moreover, for any r/e X and h(. L(0, T; Y), the solution :(. of

(2.10) ,(t)=G(t, 0)+ a(t,s)B(s)(s) ds+ G(t,s)h(s) ds, tel0, T]

can be written as

(2.11) se(t) G(t, 0)r+ G(t,s)h(s) ds, re[0, T].

Next, let us denote

(2.12) 5 : e Xl: Gl( T,/)If(t, )(t), u(t)) -f(t, )(t), i(t))] dt, u(" e 0ad

(2.13) Q={neXln=x,-G(T, 0)x0, (Xo, X,)eS}.
DEFINITION 2.2. Let f be a subset of some topological vector space Z. We say

that fl is of finite codimension in Z, if there exists a point Zo e co fl, such that

span {l)- Zo} -= the closed subspace spanned by {z- Zo]Z l)}
is a finite-codimensional closed subspace of Z and fl-Zo has a nonempty interior in
span {fl- Zo}.

It is not hard to see that if f c Z is of finite codimension in Z, then for any
z e co 12, span {l)- z} is a finite-codimensional closed subspace of Z. We will use this
fact in sequel.

Before we state our main result, let us introduce the following Hamiltonian for
our Problem C. For all (t, x, , o, u) [0, T] x X x X* x x U,
(2.14) H(t,x, , o, u)=(,f(t,x, u))+f(t,x, u).

Now, let us state our main result of this paper.
THEOREM 2.3 (maximum principle). Let (H0)-(H3) hold. Let (9(.), ti(.)) be a

solution of Problem C. Let - Q be offinite codimension in X. Then, there exists a

(t(" ), o) O, such that

(2.15) q<_- 0,
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(2.16)

(2.17)

O(t) G*( T, t)@(T) + f
7-

G*(s, t)f*(s, Y.(s), a(s))O(s) as

T
O*+ 0 G*(s, t)fx (s, g(s), a(s)) ds, e [0, T],

H(t, (t), (t), 0, fi(t)) max H(t, 2(t), (t), 0, u) a.e. [0, T],
uEU

and

(2.18) (O(O),xo-X(O))-((T),x,-X(T))<=O V(Xo, X,)S.

3. Some preliminary results. In this section, we give several lemmas which will
play crucial roles in the proof of the maximum principle.

LEMMA 3.1. Let x( be the solution of (2.2) corresponding to (Xo, v(" )) X aa.
Then, for any p (0, 1 ], rl X and w( llaa, there exists a measurable set Ep

_
[0, T]

with

(3.1) meas (E,)= pT,

such that the solution x, (.) of (2.2) corresponding to Xo +p and

v,(t)=v(t), t6[0, T]\E,,(3.2)
w(t), t6Eo,

satisfies
(3.3) xp(t)=x(t)+p6x(t)+o(p) aspS, O,

uniformly in [0, T], w(. 6 0ad and r in bounded sets ofX, where x(. satisfies the
following variational equation"

(3.4)

ax(t) G( t, O)r + G( t, s)fx(s, x(s), v(s))6x(s) ds

+ G(t, s)[f(s, x(s), w(s)) -f(s, x(s), v(s))] ds, t[O, T].

The proof can be found in [25].
LEMMA 3.2. Let Z be a locally convex topological vector space. Let Q be a finite-

codimensional subset ofZ with the property that

(3.5) 0 co Q.

Suppose {fn } is a sequence of continuous linearfunctionals on Z satisfying the following"
(i) There exists a convex neighborhood N ofzero and there exist constants c, C > O,

such that

(3.6)

(3.7)

(3.8)

Then, we have

(3.9)

c<=supfn(z)<=C Vn>-l;
zEN

(ii) There exists a sequence ofpositive numbers en , O, such that

f,(z) >= -e, Vn >= l, z 6 Q;

(iii) There exists a continuous linear functional f such that

f,-.f weakly*.
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Proof First of all, from (3.7), we see that

(3.10) f,(z) >-_ -e, Vn >- l, z co Q.

Next, from our assumptions on Q, we can find closed subspaces Zo and Z1 of Z, such
that

(3.11) Z Zo(Z, dim Z1 <
and for some oCO Q and some convex neighborhood N(o) of o (in Z) it holds
(note (3.5) that

(3.12) N(o) f-I Zo = co Q.

Without loss of generality, we may assume that the neighborhood N appearing in (i)
is symmetric and bounded (in the sense that for any continuous linear functional g,
we have SUpzN g(z) < oe), and

(3.13) N(o) N+ o.
Now, suppose f= 0; we will obtain a contradiction. For any z N, by (3.13), we have
z + o N(o). On the other hand, we have the decomposition

z + o Zo + z, Zo Zo, z Z.
By (3.12), we know that Zo co Q. Thus,

L(z) :f. (Zo)+f.(z,)-f.(o)
>--e.+L(z)-f.(eo).

Then, by (3.8), the assumption f=0, and (3.11), we obtain

6.=-[f.(eo)l+lf.(z)l-o as n-o,

uniformly in z N (note that z depending on z). Thus, we have

f(z)<--_s,+8, VzN, n>-l.

This leads to a contradiction to (3.6). Hence (3.9) follows, l-]

A result similar to Lemma 3.2 was proved by Fattorini [19] in the case where Z
is a Hilbert space and by Xu [31 in the case where Z is a Banach space. Our argument
is a little different from theirs and looks simpler. In 4, we will use this result for the
case where Z is a Banach space.

LEMMA 3.3. Let Z be a Banach space and let Z and Z be dosed subspaees of Z
such that Z Z Z2. Let G (Z) and set

Y= {(z, al z + Zl)lZ Z, z Zl}.

Then, Y is a closed subspace ofZ x Z and

(3.14) Z x Z Y@ ({0} x Z2).

In particular, Y is offinite codimension in Z x Z if and only ifZ1 is offinite codimension
in Z.

Proof First of all, it is easy to see that Y is closed in ZxZ. Next, for any
(x, y) Z x Z, there exist Zl Z and z Zz, such that

(3.15) y Gx zl + z.
Thus,

(;)( x )(0)+ m Y+ ({0} x Z2).(3.16)
Gx+z z:
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On the other hand, if (z) Y ({0} x Z2), then we have some zl Z1 such that

Thus, x 0 and

z z e Z f3 Z {0}.

Hence, (3.14) follows. The last conclusion is obvious. [3

The next result involves the Clarke’s generalized gradient. Thus, let us recall some
relevant material, which can be found in [9].

Let Z be a Banach space. Let g:Z-> be a Lipschitz continuous function. We
define

(3.17) g(z; s) li
g(z’+ p)- g(z’)

Vz, Z,
z’- z,p$o p

It holds that

ag(z) {" e Z*lg(z; ) >-_ (’, :), v e z} Vz e z

(3.19) g(z; s) max {(s, sc)[" Og(z)} Vz, Z.

Now, if Q is a convex and closed subset of Z, we can define

do(z) inf [z-z’[z.
z’e Q

We know that dQ(.) is a convex function and

(3.20) IdQ(Z) dQ(Z’)l Iz z’l.
Fuhermore, by Proposition 2.2.7 of [9], we have

(3.21) lim
do(z + p)- do(z) d(z; ),

p+O p

and

OdQ(Z) { Z*ldQ(Z; ) >-- (, ), V# Z}
(3.22)

{ Z*ldQ(Z’ dQ(z) >= (, z’- z), Vz’ Z}.

In addition, we have the following lemma.
LSMMA 3.4. Let Q be a convex and closed subset of some Banach space Z en,

for any z Q,

(3.23) I1. 1 V ado(z ).

Proof By (3.20) and Proposition 2.1.2 of [9], we know that

(3.24) I1* 1 Vff Odo(z).

Now, since z Q, for any 0 < 6 < 1, there exists a q Q, such that

(3.25) do(z (l 6)[z- q]z > O.

Thus, for any OdQ(Z), by (3.22), we have

dQ(Z) (, qa z).
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Then,

(1-6)lz-qlz <--_ do(z)<--( q-z) <=l]z.]z-q[z.

Hence, by (3.25),

1 8.

Then, (3.23) follows (see (3.24)).
COROLLARY 3.5. Let Z be a Banaeh space with strictly convex dual Z*. Let Q be

a convex and closed subset of Z. Then, for any z : Q, odo(z) is a singleton.
Proof By Proposition 2.1.2 of [9], we know that Od(z) is convex in Z*. Thus,

our assertion follows from Lemma 3.4 and the strict convexity of Z*.

4. Proof of the maximum principle. This section is devoted to proving the maximum
principle stated in 2. For any (x0, u(. )) X ad, we denote the unique solution of
(2.2) with x(0)= Xo by x(.; Xo, u). Then, let us introduce the following

(4.1) x(t;Xo, U)= f(s,x(s;xo, u),u(s))ds Vt[0, T].

It is clear that

(4.2) x(T; Xo, u) J(u(. )).

As in 2, we let t/(. be an optimal control, 2(. be the optimal trajectory of the
system (2.2) corresponding to /(. and the (optimal) initial state 2o and 2( be the
corresponding function obtained through (4.1). Then, for any e > 0, we define

(4.3)F(xo, u)= {ds(xo, x(T; Xo, u))Z+dso(x(T; Xo, u))2} 1/2 V(Xo, bl)X 0ad
where

ds(xo, Xl) d((xo, Xl), S)

inf {(Ixo-yol 2 / Ix,--yl]2)l/2](yo, el) S} V(Xo, x) x x x,
s (-, - + x(T)],

S0dso(x) d(x, ) Vx

In the space Xad, we introduce the following metric. For all x, 2
X, U(" ), /,(" Oad

where

d(u(.), t/(.)) meas {t [0, T]]u(t)(t)}.
Then, it is not hard to see that (X //d, d) is a complete metric space (see [16], [19],
[31]). Also, it is easy to see that F(., is continuous on X ad. Next, we see that

(4.4) F(xo,/,/(" )) > 0 V(Xo,/,/(" )) X x 0ad
(4.5) F (2o, /(" ))= e =<inf F(xo, u(. ))+ e.

Thus by Ekeland’s variational principle [16], [17], there exists a pair (Xo, (’))
X x d, such that

(4.6)

(4.7)

(4.8)

d((xo, )),(Xo, a( )))<42,
F(x;, u( )) <- F(Xo, a(. )),

F (Xo, u(" )) _-> F(x;, u( ))-x/ d((x;, u( )), (Xo, u(" ))),

V(X0, U(" )) X O-ad.
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(4.10)

(4.11)

where

Now, take any (r/, U(’))EXx 0ad and pE(0, 1], by Lemma 3.1, we know that there
exists a measurable set Eo c [0, T], with meas Eo pT, such that if we let

(4.9) uo(t)
u (t), 6 [0, T]\Ev
u(t), tE.,

and let x (.), x’( and xo(. ), x (.) be the solutions of (2.2) and (4.1) corresponding
to (x, u( )) and (x + p, uo(. )), respectively; then, for any [0, T], as p 0,

x(t) x(t)+ p(t)+ o(p),
O,e xO,eXp (t)= (t)+p(t)+o(p),

CE(t) G(t, 0)r/+ G(t,S)fx(S, XE(S),U(S))E(s)ds

(4.12)

+ G(t,s)[f(s, xE(s), u(s))-f(s, xE(s), uE(s))] ds, t[0, T],

(t) f(s, xE(s), UE(S))E(S) ds

(4.13)
+ [f(s, xE(s), u(s))-f(s, x(s), uE(s))] ds, [0, T].

Now, let us separate several cases.
Case 1. For all small enough e > 0, we have

(4.14) ds(x, xE(r)), ds(X’E(T)) >0.
Then, we see that for all small enough p > 0,

(4.15) ds( ox’(T)) > 0.

Thus, we have

(4.16) ds(X’E( T)) ds(X’E( T)) pO( T) + o(p).

On the other hand, since S is convex and closed in X x X, by (3.19) and (3.21), we have

ds(x + prl, x( T))- ds(x, xE( T))
lim
p,l,o p

ds((x, xE(T)); (, :(T)))
(4.17)

max {(a, ) + (b, (T))l(a, b) Ods(x, xE( T))}

=(aE, r/)+(b, sC(T)),

where (.,.) is the duality between X and X* and Ods(xS,xE(T)) is the singleton
{(a, bE)} (see Corollary 3.5). By (4.14) and Lemma 3.4, we know that

(4.18) lal.+lb,l. 1.

Here, we take {1.1 /2
x /]" ]x} as the norm ofX x X. Then, in (4.8), by letting Xo Xo +

andu(.)=uo(.),wehave

(4.19) -x/- (Inl 2 / T2) ’/2 =< FE(x; + prl, Up(" ))- FE(X;, u (’)).
P
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Letting p0 and by (4.16)-(4.17), we obtain

(4.20) -v/-- (I,/12+ T2)1/2<-((, r/)+ (0, :(T))+ (T),
where

ds(x;, x(T))
(4.21) a,

F(x,u(’))

ds(x;,x(T))
(4.22) b,

F(x;, u(’))

dso(x’(T))
(4.23) /=F(x, u(. )).

Thus, by (4.18), we have

(4.24) ]q312x. + l12x. + (o)2 1.

From (4.6), we know that as e $ 0, we have

x) - 2o, : (t) - :(t),
(4.25)

:o(t), :o(t)
uniformly in t [0, T], where (. and o(. satisfy the following equations:

( a( ,o + G( , sfx(s, (s, a(s(s ds

(4.
+ G(t, s)[f(s, X(s), u(s)) -f(s, Y.(s),/(s))] ds,

(t) f(s, X(S), a(s))s(s) ds

(4.27)
+ [f(s, 2(s), u(s))-f(s, X(s),/2(s))] ds,

On the other hand, by (3.22), we have

(a,xo-x}+(b,x,-x(r)}<=-ds(x,x(r))<=O V(Xo, X,)eS.(4.28)

Thus,

t[o, r],

t[0, T].

(q3,, Xo 2o) + ip, Xl 2(T))
(4.29)

<=(Ix-Xol/lx(r)-(r)l%)’/=-O as e-0.

Then, by (4.20), we have

(ff, r/- (Xo-2o))+ (ff-, (T)-(x,-X(T)))+ (r)
(4.30) --> -v ([hi 2 + T2)’/- -I: (T)- :( r)l- :( T)- :o( T)I

--0 l(X0, Xl) S.

Here, we can see that 0 is uniform in u(. )e 0ad and in bounded sets of X. Now,
we let



904 x.

and let

X, span (Yl-Q+(T)-G(T, 0)o).

Then, by our assumption, we know that X1 is finite-codimensional in X. On the other
hand, it is not hard to see that

span -S+
:(T)

Y
G(T, 0)x+x

xX,xX

Thus, by Lemma 3.3, we know that Y is finite-codimensional in X x X. Equivalently,
we have that -S + ()) is finite-codimensional in X x X. Also, this set contains the
element zero of X x X. Thus, by Lemma 3.2 and (4.24), (4.30), we have a subsequence
(denoted in the same way) such that

(4.31) (, 2,)(, f, fo)4 0.

Then, from (4.20) and (4.23), we obtain

(4.32) (,

(4.33) f0.
Case 2. There exists a sequence e 0, such that

(4.34) ds(x,x(T))=O.

Then, by (4.4), we must have

(4.35) d:(x
, ( )) > O.

Thus, (4.20) and (4.21)-(4.23) read

(4.36) - (]nl 2 + T2) 1/z (T),

(4.37) qS 0, - 0, qo 1.

Letting e 0, we get (trivially)

(4.38) o(T) => 0,

and

(4.39) qs=0, q=0, q=l.

Case 3. There exists a sequence e $ 0, such that

(4.40) dso(x’(T))=O.
Then, by (4.4), we have

(4.41) ds(x;, x T)) > O.

Then, by the arguments used in Cases 1 and 2, we can show that (4.32)-(4.33) hold
with q 0. Thus, in any case, we always have (4.32)-(4.33). On the other hand, from
(4.28) (which is true for all of these three cases), we obtain that

(4.42) (p, Xo-o)+(q,x-Y(T))<=O V(Xo, X)S.

Now, let q(.) be the unique solution of (2.16). Then, by (2.8) and (2.9), we have

(4.43) (t) -G*(T, t)+ a*l(S, t)g(s) ds, t[0, T],
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where

(4.44) g(s) f(s, (s), t/(s))*,

and

(4.45) qo= _qo_<_ 0"

From (2.11) and (4.26)-(4.27), we know that

io(4.46) ( t) Gl( t, O)rl + al( t, s)h(s) ds,

(4.47) :(t) [{g(s), :(s)} + h(s)] ds,

where

h(s) f(s, (s), u(s)) f(s, (s), ft(s)),

h(s) =f(s, (s), u(s)) f(s, (s), a(s)),

Thus, we have the following duality equality (note (2.14)):

(O(T), :( T))- (0(0), r/)+ 0:(T)

(4.48)

s[O, T],

t[0, T],

t[O, T],

t[0, T],

t[0, r].

[((t), h(t))+ h(t)] dt,

[H(t,f(t), tp(t), d/, u(t))-H(t,X(t), b(t), o, t/(t))] dt,

for all r/X, /./(.) 0ad and (4’(’), 0, :(’), :o(.))satisfy (4.4), (4.45)-(4.47). Hence,
by setting r/=0, we obtain (note (4.32))

T

(4.49) [H(t, ff( t), tp( t), O, u( t)) H( t, X( t), d/( t), q, ( t))] dt <= O /u( ad
o

Thus, (2.17) follows. By taking u(. )= (. ), we get (see (4.32) and (4.48))

(,, )-> (q,(o), n) vn x.
Thus, q5 q(0) and (2.18) follows. Finally, by (4.31) and (4.43), we see that (0("), 0) #

0. The proof of the maximum principle is completed. El
Remark 4.1. At the present time it is an open question whether the strict convexity

of X* could be removed.

5. Applications. This section discusses some interesting and important cases
covered by our result.

(1) The control problem with fixed endpoints. The constraint of this problem is
S= {(Xo, Xl)}. Thus, we have Q= {Xl-GI(T, 0)Xo}. Hence, provided (H0)-(H3) hold
and is finite-codimensional in X, the maximum principle holds. This is the result
of Fattorini [19].

(2) The control problem with a terminal end constraint. In this problem, we have
S= {Xo} x Q1. Thus, Q= Q1-GI(T, 0)Xo is finite-codimensional in X is the same as
Q1 is so. Hence, provided (H0)-(H3) hold and Q1 is finite-codimensional in X, the
maximum principle holds. This is the result of Li and Yao [25]. The difference is that
they did not assume the strict convexity of X*.
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(3) The control problem with separated end constraints. For this problem, S
Qo Q1. We have that the maximum principle holds if (H0)-(H3) hold and Q=
Q1- GI(T, 0)Qo is finite-codimensional in X. This result is new.

(4) The optimal periodic control problem. The periodicity of the problem gives
S {(x, x)lx X}. In addition to (H0)-(H3), let us assume that G(-,. ),fo andf satisfy
the periodic conditions:
(H4) For any 0 _-< s _-< t, x X, and u U,

(5.1) G(t+ T, s+ T)= G(t, s).,

(5.2) f( + T, x, u) =f(t, x, u),

(5.3) f(t + T, x, u)=f(t, x, u).

From Theorem 2.3, we have the following theorem.
THZORZM 5.1. Let (H0)-(H4) hold, and let Range (I- G(T, 0)) be finite-

codimensional in X. Then, the maximum principle holds for the periodic optimal control
problem, i.e., there exist tp<-O and b(.) satisfying (2.16) with the periodic condition
(T) d/(0), such that the maximum condition (2.17) holds and (d/, (.)) O.
COROLLARY 5.2. Assume that (H0)-(H4) hold and GI( T, O) is a compact operator

on X. Then, the maximum principle holds for the optimal periodic control problem.
Here we only need to note that when G(T, 0) is compact, then I- G(T, 0) is a

Fredholm operator on X and thus it has a finite-codimensional range. Then, Theorem
5.1 applies.

Finally, let us give two interesting examples.
Example 5.3. Let r>0, X C([-r, 0]; n). Then, X is separable. Thus, we may

endow a new norm to X so that X* is strictly convex (see [12]-[14]). Consider the
following functional differential system

(5.4) dx(t)-f(t,x,, u(t)),
dt

where f: X x E" - En is a given map and x, X is defined by

x,(O)=x(t+O) V0 6 [-r, 0],

whenever x(. is continuous. Furthermore, we let fo:0 X0 be given. We
assume that (H2) and (5.2)-(5.3) hold for the maps f and fo. Now, we let GI(’," be
the solution operator of the variational equation

(5.5)
d6x(t)

dt
=fy(t, xt, u( t))Sx,

where fy(t, x,, u) is the Fr6chet derivative off(t, x,, u) in x,. From Hale [21], we know
that GI(T, 0) is compact for T> r. Thus, by Corollary 5.2, if the period T> r, then
the maximum principle holds for the periodic optimal control problem of functional
differential system (5.4) without any additional condition. Here, we eliminate the
conditions imposed by Colonius [10], Li [23], or Li and Chow [24] in proving the
similar result. In this example, we may also take X Wl’P([-r, 0]; n) with 1 =< p <.

Example 5.4. Let f c " be a bounded region with smooth boundary F. Let
a0 C2(f) such that for some constant a > 0,

(5.6) ao(x),j>=a 2 V=(:l,’’’,:,)eN", xel.
i,j=l i=1



NECESSARY CONDITIONS FOR OPTIMAL CONTROL 907

Consider the parabolic system

02YOY_ot
i,j:l

ai(x) OxiOxj+f(t,x,y, (x, t)), (t,x)Nxa,

(5.7) y(T,x)=y(O,x), xea,
y(t,x)=O, (t, x)eNxF,

where f:N x x [ x Nm
_
[ is a continuous function such that f is continuous and

f(t+ T,.,., .)=f(t.,., .).

If we let

Ay=- aij(x) Oz----Y
i,j= OX OXj

with the Dirichlet boundary condition, then e-A’ is an analytic semigroup on X L2()
which is compact for all > 0 [20], [27]. Now, let

(5.8) J(u(’)) f(t,x,y(t,x), u(t,x)) dxdt.

We consider the following periodic optimal control problem.
Minimize J(. subject to the parabolic system (5.7), with

u(t,. ?/,d
_
L() a.e. [0, T],

(5.9)
u(t+T,.)=u(t,.).

Now, if (.9(’, "), (’,’)) is optimal, then it is not hard to show that the evolution
operator G1(t, s) of the variational equation:

o(y)
ao(x

O2(SY)
+fy(t,x,y(t,x), (x, t))6y, (t,x)E[xa,

0 i,j: OX OXj
(5.10)

y(o, x) yo(X), x,
y(t,x)=O, (t,x) 6NxF,

has the property that G(T, 0) is compact. Thus, the maximum principle holds for this
periodic optimal control problem.

Acknowledgments. The authors thank the referees for pointing out a mistake in
the original version of the paper.
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OPTIMAL CONTROL WITH INFINITE HORIZON FOR DISTRIBUTED
PARAMETER SYSTEMS WITH CONSTRAINED CONTROLS*

G. DI BLASIO

Abstract. Optimal control problems for systems governed by linear partial differential state equations
with constrained controls are studied. If the dynamics are stabilizable with respect to the cost, it is proved
that the value function is a generalized solution for the associated stationary Hamilton-Jacobi equation.
Moreover, the feedback formula and uniqueness are proved under suitable assumptions.
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1. Introduction and statement of results. Let X and U be real separable Hilbert
spaces with inner product (,)x and (,)v, respectively. We will be concerned with the
following problem. Minimize the functional

(1) J(u, x)= [h(u(t))+ g(y(t))] dt

over all measurable u" R+ U and y’R+ - X satisfying the state equation (in the mild
sense)

(2) y’(t) Ay( t) + Bu( t),

and the control constraint

(3)

t->0, y(0)=x

u(t) EC, t>=O.

Here
(i) h" U- R is defined as h(u) 1/211ul[ if u c, whereas h(u) + if u c;
(ii) g’X- R/ is a lower semicontinuous (1.s.c.) convex function;
(iii) A’D(A)_ X-X is the infinitesimal generator of a Co-semigroup S(t)

satisfying IIS(t)xllx <- exp (cot)]IX]Ix, for some co E R;
(iv) B L( U, X);
(v) C U is a closed, convex, and bounded set containing the origin.
We will follow the dynamic programming approach, which exploits the connection

of (1)-(3) with the following stationary Hamilton-Jacobi equation:

(4) H(B*qx(x)) -(qx(x), Ax)x g(x),

where B* is the adjoint of B and H:U- R is defined as

H(u) 5[11 u I1 -Ilu +
(here Pc(u) denotes the projection of u on C).

In the case where g(. )=J]. and C= U problem (1)-(3) reduces to the well-
known linear-quadratic optimal control problem and (4) is replaced by the algebraic
Riccati equation. For this problem and the connection with the algebraic Riccati
equation there is an almost complete theory (see, e.g., the review paper of Pritchard
and Zabczyk [12] and the references therein).
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In this paper we prove that there exists an optimal pair for (1)-(3) if and only if
(4) admits a solution. Moreover, we will give sufficient conditions for the existence of
solutions of (4). These solutions will be obtained as

q(x) lim q(t, x),
t-->

where q is the solution of the Hamilton-Jacobi equation

(5) p,( t, x) + H(B*p( t, x)) (p,(t, x), Ax)x g(x)

satisfying

(0, x) =0.

Stationary Hamilton-Jacobi equations have been studied by Crandall and Lions
[5]-[7] in the case where the equations contain an additional term eq with e > 0. This
regularization does not allow for the study of problem (1)-(3). We also recall the
results of Cannarsa and Da Prato [4] who have studied (1)-(3) and the corresponding
Hamilton-Jacobi equation in the case where h and g are locally Lipschitz and convex
functions and the operator A is replaced by A + F, where A1 generates an analytic
semigroup and F is nonlinear.

The plan of the paper is as follows. In 2 we recall some results concerning an
approximated version of (5). In 3-4 we prove existence and establish some properties
of solutions of (5). Furthermore, in 5 we study the existence of solutions of (4)
together with the connection with problem (1)-(3). Moreover, we give sufficient
conditions for the feedback formula and for uniqueness. Finally in 6 we consider an
application to a partial differential state equation.

2. Preliminaries. The approximating Hamilton-Jacobi equation. In this section we
recall some results of [8], which will be needed in the sequel. We use the following
notation for functions p :X R:

C2(X) {q is continuous, sup (]q(x)[/(1 + []x[]2))
Iq( ")l sup

C[p(X) {q is Fr6chet-diiterentiable, sup ((]]q’(x)-
xy

(here and in the following the subscripts X and U in the scalar products are omitted
for simplicity in notation).

Let F:X--> R be the function defined as F(x)= H(B*x)

(6) F(x) 1/2(][B*xI] 2- [[B*x + Pc(-B*x)[[2);
then it can be proved (see [8, 2]) that F is convex, Fr6chet diiterentiable and

(7) F’(x) -BPc(-B*x).

Furthermore, we denote by F* the conjugate function of F

(8) F*(x) sup {(x, y)- F(y)}.
yX

Hence F* satisfies the property

(9) (x, y) <- F*(x) + F(y) with equality holding iff x F’(y).

Now let Ko be the subset of Clip(X) defined as

(10) Ko {q e C[p(X)" q is convex, q(0) q’(0) =0}.
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For given q Ko and A > 0 we set

(11) q(x) inf o(y)+AF*(X-Y].
It can be proved that the infimum is attained at y J(x), where

Jx(x) l + AF’’)-’(x).(12)

Therefore

(13) qa(x) q(Jz(x))+AF*(X-J(x))"A

In the case where F(x)---&lIxll, (i.e., when B= I and C U), the functions
given by (11) reduce to the well-known regularization of convex functions. In the
present context it can be proved that qa satisfy the following properties (see [8, 3]):

(i) o Ko, o(x) _-< q(x),
(ii) lima+o oa(x)= q(x),
(iii) lima+o (q(x)-q(x))/A F(o’(x)).
In view of (iii) we will replace the Hamilton-Jacobi equation (5) by the following

approximating equation:

(14) o,( t, x) + 1/A(q( t, x) q t, x) (ax, qx( t, x)) g(x).

Equation (14) and the initial condition

(15) q(O, x) f(x)

yield to the integral equation

q(t, x) exp f(S(t)x)+ exp

(16)

-q(s,S(t-s)x)+g(S(t-s)x) ds,

where S(t) is the semigroup generated by A. Conversely, if o satisfy (16), then it is
easy to see that for each x D(A) the function q(t, x) is continuously differentiable
and satisfies (14)-(15).

We have the following lemma (see [8, Thm. 3]).
LEMMA 1. Let f, g Ko. Then there exists a unique qa C(O, T; C(X)) such that

qa( t, Ko, t- p( t, x) is continuously differentiable for x D(A), and qx is a solution

of (16). Moreover, for each R > 0 we have

(17) ]qx( t," )]R <- If(" )l xp(,, + t}g(. )]R exp(tot),

where to satisfies [IS(t)ll-<- exp (ot).
Proof The existence of a unique solution of (16) is proved in Theorem 3 of [7].

To prove (17) set

(18) q(t, x)= o(t, exp (-wt)x).

Then q satisfies

d/t(t,x)+-[O(t,x)-( )x(t, exp(-wt)x)]-(AlX, q,(t,x))=g(exp(-wt)x),
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where A1 A-wL Therefore

q(t, x) exp f(S(t)x)+ exp

’-(q )(s,S(-s)exp(-ws)x)+g(Sl(t-s)exp(-ws)x) ds,

where S is the semigroup generated by A. Now from propey (i) we have

(),(s, S(t-s) exp (-s)x) N "(s, S( t-s) exp (-ms)x)= O(s, S( t-s)x)

so that

[O(t,.)exp [f(’)l- + exp((s-t)/) O(s,.)],+]g(.)] ds

and hence

Ioexp (t, .)[, /(.)[, + exp ]g(.)[. ds + exp l(s, .),ds.

Therefore from the Gronwall inequality we get

io+ exp [If(’)l +a exp 1 Ig(’)l ds

so that (17) follows from (18).
The following lemma establishes a monotonicity result for the solutions of 16).
LEMMA 2. Let and be the solutions of (16) with data ( g) and ( ),

respectively. Iff f and g, then
Proo The existence of solutions of (16) can be proved by a fixed point argument

(see [8, Thm. 3]). Therefore the asseion
imply N , where is defined by (11).

DEFINITION 1. Let g K0 (where Ko is defined by (10)). We say that a continuous
function ’[0, T] x X R is a strong solution of the problem

(9)
,(t,x)+H(B*(t,x))-(ax, x(,x))=g(x),

(O,x=f(x,

if
(i) p(t,’) Ko; q(.,x)Lip (0, T), for each xD(A),
(ii) there exist {fn}, {gn}-- Ko and {q,}__ C(0, T; C2(X)) verifying qn(t, ") Ko;

for each x D(A) t- p,(t, x) is continuously differentiable. Moreover,

and

f, ->f in C2(X), g, -> g in C2(X), qn --> q in C(0, T; C_(X)),

0

Ot
q,(t,x)+ H(B*q,x(t,x))-{Ax, q,x(t,x))= gn(x)

q.(O, x) f(x).
We have the following existence result.
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THEOREM 1. For each f, g Ko there exists a unique strong solution ofproblem (19)
and we have

(i) q9 =limo qa in C(O, T; Ce(X)), where p;’ is the solution of (16).
Moreover, we have

(ii) ]q(t,. )}R --<--If(" )lRexp(o,) + tlg(" )lRexp(wt)"
Furthermore, if q and are strong solutions of (19) with data (f, g) and (f, ),

respectively, and f <-_f , <-_ g, then
(iii) q3(t,. <- (t,. ).
Proof Assertion (i) is proved in Theorem 4 of [8]. Assertions (ii) and (iii) are

consequences of property (i), (17), and Lemma 2.
Now set

(20)
T

J(u,x)=f(y(T))+ [h(u(s))+g(y(s))] ds

and consider the problem of minimizing J(u, X) over all (y, u) satisfying

(21) y’(s)=Ay(s)+Bu(s), t<-_s <- T, y(t)=x.

The following theorem concerns the connection between strong solutions of (19)
and problems (20)-(21).

THEOREM 2. Let q be the strong solution of (19). Then for each (y, u) satisfying
(21) (in the mild sense) we have

(22) q(T-t,x)+ -:llPc(-B*x(T-s,y(s)))-u(s)ll ds<-_J(u,x).
2"

If in addition (y*, u*) in (21) satisfies
u*(s) Pc(-B*qx( T- s, y*(s)),

then

(23) q( T- t, x) f(y*(T)) + I T

[h(u*(s))+ g(y*(s))] as.

Proof Using (31) of [7], we have

q(T-t,x)+ [H(B*q,(T-s,y(s)))+(qx(T-s,y(s)),Bu(s))+-llull ]ds<-J(u,x).

Furthermore, from the convexity of C we have

(B*q( T- s, y(s)) + Pc(-B*q( T- s, y(s))), u(s) Pc(-B*px( T- s, y(s)))) >= 0

so that from (6)

H(B*q( T- s, y(s))) + (qx( T- s, y(s)), Bu(s))

-IIPc(-B x(T- s, y(s)l)lle-(B*qgx(T- s, y(s)), Pc(-B*qx(T- s, y(s))))

+(B*q(T-s, y(s)), u(s))

1/2I[Pc(-B*q(T- s, y(s)))l[--(Pc(-B*q(T- s, y(s))), u(s))

and (22) is proved. Assertion (23) is proved in Theorem 5 of [8].
In the following we need existence for solutions of (19) with more general data

(f, g). To this end we introduce the subset K defined as

(24) K={q:X-R: q is convex and 1.s.c., 0 Int D(q), o(0) =0, 00o(0)}.
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As usual, we denote by D(p) the effective domain of p

D(q) {x 6 X: q(x) < +c}

and by 0q the subdifferential of q

Oq(x)={x’ X: o(x+ y)>-q(x)+(y,x’), Vy6X}.

DEFINITION 2. Let f, g 6 K. We say that a function o from [0, T] x X into R is
a generalized solution of (19) if

(i) q(t,.) K,
(ii) there exist {f}, {g}__ Ko and {q} such that

f ’ f, g ’ g, q(t, x) - o(t, x),

moreover, o is the strong solution of the problem

(25)
q,(t,x)+ H(B*qx(t,x))-(Ax, qx(t,x))= g,

(0, x) =L(x).

(26)

We have the following existence result.
THEOREM 3. For each f, g K there exists a generalized solution of (19).
Proof For each e > 0 set

f(x)=min [e [[x- y[[2+

g(x) min [-ff-e llx-Yll2 + g(Y)]
We have f, g Ko and moreover

(27) f(x) f(x), g(x) g(x).

Using Theorem (ii) and (iii) and (27) we have that there exists q strong solution
of (25) and moreover

(28) Ic(t," )[g <--[L(" )[Rexp(ot) -’[- tlg(" )lRexp(ot)
and

q(t,x)<--q,(t,x), 0<e’<e.

Therefore there exists q such that

(t, x) q’ ( t, x).

Moreover, we have that q(t,. is convex and 1.s.c. To accomplish the proof it suffices
to show that Oe Int D(q(t,. )). Since Oe Int D(f), Int D(g) and f and g are convex
we have that there exists R’ such that B(O,R’)_D(f),D(g) (here B(O,r)=
{x X: [[x][ _-< r}). Therefore using (27) and (28), we have that B(0, R’/exp (ooT))
D(q t,. )) so that 0

_
Int D(q t,. )). ]

We now investigate the connection between the generalized solutions of (19) and
the optimal control problem (20)-(21). To this end we set for (y, u) satisfying (21)

J(u,x)=f(y(T))+ [h(u(s))+g(y(s))] ds.

We have the following theorem.
THEOREM 4. Let q be a generalized solution of (19). Then we have

(29) q( T- t, x) inf J(u, x).
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Moreover, ifx D(q( T- t, )) then there exists the optimal pair (y*, u*) for J(u, x) and
we have

(30) y* w- lim y, u* W- lira u,

where (y, u) is optimal for J (u, x).
Proof Let {q}, {f}, and {g} be given by Definition 2(ii). By (22) we have

(31) q(r-t,x)+ -[IPc(-B*q,x(T-s,y(s)))-u(s)[[ ds<-J(u,x)<-_J(u,x).

Therefore letting e- 0 we get

(32) q( T- t, x) <- J(u, x).

To accomplish the proof of (29) let (y, u) in (21) be given by

u(s) Pc( B*q,x( T- s, y(s))).

By (23) we have

(33) q( T- t, x) J(u, x).

Moreover, since u C and C is bounded we have, for s[t, T], Ilu(s)ll_-<const, so
that Ily(s)ll <-_ const. Therefore there exists a subsequence ek -*0 satisfying, for almost
every s t, T],

(34) uk(s) u*(s), yk(s)- y*(s), weakly

and moreover (y*, u*) satisfies (21) (in the mild sense). Now let e’>0; since {f} is
monotone we have for ek < e’

f(y(T)) ->f,(y (T))

so that

which in turn implies

In the same way we find

Hence we get from (33)

(35)

so that from (32)

lim inff (yk (T)) _-> f,(y*(T)),

lim inff(y (T)) >-f(y*( T)).

lim inf g(y(s)) > g(y*(s)).

q( T- t, x)>=J(u*, x)

q( T- t, x) J(u*, x)

and (29) is proved. Moreover, if x e D(q(T- t, )), then (y*, u*) is optimal. Since the
optimal pair is unique, by the same argument used above we prove that each sub-
sequence of (y, u) contains a subsequence that converges weakly to (y*, u*).

4. Properties of the solutions of the Hamilton-Jacobi equation. In this section we
establish a number of properties of the solutions of (19). We begin.with the following
result.
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THEOREM 5. For each f, g K there exists a unique generalized solution of (19).
If in addition, D(f)= D(g)= X, then we have

(i) D(o(t,. ))= X,
(ii) o( t,. is locally Lipschitz continuous on X, uniformly for [0, T],
(iii) o(., x) is Lipschitz continuous on [0, T] for each x D(A),
(iv) q is continuous on [0, T] X,
(v) the optimal pair (y*, u*) satisfies the feedback formula u*(s)

Pc (-B* Oxq( T- s, y*(s))),for a.e. s [0, T] (where Oxqo(t, x) denotes the subdifferential
of x q( t, x)).

Proof The existence and the uniqueness of q are proved in Theorem 3 and in
(29). To prove (i) and (ii) let us use (29) with u =0

q( T- t, x) _--<f(exp (A( T- t))x + g(exp (A(s t))x) ds.

Since D(f)--D(g)= X we have, by well-known properties of 1.s.c. and convex
functions, that f and g are continuous on X. Therefore the functions Fl(x)=
supso, T3f(exp (As)x) and G(x) superego, r3 g(exp (As)x) are finite for each x X.
Since they are 1.s.c. and convex functions, we have that Fr and G are continuous on
X. Thus for each x X there exist rx and M, such that

(36) q( T- t, y) <- Mx, y 6 B(x, 2rx), t[0, T]

and (i) is proved. Moreover, we have (see, e.g., [9, Cor. 1.2.4]) that q(t,. is Lipschitz
continuous on B(x, r) with Lipschitz constant Mr- which proves (ii). To prove (iii)
fix t, t2 [0, T] with t < t2 and let (y*, u*) be optimal at (tl, x), we have

[q(T- t,, x)- q(T- t2, x)[ <= [q(T- t, x)- q(T- t2, y*(t))[

+ Iq0( T-t2, Yl*(t2))- q( T-t2, x)l I + I2.

Since the restriction of (y*, u*) to [t2, T] is optimal at (t2, y*(t2)), we have

I 2
I h(u* (s))+ g(y* (s)) ds= I + I’.

tl

Since u*(s) C, and C is bounded, we have Ilu*(s)[[-<const. so that

I’ < c(t2- t)

Moreover, if x D(A)

[ll*(S) xll =< ][exp ((s ta)A)x xll / Bu*(r) &r
tl

Io_<- A exp (rA)x dr + c(t2- t)

=< (exp (ooT)llAxll + c)(tz- t,).

Since g is continuous at x there exist r and M such that if y B(x, rx), then
g(y) <- Mx. Therefore if t2- tl -< r’x r(exp (ooT)llaxll + c)- 1 we have

I’ <= Mx( t2- tl)

so that if t2- r

11 < I + I" < Cl(X)(tz t,).
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Furthermore, using (ii) we have that there exist r and c2(x) such that for t2- tl -< r
we get

I2<=e2(x)(tz-tl),

which achieves the proof of (iii). Moreover, (iv) follows from (ii) and (36). To prove
(v) let us use (31) with (y, u) replaced by (y*, u*)

T

y* ds J(u, x).
1

q(T-t,x)+ -llPc(-B*q,x(T-s, (s)))-u*(s)l]

Since (y*, u*) is optimal we have q(T-t, x) J( u*, x); hence there exists {ek}
such that, for almost every s [0, T],

(37) lim Pc(-B*qk,x( T- s, y*(s))) u*(s).

Now fix toe [0, T]. From (36) there exist ro and Mo such that if s [0, T] and
]lx-y*(to)]l<=ro, then q(T-s,x)<-Mo, so that q(T-s,x)<-Mo; moreover, there
exists Cro such that Is- to]--< O’o implies ]y*(s)- y*(to)]--< ro/4. Therefore using the above-
mentioned property of convex functions (see [9]) we have that for s to-ro, to + Oo]
the function (T-s, .) is Lipschitz continuous on the ball B(y*(s), to/4) and the
Lipschitz constant e c(Mo, ro) is independent of e. Therefore for s to-Oo, to-
we have

q,x( T- s, Y*(S))II--< c(Mo, ro).

Since [0, T] is compact we have that there exists c such that for s 6 [0, T] we have

q,x( T- s, y*(s))II-<- c;

therefore there exists a subsequence (again denoted by {ek}) such that

w-lim pk,(T-s, y*(s)) z(s)Oq,(T-s, y*(s))

so that by (37)

u*(s)= Pc(-B*z(s))

and (v) is proved.
Remark 1. Due to Asplund’s theorem [1] (see also [10, Thm. 2.12]) we have that

if D(f) D(g) X, then the generalized solution of (19) is FreShet differentiable on
a dense subset of X.

The following result concerns monotonicity of the solutions of (19).
THEOREM 6. Let and be the generalized solutions of (19) with data (f,, g) and

f, ), respectively. Iff <-f and , <-_ g, then

(,x)<-(,x).

Proof From Theorem 3 and from uniqueness we have that q lim q, where
is the strong solution of (25) with data (f, g) given by (26), and similarly for
Hence the assertion follows from Theorem l(iii) and from the fact that jT _<_f and
g.
The following result concerns continuous dependence upon the data.
THEOREM 7. Let q and q be the generalized solutions of (19) with data (f, g) and

(f, g), respectively. Iff f and g g, then

,(t,x)?(t,x).
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Proof From Theorem 6 we have that {qn} is nondecreasing. Therefore for each
(t, x) there exists

(38) 4’( t, x) lim qn(t, x).

Furthermore, from (29) we have

(39) q,(T-t,x)<-fn(y(T))+ [h(u(s))+g,(y(s))] ds

over all (y, u) satisfying (21), whereas we have

(4o) (r-t,x)=L(y(r))+ [h(u(s))+gn(y(s))] ds

if x e D(q(T- t, )) and (y, u,) is optimal. Now (38) and (39) imply

(r-t,x)f(y(r))+ [h(u(s))+g(y(s))] ds

and hence if denotes the generalized solution of (19)

(t,x)(t,x).

Moreover, let x D((T- t, )); using (40) and a computation similar to the one
used in proving (34) we get that there exists a subsequence (y, u) such that y y*
and u u*, weakly, and that

(r-t,x)f(y*(r))+ [h(u*(s))+g(y*(s))] ds.

Therefore we have

(41) 0( T- t, x)= inf J(u, x),

where the infimum is taken over all (y, u) satisfying (21). Hence using (29) and (41)
we get 0 and the asseion is proved.

Remark 2. Without essential modifications it can be proved that the asseion of
Theorem 7 remains true if the assumptions f f and g, g are replaced by f f and

The following lemmas are a consequence of Theorem 6.
LMMA 3. Let be the generalized solution ofproblem (19) withf O. en (., x)

is nondecreasing, for each x X.
Proof For each to> 0 we have that (t + to, x) is the generalized solution of (19)

with f(x) (to, x) O. Therefore using Theorem 6 we get (t, x) N (t + to, x) and
the asseion is proved.

LEMMA 4. Let be the generalized solution of (19), and let be the generalized
solution of (19) with f= O. en we have

(t,x)N(t,x).

Proof The asseion is a consequence of Theorem 6.
We conclude this section with the following definition which is suggested by

Lemma 4.
DEFINITION 3. We say that is the minimal solution of

(42) t(t, x)+ H(B*(t, x))-(ax, (t, x))= g(x)

if is the generalized solution of (19) with f= 0.
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5. The stationary Hamilton-Jacobi equation and the infinite horizon problem.
DEFINITION 4. We say that a function q K is a stationary solution of equation

(42) if is a generalized solution of (19) with f(x)= (x).
A stationary solution of (42) will be also called a solution of the equation

(43) H(B*qx(X))+(Ax, qx(x)) g(x).

Moreover (43) will be called the stationary Hamilton-Jacobi equation. Equation
(43) generalizes the well-known algebraic Riccati equation. For this equation unique-
ness is false in general. Hence we do not expect to have uniqueness for solutions of
(43). Therefore it is convenient to introduce the following notation.

DEFINITION 5. We say that q is the minimal solution of the stationary Hamilton-
Jacobi equation (43) if q is a solution of (43) and for every solution q of (43) we have

(x)_-< (x).

The maximal solution is similarly defined.
The following theorem gives sufficient and necessary conditions for the existence

of the minimal solution of (43).
THEOREM 8. Let q( t, x) be the minimal solution of (42). Then (43) admits a minimal

solution if and only if there exist r > 0 and Mx such that for each ]Ix I]-_< r

(44) (t,x)M),.

Moreover, the minimal solution q is given by

(45) q(x) lim q(t, x).

Furthermore, we have

(46) (x)=inf _(y(T))+ [h(u(s))+g(y(s))] ds

where the infimum is taken over all (y, u) satisfying (21) with O.
Proof. By Lemma 3 we have that q(., x) is nondecreasing, so that there exists

given by (45). Now let p be a solution of (43); from Lemma 4 we have q( t, x) <- q(x)
so that q_-< q. Therefore if (43) has a solution, then (44) is satisfied. Conversely, let
(44) hold; then we have that 0 Int D(q) so that q K. Furthermore, set f(x)
q(n, x) and denote by q the generalized solution of (19) with f=f. Then we have
f ]’ q and q(t,x)’ q(x) so that by Theorem 7 the function q is a stationary
solution of (42). Finally, assertion (46) is a consequence of (29).

The following theorem establishes a monotonicity result for the minimal solutions
of (43).

THEOREM 9. Let q and be the minimal solutions of (43) with data g and
respectively, and let <= g. Then we have

(x)<-(x).

Proof From Lemma 4 we have that q3(t, x)<_-q(t, x) so that the assertion follows
by a passage to the limit.

Furthermore, the following result concerns continuous dependence upon the data.
THEOREM 10. Let

_
and _n, be the minimal solutions of (43) with data g and

gn, respectively. If gn g, then _,_.
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Proof By Theorem 9 we have that {n,} is nondecreasing so that there exists
lim Sn,. Moreover, from Theorem 7, 0 is a solution of (43). Furthermore, from

Theorem 9 we have O_-< q so that
We now investigate the connection between the minimal solution of (43) and the

infinite horizon problem introduced in 1.
Set

where (y, u) satisfies

(47)

Jo(u, x) [h(u(s))+ g(y(s))] ds,

y’(t) Ay(t) + Bu(t), -> 0, y(0) x.

DEFINITION 6. Given x X we say that a control u L2(R+; U) is admissible if
J(u, x) < +o. Moreover, we say that x X is admissible if there exists an admissible
control at x. We denote the set of all admissible initial data by Xo. Moreover, if u is
admissible and y verifies (47), we say that (y, u) is an admissible pair.

DEFINITION 7. We say that (A, B) is locally C-stabilizable with respect to the
observation g if 0 Int X0. We say that (A, B) is C-stabilizable (with respect to g) if
Xo= X.

The notion of stabilizability introduced in Definition 7 is a generalization of the
one given in the linear quadratic optimal control problem (i.e., in the case where C U
and g(. )= 1/211" 112) In this case the stabilizability problem and the connection with the
algebraic Riccati equation (which replaces the stationary Hamilton-Jacobi equation
(43)) is widely investigated (see, e.g., the review paper [12] and the references therein).

To our knowledge there is no general theory concerning C-stabilizability. In the
following we give some sufficient conditions which may be applied to some situations.

We assume that there exist c, y, and r such that if Ilxll--< r, then g(x)<-_ c[]x]] .
Example 1. The simplest example of stabilizability is the case where A is exponen-

tially stable, i.e.,

(48) [[exp (tA)[]-<_exp (tot)

with o2 <0. In this case the control u=0 is admissible for each []x]] -< r so that
B(0, r)_ Xo. If in addition D(g)= X (i.e., g(x)< +o for each x), then Xo X and
(A, B) is C-stabilizable for each B and C.

Example 2. If the control constraint C is given by

(49) C {u U: []ul[_-< K},

then if A satisfies (48) with o =0 and B- L(X, U), we have that (A, B) is locally
C-stabilizable. In this case for fixed x B(0, r) it suffices to take

u( t) -eB-1 exp t(A- eI)]x,

where I is the identity operator, and

y(t) exp t(A eI)]x,

where e <-K(IIB-’I[r) -. Therefore we have B(0, r)_ Xo; moreover, if D(g)=X we
have Xo X and (A, B) is C-stabilizable.

Example 3. Finally, another example of a C-stabilizable pair (A, B) (with C given
by (49)) is the case where (A, B) is stabilizable with respect to I in the sense of linear
quadratic optimal control problem. In this case there exists L L(X, U) such that
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A BL is exponentially stable, i.e., there exists constants M, a > 0 verifying Ilexp t(A
BL)]II<-M exp (-ct). Now define r* =min (rM-1, KM-’IILII-) then for each x
B(0, r*) it suffices to take

u(t) L exp t(a BL)]x, y(t) exp t(a BL)]x

so that we have B(0, r*)c_ X0.
We now investigate the connection between the stabilizability of (A, B) and the

existence of solutions of (43).
THEOREM 11. Let there exist the minimal solution of (43). Then (A, B) is locally

C-stabilizable with respect to g and we have D(cg)- Xo.
Moreover, for each x Xo there exists an optimal pair (y*, u*) and we have

(o) o(x)-(u*,x).

If in addition Xo X and D(g)= X, then

(51) u*(t) Pc(-B* Oqo(y*(t))).

Proof Let q be the minimal solution of (42); by (29) we have

(52) (T, x) =inf [h(u(s))+g(y(s))] ds

over all (y, u) satisfying

(53) y’(s)=Ay(s)+Bu(s), O<=s<-T, y(0) x.

Now let x D(q) and let (y,, u,) be optimal on [0, n]; we have

(54) (n, x)= [h(u,(s))+ g(y,(s))] ds.

Moreover, let u,* be defined as

u*(s) {Uo n(s) ifif0<-s-<n’n<s
and let y* be the solution of (53) with u replaced by u*. Since q(n, x)_-< q(x) we
have by (54) that {u,*} is bounded on L2(R+; U). Hence there exists {u,*} uch that

u* u* weakly in L2(R+ U).

Therefore for each T> 0 we have

y,*ky* weakly in L2(0, T; X).

Moreover y* is the solution of (53) with u replaced by u*. Furthermore, for nk > T
we have

Io_(X)>=_(nk, X)>= [h(u*.(s))+g(y*(s))] ds

so that

(55)

T

_(x) > [h(u(s*))+g(y*(s))] ds.

Since T is arbitrary we get

_o(x)>= [h(u*(s))+g(y*s)] ds
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so that (y*, u*) is admissible and x Xo. Hence (A, B) is locally C-stabilizable and
D(qoo)_ Xo. Conversely if x Xo and (y, u) is admissible at x, we have by (52)

(56) _(T, x) - [h(u(s))+g(y(s))] ds <= Joo( u, x)

so that x D(q) and hence X0-D(qoo). Moreover, from (55) and (56) we have

oo(x)=Joo(u*,x).

Finally, (51) follows from (v) of Theorem 5. l-]

COROLLARY 1. The following properties are equivalent"
(i) (A, B) is locally C-stabilizable with respect to g;
(ii) There exists a solution of (43).
Proof. (I)=>(ii) Let x Xo and let (y, u) be an admissible pair at x. If is the

minimal solution of (41) we have, by (29),

Io_(T,x) <- [h(u(s))+g(y(s))] ds<--Jo(u,x)

so that the assertion follows from Theorem 8. Assertion (ii):=>(i) is proved in
Theorem 11.

We now give sufficient conditions for the existence of the maximal solution of
(43). We begin with the following result.

THEOREM 12. Let g be coercive, that is, g(x)>- yllxll P, for some p >- 1. Moreover,
let A, B) be locally C-stabilizable with respect to g. Then there exists the maximal solution

of (43) and we have= qo., that is, there exists a unique solution of (43).
Proof Let (y*, u*) be optimal for J(u, x) and let be a solution of (43). Since

is a solution of (42) with initial datum we have by (29)

ioq(x) --< q(y*(t)) + [h(u*(s))+g(y*(s))] ds,

hence by (50)

(57) q(x)<-q(y*(t))+ [h(u*(s))+g(y*(s))] ds=q(y*(t))+_o(x).

Since g is coercive we have that y* LP(R+;X) for some p => 1. This, in turn,
implies that there exists {t,} ]’ +ee such that y*(t,)- 0. Therefore by a passage to the
limit we get q (x) -< qoo(x), so that qoo is maximal.

Now let us introduce the following notation:

&)(x) g(x) /-e Ilxll p

J,oo(u, x)= [h(u(s))+ g()(y(s))] as.

We have the following existence result.
THEOREM 13. Assume that (A, B) is locally C-stabilizable with respect to g(l), for

some p >- 1. Then there exists the maximal solution of (43) and we have

(58)

where q,oo is the (unique) solution of
H(B*qx(X))+(Ax, qx(X)) g()(x).
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Proof By Theorem 9 we have that {o,} is nonincreasing so that there exists qS
given by (58). Moreover, from Remark 2 it follows that qSo is a solution of (43). To
prove that qS is maximal let q be a solution of (43) and let (yf, u*) be optimal for
J,oo. Using (57) with g replaced by g() we get, since g( is coercive, q(x)_-< ,o(x).
Therefore the conclusion follows by a passage to the limit. [3

The following result concerns the connection between the maximal solution of
(43) and the infinite horizon problem. We have the following theorem.

THEOREM 14. Let (A, B) be locally C-stabilizable with respect to gl) and let be
the maximal solution of (43). Moreover, set

Then we have

Y={(y,u): yL2(R+;X) and uL2(R+; U)}.

(x) inf J(u, x),

where the infimum is taken over all (y, u) Y satisfying (47).
Proof Let (y, u) Y and let q, be defined as in the proof of Theorem 13. By

(50) we have

,<=L,o(u,x)
so that by (58) we get p<-J(u,x) and hence <-_infyJo(u,x). Furthermore, let
(y, u) be optimal for J,o; we have

q,(x) J,(u, x) >= Jo(U, x) >= inf J(u, x)
Y

and the conclusion follows by a passage to the limit.
The following result concerns monotonicity of the maximal solutions of (43).
THEOREM 15. Assume that (A, B) is locally C-stabilizable with respect to gl).

Moreover, let <-_ g and let o and o be the maximal solutions of (43) with data and
g, respectively. Then we have

Proof The result follows from (58) and from Theorem 9. V]

Finally, the following result concerns continuous dependence upon the data.
THEOREM 16. Let g and g, be such that g, ], g, and let (A, B) be locally C-stabilizable

with respect to gl.l. Moreover, let q and (p be the maximal solutions of (43) with data
g and g,, respectively. Then (p, $ .

Proof The result follows from (58) and from Theorem 9. [2

6. Applications. In this section we give some examples of optimal control problems
which can be studied by means of the results of 5.

Let be an open bounded set of R with smooth boundary 0f and set X L2().
We denote by A the operator defined as

D(A) y wZ’Z(a)"
0,

(59) ay=Ay,

where A is the Laplacian operator. Then it is known that A generates a semigroup
exp (tA) verifying

(60) Ilexp (ta)yllx <- Ilyll,,.
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Moreover, r(A) consists of isolated nonpositive eigenvalues. We denote by X
and X2 the subspaces corresponding to the spectral sets o-1 {0} and cr2= r(A)\{0}.
Then

(61) X X@X2
and X, X2 are invariant under A. Moreover, if As is the restriction of A to Xi, then
exp (tA2) is exponentially stable, i.e.,

(62) ]]exp tA2)Y]]x <-- M exp

for some to < 0. Now let U be a real separable Hilbert space and let B L(U, X). If
B- L(X, U) using (60) and the results of Example 2 of 5 we have that (A, B) is
C-stabilizable with respect to 1/211 for any C of the form (49). Therefore we get the
following theorem.

THEOREM 17. Consider the problem of minimizing the functional

(63) J(u, o)-- de [ly(, x)l+lu(, x)l] dx

over all (y, u) verifying

y,(t,x)=Ay(t,x)+(Bu)(t,x), t>O, xa,
0
my(t,x)=O, t>0, x60,

(64) Ov

y(O,x)=yo(x),

a
lu( t, x)[2 dx <= K, > O,

where B L(X). Then if B-1 L(X) we have
(i) For each yo L2(’) there exists an optimalpair (y*, u*) at yoforproblem (63),

(64). Moreover we have q(x)= Joo(u*, Yo), where qoo is the solution of
__11/2(liB* o(y)ll- liB* oq(y)+ Pc(-B* o(y))ll) -(Ay, oq(y)} llyll

and

Pc(Y)
IIyII/K

Moreover the following feedback formula holds:

(65)

if Ily K,
if Ilyll > K.

over all (y, u) satisfying

Yt( t, x) Ay(t, x) + u(t)O(x),
0
--y(t,x)=O, t>O, xO,

(67) Ov

y(O,x)=yo(x), xea,
lu(t)l<-_K.

t>0, x,

(66)

(ii) u*(t, ")6 Pc(-B* Oq(y*(t, "))).
Proof The result is a consequence of Theorems 11 and 12 and Corollary 1.
Now let 0 L() and let B L(R, X) be given by

(Bu)(x)=u.O(x).
We consider the following problem. Minimize the functional

J(u, yo)= dt ]y(t,x)[ 2 dx+lu(t)l
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To study problem (66), (67) we use the results of Example 3 of 5 and look for
conditions guaranteeing stabilizability in the sense of linear quadratic optimal control
(with respect to I) for the pair (A, B) given by (59) and (65). To this end we use (61)
and set 1 + 2, with Oi e Xi moreover, we denote by Bi L(R, Xi) the operator
given by

(68) (Bu)(x) ui(x).

By (62) we have that (A2, B2) is stabilizable. Therefore using a result of [11] we
have that if (A1, B) is stabilizable then so is (A, B). Finally, it is easy to see that
(A, B1) is stabilizable if and only if 0, i.e.,

(69) (x) dx # O.

Therefore using the results of Example 3, Theorems 11 and 12 and Corollary 1,
we get the following theorem.

THEOREM 18. Let satisfy (69). Then for each yo Lz(f) such that Ilyoll is suitably
small there exists an optimal pair (y*, u*) at Yo for problem (66), (67), and we have

Joo(u*, yo)=

where qoo is the minimal solution of

and

1/2(<6, o(y))--1<6, o(y))+ P(-<6, o(y)))l-<ay, o(y)) 1/211yll

u if lull=K,
Pc(u)-

[ul/K if lul> K.

Acknowledgments. The author thanks the referees for helpful comments.
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ON OUTPUT FEEDBACK VIA GRASSMANNIANS*
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Abstract. The output feedback pole placement map X has been studied by using the central projection
model. Necessary and sufficient conditions for X being dominant are given. 2 2 systems of McMillan
degree 4 and 2 x 3 systems of McMillan degree 6 are studied intensively.

Key words, pole placement of linear multivariable systems, Grassmannians, central projection
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1. Introduction. Consider a linear system

2 Ax + Bu, y Cx,

where x, u, y, are n, m, p, vectors, respectively. The poles of the system are the
eigenvalues of A. If an output feedback

u=Ky

is applied to the system, the closed-loop system becomes

2=(A+BKC)x.

The closed-loop poles became the eigenvalues of A + BKC. Identifying a characteristic
polynomial with a point in affine n-space An, we can define pole placement map
x:Amp --> A by

x(K) det (sl-A-BKC).

The output pole placement problem has been studied by many authors. In 1975,
Kimura [10] and Davison and Wang [5] proved independently that m+p-l>= n
implies the generic pole assignability for generic systems. In 1977, by using the dominant
morphism theorem, Hermann and Martin [8] proved that if [A, X] =0 and CXB =0
implies X 0, then the system has the generic pole-assignability by complex feedbacks.
They also showed that rap>= n implies the generic pole-assignability by complex
feedbacks for generic systems. About a decade ago, inspired by a profound geometric
construction due to Martin and Hermann 12] and by the questions raised by Willems
and Hesslink 18], a geometric framework using Grassmannian variety was developed
by Brockett and Byrnes [1], [3]. Since then, many new results have been proved using
this framework. In 1981, Brockett and Byrnes [2] proved that when mp= n, if a system
is nondegenerate, then the system has arbitrary pole-assignability by complex feedback
and there are

1!... (p-1)!(mp)!
d(m,p)=

m! (rap-l)!

such feedback laws to assign each set of n poles. In 1983, by using the Ljusternik-
;nirel’mann category of real Grassmannians, Byrnes [4] proved that L-S-
cat(Grassn (p, m +p)) ->_ n + 1 implies generic pole assignability by real feedback that,
when combined with the new results of L-S category of real Grassmannian, improved
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? Department of Mathematics, Texas Tech University, Lubbock, Texas 79409.
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Kimura’s result. Recently, a new result that improved Kimura’s result was proved by
Rosenthal [14] using a very simple argument based on this framework.

One problem in feedback pole placement is to determine whether the pole place-
ment map X is dominant (see 2). Note that X is dominant over C if and only if it is
dominant over R. When X is dominant, it is almost onto over C by the dominant
morphism theorem, and its image has nonempty interior over R.

Two necessary and sufficient conditions can be deduced from [8] and [18]. They
are:

(a) X is dominant if and only if there exists a K such that [A + BKC, X] -0 and
CXB 0 implies that X 0.

(b) X is dominant if and only if there exists a K such that {CB, C(A+
BKC)B, , C(A + BKC)"-IB} are linearly independent.
In both conditions, the K must be determined before the conditions can be used.

In this paper, the dominant morphism theorem is applied to the central pro-
jection model of the pole placement map introduced by Byrnes [3]. The main result
is that X is dominant if and only if mp>=n, dim sp{minorsofG(s)}=n and
Grass (p, rn + p) is not contained in the Schubert variety r(E) under the embedding
induced by the map :x - C(Tx), where E is the center of X. In the cases of 2 2 and
2 3 systems, if rnp n, the conditions become very simple: X is dominant if and only
if dim sp{minors of G(s)} n.

2. Preliminaries. Let X and Y be varieties, a morphism q:Y Y is called
dominant if q(X) is Zariski-dense in Y. Let k(X) and k(Y) be the function fields of
X and Y, then q induces a homomorphism q:k(Y) k(X) by

q*(f(y)) f(y(x)).

It is easy to show that q is dominant if and only if q* is one to one [7], [13], [15].
So if q is dominant, k(Y) can be considered as a subfield of k(X).

PROPOSITION 2.1. Let X and Y be affine varieties of the same dimensions over an

algebraically closed field of characteristic 0 and q X Y be a dominant morphism, then
there is a Zariski-open set Yo Y such that #q-l(y)= [k(X) k( Y)] for all y Yo.

This is Proposition 3.17 of [13], except we are working over an arbitrary algebrai-
cally closed field of characteristic zero. The proof is the same.

The number [k(X):k( Y)] is called the degree of q.
PROPOSiTiON 2.2 (dominant morphism theorem). Let q: X Y be a morphism of

affine varieties over an algebraically closed field; then the following are equivalent:
p is dominant.

(ii) q (X) contains a nonempty Zariski open set of Y.
(iii) dqx is onto for some smooth point x of X.
(i)(ii) is Theorem 6 of [15, 5, Chap. I]. (i)(iii) is Proposition 3.6 of [13].

(ii)(i) is obvious. To prove (iii)(i), suppose q is not dominant. Let Z q(X);
then dim Z < dim Y. So dim Im dq-<_ dim Z < dim Y, dq cannot be onto for any x.

Let k be an algebraically closed field. A dominant morphism q: Y Y of affine
varieties is called finite if k[X] is integral over k[ Y]. A finite morphism is epimorphic
and it carries closed sets into closed sets of the same dimension [15]. A morphism
q :X - Y of quasi-projective varieties is called finite if every point y Y has an affine
neighborhood V such that the set U =f-l(V) is affine and q:U V is finite.

An example of finite morphism is the central projection. Let E be a d-dimensional
subspace of a projective space P, determined by n-d linearly independent linear
equations L L2 L,-d =0. The mapping r(x)= (Ll(x),’’’, L,_d(x))is called
a projection with the center at E; 7r is a morphism pN_ E- p,-a-1.
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PROPOSITION 2.3. IfX is closed in pn and X c pn E, where E is a d-dimensional
subspace, then the projection r:X-->Pn-d-1 with the center at E determines a finite
morphism X --> r(X).

The proof can be found in 15]. The geometrical meaning of the central projection
is the following. As a model pn-d-I we take any (n-d- 1)-dimensional subspace
H c P" disjoint from E. Through any point x 6 P"-E and E there passes a unique
(d + 1)-dimensional subspace Ex. This subspace intersects H in a unique point, namely,
r(x). On the other hand, through any y H and E there passes a unique (d+
1)-dimensional subspace Ey. Then for all x Ey X E, r(x) y. When X E ,
r is.finite, so Ex X has finite many points for all y. By Bezout’s theorem (see [16,
Prop. 3.26]) we have Proposition 2.4.

PROPOSITION 2.4. IfX is an (n- d- 1)-dimensional subvariety of P" and .E is a
d-dimensional subspace, X pn E, then the projection r X p,-d-1 with the center at
E is onto and for any y pn-d-1,

# r-l(y) deg X

counting multiplicity.
Now we introduce a projective variety, the Grassmannian Grass (m, n). Grass

(m, n) is the variety of all m-dimensional subspaces in a n-dimensional vector space
V. For each m-space Hc V, if we choose a basis {a1,"’, a,} and write each a

as column vector, then we have an n x m full rank matrix, Ms [a 1,"" ", am]. For
any nxm full rank matrix M, col. spM=H if and only if M=MaT for some
T GL (m). So we can say that Grass (m, n) is the variety of all n m full rank matrices
modulo GL(m). For any nxm matrix M of rank m, let xi, im be the mm minor
of M by taking il,..., im rows of M. Since xi, im(MT) xi,....,i.,(M)det T for any
T GL (m), we have an imbedding

p Grass (m, n) -* pN,

where N (m) 1. This imbedding is called the Pliicker imbedding. The imbedded
Grassmannian is determined by a system of quadratic equations (see [6]).

3. Central projection and output feedback pole placement. Consider the closed-loop
characteristic polynomial det (sI-A-BKC) of a linear system (A, B, C). It is well
known that

I N(s)ldet(sI-A-BKC)=det K D(s)

where G(s)= N(s)D-l(s) is a right coprime factorization of the open-loop transfer
function G(s) [2], [3]. Since rank [] p and rank [D(s)l(s) m for all s, sp[] is a point

N(s)in Grass (p, re+p) and sp [U(s)] is a curve in Grass (m, m+p). We define the Pliicker
coordinates of Grass (p, m +p) and Grass (m, m +p) in the following way. Put all
multiple index (il, ip), 1 <--_ 1%" % ip m +p in order such that (il, ip) %
(jl,..., j) if there exists an s such that i =j for all < s and is <js. For an ith index
(il,’", ip), let x be the pxp minor of[/] by using il,"’, ip rows and p(s) be the

i-N(s)-im x m minor of I_D(s)J by eliminating il," , i rows. Then

[ N(s)](1) det(sI-A-BKC)=det
K D(s)

N

(2) 2 0(i)p,(s)x,,
i=0
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where

m +p)N= -1
P

and O(i) (-1) p(p+l)/2+il+’’’+ip

for the ith index (il, ", ip). Note that Xo 1 and po(s) det D(s). Let det (sI A
BKC)= bo+ bs+" .+ b,s" and O(i)pi(s)= aoi+ as+" .+ a,s". Then by equating
coefficients of (1), we have

(3)

aoo aol aoN XO bo
alo a aN Xl bl

ano an anN

or

(4) Lx b.

Let E {x pN ]Lx =0}; then (4) defines a central projection X" Grass (p, m +p)- E -pr-1, where r--rankL. So the pole placement map is the projection x’Grass
(p, m +p)- E -> Pr-.

The geometrical meaning of X is the following. Let pn be the space of all
polynomials of degree less than or equal to n with the equivalent relation f--- g if and
only if f= ag for some nonzero number a. Extending (4) to pN, we have 2" pN

_
pn

such that 2lGrass(p,m+p)-" ,)(, 2 is a rational mapping and 2(PN)= pr- p. When we
take any (r- 1)-dimensional subspace H Pn disjoint from E, 21 is one to one and
)(H)=Pr-, so HIm 2. We can identify the points in H with the points in

lm2. Through any point x eGrass (p, m+p)-E and E, there passes a unique
(N-r+ 1)-dimensional subspace E. This subspace intersects H in a unique point,
which is X(x).

LEMMA 3.1.

rank L dim sp{ minors ofG(s) } + 1,

where sp{ minors ofG(s)} is a subspace spanned over R in R(s).
Proof Since

IN(s) G(S)]D(s)
comparing the corresponding minors of each side, we have that

pi(s) mi(s) det D(s), i-- 1, 2,’’’, N,

where {m, i= 1, 2,..., N} are all minors of G(s). So

dim sp{minors of G(s)} dim sp{p(s), 1, 2,. , N}.

Note that only po(s) is a polynomial of degree n; all the other pi(s)’s are polynomials
of degree less than n. So

dim sp{p(s), i= 1, 2,. ., N}

dim sp{p(s), i=O, 1, 2,. ., N}- 1

rank L- 1.
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Recall the concept of nondegeneracy introduced by Brockett and Byrnes [2]: G(s)
is nondegenerate if and only if no hypersurface r(to) in Grass (m, m + p) contains the
curve

D(s)I’
where to e Grass (p, m + p) and

r(to) {,e Grass (m, m +p) Idim (to f’l ,)>_- 1}.

Now from the definition of E we can see that G(s) is nondegenerate if and only if

E f-] Grass (p, m +p) b.
When G(s) is nondegenerate, the central projection X is a finite morphism

Grass (p, m +p)-Pn, since the degree of Grass (p, re+p) is (see [9]):

1!2!... (p-1)!(mp)!
d(m,p)=

m!(m+l)!... (re+p-I)!"

By Proposition 2.4, we have the Brockett-Byrnes theorem [3].
BROCKETT-BYRNES’ TEORE. Let G(s) be a nondegenerate p m transferfunc-

tion of McMillan degree n rap. For all choices (Sl,. ., s,), we can find
1!2!... (p-1)!(mp)!

d(m,p)=
m!(m+l)!... (re+p-l)!

feedback laws over the complexfield such that the elosed-looppoles are exactly s , s, ).
Actually, we have proved a more general result.
THEORE 3.1. IfG(s) is nondegenerate, then the image ofx: Grass (p, m +p)-. P"

is an irreducible projective variety of dimension mp. For each p Im X, there are finite
many feedback laws over the complex field such that the closed-loop characteristic poly-
nomial is p.

When G(s) is degenerate, Grass (p, m +p)- E is a quasi-projective variety and

2’ Grass (p, m +p) P is a rational mapping. In this case, X is almost onto over C if
and only if X is dominant. Here "almost onto" means that Im X contains a nonempty
Zariski open set. We first prove a general result. Recall the concept of affine cone over
a projective variety X

_
PU: For any nonempty algebraic set X

_
PU, let 0 Au+ -{0}

PU be the mapping that sends the point with affine coordinates (a0,"’, au) to
the point with homogeneous coordinates (ao,’", au). The affine cone over X is
defined as

C(X)=O-’(X){O},
dim C(X) dim X + 1.

The tangent space T,x of a projective variety X at x is defined as the projective
closure of the tangent space of Xfq U at x for any affine piece U of PU that
contains x.

PROPOSITION 3.1. Let E be an (N-n-1)-dimension subspace of pN over an
algebraically closedfield. For any projective variety X pS, the central projection 7r: X-
E-> P is almost onto if and only if dim X >-_ n and there exists a smooth point x ofX
such that

dim T,,x f3 E dim X n 1,

where the left-hand side equals -1 means that Tx,x CI E .
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Proof Assume that E is defined by linear independent equations Lo L1
Ln 0. Define -k" C(pN)

_
An+ as

(x) (Lo(x), ., L.(x));

then O((r(x))=r(O(x)) if x0 and ?(x)0. r’X-E-->P" is almost onto if and
only if -k" C(X)--> A"+ is almost onto. Bythe dominant morphism theorem, 7" C(X)->
A"+ is almost onto if and only if d?" Ty.c(x)--> A"+ is onto at some smooth point y
of C(X). Since -k is linear, dfr( Ty,c(x)) (r( Ty, c(x)). Note that y 0. Let x 0(y); then

C( Tx,x Ty,c(x).
Restrict -k on C(Tx,x),

dim lm -k + dim ker dim C Tx,x dim X + 1.

So r’C(Tx,x)- A"+1 is onto if and only if

dim ker ,k dim X- n.

When dim X > n, ker {0}, 0(ker -k- {0}) T,x 71 E, so dim ker ? n if and only if

dim T,x E dim X- n- 1.

When dim X n, ker ? {0} if and only if

Tx,x CI E =.
The theorem is proved.

Applying Proposition 3.1 to x’Grass (p, m+p)-E-Pn, we have the following
corollary.

COROLLARY 3.1. If dim E=(m;p)-n-2 N-n-l, then x’Grass (p, m+p)-
E Pn is almost onto if and only if mp >- n and there is an x Grass (p, rn + p) such that

dimTf’lE=mp-n-1 ifrap>n,

T f’I E fg ifmp n.

For each x, T, is an rap-dimensional subspace of PU, where N (m;p)_ 1, and
C(T) is an (rap + 1)-dimensional linear subspace of Au+l. The map i" x --> C (T,)
induces an embedding"

(5) i" Grass (p, rn +p) Grass (rap + 1, N + 1).

If dim E (’-P) n 2 N n 1, C (E) is an (N n)-dimensional linear sub-
space of Arc+l, so it is a point in Grass (N- n, N + 1).

Let

(6) cr(E)={TeGrass(mp+l,N+l)ldim(TC(E))>=mp-n+l}.

or(E) is a Schubert variety of codimension mp n + 1 of Grass (mp + 1, N + 1). It is
the intersection of Grass (rap + 1, N + 1) with a subspace of codimension mp-n + 1
of P, where M u+1,p+l)- 1 and Grass (mp+ 1, N+ 1) p4 by Pliicker embedding
(see [11]), so we have Theorem 3.2.

THZOZM 3.2. Let G(s) be an rn x p transfer function of McMillan degree n, then
the output feedback pole placement map X" Grass (p, m +p) E P" is dominant if and
only if mp >-_ n, dim sp{ minors ofG(s)} n and Grass (p, m + p) is not contained in the
Schubert variety o(E) defined by (6) under the embedding induced by the mapping
i" x-> C( Tx).
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Proof By Lemma 3.1, the condition of

dim sp{minors of G(s)} n

is equivalent to the condition of

rank L n + 1

for the L defined in (4), which is equivalent to the condition of

(7) dim E N- n- 1 n-2.
P

Note that (7) is a necessary condition. By Corollary 3.1, X is almost onto if and only
if mp >-_ n, dim sp{minors of G(s)} n and there exists an x Grass (m, m +p) such that

dim C(Tx) C(E) mp n.

Then by the definition of o-(E), (6), the theorem is proved.

4. 2 x 2 systems of McMillan degree 4. We use our results to examine some systems.
The simplest Grassmannian that is not a projective space is Grass (2, 4), which corre-
sponds to the 2 x 2 systems of McMillan degree 4. The degree of Grass (2, 4) is 2, so
if G(s) is nondegenerate, X is onto and 2 to 1 over C. For general cases, we have the
following result.

THEOREM 4.1. Let G(s) be a 2 x 2 transfer function of McMillan degree 4. Then
for almost all choices (sl,""", s4), we can find output feedback law over C such that the
closed-loop poles are (sl ,... s4) if and only if

dim sp{ minors ofG(s)} 4.

Proof By Theorem 3.2, if we can prove

Grass (2, 4) o-(E)

for any E of dimension zero, then the theorem is proved. Grass (2, 4) is embedded in
Grass (5, 6) and o-(E) is a hyperplane section of Grass (5, 6). Since Grass (5, 6)

i: Grass (2, 4) c Grass (5, 6)

is the Plficker embedding, tr(E) is a hyperplane so Grass (2, 4)7: r(E) for any E of
dimension zero.

Example 4.1. Let

a() $4 2 s

The minors of G(s) are {s/(s4- 1), s/(s4- 1), s/(s4- 1)}, so X is not almost onto.
Example 4.2. Let

G(s)= [ 1/s l/s210 1Is
Then G(s) is degenerate and the minors of G(s) are {I/s, 1Is 2, 1/S3, 1/S4},

dim sp{minors of G(s)}- 4.

So we can place the poles of G(s) to almost all choices (s,. ., s4) by complex output
feedback. We can also place the poles to almost all self-conjugate (s,.-., s4) by real
output feedback (see Theorem 4.2).
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Now we consider the real field. Willems and Hesslink [18] proved that/’ cannot
be almost onto over R for generic system. Brockett and Byrnes [2] proved that if G(s)
is nondegenerate, t’ is not almost onto over R. So we consider the case when G(s) is
degenerate.

LEMMA 4.1. If G(s) is degenerate and X is dominant, the degree ofx is one.

Proof Note that

dim E =0.

So if G(s) is degenerate,

E Grass (2, 4).

Let L be any line through E. If L Grass (2, 4), then L can intersect Grass (2, 4) in at
most one other point because

deg Grass (2, 4) 2.

Hence by Proposition 2.1,

deg X 1.

THEOREM 4.2. Let. G(s) be a 2 2 transfer function of McMillan degree 4. Then
for almost all self-conjugate (sl,’", s4) we can find a real output feedback law such
that the closed-loop poles are (sl," ", s4) if and only if G(s) is degenerate and

dim sp{minors ofG(s } 4.

Proof X is almost onto over R if X is dominant and degree of X is an odd number.
Brockett and Byrnes [2] proved that X is onto over R if and only if det G(s)=-0

and

dim sp{g,(s), g2(s), g3(s), g4(s)} 4,

where {gi} are entries of G(s). Note that det G(s) -0 is one of the cases of G(s) being
degenerate, so Brockett-Byrnes’ result is included in Theorem 4.2.

5. 2 x 3 systems of McMillan degree 6. The next Grassmannian we will consider
is the Grass (2, 5). The degree of Grass (2, 5) is 5, which is an odd number. So for a
nondegenerate system, we can place poles arbitrarily over both the complex and the
real fields.

For Grass(2,4), we have the property that Grass(p,m+p)C-tr(E) for any
codimension mp+ subspace E of pN, where N= (mp)_ 1 and Grass (p, m +p) is
embedded in Grass (mp+l, N+I) (see 3 and the proof of Theorem 4.1). For
Grass (2, 5), unfortunately, we do not have such a property. It is not difficult to find
a subspace E of dimension two such that Grass (2, 5) tr(E), but, if we restrict such
E to be the center of the projection g for some system, it is not easy. After trying to
construct such a system, we finally find that it is impossible. We have the same result
as in Grass (2, 4) as follows.

THEOREM 5.1. Let G(s) be a 2x3 transfer function of McMillan degree 6. Then

X is dominant if and only if
dim sp{ minors ofG(s 6.

We only give the ideal of the proof here. Please refer to [17] for details. The ideal
is to find the forms of E such that Grass (2, 5)c o-(E), then show that such E cannot
be the center of X for any transfer function G(s).

Theorems 4.1 and 5.1 tempt us to conjecture that

dim sp{minors of G(s)} mp
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might be the necessary and sufficient condition for X being dominant for any p x rn
system of McMillan degree mp. However, this is not true. It is a necessary condition,
but it is not sufficient; we must add the condition that Grass (p, rn + p) is not contained
in the Schubert variety or(E) (see Theorem 3.2). We give an example of 3 x 3 transfer
function G(s) of McMillan degree 9 here.

Example 5.1. Let
S6(S_ 1)2

1 S2(S 1 )2(S2 + 1)O(s) $4(s + 1)(s 1)2
s4

--S3(S 1) 2

0-1-s(s 1)2(s4 + 1) 0

--S -- S4- S
2 0

The dimension of sp{minors of G(s)} equals 9, but the last column of G(s) is zero.

For any feedback law u Ky, let

kl k12 k13
K= k2 k22 k23

k31 k32 k33

The values of k3 k32 k33 do not influence the closed-loop transfer function. So X
actually maps A6 into A9, it cannot be almost onto.

6. Conclusions. The output pole placement map X has been studied by using a

central projection model. It is proved that X is dominant if and only if rap>= n,
dimsp{minorsofG(s)}-n and Grass(p,m+p)C-o’(E), where Grass(p,m+p) is

embedded in Grass (mp + 1, N + 1) and or(E) is a Schubert variety of codimension
mp n + 1 of Grass (mp + 1, N + 1). In the cases of the 2 2 system of McMillan degree
4 and the 2 3 system of McMillan degree 6, it is proved that

dim sp{minors of G(s)} n

is a necessary and sufficient condition for X being dominant, but this condition is not

sufficient generally. It is also proved that for a 2 x 2 system of degree 4, t’ is almost
onto over the real field if and only if G(s) is degenerate and

dim sp{minors of G(s)} =4.

Acknowledgment. The author thanks C. I. Byrnes for his help and advice.
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OPTIMAL CONTROL OF THE RUNNING MAX *

ARTHUR C. HEINRICHERt AND RICHARD H. STOCKBRIDGE:

Abstract. A class of stochastic control problems where the payoff depends on the running
maximum of a diffusion process is described. Such processes are appealing models for physical
processes that evolve in a continuous and increasing manner. Dynamic programming conditions of
optimality for these nonstandard problems are investigated and applied to particular examples.

Key words, controlled diffusion, running maximum, dynamic programming

AMS(MOS) subject classification. 93E20

1. Introduction. This paper is devoted to the analysis of some nonstandard
stochastic control problems which are derived from applications in which the state of
the system is naturally monotone. They are closely related to standard controlled dif-
fusion problems except that the payoff is allowed to depend on the running maximum
of the diffusion. Our basic problem is of the following form.

The objective is to choose a control ut to maximize

’(B)
(1) J(x, y; u) := Ey h(xt, y, u)dt,

where the state is the pair (xt, Yt) defined by the system

dxt f(x, u)dt + a(x, u)dwt, xo x,

(3) Yt max{xs" O __< s __< t} V y, Yo=Y=>x.

We take B >__ y >= x and define T(B) as the hitting time for xt at level B. Here and
throughout the paper, w (wt, 0 =< t < c) denotes a standard, one-dimensional,
Brownian motion.

To apply dynamic programming techniques to this problem, we consider the pair
(xt, Yt) as the state. (The process yt alone is not a Markov process, but the pair
(xt, Yt) is a (strong) Markov process.) Pictured in the plane, the trajectories move on
y const, lines while x < y, and there is motion in the y-direction only along the
diagonal x y.

The value function V reflects this picture of the state. It is defined in the half-
plane { (x, y) x __< y}. It satisfies a standard dynamic programming partial differential
equation involving only derivatives with respect to x in the region x < y. The de-
pendence on yt in (1) becomes important only on the diagonal x y and adds a
boundary condition to the dynamic programming equation. This picture also moti-
vates the decomposition of the running max problem into a family of auxiliary control
problems.

There is a large literature on optimal control for Markov processes, and diffusion
processes in particular [13], [18], but it is impossible to model a monotone process
via a (nondegenerate) diffusion because of the violent fluctuations of the Brownian

Received by the editors September 5, 1989; accepted for publication (in revised form) July 23,
1990

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027.
Department of Statistics, University of Kentucky, Lexington, Kentucky 40506-0027.

936



OPTIMAL CONTROL OF THE RUNNING MAX 937

motion. There is also a large literature working with monotone stochastic models
in reliability theory and the statistics of lifetime distributions. Much of the work
refers to the seminal paper of Esary, Marshall, and Proschan [12] on so-called shock
models. These provide monotone models, but the paths increase in jumps and so are
not suitable as models for phenomena that evolve in a continuous manner.

There is no literature on continuous, monotone stochastic processes simply be-
cause no nontrivial examples exist. In fact, (inlar [7] has shown that the only scalar
stochastic processes that are continuous, monotone, and strong Markov are determin-
istic functions of the initial state (up to a random killing). We can obtain a vector
stochastic process that is continuous and strong Markov with one monotone compo-
nent. By taking a diffusion and its running maximum, we obtain perhaps the simplest
example of such a vector stochastic process.

One important application that requires a continuous and monotone stochastic
process model is the optimal control of wear; tires, drill bits, and jet engines do not
"unwear." (inlar [5] has analyzed perhaps the most general class of stochastic pro-
cesses suitable as models for wear (see [6], [8], [9]). In these semi-Markov processes,
one component of a two-component process is monotone and assumed to model wear,
while the second component is a Markov process referred to as the "excitation pro-
cess." However, the generality of these processes detracts from their usefulness in
certain control applications.

Baxter and Lee [3], [4] describe repair policies for a diffusion wear model. Conrad
and McClamroch [10] use a controlled diffusion model for wear and describe appli-
cations to automated manufacturing. In both of these, the monotonicity of wear is
surrendered to obtain a tractable control model.

The objective function (1) can be viewed with an interpretation similar to Conrad
and McClamroch’s [10] application in mind. Consider a control problem in which the
state of a system is related to the level of wear in a machine and the control u can be
interpreted as a rate of working. Profit is accrued while the machine is working, with
an increase in the work rate providing an increase in the rate of income. The machine,
however, will eventually deteriorate and fail (at level B in (1)), with increased wear
decreasing the rate of income, and failure ending the process. (For such applications,
the integrand h(x, y, u) in (1) should be increasing as a function of u and decreasing as
a function of x and y.) The controller is faced with competing objectives: he should
work fast to maximize the rate of income, but working too fast will increase wear and
will speed the failure of the machine.

1.1. Summary. We begin by describing sufficient conditions for optimality in
terms of the Hamilton-Jacobi-Bellman (HJB) partial differential equation. In partic-
ular, we show that the appearance of the running maximum in the objective function
is manifest only in the addition of an oblique derivative condition on the boundary of
the halfplane x =< y.

We then describe how the running max problem can be solved by first solving
a family of auxiliary problems. These are standard stochastic control problems and
we give a simple formula for the running max value in terms of these auxiliary value
functions.

One class of running max problems is particularly easy to solve. When the payoff
depends only on the control and the running max, the optimal feedback control is
constant for each of the auxiliary problems. This gives a simple formula for the
auxiliary value function and hence for the running max value.
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As an application, in 3 we solve a control problem in which the running profit
depends in a linear way on the diffusion and its running maximum. The policy runs the
gamut from a pure x-threshold policy when the payoff depends only on the diffusion
process x to a pure y-threshold when the payoff depends only on the running max y.
We investigate the regularity properties of this value function.

2. Dynamic programming conditions for optimality. We describe suffi-
cient conditions for optimality in terms of the Hamilton-Jacobi-Bellman (HJB) par-
tial differential equation. Our formulation is based on the standard verification theory
as presented in Chapter VI of [13].

For a standard controlled diffusion problem, where the integrand in (1) does not
depend on Yt and the state is given by (2), the (HJB) equation takes the form

(4) max a(x, u) 2

ueV - (x) + f(x,u)Y’(x) + h(x,u) 0

for x < B with the terminal condition

V(B) =0.

If we can find a solution (in some appropriate sense) for this partial differential equa-
tion, then this solution will be the value function:

V(x) sup J(x; u).

We assume that controls take values in a compact set U and that the coefficients
of the problem satisfy the following:

(A1) h is continuous and satisfies the polynomial growth condition

0 <= h(x, y, u) <- C (1 + Ixlp + lylp + lulp) (x < y < B, u E U)

for suitable constants C and p;

(A2)

and

f and a are C functions with

IA(x, u)l + IA(x, u)[ 5 K, lax(x, u)l + [au(x, u)l - K (x

_
B, u e U),

la(x,u)l =< M (x _< B, u e U),

for suitable constants K and M.

For the admissible controls, take the collection of nonanticipative controls as de-
fined in Chapter VI of [13, p. 162]. Let A denote the collection of admissible controls.

The following example shows that the problem may be ill posed without a positive
lower bound on f(x, u). Consider a problem with control set U [0, 1] and reward
function

(I)
J(u) E x/ dr,
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where

dxt utdt + dwt, x0 0,

and T(1) is the hitting time for level one. A maximizing sequence is obtained by
taking constant controls u) 1In for n __> 1. The state process is a drifted Brownian
motion, with constant drift l/n, and so the expected time to reach level 1 is n. The
expected reward is

( ) [f0"(1) l ] 1
J u(n) =E dt =-E[-(I)]=v.

There is no optimal policy; the controller can obtain arbitrarily large rewards by work-
ing arbitrarily slowly. We impose the following condition to preclude this behavior.

(A3) There is a constant a such that

O < <= f(x,) ( <= B, U).

Our assumptions provide an exponential estimate on the probability that the
diffusion exits the strip (A, B) at the lower boundary A. Let

T "= inf{t __> O’xt (A,B)}.

LEMMA 2.1. Assume that f(.) and a(.) satisfy assumptions (A2) and (A3), that
(xt, 0 <= t) is a solution for (2), and that T is defined as above. Then

(6) Px (x A) _<_ C exp (kA),

where k := 2aiM2 > O, and C depends on x, B, a, and M.
Proof. Define O(.): [A,B]-- [0, 1] by

-kx -kB

e-kA e-kB
with k defined as above. Observe that

(8) ’(x) __< 0, "(x) __> 0 (x e (A,B)),
and that O(.) satisfies the boundary value problem

1M2O"(x) + aO’(x) O, (x e (A, B)),
2

O(A) 1, O(B) 0,

By ItS’s formula, taking expectations and using the fact that a(.) and ’(.) are
bounded as well as the sign condition (8), we have

Ex [O(x,)] O(x) Ex -a (xt, ut) (xt) + f(xt, ut) (xt) dt

" 1 M2,<= E - x dt

O.
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Therefore,

P=(x A)= E= [(I)(x)] <= (I)(x) <__ e-kx e-kB 11 e-kB
exp (kA),

and the proof is compete.
The following theorem is a direct extension of the standard sufficient condition

for optimality.
THEOREM 2.2. Let V(x, y) be a solution of the dynamic programming equation

(10) {1 }max r(x u) 2 Vx(x, y) + f(x, u)Vx(x, y) + h(x, y u) O,
u 6 U -in the region x < y < B satisfying the terminal condition

(11) V(B,B) =0,

as well as the boundary condition

(12) Vy(y,y) 0 (y = B).

In addition, suppose V(x,y) is continuous, twice continuously differentiable with re-
spect to x, and satisfies a polynomial growth condition

() IV(x, )1 <- c( + I1 + I1) ( <_ , <_ B),

for appropriate constants C and p. Then:
(a) V(x, y) >_ J(x, y; u) for any admissible control u and any x y;
(b) If u* is an admissible control that attains the maximum in (10), then u* is

optimal and Y(x, y) J(x, y; u*) is the value function.

Proof. The proof is an application of the It5 formula. Assume that V(x,y)
satisfies (10)-(13). Let u be an admissible control and let (xt, Yt) be the corresponding
state process. Let T and N be positive constants and define

TN :----- inf{t _> O" xt <= -N}.
Then applying the It6 formula to V(xt, Yt), we have

V(x,y)
JO

ut)V(xt, Yt) + -cr (xt, ut)V=(xt, Yt) dt

J0
Vy(xt, yt)dyt f(B)^

JO

AT

+ V(XT(B)ATNAT, YT(B)A’vAT),

where dy is the measure associated with the monotone increasing process y. Since the
process (yt, 0

_
t < c) increases only on the set {t’xt Yt}, the measure dy assigns

mass only on this set. Hence the boundary condition (12) implies that the second
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integral is zero. Taking expectations and using (10) and the fact that the stochastic
integral has zero expectation (the integrand is bounded), we obtain

V(x, y) -Exu
Jo

f(xt, ut)Vx(xt, Yt) + 5 (xt, ut)V(xt, yt) dt

-{- ExyV(Xr(B)ArNAT, Y’(B)ArNAT)

Jo
h(xt, yt, ut)dt + ExyV(Xr(B)^rN^T, Yr(B)^rN^T).

The monotone convergence theorem implies that the integral term converges to
the reward function J(x, y; u) as T and N . It follows from the continuity of V
and the bounded convergence theorem that

lim ExyV(Xr(B)ArNAT, Yr(B)ArNAT) ExyV(Xr(B)ArN, Yr(B)ArN)"T---, cx)

To conclude, we must show that

(14) lim ExyV(Xr(B)iN, Yr(B)A- ExyV(B B) O.
N---*x

This will follow from the bound

(5) sup )] <
N

because this implies uniform integrability.
The polynomial growth condition (13) provides the estimate

(16) Exy [V2(Xr(B)Ar, Yr(B)Ar)] = C + C2Exy Xr(B)A.

where C and Ce depend on B, C, p, and the initial data. Because

2p < B2p + N2ppu (TN < v(B))Exy Xr(B)Ary

Lemma 2.1, with A -N, provides a bound for the right-hand side of (16) that is
independent of N. Hence the family V(x-(s)^.N, Yr(B)ArN) is uniformly integrable.
Equation (14) follows and we have

V(x, y) >= J(x, y; u)

for an arbitrary admissible control policy.
When u* is an admissible control that attains the maximum in (10), the above

argument holds with equality.
Remark 2.3. If xt is a Brownian motion, then the computations in [16, p. 95]

can be modified to determine the transition densities for the Brownian motion and
its running max (allowing arbitrary initial positions x _< y). We can then show that
this process has infinitesimal generator

1
A(x, y) x(x, y)
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with domain all functions defined in the halfplane x <_ y, which are twice continuously
differentiable with respect to x, continuously differentiable on the diagonal, and satisfy
the boundary condition

Cy(X,y) 0 when x y.

This derivation helps to explain, from another point of view, the origin of the
boundary condition (12).

2.1. The auxiliary problem. The running max problem can be solved by first
solving an auxiliary problem. In this problem y is a fixed parameter, the process starts
at some x =< y, and the controller seeks to maximize the payoff obtained up to the first
time the diffusion xt reaches level y. This is a standard stochastic control problem
for each y =< B.

In particular, let x <_ y, define

(7) 1 TI(X, y; U)"= inf{t >_ 0" xt y},

and seek to maximize

(8)
7"1

J (x, y; u) "= Exy h(xt, y, ut)dt.

Let W(x, y) denote the value function for this auxiliary problem:

W(x, y) :- sup J (x, y; u).

The HJB equation satisfied by W(x, y) is of the standard form (4)"

(19) {imax a(x u) 2 Wxx(x, y) + f(x, u)Wx(x, y) + h(x y u) 0
uE U "

on the halfline x < y with the terminal condition

(20) w(v, v) o.

There is a simple relationship between the value functions for the auxiliary prob-
lem and the running max problem. Using the principle of optimality (as presented
in Lions [20, Thm. B]), we can show that the payoff starting at (x, y) consists of the
auxiliary payoff W(x, y) plus the payoff on the diagonal V(y, y). Indeed, the principle
of optimality says that for any admissible control and any stopping time ,

V(x,y)= ueAsupExY[fo^r(B) h(xt, Yt, ut)dt + V(x0^r(B), YO^r(B))]
Taking O -, noting that T <= r(B) and (Xrl, Yrl) (Y, Y), this becomes

V(x, y) sup Exy [J1 (x, y; u) + V(y, y)] W(x, y) + V(y, y).

Thus we have the following proposition.
PROPOSITION 2.4. The value functions for the running max problem and the

auxiliary problem satisfy

V(x, v) W(x, v)+ v(v, v) (x <= v, v <= B).
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If we formally differentiate (21) with respect to y, evaluate on x y, and use the
boundary condition (12), we obtain

d
0 y(, ) w(, ) + y(, ).

This indicates that the value for the running max problem can be represented entirely
in terms of the value for the auxiliary problem.

THEOREM 2.5. Let W(x,y) be a solution of the dynamic programming equa-
tion (19) on the halfline x < y satisfying the terminal condition (20). Suppose that
W(x, y) is twice continuously differentiable with respect to x and satisfies the polyno-
mial growth condition

Iw(, u)l =< c(1 + Ixl + lul)
for appropriate constants C and p. Then W(x, y) is the value function for the auxiliary
problem (18), and if u* (x, y) is an admissible control that attains the maximum in (19),
then u*(x, y) is an optimal control.

In addition, assume that W(x, y) is continuous with respect to (x, y) and differ-
entiable along x y. Then the running max value function is given by

(22) V(x, y) W(x, y)+ Wy(z, z)dz (x = y, y <_ B).

The optimal control u*(x, y) for the auxiliary problem is also optimal for the running
max problem (1).

Proof. The proof that W(x, y) is the value function and that u*(x, y) is optimal
for the auxiliary problem follows the standard verification theorem for a controlled
diffusion (as in [13, Chap. VII). (The proof is almost identical to that of Theorem 2.2,
except that there is no integral with respect to dyt to consider.)

Defining Y(x, y) as in (22), Y(x, y) inherits exactly the smoothness of W(x, y);
in particular, we have

as well as

and

V(x, ) w(, ), y(., ) w(, u),

V(B,B)=W(B,B)=O,

y(, ) w(,) w(u, ) o.
Since W(x, y) satisfies (19), V(x, y) satisfies (10) as well as the terminal and boundary
conditions (11) and (12). Theorem 2.2 identifies V(x,y) as the value function and
u*(x, y) as the optimal control policy for the running max problem.

Remark 2.6. We have obtained sufficient conditions for optimality in terms of
smooth, classical solutions to the (HJB) equation. The value function need not be a
smooth classical solution, however. Recent work on existence and uniqueness in the
class of generalized solutions known as viscosity solutions includes [11], [14], [15], [20],
and [21]. In particular, Lions [20], [21] has developed dynamic programming condi-
tions for standard control problems that do not require the smoothness hypothesized
in Theorems 2.2 and 2.5. Barron [2] has applied these techniques and shown that
the running max value function is the unique continuous viscosity solution for the
boundary value problem (10)-(12).
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2.2. The pure running max problem. When the payoff depends only on the
control and the running max, and the drift and diffusion coefficients depend only
on the control, the problem turns out to be remarkably simple. The reason for the
simplification is that the optimal control is constant for fixed y and so the form of
W(x, y) is easy to derive.

Consider the following special running max problem. The objective is to choose
a control ut to maximize

’(B)

(23) J(x, y; u) "= Exy h(yt, ut)dt,
Jo

where the state is given by

(24) dxt f(ut)dt +(r(ut)dwt, Xo x,

(25) Yt max{xs 0 <-- s =< t} V y.

Note that h depends only on y and u and the coefficients in the diffusion depend only
On t.

When we consider the auxiliary objective function

J1 (x, y; u) Exy fo
’1

h(y, ut)dt,

and restrict our attention to constant controls u E U, the integrand is constant and
thus

J (x, y; u) h(y, u)EyT (x, y; u).

Furthermore, because the coefficients in (24) are constant, the expected value of the
hitting time is known (see, for example, [17, 5, Chap. 7])"

x)

For a choice of u E U, call it u*(y), which maximizes the ratio

h(y,u)
(26) u

f(u)

the payoff Jl(x,y;u*(y))satisfies the (HJB)equation (19) and the terminal condi-
tion (20). The standard verification theorem (as in [13, Chap. VII) then identifies
J (x, y; u* (y) as the value function W(x,y) of the auxiliary problem and u*(y) as
the optimal policy. The pair (W(x,y), u*(y)) also satisfies the conditions of Theo-
rem 2.5 and so u* (y) is the optimal policy for the pure running max problem and the
value is given by (22). Summarizing, we have the following proposition.

PROPOSITION 2.7. The value function for the auxiliary pure running max problem
is

(27) h(y,u*(y))
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where u*(y) maximizes the ratio (26). The value function for the pure running max
problem (23) is then

h(z, u*(z))h(y, u*(y))
x) + dz.(8) V(x, ) -]-((i,--(i ( f(u*(z))

This explicit expression for W(x, y) allows us to investigate its smoothness with
respect to y. Clearly, if f, h, and u* are twice continuously differentiable, W(x, y)
will be, also. The more interesting situation is when there is a jump in the optimal
control u* (y).

Even if u*(y) is discontinuous, W(x, y) will be continuous. To see this, assume
that the optimal control u*(y) is identically a in a left-neighborhood of y and u*(y)
is identically in a right-neighborhood of y. Then

h(y-,) < h(y-,a) h(y+,a) < h(y+,) h(y-,
f() f(o) f(c) f(3) f(3)

(The inequalities follow from the optimality of a for y < and of/ for y > y, and
the equalities follow from the continuity of h.) As a result, equality holds throughout
and continuity of h gives

(29)
h(y, a) h(y,/)

max
h(y, u______)

f(c) f() uU f(u)
So a switch occurs at an indifference level, a level where the return obtained from
control a is exactly the same as the return from control/. This is another way of
saying that the value function (either the running max or the auxiliary value function)
is continuous across the switching level.

When the optimal control does switch, there could be a jump in Wy(x, y) at the
switching level and we have a simple expression for the size of the jump. Let y, a,
and be as above and assume that h is twice differentiable with respect to y. Then

/W(x,) := w(,+)-w(, -)

(3o) hy(y, )Exy T1 (X, y;) hy(y, a)Exy TI (X,

[hy(y,/)-/i
hy(y,a)
"]-(i j( -x).

Note in particular the size of the jump decreases to zero at x y. In addition, the
jump in Wyy is given by

=2[hu(Y’) hv(y,a)] [ h( a
(1) AW(x, ( x).

The jumps in Wy(x, y) and Wyy(X, y) are inherited by V(x, y) and Vyy(X, y). For
example,

V(x,) := v(z,+)-v(x, -)

W(x,y)-w(y,y)

/W(x,y).
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Remark 2.8. If we assume that
(a) u f(u) is positive, increasing, and concave on U; and
(b) u h(y, u) is positive, increasing, and convex for fixed y;

then for fixed x and y,

u f(u)Wx(x, y) + h(y, u) is convex,

and hence the maximum in the (HJB) equation is attained at the extreme values of
the control set U. In other words, the optimal control is a bang-bang control.

3. The linear mixed problem. Consider now a control problem in which the
control, the diffusion, and the running max enter the payoff in a linear way. Take

f(x, u) u with e (0, 11, and a(x, u) 1,

so that the state is the pair (xt, Yt) defined by the system

(32) dxt (ut)dt + dwt, xo x,

(33) Yt max{xs" O__<s-<t}Vy,

with x <__ y. The stopping time T(B) is defined as before.
The admissible control processes u (ut; 0 __< t < c) take values in

U "= [a,/] with

and the objective is to maximize the payoff

(34) J(x, y; u) Exy fo
r(B)

[cut klxt k2yt]dt.

The parameters c, kl, and k2 are positive and we require that

(35) c- klB- k2B >= O.

This is sufficient to guarantee that the running profit can always be made positive.
Alternatively, we can think of this last condition as defining the destruction level B
as the maximum level at which it is possible to still make a profit.

We will construct the value function using the auxiliary problems described in 2
and show that the optimal control is a bang-bang control that switches between a
and/ at a switching line given by

klx + k2y coast.

(see (41) below).
Remark 3.1. The restriction to the case 0 < 5 =< 1 is made to give an optimal

policy of the bang-bang form (recall Remark 2.8). When 5 > 1, the optimal policy is
no longer simply a or , but makes a smooth transition between these two values as
x increases to y.
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3.1. The auxiliary problem. As described in 2.1, this running max problem
can be solved by solving a family of simpler, standard control problems. Recall that
the objective in the auxiliary problem is to maximize

fo
"1

(36) J1 (x, y; u) "= Exy [cut klxt k2y]dt,

whereT ’ (x, y; u) "= inf{t >0" xt =y}, xt is defined as in (32), andy >_xis

fixed.
The (HJB) equation (19) reduces to

(37) <__u__<(.max1 u5 }+ + 0

on the halfline x < y with the terminal condition

(38) W(, )=0.

We construct a solution W(x, y) to (37) by first solving the equation with u a
and then with u fl, and patching these solutions together at a switching point
x (y). (We are using the heuristic "principle of smooth fit." See Lehoczky and
Shreve [19] for a discussion of this principle in singular and absolutely continuous
control.)

The general solution for the (HJB) equation (37) with constant control (ignoring
the maximization condition for a moment) is

(39) (x y;u)-
c(u,y)

exp (_2uex) +c2(u y)2U6
where

(40) (x, y; u) "=
k x2 ( cu kl ) k2

We have one solution for u a and one for u =/. The five parameters: c (a, y),
c(, y), c2(a, y), c2(/, y), and the switching point (y), are at our disposal. These
five parameters are fixed by the terminal condition (38), continuity of the function
and its first two derivatives, and a growth condition for x large and negative.

Standard techniques provide the following estimate for the growth of W(x, y).
LEMMA 3.2. There is a positive constant C C(a, , 5, c, k, k2) such that

0-< sup J (x, y; u) -< C (l + lxl 2+lyl 2) (x-<y).

In particular, the polynomial growth condition (13) is satisfied with p 2.
This lemma rules out exponential growth for x large and negative. The fact that

(x, y; a) > (x, y; ) for x large and negative indicates that the optimal control must
be u a for such x, and so cl (a, y) 0. Hence

Wx(x, y) k (ca k ) k2 (x < .2 (y))"c--gx- + 2a2 + --gy
For x > (y), we use u- , so

Wx(x, y) k (c +c(,y)exp(-2x) (-2(y) < x < B).
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If we require that Wx(x, y) be continuous across x (y), we have one restriction:

k_.Z (y)_ (c_+ 2k__)+ k_23y+cl(,y exp (-2/ (y)).

Continuity of W(x, y) across x (y) provides a second restriction:

kl251(, Y) exp (--2/e (y)) -.
Combining these we obtain the switching line

(41) (y) + /3 a -y,

as well as

(42)

Note that there is a switch (i.e., (y) < y) if and only if

(43) Y>:= kl+k2 kl+k2 Z-a
The constants c2(3, y) and c2(a, y) are determined by requiring W(y, y) 0 and

continuity across (y) for y > $. In particular, for y _< there is no switch and so

(44)

For y > 9, the control is/ for (y) < x y and W(y, y) 0 provides

k1(1(45) c(f,y)
4/3 a 1)/5

exp (-25(y (y))) (y, y; ).

Continuity at x- (y) requires

(46) c2(a, y) -( (y), y; a) + ( (y), y;/) + 4- a /3
+ c2(, y).

This construction provides a solution to (37), which is twice continuously differ-
entiable (with respect to x) and also satisfies the growth condition of Lemma 3.2. The
standard verification theorem for controlled diffusions provides the following proposi-
tion.

PROPOSITION 3.3. The optimal control for the auxiliary problem (36) is

a, x<y,

(47) u*(x,y)= a, x<(y), y>9,

Z, u>9,
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where 2 (y) is defined in (41) and ) is defined in (43). The value function is given by

(, ; ) (, ; ), 5 , 9,

(48)W(x. ) (, ; ) + (, ), x 5 (). > 9.

(, ; Z) (Z, ) (_)
2 + (’ )’ () < x < . > 9.

where (x, y; u) is dCned in (40) and the parameters c2(a, y), c (, y), and c2(, y)
are dCned in (46), (42), and (45), respectively.

By construction, W(x, y) is twice continuously differentiable with respect to x.
As a function of y, W(x, y) is equally well behaved as long as k > 0. In particular,
for fixed x, the control switches from a to at

1 k c (a-a)
We verify ha W(, ) is continuous across (); he computations o verify
he continuity of W(, ) and W(,) are similar. Looking a W(, ) above and
below () (leing "f’ denote differentiation wih respec o ), we obtain

w(,( .= w(,(+-

Z +v(x.y(x);)-(x.y(x);Z) ’()

0.

We have used the definitions of c(Z,y), c2(a,y), c2(Z,y) given above as well as
(y (x)) x and

[(z. (x))-:’ + v(x. (x); z) (x. (x);.)] m(. (x)+)-W(x. (x)-) 0.

Note that

k’()
k

becomes infinite as k 0. This corresponds with the appearance of the jump in
Wy(x, y) at y y (recall (30)) for thepure running max problem (k 0).

Since W(x,y) is continuous in the region {(x,y) x y}, twice continuously
differentiable with respect to x, continuously differentiable on the diagonal x y, and
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has polynomial growth, Theorem 2.5 can be applied to construct the value function
for the running max problem. The optimal policy for the running max problem is the
same as the policy described in Proposition 3.3.

PROPOSITION 3.4. The optimal feedback control for the linear mixed problem (34)
is given in (47). The value function is given by

B

(o) V(x, ) W(x, ) + W(z, )dz,

with W(x, y) defined in Proposition 3.3, (48).
As long as kl > 0, V(x, y) is also twice continuously differentiable in both x and

y. In fact, V(x, y) inherits its smoothness from W(x, y) since

y(x, ) W(x, ) w(u, u),

and

v(x, ) w(x, ) w(u, ) w(u, u).

3.2. Two special cases. We now discuss two limiting cases for the mixed prob-
lem.

3.2.1. The standard problem: ks 0. If the running maximum yt does not
enter the objective function, then the control problem is reduced to a standard optimal
stochastic control problem.

The switching level defined in (41) becomes constant:

1
() =+ Z- =+ - (Z/)_
Note that the term in parentheses is negative when 0 < a < and 0 < 5 < 1.

The switching level defined in (51) is decreased if the ratio c/k is increased.
That is, if the coefficient of u is increased in the running cost, then it is optimal to use
the maximum work rate longer. Similarly, if c/k is small, so the coefficient of x in
the running cost dominates, then approaches the maximum switching level 1/2a.
Finally, in the case where 5 1, the switching level becomes independent of the cost
parameters c and kl, since 1/(2a).

3.2.2. The pure running max version: k 0. If the diffusion xt does not
enter the objective function, then this is a pure running max problem, so we know
that the optimal policy will be a y-threshold policy. In particular, the switching point

(y) defined in (41) becomes - and (x) defined in (49) becomes constant:

(2) =V Z-The optimal policy is

() *(x, )
a y < -#, <y<=B.

Note that y is negative for 0 < 6 < 1, increasing to zero when 6 1, hence it is never
optimal to use the slow work rate if the initial state y is nonnegative.
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Remark 3.5. One of the original motivations for this research was to determine
what happens when the objective for a controlled diffusion problem depends on the
running maximum instead of the diffusion. For the linear example, we have shown
that the policy changes from an x-threshold to a y-threshold policy and the switching
level for the running max problem is lower than the switching level for the standard
problem. That is, let denote the optimal switching level for the payoff

r(B)
J(x; u) := Ez [cut kxt]dt

and let denote the switching level for

’(B)
Jmax(X, Y; u) "= Ezy [cut kyt]dt.

Then

1y 2a

As noted in 2.2, the value function for a pure running max problem does not
retain the smoothness (with respect to y) demonstrated after Proposition 3.3. The
value function is given by

B

V(x, y) W(x, y) + Wy(z, z)dz,

where, recalling (27),

(54)
(ca k2y)

(y x)
5
-x) 2u) (uZ 

y<y,x<y,=

<y<=B,x<y.=

Note that W(x, y) satisfies the the hypotheses of Theorem 2.5.
The value function V(x, y) is not continuously differentiable with respect to y;

there is a "corner" at y. Recalling (30), Vy(x, y) has a positive jump at y of magnitude

k2 [ExyTI(X,y;) ExyT(X,y;a)]

The jump in Vy(x, y) is just k2 times the jump in the expected hitting time when the
control switches.

Finally, there is a jump in Vyy(X, y) at y of magnitude

AVyy(X, y 2k2 , Zha5
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4. Concluding remarks. The running max provides a continuous, monotone
stochastic process model with the advantages of all the machinery of the It5 calculus
for applications The theory of controlled diffusions extends to handle problems in
controlling the running max. It remains to be seen in applications whether a run-
ning max model will provide results fundamentally different from results for standard
controlled diffusions.

One important application for running max problems is in optimal control and
replacement problems for systems subject to deterioration and wear. If we take the
linear mixed problems considered in 3 and consider it as such a problem, we obtain a
quite counterintuitive policy: work cautiously (u a) when the machine is new and
work the machine very hard (u ) as the machine ages and wears. This behavior
is an artifact of the form of the objective function and not the running max model
for the state. In particular, there is a large penalty for working with a worn machine
and there is no penalty for failure while working, hence there is no reward for working
conservatively with a worn machine. There is also no option to quit before failure
and there is no reward for doing so. Thus, the linear payoff does not fit the form
usually studied in optimal repair and replacement problems (see [1], [10], [12], and
[22] for example). In future work, we will consider running max control problems
where the objective function is closer to the types of objectives usually considered in
these applications.

There are interesting and difficult estimation and identification problems intro-
duced in applications of the running max model. Recall that it was not possible to
simply replace the diffusion with the running max; the running max alone is not a
Markov process. It was necessary to assume that the controller could observe both
the diffusion (xt; 0 t < c) and the running maximum (yt;0 <= t < ). How is the
problem changed, indeed is it solvable in any sense, if only the values of the running
maximum are available to the controller? As shown in 2.2, if the diffusion does not
enter the payoff function directly, then the optimal policy depends only on the ob-
served values of yr. However, if both the diffusion and its running maximum enter
the payoff, the optimal policy depends on the observed value of xt, and then we are
faced with a partially observed stochastic control problem, and the problems become
much more difficult.
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FINITE TIME OBSERVER DESIGN BY
PROBABILISTIC-VARIATIONAL METHODS*

MATTHEW R. JAMESf

Abstract. A notion of finite time observer for partially observed deterministic control systems
is introduced; it is shown how such observers are obtained by probabilistic-variational methods.
Observability plays an essential role. The procedure is carried out for finite-state discrete-time systems
and continuous-time nonlinear systems, and the observers obtained are respectively finite and infinite
dimensional. A simple algorithm implementing the observer for finite-state systems is described. An
observability grammian for nonlinear systems is introduced and is used to study the time evolution
of sets of indistinguishable points, as well as local properties of the function satisfying the observer
equation. Finally, the results are specialized to bilinear systems.

Key words, nonlinear control systems, observers, filters, observability
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1. Introduction. In this paper we introduce a notion of finite time observer
for partially observed deterministic control systems and show how such observers are
obtained by probabilistic-variational methods. A finite time observer is a dynamical
system that uses observations from a control system to compute an estimate 2(t) of
the state x(t) of the control system; and after a finite time has elapsed, the estimate
is exact: for any universal input defined on [0, T ], c(t) x(t), t > T. Most existing
observer designs are asymptotic: dist((t), x(t)) - 0 as t - oc.

In [3], Baras and Krishnaprasad proposed that observers for nonlinear control
systems might be obtained as asymptotic limits of recursive filters. Their idea was to
add noise, scaled by a small parameter e > 0, to the equations defining the system,
construct the corresponding family of filters parameterized by > 0, and then pass
to the limit as - 0. The limiting filter that results is a candidate observer for the
original deterministic system. Finally, we must determine whether the candidate is,
in fact, an observer. Baras [1] conjectured that, in general, an "infinite-dimensional"
observer would result, under appropriate hypotheses (such as observability). The ra-
tionale behind this idea was to achieve an observer design by exploiting both the
additional structure obtained by randomizing the problem, and the power of asymp-
totic methods.

To date, work on this approach has been primarily concerned with studying the
asymptotic filtering problem (James and Baras [17], James [15]) and using the limiting
filter to motivate asymptotic observer designs (Baras, Bensoussan, and James [211
James [15]). Such designs were obtained by approximating the limiting filter, in the
spirit of extended Kalman filtering, and required the system to satisfy a detectability
condition. The purpose of this paper is to show that the approach of Baras and
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Krishnaprasad is successful in theory by carrying it out in two general settings: finite-
state machines and nonlinear control systems.

The underlying asymptotic nonlinear filtering problem is connected with the the-
ory of large deviations, which provides a link between asymptotic probabilities and
variational problems. This problem has been studied by Hijab [12], [13], who character-
ized the limiting filter in terms of Mortensen’s [24] method of deterministic minimum
energy estimation. In the observer problem, the initial state is unknown, so we con-
struct nonlinear filters for the randomized systems that reflect this lack of knowledge.
If the system input is universal, then these filters are are consistent as e 0 (Theo-
rems 3.1 and 4.1). The limiting filters so obtained are also consistent: they compute
the state exactly (Theorems 3.2 and 4.2).

In 2 we review the concept of observability and define the term "finite time ob-
server." In 3 we study in detail the method as it applies to finite-state machines.
The observer obtained is finite-dimensional, and we describe how it can be imple-
mented by a simplified parallel algorithm or circuit. These results might be useful
for approximating more complex systems and developing numerical algorithms. In 4
we turn to continuous-time nonlinear control systems. The observers are, in general,
infinite-dimensional (with dynamics given by Hamilton-Jacobi equations), a disadvan-
tage shared with nonlinear stochastic filters. Because observability is so important,
we study this concept further in 5 by characterizing the change in local structure
of the sets of indistinguishable points as time increases, and relating this to certain
properties of the value function, which solves the Hamilton-Jacobi equation. To do
so, we introduce an observability grammian for nonlinear systems (a 2-form) and use
it to define a time-dependent distribution, which we call the observability grammian
distribution. This develops well-known results on local observability based on the ob-
servability codistribution introduced by Hermann and Krener [11]. We specialize our
results to bilinear systems in 6.

2. Preliminaries. In this section we recall some definitions concerned with the
concepts of observability and observers. We begin by introducing the models to be
used.

We consider discrete-time finite-state machines defined by

(2.1)
x(t + f(x(t), u(t)); t 0,1, e,
y(t) h(x(t)); t 0, 1,2,....

..; x(0)=x0;

The state x(t) evolves in a finite set X, and the control u(t) and observation y(t) take
values in finite sets U and Y, respectively. These sets have n, m, and p elements,
respectively. The machine is described by a state transition map f XxU X and an
output map h:X Y. Denote by [0, T] the time interval {0, 1, 2,..., T} and define
the sequence spaces/AT {u: [0, T] U}, b/= [.JT>0L/T, XT {x: [0, T] X},
yT {y: [0, T]- V}. Let , denote the flow for system (2.1); that is, x(t)
/(t)xo E X is the state at time t of (2.1) corresponding to the control u E/d with
initial condition x0 e X. We also write xT (x(0),x(1),... ,x(T)) e XT for an
entire trajectory over the time interval [0, T ]. Similarly, y(t) h(/u(t)xo) Y and
yT (y(0), y(1),... y(T)) e yT.

The continuous-time nonlinear control systems we consider are defined by

(2.2)
2(t) f(x(t),u(t)), t > O, x(O) xo;
y(t) h(x(t)), t >_ O.
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Here, x(t) E X, u(t) U, and y(t) Y; where X n, y p and U C m. We
assume that f C (n m, n) and h C (n, p) satisfy

lY( , u) y(z, zl,
If(x, u)ll

[h(x) h(z)[ CIx- zl,

where C > 0 is independent ofx, z , u U. Let T C([0, T],U), XT
C([0, T ],X), yT C([0, T ], Y), denote the respective path spaces, equipped with
the uniform norms, and write T>0T. Our observer design (given in 4) is also
valid for piecewise continuous controls, although we do not treat this extension here.
The flow is again written x(t) 7(t)x0, etc.

In what follows, all time instants t and intervals [0, T] re assumed to be within
the domain of definition dom(u) of the relevant control u . In 3.2 and 4.2,
the controls my be either open or closed loop. We turn now to the concept of
observability. A system E will mean either (2.1) or (2.2). The definitions are the same
for both.

DEFINITION 2.1 (a) A system E is observable on [0, T] if for all x x in X
there exists u e such that

(2.3) h(7(t)x) h(7(t)x) for some t e [0, T].

(b) We say that E is reconstructable on [0, T]if for all x x in X there
exists u such that

(2.4)
h(Tu(t)x)- h(Tu(t)x) for M1 t e [0, T]

implies 7(T)x (T)x.

(c) A control u for which (2.4) holds for all states x x is termed universal

For continuous-time systems, if u is universal on [0, T ], then (2.3) holds for all

x x. The existence and genericity of universal controls is discussed by Sontag [26]
and Sussmann [27]. A related discussion of observers is given by Sontag [26].

The observer problem is a deterministic state estimation problem" we wish to
design a deterministic dynamical system that takes as inputs u t and y t and
produces an estimate 2(t) X of the state x(t) X; the initial condition x0 X
being unknown. This problem was first solved for observable linear systems by Lu-
enberger [22], in an asymptotic sense: limt dist(2(t),x(t)) 0. Later, Wonham
extended this result to detectable linear systems [31], which are not necessarily observ-
able. Asymptotic observers for nonlinear systems have been obtained by numerous
authors, for instance" Williamson [30], Kuo, Elliott, and Tara [21], Bestle and Zeitz
[4], Krener and Respondek [20], Isidori [14], Baras, Bensoussan, and James [2], Calla
et al. [6]. These observers are defined by ordinary differential equations, are finite-
dimensional, and either assume a local observability condition or involve a stability
condition for the equation satisfied by the error (detectability). Each design has
number of advantages and disadvantages (Walcott, Corless, and Zak [29]), and many
require precise knowledge of the system model.

In this paper we introduce observers that compute the state exactly after a finite
time has elapsed:

(2.5) (t) x(t) for all t T.
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An important requirement is that the estimate be computed recursively; thus we want
the observer to be realizable as a dynamical system, of the general form

(2.6)
rh(t) F(rn(t),u(t),y(t)), t > 0, rn(0) rn0;

de(t) G(rn(t)), t >_ 0;

for continuous-time systems, and

rn(t + 1) F(rn(t), u(t), y(t)), t 0, 1, 2,... rn(0) rn0;
(2.7)

a(rn(t)), t 0,1,

for discrete-time systems. Equations (2.6) and (2.7) are interpreted as defining dy-
namical systems with state rn(t) taking values in a space M, and producing an output
d(t) E X. This output is the state estimate. The space M need not be finite-
dimensional.

DEFINITION 2.2 A dynamical system (.gr of the form (2.6) or (2.7) is called a
finite time observer for the system E provided (2.5) holds for any control u E/d that
is universal on [0, T ].

The task of observer design, then, is to somehow obtain from the given data a
system of the form (2.6) or (2.7) that fulfills the requirements of the definition. In the
following we achieve this goal in some generality using ideas from nonlinear filtering
and large deviations.

3. Finite-state machines.
3.1. Asymptotic filtering. We regard system (2.1) as a deterministic Markov

chain and define a random perturbation as follows. Let N(x) denote a set of points
"neighboring"x X, defined so that N(x) contains f(x, u) for every u U, and every
point z for which x f(z, u) for some u U. Define for z,x X and u E U

0 if x=f(z,u),
U(z,x;u) 1 if x # f(z,u) and x N(z),

+oc if x#f(z,u) and xfN(z),
and for > 0,

1 (1A(u)xz exp --U(z,x; u)

where Z is a normalization constant" xeN(z)A(u) 1 for each z X. (Through-
out, Z denotes an appropriate normalization constant.) A random perturbation of the
state {x(t); t 0, 1, 2,... } is an X-valued Markov chain {x(t); t 0, 1, 2,... } whose
probabilities pg(t) Prob (x(t) x u, x(0) xo) evolve according to

(3.1) p*(t + 1) A(u(t))p(t); t O, 1,2,... pe(O) po.

Note that A(u) A(u) and thus x(t) =, x(t) as e - 0.
Denoting by 0 an element of XT, we have, using the Markov property,

(3.2)

x (0) x0),,o (0) Prob 0 u,

1 1
exp E u(o(t), o(t + 1); u(t)) /{0(o)=xo}.

t=0

This is a probability measure on ,T corresponding to the process Xe,T (a Gibbs
distribution). From this explicit formula, we readily obtain a large deviation result
for these measures (cf. Theorem 3.1 below).
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The noisy observation is a Y-valued process {ye(t); t 0, 1,2,... } distributed
according to the conditional probability

(3.3)

where

1(1)Prob(y(t) y. lx(t) x) exp --V(x,e y)

f0 if y=h(x),
V(x’Y)=’[1 if yh(x).

Let us now define a filter, assuming instead that the initial condition x is random
and has the uniform distribution p on X. This is done because in the observer problem
the initial condition is completely unknown. For 0 E XT and r E j;T, Bayes’ rule gives

IIg,.(0 ProD (Xe,T O lye,T , U, p)

(3.4) exp U(O(t), O(t + 1); u(t)) + V(O(t), ,(t))
k t=0 t=0

where the averaging with respect to p is absorbed into the normalization constant Z.
Let x0* denote the actual initial condition of (2.1), and let x$, x,, y$, y, denote

the corresponding state and observation trajectories produced by (2.1) and its random
perturbation, under the action of a control u N. We are interested in the asymptotic
behaviour of this filter evaluated using the actual noisy observations y$. Define the
action function for the filters by

T--1 T

(3.5) I(O ) U(O(t),O(t + 1); u(t)) + V(O(t), (t)).
t=0 t=0

We then have the following large deviations and consistency result.
THEOREM 3.1. The family of filters {Hg,,} obey the large deviation principle in

probability (LDPP) with action function I(O y,). In particular, if A C XT, then

lim e log Hg,,(A y$) -minIu(Oy,) in probability.
eO OA

iI e a  hich (:.a) thn

u,,(" Y*) 6x. in probability as e O.

The proof of this theorem is straightforward and employs the explicit formula
(3.4). The weak convergence statement depends on the fact that the assumed observ-
ability condition implies that the functional I (. y,) has a unique minimizer, namely,
x,. Indeed, I(x, y,) 0, and also if I(O y,) 0, then 0 is a solution of (2.1)
producing the output y,. If for the given control (2.3) holds for all x xg, then
this implies that 0(0) x,(0), and hence 0 x, (el. Theorem 3.2 below). Thus if
A is a subset of XT not containing x,, then the large deviation limit result implies
(Varadhan [28]) that H,,(A y$) decays exponentially to zero as e 0. This the-
orem is interpreted as saying that the filters H when applied to the actual noisy
observations, concentrate on the desired state trajectory x, as e 0, provided the
observability condition holds.

3.2. Observer design. It is clear from the above that the state trajectory
can be determined by solving a variational problem: find the unique minimizer of
I (. y,). We solve this problem using the dynamic programming method, and obtain
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a recursive system that becomes our finite time observer for the machine (2.1). For
each t 0, 1, 2,... define a function

,n(., t)" X

by

(3.6) m(x, t) min

The function I,(. Y*) is taken to be defined on the interval {0, 1,..., t} rather than
the interval {0, 1,... T}. The dynamic programming method gives

m(x,t) min {m(z,t- 1) + U(z,x;u(t- 1)) + V(x,y,(t))}; t >_ 1;
(3.7) zeN(x)

o) V(x,
Define also the "deterministic estimate" [24], [12]"
(3.8) 2(t) argmin m(x, t) =_ {x e X" m(x, t) 0}.

xEX

This quantity is set-valued, since m(., t) may have many minima. For example, 2(0)
{x e X" h(x) y,(0)}. Equations (3.7) and (3.8) define the limiting filter; in
fact, lim-0 clog P(x(t) x lye,’t, u, #) -m(x, t) in probability. Our main result
concerning observers for the finite-state machine (2.1) is the following theorem.

THEOREM 3.2. The recursive system (3.7), (3.8) is a finite time observer for the
finite-state machine (2.1). In particular, if u is a universal control on [0, T ], then

(3.9) 2(t) {x,(t)} for all t >_ T.

Proof. For all t 0,1,2,..., m(x,(t),t) 0 and m(x,t) >_ 0 for all x X.
Suppose that t > T and
such that O(t) c and Iu(O y,) O. This implies that

(s + 1) f((s),u(s)); s 0, 1,...,T- 1;

y,(s)=h(O(s)); s 0,1,... ,T.

(In fact, these relations also hold for s T,... t- 1; s T + 1,... t, respectively.)
If u is a universal control on [0, T ], this forces (T) x,(T). From this, it follows
that (s) x,(s), s T + 1,...,t, and so (t) x,(t). H

Computing 2(t) requires the determination of those x X satisfying re(x, t) O.
For each x, the computation of re(x, t) involves up to n minimizations. This procedure
can be simplified by setting

rh(x,t)= {0 if m(x, t) 0,
1 if m(x,t) > O.

Regard 1 and 0 as the logical values TRUE and FALSE. Then rh(x, t) is given by the
logical expression

t) V(x, v A
(3.10) zEN(x):x=f(z,u(t-1))

0) v(x,

rh(z,t-1) iftkl,

where the symbols V and A denote oP and AND, respectively. If the set {z E N(x)
x f(z,u(t- 1))} is empty, we set h(x,t) 1. Note that 2(t) {x "h(x,t) 0}.
A digital circuit or parallel algorithm can readily be designed to realize (3.10).
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4. Nonlinear control systems.
4.1. Asymptotic filtering. On a probability space (12, ’, P) we consider a fam-

ily of diffusion processes (x(t), t >_ 0} together with observation processes ((t), t _>
0}, satisfying the stochastic differential equations

(4.1)
dx(t) f(x(t), u(t))dt / x/dw(t), x(O) xo,

d(t) h(x(t))dt / vdv(t), (0) O.

Here, (w(t), t _> 0} and {v(t), t _> 0} are independent Wiener processes in X n and
Y p, respectively, and x0 E n. This defines the perturbed state and observation
equations for the continuous-time nonlinear control system (2.2). As is well known
(Freidlin and Wentzell [10]), xe,T xT and ,T

_
T in probability as e - 0, where

(t) f y(s)ds, and the distributions P.u,0 of x,T on XT obey the large deviation
principle (uniformly in x0 E n).

We use the well-known robust filter (Davis [8]) for (4.1), defined assuming that
the distribution of the initial condition x is a probability measure # on n such that
#(B(x, r)) > 0 for every ball B(x, r). This filter is a continuous map

such that

II (x,T (A e B(XT))...,(A 5.) P e A I,, u,#) a.s

An explicit formula for the filter corresponding to a bilinear system is given in 6. For
A’T and absolutely continuous yT, define the action function for these filters

T

1/2 I(s)- f(O(s), u(s))12+li(s) h(O(s))12ds
(4.2) I(Ol)

if 0 is absolutely continuous,

+ otherwise.

The (,) notation of the preceding section is again used to indicate a distinguished
initial condition and the corresponding state and observation paths. Parallel to Theo-
rem 3.1 we have the following result, which refines the large deviation results of Hijab
[12], [13], and James [15]; see also [18], [17].

THEOREM 4.1. The filters {H,} obey the LDPP with action function Iu(O ,).
In particular, if A C XT, then

IIu,(A’ *) exp (--1 inf Iu (0*))OEA
in probability as

Furthermore, if u is a universal control on [0, T ], then

II,,(. I,) = 6x. in probability as O.

Here, the symbol denotes asymptotic equivalence. The proof of this theorem is
omitted and is based on a generalization of the well-known Varadhan-Laplace asymp-
totic method (Varadhan [28]), and the fact that if u is universal on [0, T ], then the
unique minimizer of In(. ],) is x, (cf. Theorem 4.2 below). The convergence of the
measures is with respect to the Prohorov metric on the space 7:’(XT) of probability
measures.

by
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4.2. Observer design. As for finite-state machines, the state trajectory can be
obtained in principle by finding the minimizer of Iu (. ,). For t _> 0 define a function

m(., t)’ }n
__

[O,
by

(4.3) m(x,t) inf {1/21h(0(0))- y,(0)l + I(O ,) O(t x,O e Xt},
where I,(. I,) is defined for the time interval [0, t]. The cost term for the initial
condition does not appear in the limiting filter. It is added here to include the infor-
mation that is available at time t 0 in the deterministic limit. The value function
rn(x, t) is continuous and is the unique viscosity solution of the Hamilton-Jacobi (HJ)
equation (Crandall, Evans, and Lions [7])

(4.4)

Also define

IDm(x t)12 + f(x, u(t)). Dm(x, t),t)+
-!ly,(t h(x)l 2 02

m(x, 0) ]y,(0) h(x)l 2

in N’ x (0,
in Nn.

(4.5) 2(t) argmin rn(x, t).

The limiting filter satisfies (4.4), (4.5), except with rn(.,0) 0; if 7rg,u(x,t (,,t)
denotes the conditional density, then lira,--,0 e log 7rg,u (x, t (,,,t) -rn(x, t) in proba-
bility [17], [15]. We have the following result concerning the existence of observers for
the nonlinear system (2.2).

THEOREM 4.2. The dynamical system (4.4), (4.5) is a finite time observer for
the nonlinear system (2.2). In particular, if u is a universal control on [0, T ], then

(4.6) 2(t) {x,(t)} for all t >_ T.

Proof. Now re(x, t) >_ 0 for every x e Nn, and also m(x,(t), t) 0 for t >_ 0. Let
t >_ T and suppose that u is universal on [0, T ]. If z E N’ is such that m(z, t) O,
then, thanks to the lower semicontinuity of Iu(. *), there exists 0 e X such that
llh(O(O))- y,(0)l 2 -+-I,(Ol, 0 and O(t) z. Hence )(s) f(O(s) u(s)) and2
y,(s) h(O(s.)) for each s [0, t]. Thus 0 is a state trajectory, and produces the
output y,. Since u is universal on [0, T ], we must have O(T) x,(T), and therefore
z x,(t). D

Remarks. (i) Note that this observer is infinite-dimensional, with state space
M C(n).

(ii)

(iii)

Theorem 4.2 does not require all the smoothness assumed for the data
f and h in 2. The Lipschitz continuity and growth conditions suffice.
What is important is the computation of 2(t) {x n m(x, t) 0},
and, as noted in 3.2, it may be possible numerically to compute 2(t)
without computing the complete solution of (4.4) (James [16]).

5. Observability and the value function. In this section we study the..time
evolution of the sets of indistinguishable points and certain properties of the value
function m(x, t). This provides some insight into how an observer can aquire informa-
tion and determine the state trajectory. We consider system (2.2) and drop the (,)
notation used in previous sections. Most of the results below remain valid if the class
of admissible controls b/is expanded to include all measurable controls u [0, T ---, U.
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For each t > 0, define the set of points indistinguishable from x0 on [0, t] with
respect to the control u E 5/t by

I(xo) {x e n "h(u(s)x)= h(/u(s)xo) for all 0 < s < t},
and the set of points indistinguishable from x0 on [0, t] with respect to the class of
controls b/t by

I,(x0) n i (x0).

As time t increases, these sets can decrease in both size and dimension. For instance,
Io(xo) is generically the submanifold h-l(h(xo)), whereas if the control system is
observable on [0, T], then, for all t > T, It(x0) {x0}. Below, we study the local
structure of the sets It(x0) for times t between these extremes.

We define the observability grammian (9u for system (2.2) given the control u E L/
to be a map assigning to each t E dom(u) a field (gu(t) of symmetric bilinear forms
defined for X1, X2 E Txn by

(9(t)(X, X2) (dh(x), XI (dh(x), X21

+ (dh(’u(s)x), u,x(s)Xl}. (dh(/u(s)x), /u,x(s)X2)ds.

Here, /u,x(s) denotes the differential of the flow, (., .) denotes the pairing between
vectors and covectors, and the dot is the usual inner product in p.

Remark. This grammian is "dual" to the deterministic Malliavin covariance ma-
trix defined by Bismut [5]. The observability grammian for linear systems was intro-
duced by Kalman [19].

The rank of CO(t) is a left-continuous nondecreasing function of time t for each
fixed x E n. The kernel of this grammian is defined by

(5.4) A’(x) ker O(t)
for x E n. Define the observability grammian distribution At for t _> 0, x " by

The set A/It of nonsingular points of At is an open dense subset of ". This distribution
characterizes the local structure of the sets of indistinguishable points.

THEOREM 5.1. Fix t >_ 0 and let xo n be a nonsingular point for At,; d
dim At(xo). Then there exists a neighborhood U of xo such that It(xo)N U is a d-
dimensional integral submanifold of At.

Proof. Since dim At is constant near xo, and the (9u(t) are continuous functions
of x, there exists controls u,..., ut /4 such that

for all x near xo. Write H L2([0, t], p) and define Yt n Ht by

y  (xo)

Y (z)
5 (x0i
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where Yt(x)= {h(/u(s)x), 0

_
s <_ t}. Now dYt(x) {(dh(/u(s)x),/u.(s).), 0

s _< t}, and so
ker dYt(x) At(x)

for all x near xo. By the rank theorem (Rudin [25]), there is a neighborhood Y of xo
such that Yt(V) is an (n- d)-dimensional submanifold of He. By the implicit function
theorem, there exists a neighborhood U of xo contained in V such that Yt-l(Yt(xo))NU
is a d-dimensional submanifold of n. This submanifold is an integral submanifold of
At through xo. By construction, It(xo)N U C Yt-l(Yt(xo)) U.

Now let u E b/t, and x e Yt-(Yt(xo)) U. Reducing U if necessary, there exists
a piecewise smooth curve a "[0, 1] Yt-(Yt(x0)) U such that a(0) xo, a(1) x
and

e e [0,1].
This implies

(dh(/u(S)a(r)),’u.(s)&(r)} 0

for 0 _< s _< t, almost everywhere r e [0, 1]. Then h(u(S)a(r)) h(u(s)xo) for all
0 _< s _< t, r [0, 1], and hence h(’u(S)X) h(9/u(S)Xo) for all 0 _< s _< t. Therefore
Yt-(Yt(xo)) N U C It(xo) U, completing the proof.

Let us say that system (2.2) is locally observable on [0, T] if every point xo n
has a neighborhood Uxo such that IT(xo)N Uxo {xo}.

COROLLARY 5.1. /f AT {0} in n, then system (2.2) is locally observable on

[0,T ]. on [0, T], {0}
Proof. The first statement follows immediately from Theorem 5.1. The dimension

of AT is constant on the open dense set A/IT, and Theorem 5.1 implies that this
dimension must be zero there if (2.2) is locally observable on [0, T ]; hence the second
claim.

In [11], Hermann and Krener introduced the observability codistribution defined
for x n by

Ft(x) span {dh(x), Lydh(x), L2_f,dh(x), u U},
where Ludh, k 0, 1,2,..., denotes the kth Lie derivative of the 1-form dh with
respect to the vector field with constant control fu f(., u). The annihilator of is
denoted +/-.

PROPOSITION 5.1. For all t > 0 we have

At(x) C gt+/-(x) for all x e n.
Furthermore, if 7"t denotes the open dense subset of nonsingular points for t and if U
is compact, then for each xo Tt there exists to > 0 and a neighborhood Vxo C T of
xo such that

At(x) Ft+/-(x) for all x Vxo, and all t (0, to].
Proof. 1. Let X e At(x) and let u(s) =ue V for s e [0, t]. ThenX e A(x)

and so (dh(/u(s)x), .x(s)X) O, 0 <_ s

_
t. Repeatedly differentiating with respect

to s gives for k O, 1, 2,... (Lu dh(x), X} 0. This holds for each fixed u e U, and
hence X E +/-(x).

2. Since U is compact, there exits to > 0 and a neighborhood Vxo C 7 of xo such
that if x Vxo and t [0, to] then "yu(s)x 7, 0 <_ s <_ t, for any u L/t. Let X E
gt+/-(x), x Vxo, and 0 < t

_
to. By approximation, it is enough to show that if u L/t

is piecewise constant, then X A(x). Select points to 0 < t < < tk t and
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u E U and define u(s) u if s E [#, t-l), 1,..., k. The invariance of t+/- under
the action of fur (Isidori [14]) implies that yi.x-i (s)+/-(x-1) C gt+/-(’u(s)x-) for
s e [t,t-], where x /u(t)x-, x x. Then (dh(’u(s)x),/.x(s)Xl 0 for
0 _< s _< t; i.e., X A(x).

Thus, generically, the leaves of consist of points that are not instantaneously
distinguishable. System (2.2) satisfies the observability rank condition (ORC), pro-
vided that dim gt(x) n for all x ’. Hermann and Krener prove that if the
control system satisfies the ORC, then it is locally weakly observable; i.e., every point
can instantaneously be distinguished from it neighbors; conversely, if this property
holds, then the ORC holds generically. Note that if the ORC holds, then necessarily
At {0} in for all t > 0. Also, note that +/-(x) C A0(x) for all x n.

A control u E L/T is called a local universal control on [0, T if every x0 Nn has
a neighborhood Vo such that I(x0) Vx0 {x0}. The observability grammian 0u

is related to the system obtained by linearizing (2.2) along a trajectory.
COROLLARY 5.2. If u is a local universal control on [0, T], then the linearized

system

f J[(t)- Df(/(t)x, u(t))X(t), t > O, X(O)= Xo Tn;
Y(t) (dh(’(s)x),X(t)}, t >_ 0

is observable on [0, T] for all x belonging to an open dense subset of n. Conversely,
if (5.6) is observable on [0, T] for every x n, then u is a local universal control.

Proof. Specializing Theorem 5.1 to the case of a single control, it follows that if
u is a (local) universal control on [0, ’:" ], then A is zero on an open dense subset of
n; that is, the observability grammian 50(T) is strictly positive definite for all x in
this set. This implies that the linear system (5.6) is observable on [0, T ], for all such
x. The converse statement also follows from Theorem 5.1.

These results give information on the sets of points 2(t) on which the value
function rn(., t) vanishes.

THEOREM 5.2. Let u bl. Then we have:w

(a) There exists a neighborhood S(xo) ofF(xo) {’u(t)xo; t >_ 0} on which
the value function m is of class C,, and P(t) D2m(/u(t)xo, t) sat-
isfies the Riccati equation

(t) -P(t)Df(7(t)xo, u(t)) Df(7(t)xo, u(t))’P(t) P(t) 2

(5.7) + Dh(7(t)xo)’Dh(7(t)xo), t > 0;

P(O) Dh(xo)’Dh(xo);

(b) If xo is a nonsingular point for Au then there exists a neighborhoodt
W of /u(t)xo such that 2(t; x0, u)N W is a submanifold of dimension
dim A(x0);

(c) If u is a (local) universal control on [0, T ], then for t >_ T we have

D2m(/(t)xo, t) > 0,

for all xo belonging to an open dense subset of n.
Proof. Part (a). For any t _> 0, there exists a minimizer E X such that

O(t) (t)x0, m((t)xo, t) O. This implies that 0(s) "(s)x0, 0 <_ s <_ t, and so the
minimizer is unique. Therefore m(., .) is differentiable at (/(t)xo, t) and it also follows
that (/(t)xo, t)is not conjugate to F(x0) (Fleming [9]). The method of characteristics
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then provides a unique smooth solution rh to the HJ equation (9.2) in a neighborhood
S(xo) of F(x0); this solution coincides with m in S(xo).

The Riccati equation (5.7) is obtained by differentiating D2m(/(s)xo, s) with
respect to s and combining the resulting expression with the equation obtained by
differentiating the HJ equation (4.4) twice with respect to x. Note that the adjoint
variable (s)= Dm(’y(s)xo, s) equals zero and y(s)= h(’y(s)xo) on [0, t].

Part (b). We have 2(t;x0, u) "y(t)I(x0), and so the result of Theorem 5.1
specialized to a single control can be carried over by the flow to establish (b).

Part (c). Corollary 5.2 implies that if u is a (local) universal control on [0, T ],
then for t > T we have Oo (t) > 0 for x0 belonging to an open dense subset of n.
From linear systems theory (Kalman [19]), if OxUo(T) > 0 then the solution of the
Riccati equation P(t) is also strictly positive definite for t

Remark. In the context of stochastic nonlinear filtering, Mitter [23] mentions that
the invertibility of the Hessian of an analogous value function is related to observability.
In his derivation of the extended Kalman filter, Mitter needs to invert this Hessian.
Theorem 5.2 establishes this relationship in the deterministic case. Note that (5.8) is
true for all x0 E n and t _> T if A {0} in n.

6. Bilinear systems. Consider the bilinear control system

(6.1)
it(t) Ao + ui(t)Ai x(t), t > 0, x(0)= x0;

i--1

Cx(t), t > o,
where Ai and C are appropriately sized matrices. For u E /g write Au(t) Ao +
m=1 ui(t)d. With #(dx) (2r)-n/2 exp(-5]xle)dx, the robust filter for the random

perturbation of (6.1) has conditional density
(6.2)
v (x,t ) (27cdet(P(t)/e)-)-n/2exp ( l(x,u --e (t))’P(t)(x 2(t))

where

dk(t) du(t)k(t)dt + (P(t))-lC’(d(t) CYc(t)dt), t > 0, (0) 0,
(6.3) Pc(t) -P(t)d(t) d(t)’P(t) Pc(t) 2 + C’C, t > 0, Pc(0) eI.

Note that Pc(t) :> 0 for all t _> 0. The observer equation (4.4) has the explicit solution

(6.4)

where

(6.5)

m(x, t) 1/2x’P(t)x + M(t)x + 1/2N(t),

(t) -P(t)A(t) A(t)’P(t) P(t) 2 + C’C, t > O, P(O) C’C;
_l/I(t) -M(t) (A(t) + P(t)) y(t)’C, t > 0, M(0) -y(0)’C;

l(t) -M(t)M(t)’+ly(t 12 t > 0, N(0) =[ y(0)12

If u is universal on [0, T ], then if t _> T we have P(t) > 0 and

(6.6) 2(t) {-P(t)-iM(t)’} {x(t)}.

In general, if 0 < t <_ T, P(t) need not be invertible, and 2(t) x(t) + ker P(t),
an affine subspace of n. Also, I(x0) xo + kerOu(t), where 0u is the observability
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grammian of the time-varying pair (C, A’). The ORC will be satisfied provided (Isidori
[14])

(6.7) gt +/-

n--1 m

k=0 jl ,...,j =0

ker(CAjl...Aj) {0},

in which case (6.1) will be observable and the finite-dimensional observer (6.5), (6.6)
will compute the state exactly for any universal control (such controls are generic;
Sussmann [27]).

7. Conclusion. We have shown that a finite time observer exists and computes
the state exactly (if a universal input is used) for any control system satisfying minor
technical conditions. The major disadvantage is that the observers are in general
infinite-dimensional when the state space has infinitely many points. This is similar to
the situation for stochastic nonlinear filtering theory. Our design is simple and general,
but it is computationally difficult. From an engineering point of view, computational
and practical questions need to be addressed and resolved to yield usable designs. We
note that computational methods are currently under development, and they promise
to be robust with respect to modeling uncertainties (James [16]). In addition, since
the observer is the limit of a family of nonlinear filters, the consistency results suggest
that the observer should tolerate system noise fairly well.
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initial inspiration for this work and for encouraging me to work on this topic, and
Professors L. C. Evans and W. H. Fleming for several helpful discussions.
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AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED
OPTIMIZATION*

JAMES V. BURKE}

Abstract. In their seminal papers Eremin [Soviet Mathematics Doklady, 8 (1966), pp. 459-462]
and Zangwill [Management Science, 13 (1967), pp. 344-358] introduce a notion of exact penalization
for use in the development of algorithms for constrained optimization. Since that time, exact penalty
functions have continued to play a key role in the theory of mathematical programming. In the
present paper, this theory is unified by showing how the Eremin-Zangwill exact penalty functions
can be used to develop the foundations of the theory of constrained optimization for finite dimensions
in an elementary and straightforward way. Regularity conditions, multiplier rules, second-order
optimality conditions, and convex programming are all given interpretations relative to the Eremin-
Zangwill exact penalty functions. In conclusion, a historical review of those results associated with
the existence of an exact penalty parameter is provided.

Key words, exact penalty functions, calmness, constraint qualification, optimality conditions,
convex programming

AMS(MOS) subject classifications. 49A42, 49D30, 49D37, 90D30

1. Introduction. In their seminal papers Eremin [23] and Zangwill [75] intro-
duced a notion of exact penalization for use in the development of algorithms for
nonlinear constrained optimization. This notion of exact penalization is the natural
extension of the so-called big-M method of linear programming (see Charnes, Cooper,
and Henderson [14, 4] for the earliest reference known to us) to nonlinear program-
ming. Since that time, exact penalty functions have continued to play a key role in
the theory of mathematical programming. Within the algorithmic sphere, the history
of these functions is quite rich, even though their use has been, and still is, a topic
of controversy. The root of this controversy is the nondifferentiable nature of these
functions. From an algorithmic viewpoint, this nondifferentiability can induce the so-
called Maratos effect (a phenomenon that prevents rapid local convergence). A great
deal of effort has been devoted to overcoming this difficulty, leading to the develop-
ment of the so-called watchdog technique [12] and second-order correction techniques
[19], [28], [26], [29], and others. Other authors, in an effort to avoid the problems
associated with nondifferentiability, have introduced entirely different classes of exact
penalty functions that are differentiable [5], [30], [34], [60], and [69]. The research in
this area continues at a rapid pace and the controversies over the use of nondiffer-
entiable exact penalty functions in algorithms are far from nearing resolution. This
paper can, in many ways, be viewed as a contribution to this discussion. However, our
approach is from a rather different perspective. We do not discuss algorithms at all,
rather we demonstrate how the Eremin-Zangwill exact penalty functions can be used
to develop the foundations of the theory of constrained optimization in an elementary
and straightforward way. In doing so, we show how all of the fundamental notions
and results in constrained optimization can be derived from the Eremin-Zangwill ex-
act penalty functions, from regularity conditions such as calmness [15], [66], to the
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existence of Lagrange multipliers, to second-order necessary and sufficient conditions
for optimality. The derivation of these results by means of the Eremin-Zangwill exact
penalty functions is by no means strained or artificial, quite the contrary, the proofs
are often simplified at the expense of obtaining a more powerful result. Thus, our goal
in this endeavor is not to demonstrate the viability of these penalty functions for use
in algorithmic development, but rather to demonstrate their role vis-a-vis the founda-
tions of the theory and to provide an interpretation for many of the familiar objects
in this theory in terms of the corresponding objects associated with these penalty
functions. Hopefully, one consequence of these investigations is that the practical
significance of these penalty functions can be more accurately assessed.

We begin 2 by reviewing some of the fundamental results and concepts associated
with constrained optimization. We discuss calmness, regularity, constraint qualifica-
tions, and their relationships vis--vis exact penalization. This section contains all of
the first-order-results related to the existence of Kuhn-Tucker [43] multipliers. In 3
we show how exact penalization techniques can be used to derive a multiplier theorem
in the absence of a constraint qualification. This multiplier rule is reminiscent of the
one given by John [42]. Second-order results are obtained in 4. The case of convex
programming is studied in 5, and in 6 we provide a historical review of the literature
on the existence of a finite exact penalty parameter. The approach to the theory of
constrained optimization from the viewpoint of exact penalization is also the theme of
Fletcher [29, 14.3], Garcia-Palomares [31], and Rockafellar [64]. A very nice survey of
exact penalization techniques in general is given by Fletcher [27]. The present paper
is based on Burke [9], wherein several further results and generalizations are obtained.

The notation that we employ is for the most part standard; however, a partial
list is provided for the reader’s convenience. Let X be a real normal linear space and
let X* be its topological dual. The spaces X and X* are paired in duality by the
continuous bilinear form

(x*,x) := *(x)
defined on X* X. Given xl,x2 E X the line segment joining them is denoted by

.= + e [0,

Let C be a subset of X. Then cl(C) is the closure of C, int(C) is the interior of C,
and ri(C) is the interior of C relative to its affine hull, i.e., the smallest closed affine
set containing C. The core of C, denoted core(C), is the set of all point z E C such
that every line through z contains a line segment [zl,z2] with z [z,z2] C C and
z : z = z2. In finite dimensions, we have core(C) int(C). The polar of C is given
by

C := {x* e Z*: (x*,x) _< 1 for all x C}
and the positive conjugate of C is C* -C. The recession cone of C is

rec(C) "= {y e X" C + y c cl(C)}

and the cone generated by C is

cone(C) := U,x_>oAC,

where for any two subsets S and $2 of X and any two scalars a,/ E we have
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The support and indicator functions for C are given, respectively, as

*(x*[C) sup{(x*, y> y e C}

and

.= 0, ifxEC
otherwise.

The barrier cone of C is

bar(C) := {x*

and the relation
rec(C) [bar(C)]

holds if X is reflexive.
A multifunction T mapping X into Y where Y is another real normal linear

space, written T XY, is a mapping of X whose values are subsets of Y. The
domain of T is the set dom(T) := {x e Z T(x) - } and the graph of T is
graph (T):= {(x, Y)IY e T(x)}. T is said to be upper semicontinuous if graph (T)
is closed in X x Y under the product topology. The space .(X, Y) is the space of
continuous linear maps from X to Y. Given T f(X, Y) we write

ran(T) "= {y e Y" 3x e X with y Tx}

and
ker(T) "= {x e X" Tx 0}.

If X and Y are finite-dimensional, then, with respect to fixed bases for X and Y,
one can identify f(X, Y) with Imxn the set of m x n matrices, where dim(X) n
and dim(Y) m. The adjoint of A E(X, Y) is the uniquely defined mapping
A* e/:(Y*, X*) for which

<A’y*, x> <y*, Ax>
for all (y*, x) Y* x X. In finite dimensions we have A* AT.

Let f" X ---, 1 where 1 I t2 {+oc}, we write

dom(f) "= {x e X’f(x) <
levi(x := {y X’f(y) <_ f(x)}, and

epi(f) := {(#,x)’f(x) < #}.

We say that f is lower semicontinuous if epi(f) is a closed set. If f is Lipschitz near
a point x X, then the Clarke generalized directional derivative,

f(x; d):= limsup
t$o

f(u + tv)

exists at x for every d X.
The norm on X is denoted I1" and its unit ball is I := {x: ]lxll _< 1}. The dual

norm is given by IIx*ll0 := *(x*lg and its unit ball is go. The distance function for
a set C C X is given by

dist(ylC) := inf{[ly- x[l x e C}.
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For C C X*, the dual distance function is denoted

dist0(ylC) := inf{lly- xllo x e C}.

In finite dimensions the Euclidean norm plays a special role and is denoted by I1" 112 with
corresponding distance function dist2(.IC). The distance function for a set C c X is
Lipschitz with Lipschitz constant 1, and so its Clarke generalized directional derivative
exists at every point in all directions. Based on this observation we define the tangent
cone to a point x E C by

T(xlC := {d e X’dist(.IC)(x;d) 0}

with the normal cone defined via polarity

N(x[C) := T(xlC).

For convex sets, these objects reduce to the usual notions of tangent and normal cone.
In finite dimensions one can also define the limiting proximal normal cone at a point
x e C by N(xlC "= {Alimvi/llvill" , >_ 0, vi 2- C at xi x, vi 0}, where one
writes v 2_ C at y to mean that y cl(C) and v yl _y with Ily -YlI2 dist2(ylC)
One has that N(xlC is the closed convex hull of N(xlC).

Given f" X the generalized subdifferential of f at x dom(f) is given by

Of(x) {x* e X* (-1, x*) e N((f(x),x)lepi(f)) },

the asymptotic subdifferential is

Of(x) :- {x* e X* (O,x*) e N((f(x),x)lepi(f))},

the limiting proximal subdifferential is

Of(x) "= {x* e X* (-1,x*) e N((f(x),x)lepi(f)) },

and the asymptotic limiting proximal subdifferential is

Of(x) "= {x* e X" (O,x*) e N((f(x),x)lepi(f)) }.

Clearly, Of(x) rec(Of(x)) whenever Of(x) 7 . The generalized directional deriva-
tive of f is then defined to be

fO(x; v) ":

with f(x; v) := -oc if Of(x) O. This notation is consistent with that of the Clarke
subdifferential for locally Lipschitz functions.

The function f is said to be subdifferentially regular at a point x E dom(f) if

liminf f(x + tu) f(x) f0(x; v)
t

t$o

for all v X, in which case

f(x; v) f’(x; v)’= lim
f(x + tv) f(x)

to t
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A function F" X --, Y has Frechet derivative F’(x) E (X, Y) at x E X if

F(y) F(x) + F’(x)(y x) + o(lly xll),

where limy__,xo(lly- xll)/lly- xll 0. The mapping F is strictly differentiable at
x X if there exists F(x) C (X, Y) such that

lim
F(x’ + tv) F(x’) F(x)v

,I t
t$o

for all v in X. If f X --* R is strictly differentiable at a point x dom(f), then
Of(x)- {/(x)}.

If both X and Y are finite-dimensional and F X --* Y is locally Lipschitz,
then F is almost everywhere differentiable in the sense of Lebesgue measure. The
generalized Jacobian of F at a point x X, denoted OF(x), is the convex hull of all
operators in (X, Y) obtained as the limit of sequences of the form {F’(xi)} where
xi --, x and F(x) exists at each x. Again, if F is strictly differentiable at x, then
OF(x) {F(x)}.

Let f" X - and C C X. We write

arg min{f(x) x e C} := {x e C" f(x) min{f(x) x e C}}

and define arg max{f x C} similarly. A local minimum of radius for the problem
min{f(x):x C} is any point x C such that f(x) <_ f(y) for all y e C f (x + sI).

For more information about the objects defined above see [15]-[17], [54], and

2. The fundamentals: calmness, regularity, and exact penalization. Let
X and Y be normal linear spaces and consider the problem

minimize f(x)
subject to g(x) C,

where f X 1 := 1 U {+oc}, g X Y, and C is a closed subset of Y. We
begin with a discussion of regularity conditions that allow the development of general
multiplier rules for P. One of the weakest such conditions was proposed by Rockafellar
and is known as calmness.

DEFINITION 2.1. Let f, g, X, Y, and C be as in the statement of P and consider
the perturbed problems

(T’u) minimize f(x)
subject to g(x) C + u.

Let 3 X and Y be such that g(3) E C + and 3 dom(f):= {x X’f(x) <
+c}. The problem P is said to be calm at 3 if there are constants _> 0 and > 0
such that for every pair (x, u) e X x Y with IIx- 311 <_ and g(x) e C + u we have

(2.1) f (x) -t- >_ f (3).

The constants and are called the modulus and radius of calmness for P at 3,
respectively.
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(2.2)

where

The family of perturbed problems P is said to be calm at if

liminf
V(u) >

V(u) min{f(x) g(x) e C +
if {x g(x) e C + u} 0
otherwise

is the value function for the family P.
Remarks. (1) This definition for P to be calm at -2 varies from the definition

that is usually given (eg., see Clarke [15, Def. 6.4.1]); however, in Burke [8, 2], it is
shown that they are equivalent when g is continuous at -2.

(2) Observe that if P is calm at -2, then -2 is necessarily a local solution to
and if P is calm at , then for any solution -2 to P,P is calm at -2.

(3) The notion of calmness is closely related to the notion of a (I)l-subdifferential
introduced in Dolecki and Rolewicz [20].

The calmness hypothesis is quite weak and in many situations is easily verified.
In finite dimensions, calmness holds on a dense subset of the perturbations.

PROPOSITION 2.1. (l) (Clarke [15, Prop. 6.4.5]) Suppose that Y := m,C :=
]_, and f := fo + (’IS) with S C X nonempty and closed, and fo X -- and
g" X I" locally Lipschitzian. If V(u) is finite for all u near 0, then for almost all
u in a neighborhood of the origin the problem Pu is calm.

(2) (Burke [8, Prop. 3.1]) Suppose that Y is finite-dimensional, f is lower semicontinuous,
and g is continuous. If E Y and "y > 0 are such that V is bounded on + /], then
7) is calm on a dense subset of +

From (2.2) it is clear that calmness is a weak variational property of the value
function V. A condition of this type is always required for establishing the existence
of multipliers. It is remarkable that the notion of calmness at a solution to P is
equivalent to the existence of a finite exact penalty parameter.

THEOREM 2.1 (Burke [8, Thm. 1.1]). Let -2 X and Y be such that

g(-2) C + g and -2 e dom(f).

Then 7) is calm at -2 with modulus - > 0 and radius e > 0 if and only if-2 is a local
minimum of radius e for

P,(x) f(x) + a dist(g(x)[C + )

for all >_ -5, that is,
<

for all x -2 + and a >_ -5.
Remark. The fact that calmness implies the existence of an exact penalty param-

eter is also established in Clarke [15] and Dolecki and Rolewicz [20]. However, the
reverse implication and the precision of this correspondence is first established in [8].

Thus, at this early juncture we see that the Eremin-Zangwill exact penalty func-
tions play a fundamental role in the theory. Under the calmness hypothesis we can
obtain multiplier rules for P by first invoking Theorem 2.1 and then applying the per-
tinent calculus rules of an appropriate subdifferential (e.g., the Clarke subdifferential
[15]-[17], the Michel-Penot subdifferential [53], the limiting proximal subdifferential

[65]-[66], etc.)
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We present two sample results based on the subdifferential calculus developed in
Clarke [15] and Rockafellar [66], [68].

THEOREM 2.2. (1) Suppose is calm at J E X, g is strictly differentiable at J
with strict derivative g’s(J), and Of(J) . Then there is a y N(g(J)lC such that

0 Of(J) + gs(J)*Y.

(2) If X and Y are finite-dimensional, 7) is calm at J X, f is lower semicontinuous
near J, and g is Lipschitzian near J, then there exists y e N(g(J)IC such that

o e

Proof. (1) By Theorem 2.1, J is a local minimum for Pa(x) f(x)+a dist(g(x)lC)
for all a sufficiently large. Hence 0 OPa(J) for all a >_ for some >_ 0. By [68,
Cor. 2],

OPt(J) C Of(J)+ sO [dist(g(.)lC)](J).

From [15, Prop. 2.4.2],

N(g(J)IC cl[U>oAO [dist(.IC)](g(J))].

Consequently, by the chain rule [15, Thin. 2.3.10],

0 e Of(J)

from which the result follows.
(2) This is an immediate consequence of Rockafellar [66, Cor.

inclusion (2.3).
5.2.3] and

Remarks. (1) To incorporate an abstract constraint of the form x S C X we
simply replace f by f +
(2) We do not claim that the results in Theorem 2.2 are original. Results similar to
these can be found elsewhere in the literature, e.g., [1], [3], [15]-[17], [39]-[41], [45],
[54], [63]-[66]. However, the proofs that we provide are different from those that are
usually provided, due to the explicit dependence on Theorem 2.1.

Various conditions can be found in the literature that ensure that the calmness
hypothesis is satisfied. All of these conditions are related to the regularity of the
constraint systems of the form

(2.4) g(x) C and x S c X.

DEFINITION 2.2. System (2.4) is said to be regular at a solution x0 if there exist
constants a > 0 and e > 0 such that

dist(x[t(u)) <_ a dist(g(x)lC + u)

for all x (xo + eI) N S and u E e where

.= {x e x a(x) e c + x e

The constant a is called the modulus of regularity for (2.4) at xo.
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Remark. This and more general notions of regularity for (2.4) are studied by
several authors, e.g., [1], [4], [7], [15], [20], [48], [49], [51], [52], [61], [62], [66]-[68], [73].

Calmness and regularity are related via Clarke’s elementary exact penalization
theorem.

THEOREM 2.3 (Clarke [15, Prop. 2.4.3]). Let f" X 1 be Lipschitz of rank
on a set T C X. Let 5 belong to a set C T and suppose that f attains a minimum
over at 5. Then for any >_ , the function (x) "= f(x) + dist(xlgt attains a
minimum over T at 5. If > and t is closed, then any other point minimizing
over T must also lie in .

We have the following elementary corollaries to Theorem 2.3.
COROLLARY 2.3.1. Consider the problem 7) with g continuous and f := fo +

(.IS) for some fo X - and some S c X closed and nonempty. Suppose that
5 E S is a local solution to P at which the system (2.4) is regular with modulus 1
and near which fo is Lipschitz of rank a2, then 5 is a local minimum of Pa(x) :=
f(x) + a dist(g(x)lC for all c >_ t2. If a > t2, then there is a neighborhood of
5 such that any other local minimum of Pa(x) within this neighborhood is such that
f(5) f() and g() e C.

Proof. Let e > 0 be such that f0 is Lipschitz of rank a2 on 5 / e, the defining
inequality for regularity holds for all x (5 + e) N S and u e e, and f(5)

_
f(x)

for all x {z" g(z) C} (5 + e]). Set gt := (0) N (5 + el) and note that since
g is continuous, the set gt is closed. By Theorem 2.3, rT(x) attains a minimum over
5+e at 5 for >_ a2, and if > a2, then any other minimum of over 5 +e must
also lie in . Then, for every 5 E (0, 3 and y e 5 + 1/2e, there is a z e (0) such
that IlY zll -< dist(ylgt(0)) + 5 _< 32-. Hence IIz 511 _< IlY z]l + I]Y 1[ <- e so
that dist(yl2 <_ dist(ylgt(0))+ 5. Letting 5 $ 0 we find that dist(ylgt dist(ylgt(0))

e] The result now follows from the definition of regularity with thefor ally5+
neighborhood of 5 being 5 + 5e. El

COROLLARY 2.3.2. Consider the problem P and let f, g, and 5 be as in Corollary
2.3.1. Then P is calm at 5.

Proof. This is an immediate consequence of Corollary 2.3.1 and Theorem 2.1.

Remark. Dolecki and Rolewicz [20] obtain a result similar to Corollary 2.3.1 in
a more general setting by using somewhat different techniques. Their result is based
upon the notion of an upper Hausdorff semicontinuous multifunction.

Conditions yielding the regularity of the constraint system (2.4) have been stud-
ied by many authors [1], [4], [7], [15], [20], [48], [49], [51], [52], [61], [62], [66]-[68],
[73]. The first and most famous of these results is the Lyusternik theorem [48]. An
excellent discussion of a variety of these regularity results is given in Borwein [7]. In
the mathematical programming literature such conditions are often called constraint
qualifications, e.g., the Mangasarian-Fromovitz constraint qualification [51], [52]. In
his thesis, Maguregui [49, Chap. 2], introduced the constraint qualification

(2.5) 0 core(g(x0) / g’(xo)(S- xo) C).

THEOREM 2.4 (Maguregui [49, Chap. 2]). Suppose that X and Y are Banach
spaces, the sets S C X and C C Y are nonempty, closed, and convex, and g X -- Yis strictly diflferentiable at 5 e S. If g(5) e C and (2.5) is satisfied, then system (2.4)
is regular at 5.

Remarks. (1) Using the constraint qualification

(2.6) g(xo)T(xolS) T(g(xo)lC) Y,
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Borwein [7, Thm. 4.3] show that the convexity assumption on the sets C and S can
be removed if we instead assume that the sets S and C are epi-Lipschitzian (in the
sense of Rockafellar [68]) at x0 and g(xo), respectively.

(2) If X and Y are finite-dimensional or if C and S are convex, then the conditions
(2.5), (2.6), and

ker([g(xo)T,I]) [N(g(xo)lC) N(xolS)] (0}

are all equivalent. Moreover, if S ]n, and C := 18 {0}R,-8, all of the conditions
(2.5)-(2.7) are equivalent to the Mangasarian-Fromovitz constraint qualification.

(3) In the finite-dimensional case, Borwein [7, Thin. 3.2] has shown that we can
generalize (2.7) to

ker([Og(xo)T, I]) [N(g(xo)[C) x N(xolS)] {0},

where
ker([Og(xo)T,I]) {(y, z) e ]m n 0 e Og(xo)Ty + Z},

and still guarantee the regularity of system (2.4).
COROLLARY 2.4.1. Let the hypotheses of Theorem 2.4 hold and consider the prob-

lern 79 with g continuous and f fo + (’1S), where fo X Lipschitz near .2.
Then P is calm at .2, or equivalently, .2 is a local minimum for Pa for all a sujficiently
large. Moreover, there is a threshold value of a, say-, and a neighborhood U of.2 such
that if a > -, then any other local minimum of P, E U, must satisfy f(.2) f()
and g() C.

Proof. This is an immediate consequence of Theorem 2.1, Corollary 2.3.1, and
Theorem 2.4.

Remarks. (1) Corollary 2.4.1 extends Han and Mangasarian [33, Thm. 4.4] where
it is assumed that X I’, Y Im, S In, and Y := I8_ {0},-8 f0 and g are
continuously differentiable and Y is a strict local solution to P.

(2) Dolecki and Rolewicz [20, Thm. 2.1] obtain a result similar to Corollary 2.4.1
in a somewhat more general setting. Their result is based upon the notion of locally
controllable image nearly inner approximations (inia).

In finite dimensions it is possible to strengthen the result in Corollary 2.4.1 by
dropping the requirement that S be convex. Clarke establishes this in [15, Cor. 5,
p. 244]. It can also be established by methods that place exact penalty techniques
within a broader context of convex composite optimization. In convex composite
optimization one studies the problem

(Q) minimize q(x)

with q := f + h o g where f X ] and g X ---, Y are as in the statement of P,
and h Y I is convex. If C is convex, then P(x) "= f(x) + a dist(g(x)lC is
an example of a convex composite function. The following result concerning Q is a
modest extension of a result originally due to Burke and Poliquin [11, Thin. 3.1].

THEOREM 2.5. Consider the problem Q where f ]n 1 is lower semicontinuous,
g. ln ]m is locally Lipschitz, and h m is lower semicontinuous and convex.

Let 2 dora(q) and suppose that

0 e Of(.2)+
y e N(g()]dom(h)) y O.



AN EXACT PENALIZATION VIEWPOINT OF CONSTRAINED OPTIMIZATION 977

Define

qa(x) "= f(x) + ha(g(x))

with

(2.11) ha(y) "= inf{h(z) +

If- E dom(q) is a local solution to Q, then there is an - > 0 such that is a local
minimizer for qa(x) for all a >_ -.

Remarks. (1) The proof of Theorem 2.5 is rather technical, and so is relegated to
Appendix A.

(2) The operation employed in (2.11) is known as the infimal convolution of h
and cll. II, and is written h cll. II. In general, we have

epi[hloh2] epi(hl)+ epi(h2)

for any two convex functions h and h2. Consequently, h oh2 is always convex.
(3) Note that dom(ha) m even if dom(h) II". Hence dom(qa) dom(f).
If the set C in problem P is convex, then P can be seen as an instance of Q by

taking h := (.IC). In this case we have

ha(y)’= inf{(zlC) +
a dist(ylC),

and so
q(x) P(x) :- f(x) + dist(g(x)lC).

Thus Theorem 2.5 can be used to provide conditions under which a finite exact penalty
parameter c exists. Condition (2.9) is just another constraint qualification. In partic-
ular, if f f0 + (’IS) with f0 locally Lipschitz and S closed, then (2.8) and (2.9)
are equivalent and we recover Clarke’s result [15, Cor. 5, p. 244] as a special case.
Constraint qualifications of the type (2.9) were originally formulated by Rockafellar
in [66] and [68]. These comments yield the following corollary to Theorem 2.5.

COROLLARY 2.5.1. Let f" N" I, g" Nn ---, Nm, and N" be as in the
statement of Theorem 2.5 and consider problem . If (2.9) holds with h :=
where is C nonempty closed and convex, then is calm at 5, or equivalently, - is a
local minimum for Pa for all c sufficiently large. Moreover, there is a threshold value
of a, say-, and a neighborhood U of such that if a.> -, then any minimum of
Pa on U must satisfy f (-) f() and g() C.

Proof. In light of the comments preceding the statement of the result, we need
only prove the last part of the result. To this end let be any value of a for which g is
a local minimum of Pa, and let U be any neighborhood of g such that P(g) _< P-(x)
for all x U. If G > , then P() <_ P(x) for all x U. If is any other minimum
of P^ on U, then

P()-- f(N) _< f()++
2

dist(g()lC).

Consequently, dist(g()lC -0 and f()= f(). [::]
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Remark. For the case in which C := L x {0}R,-8 and both f and g are con-
tinuously differentiable, this result was first obtained by Han and Mangasarian in [33,
Thm. 4.4]. Rosenberg [71, Prop. 1] later generalized Han and Mangasarian’s result
to the case in which C := L x {0}R.-8, f fo + (’1S), where fo and g are locally
Lipschitz and S is nonempty and closed.

In this section we have obtained multiplier rules for T’ via the exact penalty
function P and the calmness hypothesis. We call these multipliers Kuhn-Tucker
multipliers. Given x e Ft "= {x dom(f)’g(x) C}, we denote these multipliers by

(2.12) K-T(x) "= {y e N(g(x)lC 0 e Of(x) + Og(x)*y},

where Og(x) is always taken to be g’(x) in the infinite-dimensional setting. This set
is always closed and may be empty. It should be noted that this is an extension
of the usual theory of Kuhn-Tucker multipliers; that is, if f and g are continuously
differential and C L x {0}n--8, then K-T (x) consists precisely of the usual
guhn-Tucker multipliers for :P at x [43], [51], [70].

PROPOSITION 2.6. Suppose X and Y are normed linear spaces, C is a closed
subset of Y, f" X --, R, and g Z --, Y. Let 5 e dom(P) be such that g(5) e C.
(1) If g is strictly dierentiable at 5 and 0 e OPa(5) for some c > O, then K-T

#
(2) If X and Y are finite-dimensional, g is Lipschitz near 5, and 0 OPa(x) for

some a >_ O, then K-T (5) O.
(3) If f is subdifferentially regular at 5, g is strictly differentiable at 5, C is convez,
and K-T(5) O, thenO 0P(5) for alla > dist0(01K-T(5)) (ora >_ dist0(01K-T(5))
if Y* is separable).

Proof. (1) This follows directly from [68, Thms. 2 and 3] and inclusion (2.3).
(2) This follows from [66, Cor. 5.2.3].
(3) The proof is by [68, Thms. 2 and 3],

aOPa(5) Of(5) + ag(5)*O [dist(.[C)](g(5)).

Let y K T(5) be such that I]Yll0 < a. If Y* is separable we can choose
[21], [74]. Then 0 0P(5) since, by (3.5),

0 [dist(.IC)](g(5))= 10 V N(g(5)IC).

Remark. Proposition 2.6 extends similar results found in Garcia-Palomares [31,
4], Han and Mangasarian [33, 4], Lasserre [44], Polak, gayne, and Wardi [59, 3],
and Rosenberg [71]. All of these results apply to the finite-dimensional case with C
1 {0} They obtain results for other norms by appealing to the equivalence
of norms in finite-dimensions.

It is well known that K-T (5) may be empty even if 5 is local solution to P.
Nevertheless, more general multiplier rules can be established in this case. The such
result is attributed to John [42]. In the next section, we generalize this result to P.

3. A John type multiplier rule for P. In this section we consider the problem
P with f := f0 + (’1S), f0 1’ - 1 and g ]n m locally Lipschitz, S
nonempty and closed, and C C lm nonempty, closed, and convex, and derive
multiplier rule that does not depend on calmness. For this purpose let 5 be a local
solution of radius to P, and for each 5 _> 0, consider the function
given by

(3.1) O(x) := dist[(f0(x), g(x))lC, + (.IS N (5 + )),
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where

(3.2) c, .= (jo(Z)- 5 + -) x c c x -.
It is assumed that the norm chosen for x ’ is such that I1(, 0)11 I1. Observe
that for each 5 > 0 we have

(3.3) 0() < 5 + infO(x)

and if 5 > 0, then

(3.4) 0 < inf0(x) <

Thus, in particular, is a global minimum for 0. The function 0 is a kind of exact
penalty function for P. It is similar to the Eremin-Zangwill penalty functions except
that no a priori assumptions are required for to be a global minimum for 00. Exact
penalty functions of this type were considered by Morrison [55] in the case where
C {0}, S n, and where ]m is given the Euclidean norm. In this setting,
Morrison showed how we can apply the methods of nonlinear least squares to solve P.
Further discussion of these penalty functions is given in Fletcher [27].

By applying the appropriate rules of the subdifferential calculus to 00, we can
obtain a multiplier rule for P. Unfortunately, such a direct application yields a rather
uninteresting multiplier rule because of the nature of the subdifferential of the distance
function dist[.ICs, ].

PROPOSITION 3.1. Let F be a nonempty, closed, convex subset of a normed linear
space X. Then dist(ylF is a convex function whose subdifferential is

(3.5) 0 dist(ylF "=
N(ylF), if y e F

(bdry 0)r N(ylF + dist(ylF)), otherwise.

If F is not assumed to be convex, then

(3.6) N(ylF) cl[U>0A0 dist(ylF)].

Proof. In the convex case with y E r, the formula 0 dist(ylF ]o N N(ylF) is
elementary and well known. When F is convex and y t F, the formula is derived in
Burke [9, 2]. The final formula (3.6) is due to Clarke [15, Prop. 2.4.2]. E3

Thus a direct application of the chain rule [15, Thm. 2.3.10] to 0o would yield,
according to Proposition 3.1, the trivial inclusion

0 e +Ofo() + Og()*N(g(2)lC)+ N(IS).

This is the reason for including the perturbation 5 in definition (3.1). Due to inequality
(3.3) we can apply Ekeland’s variational principle [22] to obtain, for each 5 > 0, the
existence of an x ( +) N S satisfying

Oe(x) + vllx xell > Oe(xe)
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for all x :/: xh. Hence is a strict global minimum of the function

Now, by (3.4), we have O(x) > 0 and so (fo(x), g(xh)) C,. Thus, when we apply
the appropriate rules of the subdifferential calculus (Rockafellar [66, Cor. 5.2.3]) to
the inclusion 0 E O0(x), we obtain the existence of an x k 0 and

ye e N(g(xe)]C + dist(g(xh)]C))

with ]I(Ah, Yh)l]0 1 such that

0 e AOfo(x) + Og(x)*y + N(xIS) +v
for all 5 with
must satisfy

Consequently, any cluster point (A,) of {(As, y)} as 5 i 0

(3.7) II(, )1[o 1,

(3.8) > 0, e N(()IC),

and

(3.9) o e Ofo()+ o(), +

We have just proved the following theorem.
THEOREM 3.1. Let f, g, s, C, and-2 be as given at the beginning of this section.

Then there exist multipliers >_ 0 and N(g()lC) such that (3.7)-(3.9) hold.
With a bit of work this result can be obtained from Clarke [15, Thm. 6.1.1].

Moreover, the proof that we provide has a certain similarity to Clarke’s proof. We
included this proof since it is simpler and more direct. Furthermore, it illustrates
the intimate relationship between the multipliers and the subgradient of the distance
function at (fo(), g()).

Note that if the multiplier in (3.7) is nonzero, then -1 K-T(), i.e.,

(3.1o) K-T() {-1. (, ) satisfy (3.7)-(3.9) with - 0}.

Moreover, if f and g satisfy the conditions of part (2) of Proposition 2.6, then

o e oP- ().

Thus the magnitude of A is inversely related to the magnitude of an exact penalty
parameter for 7). The multipliers (A, ), for which A 0, are of great significance in
the analysis of 7) We call these multipliers Fritz John multipliers and denote them
by

FJ(x)’= {#’# >_ 0, (0, y) satisfies (3.7)--(3.9)
ker([Og(x)T,I])N (N(g(x)lC) x g(xlS))
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where
ker([Og(x)T, I])"= {(y, z) e m x ] 0 e Og(x)Ty + Z}.

Observe that FJ(x) is a nonempty, closed, and convex cone for every x E S with
g(x) C. Moreover, if K-T (x) - O, and g is strictly differentiable at x, then FJ(x)
rec(K-T(x)). Clarke [15] refers to the Kuhn-Tucker and Fritz John multipliers as the
normal and abnormal multipliers, respectively.

According to Theorem 3.1, one is guaranteed of the existence of Kuhn-Tucker
multipliers at a local solution .2 to P if FJ(.2) {0}, or equivalently, if

ker[Og(.2)T,I] C (N(g(x)lC) x N(x(S)) {0}.

This condition is precisely the constraint qualification (2.8) and (2.9) of the previ-
ous section. Thus we see that condition (2.8) is truly a fundamental property for
constrained optimization. It is a natural condition under which we obtain both con-
straint regularity and the the existence of Kuhn-Tucker multipliers. For this reason,
we will refer to (2.8) as the basic constraint qualification throughout the remainder of
the paper.

PROPOSITION 3.2. Let f, g, and C be as given in the beginning of this section
and let x S be such that g(x) C and K-T (x) O.
(1) If the basic constraint qualification (2.8) is satisfied at x, then K-T (x) is compact.
(2) If g is strictly differentiable at x, then K-T (x) is convex and rec(K-T(x))

FJ(x), in which case K-T (x) is compact if and only if the basic constraint qual-
ification (2.8) is satisfied at x.

(3) If-2 is a local solution to P at which the basic constraint qualification (2.8) is
satisfied, then K-T (.2) is nonempty.

Proof. (1) If K-T (x) is not compact, then it contains an unbounded sequence
{y} c N(g(x)lC). For each 1,2,..., there exists vectors v Ofo(x) and zi

N(xlS and a matrix J Og(x) such that

0 vi / Jy + z.

With no loss in generality, we can assume that (y,z)(llyll + IIzll) -1 -- (,) and
J J with I1[I + [111 1, e N(g(x)[C), e N(x[S), and J e Og(x). But then

0 T+ SO that Fg(x) : {0}, a contradiction. Hence K-T (x) is compact.
(2) The convexity of K-T (x) and the equivalence rec(K-T(x)) FJ(x) follow

directly from the definitions. Thus the equivalence of (2.8) with the compactness of
K-T (x) follows immediately from [70, Tam. 8.4].

(3) This follows from the preceding discussion.
Remark. Proposition 3.2 extends a well-known result of Gnuvin [32]. Another

generalization of Gauvin’s result is obtained in Nguyen, Strodiot, and Mifflin [56],
where it is assumed that C := x {0}- and that the s components of g are
Lipschitz.

4. Second-order optimality conditions for P. The second-order results of
this section are based on the second-order theory for convex composite optimization
developed in Burke [10] and Burke and Poliquin [11]. If f := f0 + (’IS) with fo
]n 1 and the sets S c ]’ and C c ]m are taken to be nonempty, closed and
convex, then the exact penalty functions P and 00 defined in 2 and 3, respectively,
are convex composite functions. Thus we can apply the results of [10 ], [11] directly
to these functions. The theorems obtained in this way are very much in the spirit of
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those established in Levitin, Miljutin, and Osinolovski [45], Ioffe [39]-[41], Ben-Isreal,
Ben-Tal, and Zlobec [4], and Rockafellar [63]-[64]. These results are distinguished
by their use of the entire set of multipliers rather than a single vector of multipliers
as is the case in the classical theory of second-order optimality conditions (e.g., see
Hestenes [35]-[36], Pennisi [57], and Fiacco and McCormick [25]). Let us begin by
reviewing the pertinent results in [66] and [11].

THEOREM 4.1 (Rockafellar [66, Cor. 5.2.3]). Suppose f ]n ] is lower
semicontinuous, g n n is locally Lipschitz, and 5 E dom(q), where q(x) :=
f(x) + h(g(x)), is such that (2.9) holds. If5 is a local minimum of q, then the set of
multipliers

MQ(5) := {y e Oh(.)(g(5)) 0 e Of(5)+

is nonempty.
THEOREM 4.2 (Burke and Poliquin [11, Thm. 4.2]). Let 5 S c n be such that

fo ]n
__

and g" ]n _.., m are twice continuously differentiable near 5. Moreover,
let h" n be lower semicontinuous and convex with g(5) e dom(h), and suppose
that S is closed and convex. Set q := f0 + (’1S) + h o g.
(1) If 5 is a local minimum .for q at which the basic constraint qualification (2.7) is

satisfied, then MO.(5 and

(4.2) max{dT(V2fo(5) + V2x((y,g(5)l))d" y e M(5)} :> 0

for all d
(4.3)
K(x) :-- {d In" [ > 0 such that h(g(x) + tg’(x)d) <_ h(g(x))Vt (0, [) }.

(2) IfM(5) 0 and

(4.4) sup{dT(V2fo(5) + V2x((y,g(5)>))d y e MQ(5)} > 0

for all d e D. (5) \{0} where

(4.5) D(x) "= {d e n q’(x;d) <_ 0},

then there is a "y > 0 such that

q(x) >_ + zllx

for all x near 5.
PROPOSITION 4.3. Let 5 S C ]n be such that fo n and g" ]n m

are continuously differentiable near 5. Moreover, let h n ._, be lower semi-
continuous and convex with g(5) dom(h), suppose that S is closed, and set q
fo + (’IS) + h o g. If

(4.6) ]ran I Nri[T(g(5)[levh(g(x))) x T(51S)] 0

and

(4.7) cone(Oh(.)(g(5))) N(g(5)llevh(g(5))),
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then De.(J) K.()f3 T(IS). Moreover, if 0 q 0h(.)(g()), then (4.7) is satisfied,
and if the basic constraint qualification (2.8) holds, then (4.6) is satisfied.

Proof. All but the very last statement is established in [11, Prop. 5.1]. For the
last statement, we take polars in (2.7) to obtain

ran I + (T(g()llevh(g())) T(IS)) ]m.

Now, for any subspace W and closed convex cone K the condition W + K
implies that W N ri(K) by a simple separation argument. This establishes the
result.

We now apply these results to P. The result is a sufficiency theorem which does
not require a constraint qualification. The result is obtained by applying Theorem 4.2
to the function 0o.

THEOREM 4.4. Let S and C be nonempty closed convex subsets of ]n and m,
respectively, and let E S be such that fo n ___, ] and g n __., ]m are twice
continuously differentiable near and g() e C. Set f := f0 + (’1S) and consider
the problem 79 If the set of multipliers

(4.8) M,() {(/, y) e x m" (3.7)-(3.9) are satisfied}

is nonempty and

(4.9) max{dT(AV2fo() + V2x((y, g())))d" (A, y) e Mp()} > 0

for every d Dp() where

(4.10) Dp() := {d e T(IS) Vfo()Td <_ O, g’()d e T(g()IC)},

then there is a / > 0 such that

(4.11) y0(x) > yo() + llx 11

o vr x e := {x e s: () e v} r.
Proof. Consider part (2) of Theorem 4.2 as it applies to the function 0o defined

in (3.1). We begin by defining the functions fo, g, and h and the set S that appear
in Theorem 4.2. For the sake of clarity, we denote these functions and set as
g4.), h.), and S.., respectively. For the remainder of the proof the functions fo
and g, and the set S, will refer to those that are given in the statement of Theorem
4.4. With this notation we define fo.) 0, g.) := (f0, g), h4. := dist[.IC,0], and
S. :- S N (5 + ]). The set Me(J is given by

and (3.8)-(3.9) hold for f0(4.) and g(4.)} D M(),

and the set D() is given by

{d *(dlN([S)) + *(dl[0 1]Vfo(x) + g’(x)T(I N(g(x)lC)) G 0}

={d e T(IS AVfo()Td + yTg’()d G 0 VA e [0, 1], y e o N(g()IC) }
={d e T(IS) Vfo()Td <_ O,g’()d e T(g()lC)}
=D,(),
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where the line follows by choosing the norm on 1 ]m to be I1 + IlYll0 for every
(, y) E 1 1m. Since inequality (4.9) implies inequality (4.4), we have the existence
of " > 0 such that

(4.12) 0o() >_ 0o() + zllx 11

for all x near .2, where by the theorem is proved.
Remarks. (1) The theorem actually establishes inequality (4.12), which is stronger

than inequality (4.11).
(2) We could just as well have used the multiplier set MQ(.2) in (4.9), but, since

the maximum is positive, both of these multiplier sets yield the same value in (4.9).
Unfortunately, without a constraint qualification, the same trick cannot be ap-

plied to obtain a second-order necessary condition for P The problem is that M, (.2)C
MQ(.2) with (0, 0) E M(.2). Consequently (4.2) is valid for all d ]n and it does
not imply (4.9) with the weak inequality. On the other hand, if the sets C and S
are polyhedral convex, then such a result can be established (e.g., see [35] and [36] or

[]).
If one is willing to assume the basic constraint qualification (2.7), then, by ap-

plying Theorem 4.2 to P both second-order necessary and sufficient conditions for
can be obtained. To establish this result, we require the following lemma.

LEMMA 4.5. Let X and Y be normed linear spaces and let C be a nonempty closed
convex subset of Y. Moreover, let .2 X, f X -- , and g X Y be such that
Of(.2) O, f is subdifferentially regular at 2, g(.2) C, and g is strictly differentiable
at .2. If the set K-T (.2) is nonempty, then

{d X’P(.2;d) <_ 0} {d E X’f(.2;d) 0, gs(.2)d

for all c > disto(01K-T(.2)).
Proof. The hypotheses and Rockafellar [68, Thms. 2 and 3] imply that

OP() Of() / g,(),(0 n N(g()IC)).

Thus, if a > dist0(01K-T(.2)) then clearly

D, (.2) C {d e X" po (.2; d) _< 0}.

On the other hand, let d {d" Pa(.2;d) _< 0}. Then for each y K-T (.2) with
][Yllo < a there is a z e Of(.2) such that 0 z + g(.2)*y. Hence,

o _> P2(; d)

_> (z + ’(), I111o
(1 )(z, d),

,d)

and so fo(.2; d) >_ (z, d) >_ 0. But 0 e N(g()IC) o so that fo(.2; d) <_ 0. Conse-
quently, fo(.2; d) 0 and g(.2)d e T(g(.2)l). [

Remark. The set Dp(.2) given above is the obvious generalization of the set de-
fined in (4.10) to which it reduces under the hypotheses of Theorem 4.4.
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THEOREM 4.6. Let S and C be nonempty closed convex subsets of ]n and ]m,
respectively, and let -2 E S be such that fo n

__
] and g Rn

_
]m are twice

continuously differentiable near 2, g(-2) C, and the basic constraint qualification
(2.7) holds. Set f := f0 + (’1S) and consider the problem P.

(1) If-2 is a local solution to P, then

(4.13) V((y,g(-2))))d’y e K-T(-2)} >_ 0max{dT(V2 fo(-2) + 2

for all d D,(-2).
(2) If K-T (-2) 0 and

(4.14) max{dT(V2fo(x) + V2x((y, g(-2)))))d y e K-T(-2)} > 0

for all d e D, (-2)\ {0}, then for each

(4.15)

there are scalars > 0 and / > 0 such that

P (x) > +  llx

for all x -2 + , and
fo( ) > + zllx

for all x n (-2 + ) where

{x e e c}.

Proof. In Q take h a dist(.IC ). Then, by Proposition 4.3 and Lemma 4.5,

(4.16) D(-2) cl(K(-2))n T(-21S D7(-2)

as long as a > Ilyllo for some y e K-T(-2). Moreover, by part (1) of Proposition 3.2,
the set K-T (-2) is compact. Hence if K-T (-2) : O, then is finite and for any a >_
one has

(4.17)

(1) By Corollary 2.5.1, there is an a > 0 such that is a local minimum for Pa.
Taking h := a dist(.IC in Q, we get M(-2) C K-T(-2), where a is chosen so that
a > dist0(01K-T(-2)). The result then follows from (4.16) and part (1) of Theorem
4.2.

(2) By taking a > 0 to satisfy (4.15) and by observing (4.16) and (4.17), the
result is an immediate consequence of part (2) of Theorem 4.2 with h := a dist(.IC).

Remark. For the case in which C and S are polyhedral convex, Theorem 4.6 is
also obtained by Ioffe [39]-[41], Ben-Israel, Ben-Tal, and Zlobec [4], and Rockafellar
[63]-[64].

In Theorem 4.6 we obtain second-order necessary and sufficient conditions for P
from the corresponding second-order conditions for P. This approach is the reverse
of that which is usually taken in the literature. In particular, Charalambous [13,
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Thm. 2], Han and Mangasarian [33, Thm. 4.61, and Lasserre [44, Thm. 2] essentially
show that if K-T (-2) } and the second-order sufficiency condition of Pennisi [57,
Thm. 3.3] holds for some y E K-T(-2), then -2 is a strict local minimum for Pa for
all a > IlYll0. These results do not require the imposition of the basic constraint
qualification (2.7). On the other hand, they do require the application of a stronger
second-order sufficiency condition. In the next result, we obtain a result, paralleling
those of Charalambous, Han and Mangasarian, and Lasserre.

THEOREM 4.7. Let S, C, -2, f0, and g be as in the statement of Theorem 4.6,
except that the basic constraint qualification may fail to hold at2. If there exists

K- T("2) such that

dT(V2fo("2) + V2xx((y, g("2))))d > 0

for every d e Dp(-2)\{0}, then for each a > IlYll0 there are scalars e > 0 and / > 0
such that

P(x) >_ P("2) +  llx 11
for all x -2 + 1 and

fo(x) > fo( ) +  llx
for all x N (-2 + ]).

Proof. For this choice of a (4.16) holds and by part (3) of Proposition 2.6, 0
OPa("2) with y E M(-2) where h := a dist(.IC). Hence, the result again follows
directly from part (2) of Theorem 4.2.

Before leaving this section we obtain yet another sufficiency result for :P. It is a
first-order sufficiency result and is a direct consequence of Lemma 4.5. The result is
similar to results by Howe [37], Rosenberg [71, Thm. 3], and Bazaraa and Goode [3,
Thms. 2.1, 2.2, 3.1, and 4.1].

THEOREM 4.8. Let X, Y, "2, f, and g be as in the statement of Lemma 4.5 where
it is further assumed that X is finite-dimensional. If the set K-T (-2) is nonempty and
Dp("2) {0}, then there are scalars > 0 and > 0 such that

> +

for all x e (-2 + ) and a > dist0(01K-T("2)) and

f(x) _> f (-2) -l-- "/llx II
for all x e {x: g(x) e C} (-2 + ).

Proof. From Lemma 4.5, Pc("2; d) > 0 for all d # 0. By Rockafellar [68, Thms.
2 and 3], Pc("2; d) P("2; d). The result now easily follows with inf{P("2; d):

5. Convex programming. Eremin and Zangwill originated the study of exact
penalization in the context of convex programming. In this section, we extend this
theory to the problem P. The step in this process is to establish an equivalence
between the problem P and a problem P to which the classical theory of convex
programming applies [35], [36], [38], [43], [46], [48], [51], [70], [72]. To this end, let X
be a real normed linear space, Y a real reflexive Banach space, C C X and S C X be
nonempty, closed, and convex, and set

c .= > e c},
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where the closure is taken with respect to the product topology on N Y.
Given g" X Y we define G" X - Y by

G(x) (-1,-g(x))

for all x E X. Consider the constrained optimization problem

(P) minimize f(x)
subject to G(x) <_ 0,

where f "= f0 + (.[S) with f0 X --. a convex function and where "_<" denotes the
partial order induced on N Y by C, i.e., _< y2 if and only if y2 -yl E C. Observe
that x X solves P if and only if x solves P. We now develop a purely convex theory
for P based upon that which already exists for P.

LEMMA 5.1. Let G X -- ] x Y and C c Y be as given above. Then the
following conditions are equivalent.
(1) G is convex with respect to C; i.e., G(Ax + (1 A)y) _< AG(x) + (1 A)G(y) for

every x,y X and A 6 [0, 1].
(2) g is concave with respect to rec(C); i.e., g(Ax + (1 A)y)- lAg(x) + (1 A)g(y)] e

rec(C) for every x, y e X and A e [0, 1].
(3) For each y e bar(C) the mapping gy X , given by gy(.) "= (y,g(.)), is

COtVeX.

Moreover, each of the above conditions imply that the distance function dist(g(.)lC
is convex.

Proof. (1) ,== (2)" Let xl,x2 X and choose A [0, 1]. Then G is convex with
respect to C if and only if

A(-1,-g(xl)) -[- (1 A)(-1,-g(x2))- (-1,-g(xl + (1 A)x2)) e C,

or equivalently

g(AXl + (1 A)x2)- lAg(x1)+ (1 A)g(x2)] e rec(C)

since rec(C) {y" (0, y) C}. This is equivalent to saying that g is concave with
respect to rec(C).

(2) :=, (3)’ The mapping g is concave with respect to rec(C) if and only if for
every xl,x2 X and A [0, 1]

g(Axl + (1 A)x2)- lAg(x1)+ (1 A)g(x2)] e (bar(C))

since [bar(C)] 0 rec(C). This is equivalent to saying that

(y,g(Axl -F (i- A)x2)> < <y, Ag(xl)-F (I A)g(x2)>

for every xl,x2 e X, A e [0,1], and y e bar(C); i.e., <y,g(.)> is convex for every
y bar(C).

Finally, if any one of (1)-(3) hold, then clearly (3) is valid. Hence, for every
y e bar(C) dom(*(.[C)) the function

(u, *(ulc)
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is convex. Therefore,

dist(g(.)lC sup{(y, g(.)) *(ylC)’y e 10}

is convex since it is the supremum of a collection of convex functions. [::]

Remark. If C is bounded, then g is concave with respect to the rec(C) if and only
if g is affine, and if C 1 {0},-8, then g is concave with respect to rec(C) if
and only if g is convex for 1,..., s and g is affine for s + 1,..., m.

LEMMA 5.2. Let L" S C* - ] be the standard Lagrangian for P where C*
-C, i.e.,

L(x, z)’= f(x) + (z, G(x)),

and define L" S Y* ] by

L(x, y) := f(x) + (y, g(x)) *(ylC).

Suppose that f := fo + (’1S) with fo X --+ convex and g: X - Y is concave

with respect to rec(C) so that both L and L are convex-concave saddle functions by
the previous lemma. Then (xo, (o,-yo)) E S C* is a saddle point for L if and only
if (xo, yo) is a saddle point for n in which case o *(yolC), yo e N(g(xo)lC), and
g(o) c.

Proof. By direct computation we verify that

C* := {(,-Y)I(, Y)e epi(*(.IC)) }.

If (xo, (o,-yo)) is a saddle point for L, then, in particular, xo S and

((,-y), (-1,-g(xo))) <_ ((0,-Y0), (-1,-g(xo))}

for every (, y) e epi(*(.IC)), or equivalently,

(5.1) <, (xo)> <_ <o, (xo)> o
for every (, y) G epi(*(.IC)). But this can occur if and only if

o *(olC), (o) e c, <o, (xo)> *(olC),

and
L(xo, y) <_ L(xo, yo)

for every y e bar(C). To see this, set y yo in (5.1) to get o *(yolC), next set
y yo + z in (5.1) to get <z,g(xo)> <_ *(zlC for all z e bar(C), and so g(xo) e C.
Finally, having g(xo) C we obtain from (5.1) that

o < <o, 9(o)>- *(olC) < o.

The reverse implication is obvious.
By employing the fact that o *(yolC), g(xo) e C, and *(yolC) <yo, g(xo)),

we obtain from the other half of the saddle point inequalities for L that

L(xo, yo) L(xo, (o,-yo)) <_ f(x)+ <yo, g(x)>- *(yolC)
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for every x E S, or equivalently,

L(xo, yo) <_ L(x, yo)

for all x E S whereby the lemma is established.
Having obtained the equivalence of the saddle point conditions for L and L, we

can now simply translate the saddle point results for :P into similar results for P. In
this way, we obtain the following two results from [46, Cor. 1, p. 219] and [46, Thm. 2,
p. 221], respectively.

THEOREM 5.3. Let X be a real normed linear space and Y a real reflexive Banach
space, let S C X and C c Y be nonempty, closed, and convex, and suppose that
f := f0 + (’1S) with fo" X - ] convex, and g" X Y is concave with respect to
rec(C), and there is an x e S such that g(x) e int(C). If3 solves P, then there is a- N(g(3)lC such that (3, y) is a saddle point for L(x, y).

Remark. If X and Y are finite-dimensional, then we need only assume that there
is an x e S such that g(x) e ri(C).

THEOREM 5.4. Let X, Y, S, C, g, and f be as in the statement of Theorem 5.3. If
there exists an 3 S and bar(C) such that (3, ) is a saddle point for L(x, y),
then 3 solves 7).

Further results of this type can also be obtained. Theorems 5.3 and 5.4 are
presented only to give the flavor of what can be said in the convex case. In this
setting, the most natural notion of a Kuhn-Tucker multiplier is derived from that of
a saddle point of L. Thus, for the convex case, we extend the definition of K-T (x) as
follows;

K-W(x) "= {y e bar(C)" (x, y)is a saddle point for L}.

Our primary result on exact penalization in the convex case now follows.
THEOREM 5.5. Let X, Y, S, C, f, and g be as in the statement of Theorem 5.3, let

3 S, and consider the following two conditions:
(A) f is continuous near 3 and g is strictly differentiable at
(B) X and Y are finite-dimensional and g is Lipschitz near

The following statements are equivalent:
(1) 7) is calm at 3.

(2) 3 is a global minimum of Pa for all a suJficiently large.
Moreover, if either (A) or (B) holds, then (1) and (2) are equivalent to

(3) K-T (3) O.
Furthermore, given K-T(3), then 3 is a global minimum for Pa for all

I111o and if c > dist0(01g-T(3)), then

arg min{Pa(x) x e X) arg min{f(x) g(x) e C}.

Proof. By Lemma 5.1, Pa is a convex function for all a _> 0; consequently, any
local minimum of Pa is a global minimum of Pa. Therefore, the equivalence of (1)
and (2) is a consequence of Theorem 2.1.

The proof that (3) is equivalent to (1) and (2) is essentially identical under the two
hypotheses (A) and (B), except that we use [66, Cor. 5.2.3] in the finite-dimensional
case and [68, Thms. 2 and 3] in the infinite-dimensional case. Hence, we provide the
proof only when (A) is assumed.
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We begin by assuming (2) and showing that (3) holds. From (2) there is a E
0 dist(.IC)(g()) with 0 e Of(J)+ ags()*, or equivalently, there is a N(g()lC
such that

0 OL(, ),

since 0 dist(.IC)(y(Z))- ]0 N N(g(Z)lC by Proposition 3.1. Consequently,

L(Z, ) _< L(x, )

for all x X, since L(x, ) is convex in x by Lemma 5.1. Finally, since

sup{(y, *(yICD’y e Y),

we have that
L(, y) _< L(, y)

for all y Y.
Next we assume that (3) holds and establish (2). Since L(Z, y) _< L(Z, ) for all

y E Y we know that

Next, let x S and choose a _> IIll0, then

P() L(, y)_
L(x, )_
sup{L(x,y)’y
f(x)+ asup{(y, g(x))- *(y]C)ly e 0}
Pa(x).

Hence is a global minimum for Pa(x) for all a >_
To prove the last statement of the theorem choose K-T() such that

Setting I1110, we know that 0 E OPt(2) and 0 OPa() so that is a global
minimum for both P and Pc. Thus, in particular, arg min{Pa(x)’x X} . Let
e arg min{Pa(x)’x e X}, we need to show that e arg min{f(x)’g(x) e C}.

For this, it is sufficient to show that f(5) _< f() and g() C. Due to the nature of
and 5 we have

f(5) + a dist(g(5)lC _< f()+ a dist(g()lC

and
f(g) + dist (g (g) C)

_
f()+ dist(g()lC).

By adding these inequalities we find that

(a- )dist(g(5)[C)<_ (a- )dist(g(g)lC).

Hence g() e C and f()
Remark. The form of Theorem 5.5 is based on Rosenberg [71, Thm. 2]. This

result extends similar results appearing in Eremin [23], Zangwill [75], Pietrzykowski
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[58], Luenberger [47], Charalambous [13], Han and Mangasarian [33], Lasserre [44],
Garcia-Palomares [31], Rosenberg [71], and Bertsekas [6].

6. Historical review. In this section we attempt to provide a chronology of
those results that establish the existence of an exact penalty parameter. We apologize
for any omission or oversight.

It seems apparent that the big-M method for linear programming is the precursor
of exact penalization techniques for nonlinear programming, especially since the initial
results were obtained for the convex programming case. However, we are uncertain
that this was indeed the motivation. Our earliest reference for the big-M method
is Charnes, Cooper, and Anderson [14, 4]. The precise origins of the method are
unknown to us. Our earliest reference for exact penalization in nonlinear programming
is Eremin [23]. In this paper, Eremin considers the case of convex programming with
C I x {0}.-8 and S Rn. In [23, Whm. 2], he shows that if e K-T(3), then
3 is a global minimum for Pa whenever a > IIY]10 when m is endowed with the
norm. At essentially the same time, Zangwill [75] published his well-known paper.
Zangwill considered the case of convex programming with C _m and S n
and showed that if 3 solved :P and g(xo) E int(C), then 3 minimized Pa for all
a > (f(xo) f(3) + 1)(maxEgi(x0)" 1,..., m]) -1. This result can be used to show
that K-T (3) = ), and so is somewhat deeper than Eremin’s result.

Pietrzykowski [58] provides the result for the nonconvex case. He considers the
instance of :P where C ]t{ x {0},-8 and S n. The analysis that Pietrzykowski
gives a reminiscent of Zangwill’s. He shows that if 3 is a strict local minimum for
near which f and g are differentiable and at which g (3) is surjective, then 3 is a strict
local minimum for Pa for all a sufficiently large. Pietrzykowski’s result can be used
to show that K-T (3) 0 under these hypotheses.

Luenberger [47] considers exact penalization in the setting of optimal control.
We interpret his result as it applies to P. In this context, Luenberger has C
and S ]1n and assumes that 3 is a local minimum for P at which there exists a

N(g(3)lC such that 3 is a local minimum for L(x, ). Under these circumstances
Luenberger shows that 3 is a local minimum for Pa for all a _> ]]1]0 where Im is
endowed with the 11 norm. Luenberger’s proof is the same as that provided by Eremin.
Clearly, Luenberger’s result applies in the convex case subject to the appropriate
constraint qualification, but it can also be applied to cases in which the second-order
sufficiency condition of Pennisi [57] holds. Luenberger himself only states that this
result applies "under standard regularity conditions."

Evans, Gould, and Tolle [24] consider the case where C R_’2, S 1n, and f and
g are continuously differentiable. In this context, their nondifferentiable exact penalty
functions are quite different from the Eremin-Zangwill exact penalty functions. For
these new functions they provide some exactness results that are similar in spirit to
those of Eremin, Zangwill, and Pietrzykowski.

Howe [37] considers the case in which C ItS__ x {0}e.-, S ]ln, and f and g
are continuously differentiable. His result is the appearance of the type of sufficiency
result given in Theorem 4.8. He shows that if D,(3) {0}, then 3 is a local minimum
for P for all a sufficiently large.

Bandler and Charalambous [2] consider the same case as Evans, Gould, and Tolle
[24] and derive yet another type of nondifferentiable exact penalty function. For this
exact penalty function they provide an exactness result that is similar in spirit to
those of Eremin, Zangwill, and Pietrzykowski.

Bertsekas [6] investigates the case of convex programming with C RT and
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X ’, and establishes necessary and sufficient conditions for a function of the form

m

r(x) f(x) + pi(gi(x))
i--1

to be exact for P. If (5, y) is a saddle point for L(x, y) he shows that

pi(t)
lim _>y(i) i=l,
t-,O+ t

with
arg min{-(x)} arg min{f(x)’g(x) e C},

pi(t)
lira > ().
t-0+ t

We obtain Eremin’s result as a special case. Bertsekas also applies his result to the
exact penalty functions of Evans, Gould, and Tolle.

Charalambous [13] is the first to consider more general norms in the construction
of P. Specifically, Charalambous considers the case C T, S where f
and g are continuously differentiable. He then utilizes the /p-norms to form P.
Charalambous establishes two key results. In the result, he considers the convex
programming case and shows that if (5, ) is a saddle point for L(x, y), then is a
global minimum for Pa for all a > I1110. The proof is similar to those of Eremin
and Luenberger. Charalambous’ second result is the instance of an exact penalization
theorem employing Pennisi’s [57] second-order sufficiency conditions. He shows that
if the second-order sufficiency condition of Theorem 4.7 is satisfied, then is a local
minimum for Pc for all a > II IIo.

Dolecki and Rolewicz [20] present the deepest first-order results for exact penal-
ization currently available in the literature. They consider a model problem that is
somewhat more general than the problem 7) and obtain exact penalty results based
on a more general notion of subdifferential. In this context, they obtain one of the
implications in Theorem 2.1 and a version of Corollary 2.3.1. The Dolecki-Rolewicz
paper represents the attempt to extend exact penalization techniques to the nondif-
ferentiable case in infinite-dimensions.

Perhaps the most widely referenced paper on exact penalization is by Han and
Mangasarian [33]. Their paper is the most comprehensive and comprehensible study
of the subject available in the literature. Han and Mangasarian consider the case in
which C lts__ x {0},-, S Nn, and f and g are continuously differentiable. One
of the most significant contributions of their paper is the relaxation of the first-order
conditions under which an exact penalty parameter for :P exists. Specifically, they
show that if the Mangasarian-Fromovitz constraint qualification is satisfied at a strict
local solution g to P, then there exists an _> 0 such that is a local solution to P
for all a _> . They establish this result for an arbitrary norm by appealing to the
equivalence of norms in finite dimensions. This result is an instance of Corollary 2.4.1
(however, Corollary 2.4.1 does not require that g be a strict local solution). They
also provide a second-order result that is similar to that of Charalambous. Moreover,
they establish the equivalence of stationarity conditions for 7:’ and the minimization
of Pa, as is done in Proposition 6.2. They conclude by again establishing Eremin’s
result for the case of convex programming. The penalty functions they consider are
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a generalization of the Eremin-Zangwill penalty functions and are based on the work
of Bertsekas.

The work of Lasserre [44] appears soon after that of Han and Mangasarian. He
considers the case in which C := s__ {0}R,-s, S ]n, f and g are continuously
differentiable, and m is endowed with a weighted 11 norm. In this case, he establishes
a second-order result similar to that of Charalambous. Moreover, he shows that if the
active constraint gradients are linearly independent at a local solution to P, then an
exact penalty parameter exists for P. This result is different from the corresponding
result of Han and Mangasarian, and Pietrzykowski since Lasserre does not assume
that the solution is a strict local minimum. Nonetheless, it appears that both of these
results are subsumed in the work of Dolecki and Rolewicz. Lasserre also recaptures
and extends the result of Luenberger by recognizing the relationship between saddle
points of the Lagrangian and local minimum of the exact penalty function.

Fletcher [29, 14.3] considers the same situation as Lasserre. Under the hypothesis
that the active constraint gradients are linearly independent, Fletcher [29] is the to
recognize the actual equivalence of the first- and second-order optimality conditions
for P and the exact penalty function Pa. Consequently, Fletcher’s work is a direct
precursor of the results presented in this paper.

Bazaraa and Goode [3] consider the case where C _m, S is closed, and f0 and g
are continuously differentiable. They establish some extensions to Howe’s result using
some of the modern techniques of nonsmooth analysis. Moreover, by assuming that
S is compact, they obtain global versions of Howe’s theorem and give estimates for
the value of an exact penalty parameter that are reminiscent of those established by
Zangwill.

In [15] Clarke establishes his elementary exact penalization result for the case in
which the inclusion constraint g(x) E C is absent. This result is one of the corner
stones of 2 and appears as Theorem 2.3. Clarke’s proof should be reviewed by every
student of this subject. It is very elementary, requiring only seven short sentences.
Clarke also shows that calmness implies the existence of an exact penalty parameter
for P when C := ls__ x {0}R

In [59], Polak, Mayne, and Wardi consider the case where C Rs__ x {0},-s,
S Rn, f and gi, 1,..., s are locally Lipschitz, and gi, s + 1,..., rn are contin-
uously differentiable. In this setting, they establish the equivalence of the stationarity
conditions for P and the minimization of P for all a sufficiently large. This result is
generalized in Proposition 2.6.

Rosenberg [71] considers the case in which C ps__ x {0},-, S n, and f and
g are locally Lipschitz functions. He begins by providing local and strict local versions
of Clarke’s result that calmness implies the existence of an exact penalty parameter.
He then reviews the convex programming case and establishes the version of Theorem
4.8, upon which our treatment is based. Rosenberg concludes his study by extending
Howe’s result to the Lipschitzian case where he provides results that are substantially
more general than those of Bazaraa and Goode. For problems of this type he also
provides a sharp lower bound for the value of an exact penalty parameter.

aarcia-Palomares [31] examines the case in which C ] x {0},- S ]n,
f and g are continuously differentiable, and m is endowed with the l norm. The
perspective in this paper is quite similar to the one we have taken. His goal is to
establish the equivalence between the first- and second-order optimality conditions for
P and Pa. In this regard, he provides versions of some of the results presented in the
latter half of 2 and 3. His approach allows a great deal of further insight in the case
of the t-norm.
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In [50] Mangasarian considers the convex programming case with C s__, S
n, and f and g continuously differentiable. He extends the analysis of Zangwill
to provide lower bounds for the value of an exact penalty function under weaker
hypotheses.

Recently Conn and Gould [18, 1987] have generalized the tl exact penalty function
to obtain an exact penalty function for a class of semi-infinite programming problems.
They consider both the convex and nonconvex cases, and their results are not covered
by those presented in this paper. These new exact penalty functions for semi-infinite
programming are quite interesting and deserve much further study.

In [64] Rockafellar studies the case in which C c ]m is the product of intervals,
X C n is polyhedral convex, and fo(x):= max{f0j (x): j 1,..., s} where foj,j
1,..., s and g are all continuously differentiable. As in our study, Rockafellar derives
the equivalence of first- and second-order optimality conditions for 79 and Pa via
similar results for convex composite optimization. However, Rockafellar’s results rely
on the piecewise linear-quadratic case, the theory that he develops in [63].

We conclude by offering our apologies to the many authors we have not men-
tioned, especially to those who have made significant contributions in the domain of
algorithmic development.

A. Appendix. We proceed to establish Theorem 2.5. For this purpose we will
need the following lemmas from Burke and Poliquin [11].

LEMMA A1. Let q" n __, ] be as given in Theorem 2.5. If E dom(q) is such
that (2.9) holds, then there is a neighborhood U of2 such that (2.9) is satisfied at every
point of dom(q) fq U.

Proof. This is a direct consequence of the upper semicontinuity of Of, Of, Og,
and N(.Idom(h)).

LEMMA A2. Let h" m be as in Theorem 2.5 and let {(yi, zi)} C graph (Oh)
be such that yi y e dom(h) and Ilzill T x. Then every cluster point of the sequence
{zi/llzill } is an element of the normal cone to dom(h) at y.

LEMMA A3. Let h" ]m ] and ha" m __, be as in Theorem 2.5. If ha(Y)
h() + 11- 11, where dom(h), then u Oha(y) if and only if u Oh(H) N (aD)
and (- ) N(ulc).

The proof of Theorem 2.5 now follows.
Proof. Let e, 5 > 0 be such that f(x) > f() for allx E +l and (2.9) is

satisfied on dom(q) N (5 + 51). Set

:= i + max{llg(x g()ll’x E +
and define

ha(y) "= inf{h(z) + (zlg( + ]) + clly zll" z e ]’}.

Consider the function

q%(x) := a(x) + (x) + (xl +

where ’ f + a o g and q(x) dist(xl + 6]). Observe that arg min’a
is nonempty as ’a is lower semicontinuous and / is compact. Hence, there is a
sequence a for which there is a corresponding sequence {x} C +] converging
to some element of + such that

x arg min’
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for each 1, 2,.... Also, from the lower semicontinuity of h and the compactness of
g() + , there exists for each 1, 2,... a yi in dom(h)N (g() +) such that

has (xi) h(yi) +

Clearly,

(A.1) q() >_ a (xi) >_ (xi).

Therefore, as ai c we have ]IYi- g(xi)ll 0 so that yi g(), and thus eventually
yi e int(g() + ), which implies that a (xi) q (xi). From (A.1) we also obtain
that g() e dom(h) N (g() + B), e + , and

q() >_ q()+ () >_ q().

But since E + eI, the hypotheses imply that q() q() and E + 61.
We now show that eventually g(x) dom(h). Since x arg min’ and xi

+ 5I, we know that eventually

0 e +

Hence, by Rockafellar [66, Cor. 5.2.3] and Lemma A.3, eventually there exist vi

Of(xi) and wi e Oh(g(xi)) with

w Oh(yi) and (g(xi) y) e N(wilai])

(since N(yi[g() + ) {0} as eventually yi e int(F() + ])) such that

(A.2) 0 Vi + Og(xi)Twi -]"

If the sequence {(vi, w)} possesses a divergent subsequence {(v,wi)}j, then, by
Lemma t.2, the sequence {(vi, w)/I](v, wi)]l}j possesses a cluster point (,) with

Of(), " N(g()ldom(h)) and I1(,)11 1. But for such a cluster point
(,) we obtain from (3.5) that 0 Of()+Og()Tw which contradicts the choice of
5. Thus the sequence {(vi, wi)} is bounded. Hence for sufficiently large {wi} C I
so that N(wlaiI0) {0} for all such that ai > -5. But then yi g(x) so that
g(x) dom(h) whenever a > -5. Therefore, for all ai > -5,

q() >_ (xi) >_ (xi) q (xi)= q(xi) >_ q(’2),

so that 5 arg min’a. Consequently, 5 is also a local minimizer of qa for all ai > -5.

Remark. The method of proof also shows that if is a strict local minimizer of
q, then it is also a strict local minimizer of qa.
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RECURSIVE STOCHASTIC ALGORITHMS FOR GLOBAL
OPTIMIZATION IN

SAUL B. GELFAND’ AND SANJOY K. MITTERt

Abstract. An algorithm of the form Xk+l=Xk--ak(VU(Xk)+k)+bkWk, where U(.) is a smooth
function on d, {k} is a sequence of Rd-valued random variables, Wk} is a sequence of independent
standard d-dimensional Gaussian random variables, a --A/k and b "-x//v/k log log k for k large, is
considered. An algorithm of this type arises by adding slowly decreasing white Gaussian noise to a stochastic
gradient algorithm. It is shown, under suitable conditions on U(. ), {SCk}, A, and B, that Xk converges in
probability to the set of global minima of U(. ). No prior information is assumed as to what bounded region
contains a global minimum. The analysis is based on the asymptotic behavior of the related diffusion process
dY(t) -V U( Y(t))dt + c(t)dW(t), where W(. is a standard d-dimensional Wiener process and c(t)
x/-/V]-g for large.

Key words, global optimization, random optimization, simulated annealing, stochastic gradient
algorithms, diffusions

AMS(MOS) subject classifications. 65K10, 90C30, 60J60

1. Introduction. In this paper we consider a class of algorithms for finding a global
minimum of a smooth function U(x), x Ra. Specifically, we analyze the convergence
of a modified stochastic gradient algorithm

(1.1) Xk+l Xk ak(V U(Xk) + k) + bkWk,
where {SCk} is a sequence of Rd-valued random variables, { Wk} is a sequence of standard
d-dimensional independent Gaussian random variables, and {ak}, {bk} are sequences
of positive numbers with ak, bk-->O. An algorithm of this type arises by artificially
adding the bkWk term (via a Monte Carlo simulation) to a standard stochastic gradient
algorithm,

(1.2) Z+, Z a(V U(Z) + sc).

Algorithms like (1.2) arise in a variety of optimization problems including adaptive
filtering, identification, and control; here the sequence {SCk} is due to noisy or imprecise
measurements of V U(.) (cf. 1]). The asymptotic behavior of {Zk} has been extensively
studied. Let S and S* be the set of local and global minima of U(.), respectively. It
can be shown, for example, that if U(.) and {:k} are suitably behaved, ak --A/k for
k large, and {Zk} is bounded, then Zk- S as k- with probability one. However, in
general, Zk 74 S* (unless of course S S*). The idea behind the additional bkWk term
in (1.1) compared with (1.2) is that if bk tends to zero slowly enough, then possibly
{Xk} (unlike {Zk}) will avoid getting trapped in a strictly local minimum of U(.). In
fact, we will show that if U(.) and {SCk} are suitably behaved, ak A/k and b,
Bk log log k for k large with BA> Co (where Co is a positive constant that depends
only on U(.)), and {Xk} is tight, then Xk S* as k-o in probability. We also give
a condition for the tightness of {Xk}. We remark that in 1] both probability one and

* Received by the editors January 10, 1990; accepted for publication (in revised form) July 26, 1990.
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weak convergence of {Zk} are treated. Furthermore, convergence of Zk to S is estab-
lished under very weak conditions on {:k} assuming that {Zk} is bounded. Here the
convergence of Xk to S* is established under somewhat stronger conditions on {:k}
assuming that {Xk} is tight (which is weaker than boundedness).

An algorithm like (1.1) was first proposed and analyzed by Kushner [2]. However,
the analysis in [2] required that the trajectories of {Xk} lie within a fixed ball (which
was achieved by modifying (1.1) near the boundary of the ball). Hence, the version
of (1.1) in [2] is only suitable for optimizing U(.) over a compact set. Some other
differences between the results presented here and in [2] include conditions on {ak},
{bk}, and {:k}, and also the method of analysis; these are discussed below.

The analysis ofthe convergence of {Zk} is usually based on the asymptotic behavior
of the associated ordinary differential equation (ODE)

(1.3) ,(t)=-VU(z(t))

(cf. [1], [3]). This motivates our analysis of the convergence of {Xk} based on the
asymptotic behavior of the associated stochastic differential equation (SDE)

(1.4) dY( t) -V U(Y(t)) dt + c( t) dW( t),

where W(. is a standard d-dimensional Wiener process and c(. is a positive function
with c(t)-O as t-. The diffusion Y(.) has been called continuous simulated
annealing. In this context, U(x) is called the energy of state x and T(t)= c2(t)/2 is
called the temperature at time t. Continuous simulated annealing was first suggested
in [4] and [5] for global optimization problems that arise in image processing applica-
tions with continuous grey levels. Now the asymptotic behavior of Y(t) as c has
been studied intensively by a number of researchers. In [2] and [5], convergence results
were obtained by considering a version of (1.4) with a reflecting boundary; in [6] and
[7] the reflecting boundary was removed. Our analysis of {Xk} is based on the analysis
of Y(.) developed by Chiang, Hwang, and Sheu [7] who prove the following result:
if U(. is well behaved and c2(t) C/log for large with C > Co then Y(t) S* as
t- c in probability. The main difficulty associated with using Y(. to analyze {Xk}
is that we must deal with long time intervals and slowly decreasing (unbounded)
Gaussian noise.

We make some further remarks on the differences between the results and methods
in this paper as compared with [2]. We first note that in [2] the modified version of
(1.1), which constrains the trajectories of {Xk} to lie within a fixed ball, is analyzed
for ak bk A/log k, k large. Although a detailed asymptotic description of {Xk} is
obtained for this case, in general, Xk 74 S* unless :k 0. The reason for this is intuitively
clear: even if {k} is bounded, akk and akwk can be of the same order, and hence
can interfere with each other. On the other hand, here we allow {SCk} with unbounded
variance, in particular, E{[sCk]2} O(k) and 3,< 1. This has important implications
when V U(. is not measured exactly. We also note that the analysis in [2] is different
from that done here, in that in [2] the behavior of {Xk} is obtained by deriving various
large deviations estimates of Donsker-Varadhan type, whereas here we obtain the
behavior of {Xk} directly from the corresponding behavior of Y(.). It should be
pointed out that in a certain sense the results in [2] are also stronger than those
presented here, because the large deviation approach in [2] treats the whole tail of the
process {Xk}, while only "local" type results are discussed here. However, from our
point of view the most significant difference between our work and that done in [2]
(and more generally in other work on global optimization such as [8]) is that we deal
with unbounded processes and establish the convergence of an algorithm that finds a
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global minimum of a function when it is not known a priori what bounded region
contains such a point.

The paper is organized as follows. In 2 we state our assumptions and main
result. In 3 we take up the proof of this result. In 4 we prove a general tightness
criterion, which is then used in 5 to establish tightness and ultimately convergence
for two example algorithms.

2. Main result. In this section we present our main result on the convergence of
the discrete time algorithm

(2.1) Xk+l--Xk--ak(VU(Xk)--k)d-bkWk, k>-_O,

which is closely related to the continuous time algorithm

(2.2) dY(t)=-VU(Y(t)) dt+c(t) dW(t), t>-O.

Here U(. is a smooth function on Rd, {:k} is a sequence ofRd-valued random variables,
{ Wk} is a sequence of independent d-dimensional Gaussian random variables with
E{ Wk} 0 and E{ Wk@ Wk} I (the identity matrix), W(. is a standard d-dimensional
Wiener process, and

A B
ak=--, bk=k log log k’

klarge,

C
c2(t) large,

log t’

where A, B, and C are positive constants with C B/A. Further conditions on U(. ),
{:k}, and { Wk} will be discussed below. It will be useful to define a continuous-time
interpolation of {Xk}. Let

k-1

tk an, k>=O,
n=0

X(t)=Xk, t[tk, tk+l), k>-O.

In the sequel we assume some or all of the following conditions (a and /3 are
constants whose values will be specified later):

(A1) U(.) is a C2 function from d to [0, ) such that

min U(x) O,

U(x)- and IV U(x)l- o as Ix - ,inf (IV U(x)l2- A U(x)) > -.
(A2) For e > 0 let

1
d(x)=exp e ] dx, exp dx <.

has a unique weak limit as e O.

(A3) lim (VU(x)) (4d-) 1/

U(x)l’
> (d), L(d)

4d-

and
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(A4) For k=0, 1,... let g=r(Xo, Wo,’", Wg-1, sCo, :g-1). Let K be a
compact subset of d. There exists L > 0 such that

E{I  I2I&} La , IE{  I&}I La k, VXk K, w.p.1.

Wg is independent of g.

We note that the measure r concentrates on S*, the global minima of U(. ). The
existence of 7r and a simple characterization in terms ofthe Hessian of U(. is discussed
in [9]. In [7], (A1) and (A2) were needed for the analysis of Y(t) as t-; here we
also need (A3) and (A4) for the analysis of Xk as k . Assumption (A3) asserts that
V U(x) has a sufficiently large radial component for Ixl large. This condition will be
used to extend an escape time estimate for {Xk} from a bounded region in the d 1
case to the d > 1 case (see Lemma 4). It may be possible to replace L(d) by 0 in (A3)
but we have not been able to do so (except of course for d 1). Note that (A3) is
implied by (A1) when d 1.

For a process Z(. and a function f(. ), let E,,,z,{f(Z(t))} denote conditional
expectation given Z(tl) zl, and let Et,,z,;,2,z2{f(Z(t))} denote conditional expectation
given Z(tl)= zl and Z(t2)= z2 (more precisely, these are suitable fixed versions of
conditional expectations). Also for a measure/z(. and a functionf(. let/x(f) fdtx.

In [7] it was shown that there exists a constant Co (denoted there by Co) that plays
a critical role in the convergence of Y(t) as c. Co has an interpretation in terms
of the action functional [10] for the perturbed dynamical systems

(2.3) dY (t)=-VU(Y(t)) dt+edW(t).

Now for 4(’) an absolutely continuous function on Ra, the (normalized) action
functional for (2.3) is given by

I(t,x,y)= inf
1 fo’ ds.

b(t)=y

According to [7]

Co= sup (V(x,y)-2U(y)),
X,y S

where V(x, y) lim,_ I(t, x, y) and So is the set of all the stationary points of U(. ),
i.e., So {x: V U(x) 0}; see [7] for a further discussion of Co including some examples.
Here is the Chiang-Hwang-Sheu theorem on the convergence of Y(t) as c.

THEORE 1 [7]. Assume (A1) and (A2) hold. Then for C > Co and any bounded
continuous function f(. on Ra

(2.4) lim Eo,yo{f( Y(t))}-- 7r(f)

uniformly for Yo in a compact set.
Let K1 c Ia and let {X} denote the solution of (2.1) with Xo Xo. We say that

{Xo: k-> 0, Xo K1} is tight if given e > 0 there exists a compact K: Ea such that
Po,o{Xg K2} > 1 e for all k -> 0 and Xo K1. Here is our theorem on the convergence
of Xg as k-.

TI-IZOgZM 2. Assume (A1)-(A4) hold with a >-1 and/3>0. Also assume that
{Xo: k>-_O, xoK} is tight for K a compact set. Then for B/A> Co and any bounded
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continuous function f(. on d

(2.5) lim E0,xo {f(Xk)}- 7r(f)

uniformly for Xo in a compact set.
Remark. We specifically separate the question of tightness from convergence in

Theorem 2. It is appropriate to do this because sometimes it is convenient to first prove
tightness and then to put an algorithm into the form of (2.1) to prove convergence. In

4, we actually give a condition for tightness of a class of algorithms somewhat more
general than (2.1), and then use it in 5 to prove tightness and ultimately convergence
for two example algorithms.

Since 7r concentrates on S*, we have, of course, that (2.4) and (2.5) imply Y(t)- S*
as t- and Xk-- S* as k o o in probability, respectively.

The proof of Theorem 2 requires the following two lemmas. Let fl(. be defined
by

(s)

du s > 1.
log S2/3
log u

Note that s + s/3 <- (s) <- s + 2s/3 for s large.
LEMMA 1 [7]. Assume the conditions of Theorem 1. Then for any bounded con-

tinuous function f(. on

lim (Es,x{f Y(fl(s)))}-’c(s)(f)) =O

uniformly for x in a compact set.
LEMMA 2. Assume the conditions of Theorem 2. Then for any bounded continuous

function f on d

lim (Eo,xo;s,x{f(X((s)))}- Es,x{f Y(fl(s)))}) =0

uniformly for Xo in a compact set and all x.
Lemma 1 is proved in Lemmas 1-3 of [7]. Lemma 2 is proved in 3. Note that

these lemmas involve approximation on increasingly large time intervals: fl(s)-s >=
s2/3-o as soo. We now show how these lemmas may be combined to prove
Theorem 2.

Proof of Theorem 2. Since/3(s) is continuous and fl(s)- o as s- o, it is enough
to show that

(2.6) lim Eo,xo{f(X(fl(s)))} 7r(f)

uniformly for Xo in a compact set. We have for r > 0

IEo,xo{f(X((s)))}- (f)l

(2.7)

<-- Po,o {X(s) dx}lEo,o;,x{f(X((s)))}-(f)l+211fllPo,o{IX(s)]> r}.

Now by the tightness assumption

(2.8) sup Po,xo{lX( )l > r}-0
s=>0

as r-.
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Also by Lemmas 1 and 2 and assumption (A2)

sup IEo,xo;,x{f(X((s)))}- 7r(f)

_<- sup ]Eo,o;,{f(X((s)))}- E,:,{f( Y(/3(s)))}]
(2.9)

Ixl--<r

+ sup I,{f(Y(t()))}- (f)l
Ixl<--_r

+ Ir(f) (f)l
Combining (2.7)-(2.9) and letting s-ee and then r gives (2.6) and hence the
theorem.

3. Proof of Lemma 2. Before proceeding with the proof of Lemma 2 we address
the following technical issue. Observe that Lemma 2 is not concerned with the joint
probability law of X(. and Y(. ). Hence without loss of generality we can and will
assume that

Wt, a-1/2( W( t,+l) W(tt,)),

and that the following assumption holds in place of (A4)"

(A4’) For k=0, 1,... let k=tr (Xo, Yo, o,’", k-1, W(s), O<-s<= t). Let K be
a compact subset of a. There exists L> 0 such that

E{I.III-<La, IE{lo%II--<La VXk K, w.p.1.

W(t)- W(tk) is independent of Ok for t> tk.
It will also be convenient to define

C
c2(tk) k large,

log log k’

and to let c2( be a piecewise linear interpolation of {c2(tk)}. Note that c2(t)-- C/log t,
and since C B/A we have X/-kC(tk)= bk.

In the sequel, cl, c2," denote positive constants whose value may change from
proof to proof.

The proof of Lemma 2 is based on the following three lemmas. For s, R > 0 define
the exit times

r(s,R)=inf{tes" Ix(t)l > R},

-(s,R)=inf{t>=s IY(t)l > R}.

LEMMA 3 [7, p. 745]. Assume the conditions of Theorem 1. Then given r > 0 there
exists R > r such that

lim P,x(’(s, R) >/3(s)} 1

uniformly for Ixl r.
LEMMA 4. Assume the conditions of Theorem 2. Then given r > 0 there exists R > r

such that

lim Po,xo.s,x{o’(s, R) >/3(s)} 1

uniformly for Ixl r and all Xo.
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LEMMA 5. Assume the conditions of Theorem 2. Then for 0 < r < R

lim Eo,xo;s,x{]X((s))- Y(fl(s))l2, O’(S, R) ^ z(s, R) > fl(s)} 0

uniformly for Ixl <= r and all Xo.
The proofs of Lemmas 4 and 5 are given below. We now show how these lemmas

may be combined to prove Lemma 2.

Proof ofLemma 2. Given r > 0, choose R > r as in Lemmas 3 and 4. Fix s > 0 for
the moment and let o-- o-(s, R) and r z(s, R). Henceforth assume all quantities are
conditioned on X(O)= Xo, X(s)= Y(s)= x, and [x]-< r. We have

IE({f(X(fl(s)))}- E{f Y(/ (s)))}l
(3.1) <= E{[f(X((s)))-f( Y(fl (s)))], o" ^ z >/3 (s)} + 2[If P{o- ^ ’<=/3 (s)}.

Now by Lemmas 3 and 4

(3.2) P{r^z=</3(s)}-0 as s.

Also, since f(- is uniformly continuous on a compact, given e > 0 there exists 6 > 0
such that If(u)-f(v)l<e whenever lu- l< and lul,[vl<=R. Hence using the
Chebyshev inequality and Lemma 5

E{lf(x((s)))-f( V(fl (s)))[, cr ^ z >/3(s)}

(3.3) <= 21[fl[P{lX((s)) Y(/3 (s))l _-> 6, r ^ > t(s)} + e

211/[1E{IX((s))- Y(/3(s))[2, cr ^ z>/3(s)}+e- e as s.

Combining (3.1)-(3.3) and letting s-* and then e-0 gives the lemma.
The proofs of Lemmas 4 and 5 involve comparisons between X(.) and Y(.).

Define ’(., .) by

Y(t)= Y(s)-(t-s)(VU(Y(s))+(s, t))+c(s)(W(t)- W(s))

for => s-> 0. To compare X(. and Y(. we will need statistics for ’(.,. ).
PROPOSITION 1. For every R > 0

Es,y{IC(s ^ z(s, R))12} O([t-s[)
as t$ s, uniformly for s >= 0 and all y.

Proof In this proof we can and will assume that V U(. is a bounded and Lipschitz
function on a (since [Y(u)[ _-< R for s <= u <-_ ^ z(s, R) we can modify U(x) for Ix[ > R
without loss of generality). Fix s-> 0 and let z- z(s, R). Henceforth assume all quan-
tities are conditioned on Y(s)- y. Now for >_-s we can write

(3.4) (t-s)(s, ^ z)= (VU(Y(u))-VU(Y(s))) du- (c(u)-c(s)) dW (u).

Let dl and d2 be Lipschitz constants for V U(. ), c(. ), respectively. Under our assump-
tions on VU(. and c(. )it is well known (cf. [11])that E{IY(u)- Y(s)[2} O(lu-s[))
as u,[,s, uniformly for s => 0 and all y. Hence

E (VU(Y(u))-VU(Y(s))) du <=dE [Y(u)- Y(s)[ du

(3.5) <=2d21(t-s) U{IY(u)- Y(s)l2}du

--O((t--S) 3)
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and

E (c(u)- c(s)) dW(u) <= (c(u)- c(s)) 2 du

(3.6)

<=d2 (u-s du=O((t-s)3)

as ts, uniformly for s >-0 and all y. The proposition follows from (3.4)-(3.6). E]

COROLLARY 1. Given R>0, let Kk =K(tk, tk+ ^ ’(tk, R)). Then there exists M>0
such that

E{lkl2lk}<-- Mak, IE{k]k}l<= Mal/ w.p.1.

Proof. Observe that ’k is { Y( tk), W( t) W( tk), tk < <- tk+l} measurable. Since
Y(tk) is k measurable and {W(t)-W(tk), tk < t<= tk+} is independent of ’k, we
must have P{k ]k} P{k ]Y(tk)} w.p.1. The corollary now follows from Propo-
sition 1 and Holder’s inequality. 1

3.1. Proof of Lemma 4. The idea behind this proof is to compare X(t) and Y(t)
in such a way as to eliminate the slowly decreasing Gaussian noise (i.e., the bkWk
term) between them. Once the decreasing Gaussian noise is eliminated, we can control
the deviation of X(t) from Y(t) over increasingly large time intervals and ultimately
obtain the escape time estimate for X(t) from a bounded region from that for Y(t)
in Lemma 3. It seems very difficult to work directly with the continuous-time interpola-
tion X(t).

For each n let k. be the integer that satisfies /3(6) [tk,, tkn+ ,)" We show there
exists R > r such that

(3.7) lim Po,o;t,,x{tr(t,, R) > tk,} 1

uniformly for ]x I_-< r and all Xo. The lemma then follows by some minor details that
are omitted.

By Lemma 3 there exists RI> r such that

lim Pt,,,{’(t,, R1)> tk,}-- 1

uniformly for ]x[_-< r. Hence (3.7) will follow if we can show that there exists R > r
such that

(3.8) lim Po,o;,,,{tr(t,,R)<--tk,, (t,, R,)> tk,} 0

uniformly for ]xl_--< r and all Xo. We first assume d 1 (the scalar case) and then
generalize to d > 1. The generalization to d > 1 requires (A3).

Prooffor d 1. In view of (A1) there exists R2 > R such that

sup U’(x) < inf U’(x), inf U’(x) > sup U’(x).
x--R Ixl<_- R x--__> R2 Ixl__< R1

Let R3--RE+ 1 and R4=2Ra+3R1. We show that (3.8) holds with R =R4.
Fix n for the moment and let tr tr(t,, R4), " ’(t,, R). Let

’ (tk, t+l ^ "r(tk, R1))

and

Yk+l Y-a(VU(Yk)+k)+bkWk.
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Note that if Y(tn)-- Yn and r _-> k -> t,, then Y(tk)-- Yk. Henceforth assume all quan-
tities are conditioned on X(0) Xo Xo, X(tn) X Y(t,) Y, x, Ix[ =< r.

We proceed by observing that if the event {o--< tk.} occurs then either
At some time k, n <- k < kn, Xk jumps from I-R4, Re] to (R3, c), or from
I-Re, R4] to (-00,-R3);
At some time k, n <-k <k,, Xk jumps from I-R4, Re] to (Re, R3] and exits
from (R2, R4] to (R4, 00) at some time l, k < <= k,
At some time k, n =< k < k,, Xk jumps from [-Re, R4] to I-R3, -Re), and exits
from I-R4, -Re) to (-oo, -R4) at some time l, k < <-_ k,.

Now define k-stopping times:

and

+ inf { k > n" Xk_l < R2
+ =inf{k>/z-" Xk < R),

+ +" < R R< Xk < R3},/xe =inf{k> /Yl Xk-l-
+ +.

u2 =inf{k>/x

/x- inf {k > n" Xk-1 >-- -Re, -R3 <= Xk < -Re},

v- inf {k >/z-: Xk ->_ -Re},

/ze =inf{k> pl:Xk_l>--Re,--R3<=Xk <-Re},

v- inf {k >/x: Xk >= -Re},

Note that if/x+ /X, < kn, then we must have rn _-< rn. (where m. =< (kn n)/2). Hence
if we let

kn
D, U {-R4--<-- Xk <- Re, Xk+l > R3} U {-Re <- Xk <-- R4, Xk+l < -R3},

k=n

O’<lknE + U {..<o’< ....
m=l

E= U {t.2,<o’<Ge, ,o’_-<tk.,’>
m=l

then

P{o’<= tk., 7"> tk.}<=P{D}+P{E+.}+P{E-}.

CLAIM 1. lim_. P{D,,} 0 uniformly for Ixl <-_ r and all Xo.
CLAIM 2. lim_.oo P{E} 0 uniformly for Ixl <-- r and all Xo.
Assuming that Claims 1 and 2 hold, we have P{o- <_- tk., z > tkn} --> 0 as n -> oo. And

the convergence is uniform for Ixl -< r and all Xo. This proves (3.8) and hence Lemma
4 when d 1.



1008 s.B. GELFAND AND S. K. MITTER

Proof of Claim 1. Using the Chebyshev inequality and a standard estimate for
the tail probability of a Gaussian random variable we have

kn-1
P{Dn} <-_ Y P{-R4 <- Xk <- g2, Xk+I- Xk > ga-

k=n

(.l {-g2 <- Xk <- g4, Xk+I Xk < -(g3- g2)}
kn-1

<- Y P{IxI <-- R, ]X/I- X] > g3- g2}
k=n

kn--1
Y P{IXkI<--R4, I--ak(U’(Xk)+k)+bkWkI> Ra-Ra}
k=n

k2n P IXkl <-- e4, aklkl > + P bk] Wk] >3 n large

<_- c y a,{ll, Ix l-<_ R4}+exp
,_l (c tt-<- c3 ,Y + exp

-< c5 Y exp (-c4k) - 0 as n -*
k=n k

since a >-1. This completes the proof of Claim 1.

ProofofClaim 2. Since the proofs for E,+ and E; are symmetric, we only consider
E+ For convenience we suppress the + sign throughout, i.e., E -=-/Xm, Pm
+

For 1 =< rn -< rn. let

We have

E,,,., {tin.< cr < t t7 tk. " > tk.}.

P{En,m}-- P
k

k=n+2

k

=P U
k=n+2

k

<-P U
k=n+2

P max
k: tl < tk tyro tkn

P max
k tl tyro tkn

{t,m < k % tm tr tk, "r > tk, }

{Xk-- Yk > R4-R1, t.m< tk < t, or= tk, ’> tkn }

{Xk Yk > R4- R1, tlxm < tk t ^ cr ^ r}

[Xk-- Yk]> R4-R,}
I k-1

Xt.t, Ylvt.,m- E a,( U’(Xt)- U’(Y))
l=[a,

Y a,( ) > R4- R1
l=lz

Note that the bkWk terms have been eliminated at this point; it is here we see the
utility of comparing X(t) and Y(t). Now suppose t,m < tk = t ^ r ^ r ^ tkn. Then
X,m (g2, g3], Y,m 6 (-gl, gl), which implies X,m- Y,_-< g3 + gl (g4- gl)/2.



RECURSIVE STOCHASTIC ALGORITHMS 1009

Also XI (R:z, R4], Y/G (-R1, R1) for all such that ].l, __<-- < k, which implies U’(XI)
U’(Y/) > 0 for all such that /d ( k. Now let

k (k- k)l{lxk[R4}
Note that by (A4’) and Corollary 1

E {l rlkl21.-k} <= Cl a k

Hence

(3.9)

IE{nl}l la^(1/2)

k-1 R4- R1 }P{E,,.,} <-_ P max ., alrll >
k:tlm<tktmACrA ^tk l=l 2

k-1 R4_R1}_<- P max alrll >
Im%km^kn l=ldm 2

k R4_R1}P max Y al’Ollox.,<__l<,., >
n+l<=k<=kn -1 /=n+l 2

{-<P max
n+lk<=kn -1 l--n+1

But

max
n+l<=k<=kn -1 /=n+l

kn-1

/=n+l

(3.10)
<= c a3/+

/=n+l

1
c

l=n+l

since fl > O. Combining (3.9) and (3.10) gives for n large enough

{ k R4_R1 }(3.11) P{E,}P max
n+lNkkn-1 l=n+l 4

Let k k E{ BkIk} and

k

Sm,k alll,mzl<mI, k n + l.
/=n+l

Since l is ff+l-measurable and { < } l, {S,k, ffk+l}ke+ is a maingale.
Hence applying Doob’s inequality to (3.11) gives for n large enough

P{E,}NP max Smk>
n+lkNkn-1 4

k -1

k=n+l

k

k R4_R1}+ max Y, alE{rlll,l}l{m<_l<,m}>
n+lk<--kn -1 l=n+l 2
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Finally,

P{E,} E P{E,,m}
m=l

kn
C3 2

k=n+l
E
m=l

kn
c Y. aE{]l}

k=n+l

k -1

C3 E aE{ll}
k=n+l

k-1

C4 a^(2+a)

k=n+l

--<C5 k3^(2+,k=n+l
0 as noe

since a >-1. This completes the proof of Claim 2.

Prooffor d > 1. We now show how the above proof for d 1 can be extended
to d>l.

Let u denote the ith component of a vector u. Suppose for the moment that there
exists R2 > R1 such that for R R2-+- and R4 2R3 q- 3R1, we have

(3.12) SuP 0U OU
(x) <lxlinf (x),

<=--R2 OX <= RItJ OX
IxJI<=R4 Vji

(3.13) inf OU(x)> .sup
OU

xi>--R2 OX"--’ [xl<=R, Vj OX"-’-’ (X).
IxJl R Vj #

Fors>0, Ro>0, and i=l,...,d let

cri(s, Ro)=inf{t>=s" Ix(t)l > Ro}.

Then we can show that as n- oe

Po,xo.t,,x{O’( tn, x/-d R4) <: tk, 7"( tn, R,) >

d

<-- Y’. Po.xo.,..x{tri(t., R4) tk., O’i(t., R4) <= rj( tn, R4) j i, r(t., R) > tk.} - 0
i=1

similarly to the proof given above that

Po,xo;t., x{’(t., R4) N tk., ’(t., R1) > tk.} --> 0

in the scalar case d 1. So (3.8) and hence Lemma 4 holds for R x/R4.

It remains to establish (3.12) and (3.13). We only consider (3.13). Let D(R2)=
{X" X i>- R2, IxJl R4 [j y i}. Since R is fixed here, there will exist R2 such that (3.13)
holds if we can show

lim inf 0U
R2-’ xD(R2) OX

(X)
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We proceed by breaking V U(x) into radial and tangential components and comparing
the projection of these components on e, the ith standard basis element in Ra. So let

Iv U(x) -(v U(x), )l > o

Iv U(x) -(v U(x), )l o

and

(V U(x), )(0, e i)
x large.g(x)

(VU(x), )(, e’)’

Of course (:, )= O. Then

lim sup
R2 x_D(R2)

ei)2
lim sup

]XTU(x)I2-(X7U(x),)2 1-(,i)2g2(x)
-. xD() (V U(x), > (, e

lim sup

<((a)-- 1)4(a- ) ,
1|"

(x’)

where the first inequality follows from Bessel’s inequality (applied to V U(x) and to
ei), and the last inequality follows from (A3) and the fact that if x D(R2) then

and (xi)2-> R2 (and also R4’---’2R2 as R2--)oo). Hence

lim inf OU
R2-oo D(R2)Oxi

(X) lim inf
R2cx3 D(R2)

lim inf
R2oc xD(R2)

lim inf
R2cx3 xD(R2)

[<V U(x), 5,)(x", e’>+(V U(x), d)(, e’>]

(V U(x), 9)(;, e’)(1 + g(x))

( V U(x) x[) XIV U(x)l IV U(x)l, (1 + g(x)) oo.

Hence (3.13) and similarly (3.12) follows. This completes the proof of Lemma 4.

3.2. Proof of Lemma 5. The idea behind this proof is that if X(s)= Y(s) and
X(t) and Y(t) remain in a fixed bounded set on large time intervals Is, fl(s)] (and
they do by Lemmas 3 and 4), then we can develop a recursion for estimating
E{lX(fl(s))-Y(/3(s))12}, and from the recursion we can show that E{IX((s))-
Y(fl(s))]} as s. This is true even though the interval length (s)-s-o as

For each n let k, be the integer that satisfies/3(t,) [6., 6.+,). We show that

(3.14) lim Eo,xo;,.,x{IX(tk.)--Y(tk.)12,r(t,,R)^r(6, R)>tkn}=O.

The lemma then follows by some minor details, which are omitted
In this proofwe can and will assume that V U(. is bounded and Lipschitz function

on Ra, and :k satisfies (A4’) with K =Ed (instead of K a compact subset of Ed), i.e.,

(3.15)
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(if tr(t., R) ^ 7(t., R)> tkn then Ix(t)l, IY(t)l<-R for t.<--t<--_tkn, and so U(x) can be
modified for Ix] > R and we can set zk --0 for Ix.I > R without loss of generality).

Fix n for the moment and let cr cr(tn, R), r z(tn, R). Let

and

, h,, tk+l / "r( tk, R)

Yk+l Y-a(VU(Y)+)+bkW.

Note that if Y(t) Y and r > t, then Y(t) Y. Hencefoh assume all quantities
are conditioned on X(O) Xo Xo, X(t) X Y(t) Y x, Ixl r. Then

E{IX( tk)- Y( t.)l, > tg.} E{[Xg.- Yk.l, A > tk.}
(3.16)

We proceed to show that the right side of (3.16) tends to zero as n. Let

a =X- Y, n -.
Note that by (3.15) and Corollary l

E{l,]2l&}cla IE{,l&}lcl(1/2) w.p.1.

Now using Holder’s inequality and the fact that X, Y, and hence A are measurable
we have

E{Ia+,]} E{]a a(V U(X +)-V U(X)+ n)]
E{II=} 2aE{<A, V U(X +A) V U(X))}

-2aE{<A, n)}+ aE{]V U(X +A)-V U(X)2}

+ 2aE{la12} l/2E{lE{nl}12} ’/2 + 2d2 2

+ 2d, aE{lk12}I/2E{IE{I&}12}1/2 +
{1 + ca)e{lal} +,

where dl is a Lipschitz constant for V U(. and a min [, 2+ , 1 + ]. Using the
assumptions that >-1 and > 0 we have a > 1. Now for each n

and if we replace the inequality with equality, the resulting difference equation is
unstable as k m (recall that ak A/k, k large). Nonetheless, we make the following
claim.

CLAIM 3. ere exists T > 1 such that

lim sup E{{Ak[2} 0.
n+ k’tntkTt

Assume the claim holds. Since tk. (t,) t, + 2t/3 < yt, for n large, it follows that

lim E{lA.[2} 0.

This proves (3.14) and hence Lemma 5. It remains to prove the claim.
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Proof of Claim 3. For each n let {U,,k}k>__n be a sequence of nonnegative numbers
such that

Un,k+ (1 + ak)Un,k n ak, k >- n,

where > 1. Now
k-1

Un,k E am I-[ (l+at) < a .exp a,,
l=m+l

since l+x<ex.= Also k-lam<A(log(k/n)+l/n), and k-ln am<=A(1/(-l)n-
+l/n), and if tk<=ytn then k<=cnL Choose 7 such that l<7<l+(-l)/A. It
follows that

sup Un,k c2n
(v-)A-(6-) 0 as n - .k" Ttn

The claim follows by setting U,,k E{lAk[Z}.
Remark. The proof of Claim 3 does not work if ak A/k for any < 1.

4. General tightness criterion. In this section we consider the tightness of an
algorithm of the form

(4.1) Xk+l=Xk--ak(Ok(Xk)+k)+bkWk, kO

where {ak}, {bk}, {k}, and { Wk} are defined as in 2, and {(x)" x d} is an d-valued
random vector field for k =0, 1,.... We will deal with the following conditions in
this section (a, fl, T, and T2 are constants whose values will be specified later).

(B1) For k=0, 1,..., let k (Xo, Wo,’’’, Wk-1, o,’’’, k-1). There exists

L1 > 0 such that

E{[k]2k}La, [E{lffk}La w.p.1

Wk is independent of k.
(B2) Let K be a compact subset of d. There exists L2> 0 such that

E{Ik(X)[]k} L VX K, w.p.1.

(B3) There exists L3, R > 0 such that

E{IOk(X)llk}2 L3 [x[ Vlx[> R, w.p.1a
(B4) There exists L4, R > 0 such that

IxlE{I  (x)I21  I L4 a VlxI>R, w.p.1.

(BS) There exists Ls, R > 0 such that

THEOREM 3. Assume that (B1)-(B5) hold with a>-l,>0, and
Let {X} be given by (4.1) and K be a compact subset of . en {X k 0, Xo K}
is a tight family of random variables.

The proof of Theorem 3 will require the following lemmas.
LEMMA 6. Assume the conditions of eorem 3. en there exist an integer ko and

an M 0 such that

for k ko and all Xo.
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Proof. Assume all quantities are conditioned on Xo Xo. Now it follows from
(B2)-(B5) and the fact that Xk is k-measurable that

E(I(x)I-, Ixl--< R) =< t,

E{IO(X)[=, Ixl> R} N Z4a;eE{lXkl, IXkl> R},

Let D e . Then using Holder’s inequality and the fact that X is -measurable and
W is independent of we have

E{[X+,, U}-E{[XI, D}
E{IX a(O(X) +)+ bW[, D} E{IX =, D}

=-2aE{(X, O(X)), D}-2aE{(X, ), D}

+2bE{<X, W>, U}+ aE{l(X)l, D}
+2aE{(O(X), ), D}-2abE{(O(X), W), D}

+ aE{[[, D}-2abE{(, W), D}+ bE{IWI, D}

(4.e) -eaE{(X, 6(X)), D}

+ 2aE{[X], D}1/E{IE{I}I }

+ 2bE{<X, E{ W}>, D)+ aE{lO(X)l=, D}
+ 2aE{[O(X)[, D}’/E{E{III}}1/

+ 2abE{l(X)l, D} ’/E{I W[ }

+ aE{E{III}}
+2abE{E{II[}}’/E{I WI}1/ + bE{IWle}.

Let D= {X > R}. Then using (4.2) we have

E{Ix+,I, [x[> R}-E{[X[, IX[> R}

+ c:((a,+ aL-/=b)E{IXl=, Ixl> R}+a+ab+ b),
where 6 min 1 + fl, 2 T, 2 + (a T:)/2], fi min 1 + fl, 2 + (a T:)/2, 2 + a ], and
3 min 1 T:/2, 1 + a / 2]. Using the assumptions that a > 1, fl > 0, and 0 T T: <
1, we have > 1, 6:> 1, and 63>, and since b o(a/) we get

EIx+,I=, Ixl> R-EIXI, Ixl> R
(4.3) (-c3a-’/+ o(aL-’/=))EklXl=, Ixl> R+ o(aL-,/=)

-c4a-r/2(E{[Xk[2} R 1)

for all k ko, if we choose ko large enough.
Let D {X R}. Then using (4.2) we have

EIx+I=, Ix[ R- EIXI=, Ixl R c(a4+ab+
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where 64 min 1, 1 +/3, 2 + a/ 2, 2 + a and 5 min (1, 1 + a/ 2]. Using the assump-
tions that a>-I and/>0 we have 64 1 and 65>, and since b, o(ak/2) we get

(4.4) E{lXk+l[2, INk[ <-- R}- E{lXk[2, [Xk[ R} <= 6ak c6alk-3q/2
for all k _-> 0.

Finally, let M1---c6/c4-FR-F1. Then combining (4.3) and (4.4) gives the
lemma.

LEMMA 7. Assume the conditions ofTheorem 3. Then there exists an Me > 0 such that

Eo,xolX/,12 Eo,xolXl=) <-_ M2(to,olXl= / )
for k >= 0 and all Xo.

Proof. Similarly to the proof of Lemma 6 we can show that conditioned on Xo Xo

E(IX+ll=, Ixl> R}- E(IX,I, Ixl> R <-c,aL/=(ElXl/ 1)

and

E{IX+ll=, [xl R}- E{[Xk[2, [Xkl--< R} -_< Clak.

Combining these equations gives the lemma.
Proof of Theorem 3. Let M, M2, and ko be as in Lemmas 6 and 7. By Lemma 7

there exists c -> M such that

Eo,xo{IXkl2} <- c,, Vk <-_ ko, Xo K,
and by Lemmas 6 and 7 we also have

Eo,xo{lXk+ll} Eo,xo{lXk[} -< 0 if Eo,xo{[X[} -> M,

and

for k-> ko and all Xo. Let c:- c + M2(M1 + 1). Then by induction we get

Eo,,o{IXl)_-< c Vk_-> 0, Xo K,

and the tightness of {X,: k-> 0, Xo K} follows from this.. Tightness and convergence for two example algorithms. In this section we apply
Theorems 2 and 3 to establish the tightness and ultimately the convergence of two
example algorithms. Define U(.), {ak}, {bk}, {:}, and { W} as in 2. We will need
to consider one or both of the following conditions:

(A5) lim IV U(x)l/Ix > O.

(A6) lim IV U(x)l/[x <
Example 1. Here we consider the following algorithm:

(5.) X/,=X-a(VU(X)+)+bW, k>=O.

THEOREM 4. Assume (A1)-(A3), (B1), (A5), and (A6) hold with a >-1,/3>0.
Let {Xk} be given by (5.1). Then for B/A > Co and any bounded continuous function
f(.) on

lim Eo.o{f(X)} or(f)
k-c

uniformly for Xo in a compact set.

Proof. The assumptions of Theorem 2 and Theorem 3 (with k(x)= V U(x) and, , 0) are satisfied.
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Observe that the proof of tightness of {Xo} using Theorem 3 requires that (A5)
and (A6) hold, i.e., there exists M1 and M2 such that

MllX[_-< IV U(x)l <_- M2[xl, Ix large.

Intuitively, the upper bound on [V U(x)[ is needed to prevent potentially unbounded
oscillations of {Xk} around the origin. It is possible to modify (5.1) in such a way that
only the lower bound on ]V U(x)l (i.e., (AS)) but not the upper bound on ]V U(x)]
(i.e., (A6)) is needed. Since we still want convergence to a global minimum of U(. ),
which is not known to lie in a specified bounded domain, standard multiplier and
projection methods [1] are precluded. The next example gives a modification of (5.1),
which has the desired properties.

Example 2. Here we consider the following algorithm:

Xk+l--Xk--ak(VU(Xk)@k)-l-bkWk if [VU(Xk)-t-k[ [Xklv 1

(5.)

Xk al-VXk + bkWk if Iv u(x ) + > Ix l
a’{

where 3’ > 0. Intuitively, note that if K is a fixed compact set, Xk K, k is not too
large, and k is very large, then Xk is updated to Xk+l as in (5.1). Also note that in
(5.2) (like (5.1)), VU(Xk) and SCk only appear as the sum VU(Xk)+k. This means
that we can use noisy or imprecise measurements of V U(.) in (5.2) in exactly the
same way as in (5.1).

THEOREM 5. Assume (A1)-(A3), (B1), and (A5) (but not necessarily (A6)) hold
with a > O. Let {Xk} be given by (5.2) with 0 < y < 1/2. Then for B/A > Co and any
bounded continuous function f(. on d

(5.3) lim Eo,o {f(Xk)} zr(f)
kcx3

uniformly for Xo in a compact set.

Proof Let

(5.4) Xk+l Xk ak(V U(Xk) + ’) + bkWk

(this defines ) and ff=tr(X0,,’’ ",’k-, Wo,’’’, Wk-). We show that
(’k, Wk, @) satisfies (A4). Hence by Theorem 2 if {Xo: k>-O, xoK} is tight for K
compact then (5.3) holds.

Let

d/k(X) V U(x) if IV U(x) + kl <- Ixl 1

a[

x
if Iv u(x)+ > Ixl

a ak

Let

(5.5) Xk+I Xk ak(bk(Xk) +) + bkWk

(this defines :) and =r(Xo,g,’’’,_l, Wo,’’’, Wk-1). We show that
(’, Wk, @) satisfies (B1) and (k(X), ) satisfies (a2)-(as) with 3,1=0, 3,2=23,.
Hence by Theorem 3 {X: k>-O, xo K} is tight for K compact and (5.3) does hold.
These assertions are proved in Claims 4 and 5 below.
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Remark. The proof shows the importance of separating the tightness and con-
vergence issues. Even though we can write algorithm (5.2) in the form of algorithm
(5.4), we cannot apply Theorem 3 to (5.4) to prove tightness because U(.) may not
satisfy (A6), and may not satisfy (B1) even though :k satisfies (B1).

CLAIM 4. Let K be a compact subset of d. Then there exists M1 > 0 such that

Also, Wk is independent of.
Proof. Clearly,

if Iv u(x ) + [x l
a

X V U(Xk) if IV U(Xk) + k[ > IXkl v_____l
Tak ak

Hence for Xk K and k large enough

2, v U(Xk) + kl > Ixk[ V 1

a
Cl {<- L,a +a-- Pr a
C { C__.2<--_Lak +ak---- Pr [SCk[>

a[

<= L,a + c3E{IkI[ ’k}----< Mla w.p.1,

where we have used the assumption that 3/> 0 and the Chebyshev inequality. It is easy
to see that the inequality actually holds for all k -> 0. Since c k, the claim follows.

CLAIM 5. Let K be a compact subset of d. Then there exists M1, M2, M3, M4,
and Ms, R > 0 such that

(i) E{l[2lo%}-< Maa’ w.p.1. Also Wk is independent of,
(ii) E {lOk(X)12[ ,} _--< M2 for all x K, w.p.1,

(iii) E{lOk(X)ll}2>= M3[xl2 for all Ix]> R, w.p.1,
(iv) E{lOk(X)[]:} <=M4(Ixl2/azk) for all Ix[> R, w.p.1,
(v) E{((x), x)l;}>- MsE{JO(x)llxJl ;} for all [xl> R, w.p.1.
Proof. First observe that (iii) and (v) follow immediately from (A3) and (AS).
(i) Clearly,

:=:k if [VU(Xk)+kl <-[Xklv 1

a
0 if [V U(Xk)+[ >

IXk[ VI
a

Hence

Since ’; c ffk, (i) must hold.
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(ii) For x K and k large enough

E{l,(x)]l,}<-lVU(x)l+a---Pr IVU(x)+:]> a
Cl { C--2--< c + a-- Pr I1 > a

where we have used the assumption that ,/> 0 and the Chebyshev inequality. It is easy
to see that the inequality actually holds for x K and all k_-> 0. Since c k, (ii)
must hold.

(iv) For Ixl large enough and k >_-0

----< 4 a+3E(l:kl kI<--M4aZk----
Since c k, (iv) must hold. This completes the proof of the claim and hence the
theorem. ]

As a final note observe that the algorithm (5.1) does require (A6), and also (B1)
with a >-1,/3 > 0. On the other hand, the algorithm (5.2) does not require (A6), but
does require (B1) with a >0 (and hence fl>0 by Holder’s inequality). It may be
possible to allow {:k} with unbounded variance in (5.2) but this would require some
additional assumptions on {k} and we do not pursue this.
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ON SUBDIFFERENTIALS OF OPTIMAL VALUE FUNCTIONS*
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Abstract. A general mathematical programming problem in which the constraints are defined by
multifunctions and depend on a parameter u, and the resulting value function m(u) are considered. In the
context of Banach spaces admitting equivalent Fr6chet differentiable norms estimates for the generalized
gradient Om of rn are established. A special study is made of problems in which the multifunctions defining
the constraints take convex values. For these problems, estimates for Orn are given in terms of the generalized
gradients of the support functions of these multifunctions.

Key words, optimal value function, subdifferential, generalized gradient, e-Fr6chet subgradient, singular
subdifferential, support function, regular multifunction
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Introduction. The study of the behaviour of an optimal value function is known
to be very important for the interpretation of marginal values for resources in an
economic framework and for its direct significance in stability and sensitivity analysis.
A useful tool that furnishes information about the behaviour of the optimal value
function is its Clarke subdifferential. So, many authors have studied the Clarke
subdifferential of the optimal value function of a problem depending on a parameter
and some have proved that this subdifferential is related to the Lagrange multipliers
(relative to necessary optimality conditions in terms of Clarke generalized gradients)
of the concerned problem. In the case of problems with explicit constraints, this was
probably begun with the paper of Gauvin [14]. Recently, a great deal of progress has
been realized in this domain by Rockafellar. Indeed, in a series of papers [28]-[32],
Rockafellar considered the following general finite-dimensional problem:

Ou minimize {f(x, u )" (x, u D, g(x, u C},
XG

where D c"m and C c k, f is an extended real-valued lower semicontinuous
function, and g is a locally Lipschitz mapping (not necessarily differentiable). For this
general problem, Rockafellar established estimates for the Clarke subdifferential of
the value function in terms of Lagrange multipliers vectors that satisfy necessary
conditions for (Ou) in terms of Clarke subdifferentials. He also proved that the
already-known bounds on Dini derivatives of the value function follow from his
subgradient estimates, without the restrictions on (O,), which were often made in the
past. All the results of Rockafellar in these papers are strongly related to the notion
of proximal subgradients that he introduced in [28] and the exact formula giving the
Clarke subdifferential of a function in terms of its limiting proximal subgradients in
finite dimension. Let us note that Clarke [7] also furnished other proofs of estimates
of subdifferentials of some general value functions in finite dimension by using the
expression of the Clarke normal cones in terms of limiting perpendicular vectors in
finite dimension and that with Clarke [7] and Clarke and Loewen [8], a great deal of
progress has also been made in perturbed optimal control problems.

The present paper studies the Clarke subdifferential of the optimal value function
of a general perturbed problem with a constraint defined by a multifunction"

m(u) min {f(x, u)" u M(x), x a}.

Received by the editors December 7, 1988" accepted for publication (in revised form) August 10, 1990.
? D6partement de Math6matiques, Facult6 des Sciences, 64000 Pau, France.
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In fact, we are interested in finding estimates for the Clarke subdifferential Om(u) of
m in terms of the coderivative of M (and the subdifferential of AM, where AM(X, y)
d(y, M(x))) and the subdifferential of f, on the one hand, and mainly (whenever M
takes convex values) in terms of the subdifferential off and the subdifferential of the
support function of M, on the other hand. To this end we follow the work begun by
Rockafellar [31]. The nice result of Treiman [34], [35], giving an exact expression of
the Clarke subdifferential in terms of limiting e-Fr6chet subgradients, and the general
and no less deep calculus rules established by Kruger [20] and Kruger and Morduk-
hovich [21] for the generalized differentials introduced in [21], allow us to work in
the context of Banach spaces admitting an equivalent norm that is Fr6chet differentiable
off zero (for example, any reflexive Banach space). By this method, at the same time
we obtain estimates for the subdifferential 6m(u) in the sense of Kruger and Morduk-
hovich.

Sections 1 and 2 are devoted to recalling and to establishing some results that
will be used throughout the paper. In 3 and 4 we give estimates for the Kruger-
Mordukhovich subdifferentials and singular subdifferentials of rn in terms of the
subdifferential of f and the coderivative of M. By the result of Treiman estimates of
the Clarke subdifferential of rn can easily be derived. The particular and important
case where M takes convex values is considered in the last section. Following Clarke
[6], [7] we prove, for unperturbed problems with constraints defined by convex-valued
multifunctions, first-order necessary optimality conditions (complementary to those of
Dien [10], [11]) in terms of the subdifferentials of the support functions of these
multifunctions. Then we give estimates for the subdifferential of rn in terms of the
subdifferentials of f and the support function of M.

Before closing this Introduction, let us indicate that two extensive lists of references
on directional derivatives or subdifferentials of optimal value functions can be found
in [7] and [29].

1. Distance function associated with a multifunction. Let M be a multifunction
from a metric space E into a metric space F. We consider the function AM defined
on E F by

AM(X,y)=d(y,M(x)),

where the right term is - whenever M(x)=3. As several estimates in this paper
will be given in terms of subdifferentials of AM, we show in this section the importance
of this function in Clarke subdifferential theory.

Obviously,

d((x, y), GrM) <- AM(X, y) for all (x, y) E x F,

where GrM {(x, y) E F" y M(x)} and the distance on E F is defined by

d((x, y), (x’, y’))= (d(x, x’)2+ d(y, y,)2)1/2.

In order to give a type of reverse inequality, let us recall the notion of pseudo-
Lipschitz multifunction (see Aubin and Ekeland [1], [2]).

DEFINITION 1.1. Let l_--> 0. M is said to be l-pseudo-Lipschitz at (2, fi) GrM if
there are X (ff), Y (fi), such that

(1.1) rf’lM(x)c B(y, ld(x,x’)) for all x,x’X
yM(x’)

(here (ff) denotes the filter of neighbourhoods of 2).
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Remark. Rockafellar [32] has proved that M is/-pseudo-Lipschitz at (g,)7) if and
only if there are X V(g) and Y e 2V()5) such that

(1.2) d(y,M(x))<=d(y’,M(x’))+d(y,y’)+ld(x,x’)

for all (x, y), (x’, y’) (X x Y).
The following result has already been obtained by Clarke [5] for Lipschitz

multifunctions. Here we extend it to pseudo-Lipschitz multifunctions. Throughout the
paper B(x, r) will be the closed ball centered at x.

PROPOSITION 1.2. If M is l-pseudo-Lipschitz at (, ) GrM, then there exist X
2’(), Y N(fi) such that

AM(X y) <-- Kd((x, y), GrM) for all (x, y) X x Y,

where K 2 max (1, l).
Proof. Choose e>0 such that B((2, fi),3e)cXx Y, where X and Y are given

by (1.2). Fix (x,y)B((2,),e). For any (x’,y’)eExF with d((x’,y’),(2,2))>3e
we have

d((x, y), (x’, y’)) >= d((g, fi), (x’, y’))- d((g, fi), (x, y))

>=3e-d((g,),(x,y))

_>- e + d((x, y), (g,)5)) -> e + d((x, y), GrM).

So we have

d((x, y), GrM) inf {(d((x, y), (x’, y’))" (x’, y’) B((g, )7), 3e) GrM}.

But for any (x’, y’) B((), 37), 3e) fq GrM

d(y, M(x))<- d(y, M(x’))+ Id(x, x’)

<= d(y, y’)+ ld(x, x’)

<-Kd((x,y),(x’,y’)),

where K 2 max (1, l) and hence

A4 (x, y) <-- Kd((x, y), GrM). [3

In the sequel E and F will be two real normed vector spaces. Let f be a function
from E into N kJ{-oo, +ee} with If(g)[<e. The generalized directional derivative
f(); .) is defined (see Rockafellar [27]) by

f*()7; h) lim sup inf t-l[f(x + th’) a]
(x,o)$f h’h

t$O

:= sup [limsup(inf t-l(f(x+th’)-))lH/’(h) I (x,o)$f2 h’H
t$O

and the directional hyperderivative fo(g;. by

f0(g; h) lim sup t-[f(x + th)-a ],
(x,o,),l,S

t,l,o

where (x, a ),[,s27 means

(x, oz)eepif:={(z, fi)ExR’f(x)<=} and (x,a)(2,f(2)).
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If f is Lipschitz around 97, then

f*(); h) =fo(; h) lim sup t-l[f(x + th) -f(x)].
t$o

Using a technique inspired by a method introduced by Hiriart-Urruty in [16] we
have Proposition 1.3.

PROPOSITION 1.3. Let M be any multifunction from E into F with (, f) GrM.
Then for all h, k) E x F

A(, 3; h, k) lim sup inf
h’,k’)-( h,k

x,Y)o g’,f

t-I[AM(X + th’, y + tk’)]

and

A(:, 37; h, k) lim sup t-l[Aa4(x + th, y + tk)],
(x,y)--(:,)7)

where (x, y) (, fi) means (x, y) GrM and (x, y) (, fi).
Proof We only show the first equality (the second one is obtained with H x K

{(h, k)} in the proof below). It is enough to prove that the left-hand side of this equality
is not greater than the other one (which we denote by/3) since the reverse inequality
is obviously true. Consider y > 0 and H x K W(h, k). There exists X x Y’ N(, 37),
e’ ]0, 1[ such that for all e ]0, e’[, (x, y) (X x Y’) GrM there is (h’, k’) H x K
with (we suppose/3 < +m)

(1.3) t-IAM(X + th’, y+ tk’) < fl + 3/.

Choose e ]0, min (e’, 3’)[ and Y W(37) such that Y+ B(0, 2e) Y’ and fix any
t]0, e[ and any (x,y,a)epiAMf’lXx Y]-e,e[. As a>-_Aa4(x,y)=d(y,M(x))
we have M(x)# and hence we can choose y’ M(x)

I]y- y’l} < t2+ d(y, M(x))< e2+ <2e,

and hence y’ y+ B(0, 2e) Y’, which ensures that (x, y’) (X x Y’) f-) GrM. Therefore
by (1.3) there exists (h’, k’)e H x K such that

fl +23’> t-[AM(X+th’,y’+tk’)]+t

t-I[AM(X -+" th’, y’+ tk’)+ Ily-y’ll- A(x, y)]

which proves that

_-> t-I[AM(X + th’, y + tk’) a],

fl >- A(,, fi; h, k).

The function AM has been sucessfully used by Clarke [5], [7] for Lipschitz
multifunctions in optimal control theory. The following corollary makes clear that AM
can also be a powerful tool in optimization theory even for M not necessarily Lipschitz.

Before stating this corollary let us recall that the Clarke tangent cone T(A; 2) to
A

a subset A c E at a point A is the set of all vectors h E such that for all xn x,
t, $ 0 there exists h, - h in E with x, + t,h, A for all n. We know (see [7] and [27])
that

d();h) =0 = he T(A; ) : qA()7; h)=O,

where dA(x) := d (x, A) and OA(X) 0 if x e A and +oe otherwise.
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The polar cone N(A; g) of T(A; g) is called the normal cone. We have N(A; g)
OtPA(g), where for f: E -* U {-m, +} with If(g)l < Of(g) denotes the Clarke gen-
eralized gradient of f at g given by

Of(g) {y* E*: (y*, h) <_-f*(:; h)VhE}.

COROLLARY 1.4. LetM be any multifunctionfrom E into F with g, ) GrM. Then:
(i) d rM(X, fi; h, k) <-_ A(g, fi; h, k) <-_ ObrM(g, fi; h, k);
(ii) OdrM(Y,, fi) c OAM(g, fi) S(GrM; g, 37);
(iii) If M is pseudo-Lipschitz at (&)7) then A’(& 37; h, k) A(& 37; h, k) =<

2K dorM(X, fi; h, k), where K is the constant given by Proposition 1.2.

Proof We know (by what precedes with M’(x, y) GrM, E’= E x F and F’= E x
F) that

dr4(g, 37; h, k) lim sup -1 drM(x + th, y + tk),
x,Y)-o ,fi

and we easily see that

dGrM(X, y) <- AM(X, y) <- IGrM(X, y).

So the results are direct consequences of Propositions 1.3 and 1.2.
We close this section by recalling a result of Clarke on distance functions that

will be often used in the sequel of this paper.
PROPOSITION 1.5 (Clarke [7]). Letf: E -> be a function that is k-Lipschitz around

g. Assume that g gives a local minimum off relative to a subset A of the metric space E.
Then g gives a local unconstrained minimum off+ kdA where dA(x) d (x, A)).

2. Subdifferentials and singular subdifferentials. Throughout this section E will
be a Banach space.

The important notion of e-Fr6chet subgradient will be crucial in the sequel (see
[20], [21], [34], and [35]). An element x* E* is said to be an F-subgradient to an
extended real-valued function f" E - R := {-c, +o} at a point g where ]f()]
if there exists a neighbourhood X of g such that

{x*, x g) <--f(x) -f(.) + e Ilx- for every x e X;

equivalently g gives a local minimum of the function

x ->f(x) -(x*, x g)+ e Ilx gll.

Let 6f(g) the set of all F-subgradients to f at g.

The subdifferential in the sense ofKruger-Mordukhovich [20], [21] is the set
of all x* 6 E* for which there exist e. $ 0, x, --> g with f(x,)-->f(g), x* 6.f(g) with
Xn

w*

The singular subdifferential (see Treiman [34], [35]) associated with 6f(g) is the
set 3f(g) of all x* F* for which there exist e, $ 0, s, $ 0, x, - g with f(x,)-->f(g),
x*, 6.(s,f)(x,) with x* w,> x*.

If A is a subset of E and x e A, N(A, x)= tXlta(X) is the Kruger-Mordukhovich
normal cone to A at x.

The following deep result is due to Treiman [34], [35].
PROPOSITION 2.1. [34], [35]. If E admits an equivalent norm that is Frdchet-

differentiable off zero and f is lower semicontinuous, then

Of(g) =cl co [af(ff) + 6f(g)]

with the convention + A .
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Let us recall (Kruger [20]) a formula that gives an upper estimate of 6(f+ g) in
terms of 6f and 6g. Here we state Kruger’s result in its less general form.

PROPOSITION 2.2. [20]. Assume thatf" E - R is lower semicontinuous with If(2)] <
eo and that g" E is locally Lipschitz around 2. If E admits an equivalent norm that
is Frdchet differentiable off zero then

6(f+ g)(2) c 6f(2) + 8g(2).

The following result will be needed in the search of estimates of subditterentials
of optimal value functions.

PROPOSITION 2.3. Let f and g be two functions from E into with If(2)[ < oo and
[g (2)[ < co. If g is locally Lipschitz around 2, then

6(f+g)(2)=6f(2).

Proof Let x* 5(f+ g)(2). There exist x. - 2 with (f+ g)(x.) (f+ g)(2),
e. $ 0, s.$0 and x.* -- x* such that x*. 6.(s.f+ s.g)(x.). Consider an open neighbour-
hood X of 2 over which g is Lipschitz and denote by k a Lipschitz constant. We may
assume that all x. X. Choose for each n t a neighbourhood X. c X of x. with

(x*.,x-x.)<=s.(f+g)(x)-s.(f+g)(x.)+e.llx-x.[[ for all xX..

By Lipschitz continuity of g we have

(x*,x-x.)<-s.f(x)-s,,f(x.)+rl,,llx-x.[[ for all xX.,

where r/. := (e. + ks.) + O. So x*. 6,.f(x.) and f(x.)-f(2) since g(x.)- g(2) and this
implies x* 6f(2). Therefore we have

(2.1) tS(f+ g)(2)

Writing f= (f+ g)+ (-g) we also have by Lipschitz continuity of (-g) and by relation
(2.1),

and the proof is complete.
COROLLARY 2.4. Let g" E be locally Lipschitz around 2. Then

6g(2) {0}.

Proof It suffices to write g 0+ g.
In the same vein we have the following result.
PROPOSITION 2.5. Let f and g be two functions from E into with If(2)l < oo and

[g (2)] < oo. Assume that g is locally Lipschitz around 2. Then ifx. - 2 with f(x.) f(2),
e.$O,s.,O,x*, w* ,x*, x. 6.(f+ s.g)(x.), then

x*6f(2).

Proof For x in some neighbourhood Xn of x. we have

(x* x x.) <=f(x) f(x,,) + s,,(g(x) g(x,,)) + e,,llx x.ll
<--_f(x)-f(x.)+

where r/. := (e. + ks.) $ 0 and k is a Lipschitz constant for g around the point 2. Then
x*. 6.f(x.) and hence x* 6f(
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We need to consider the Clarke singular generalized gradient 0f(), which is the
set of all x* E* for which there exist sn $ 0, xn --> x with f(x.)->f(), x*. s. Of(x)
with x.* w*. .x (Recall that the set of points (x,f(x)) where Of(x) f is dense in
Gr(f) whenever f is lower semicontinuous; see McLinden [22].)

PROPOSITION 2.6. Of() Of(X).
Proof Let x*6 6f(). There exist en + 0, sn + 0, x,

6.s,f(x,) with x,* w*> x*. Using the definition of 6.f(xn) it is not difficult to see that

x*, h) <- s,f x" h) + e,, h for all h 6 E,

and hence by subdifferential calculus (see [27]) we have

where B* is the closed unit ball with center zero of E*. So we can conclude that
x*eOf().

Let us show that AM also allows us to describe AZ(M; , )7).
POPOSITION 2.7. Let F be a Banach space, M" E :=t F a multifunction with closed

graph, and , e GrM. Then

J(M; ), 37)= U SAM(:, 35).

Proof (i) Let (x*, y*)e AM()Z, 37). There exist (x*, y.*) *> (x*, y*),
(xn, y) a, (, 37), e 0 and p. > 0 such that

(x*, v)+ (y*, w) _--< AM(x. + v, y. + w) AM(X., y.) + .(11 11 / wll)
for each (v, w) with vii / w I[-<_ . We may suppose y.

_
M(x.) since otherwise the

2proof is finished. Choose r.>0 with r. <min (p2, (1/n)AM(x. y.)). There exist s. 1
2such that (s. 1)AM(X., y.) < r.. If we choose y’ M(x.) satisfying IlY. -y.II--<

s.AM(x., y.) we get

(x*, v)+(y*, w)<= AM(X. + V, y. + w)- slly. -y’. + .(ll vii + wll)
<_l AM(X. + v, y’ + w) +(1 s2’)lly. -y’. / .(11 vii / wll)

for all v, w with Ilvll + Ilwll <-- . Then for all (x, y) M f) B((x., y’.), p.) we have

(x*. x- x.p+(y*. y y’) <= (1 s-l)llyn -Y’.i[ + .(llx- xoll / ]]y y’. ]l),
and hence for y:=(1-sX)lly.-y’.l[ we get

0 --< (-x.*, x x.> + (-y.*, y y’.) + e. (11 x x.
By the Ekeland variational principle [2] there exist (x"., y".)
satisfying IIx’.’-xll / I[y".-y’.l[ <- % and such that for (x, y)

<-x.*, x’.’ x> / <-y.*, y’.’ y’.> / (11 x’.’ x / y’.’ y’. II) --< <-x.*, x x>
+(-Y*. Y-Y)+ e.([[x-x.I] +
+ y.(llx x".ll + Ily

and hence

(.) (x*. x-x".)+(y*., y-y".) <- (e. + r.)(llx-x’.’ / Ily
2As y=(1-s)llY.-y’.ll<--s.(1-s)A,(x,y.)<r we have c.:=rn-%>0.

Moreover,

IIx-x;ll + Ily-y’.’ II--<.IIx-x. + Ily-y’. =< IIx-xll +
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Therefore for all (x, y) e M f"l B((x",,, y",,), a,,) we have by (2.2)

(x,*, x x’,’) + (y,*, y y’,’) _-< (en + yn)(llx x’.’ / Ily y
and hence (x,*, y,*) e 6.+y.OM(x’,’, y’,’). So (x*, y*) e 6OM(X, )7) N(M; X, )7).

(ii) Consider now (x*, y*) e N(M; X, 97). Choose (x*, y,*) w’2 (x*, y*),
(x,, y,) - (X, 37), e, $ 0 and r, > 0 such that

(x*,, x x,,)+(y*,, y -y,,) <-_ .(llx x.II / Ily y, I[)

for every (x, y) M f’) B((x,,, y,,), 3r,). Choose k > 0 with IIx.*ll / Ily.*ll <-- k and e, _-< k
for all n e N. By Proposition 1.5 for B, := B((x,,, y,,), 3r,) we have

<x*. x x,.)+(y* y y,.) <-_ 2kd((x, y), M f’l B,.)+ e,.(llx x.II / [[y y,. I])

for every (x, y)e Bn and hence

(x.*, x x,) + (y*, y y.} _-< 2kAy4 (x, y) +  .(11 x x, / Ily y.

for every (x, y) e B((x., y.), r). Therefore (x*, y*) 2kS,.A4(x, y.) with e’
(2k)-le,, which ensures that (x*, y*)2k6Avt(X, fi). So the proof is complete.

3. Subdifferentials of optimal value functions. Let f" E x F-R be lower semi-
continuous and let C be a closed subset of E x F where E and F are two Banach
spaces. We consider the perturbed problem u, which consists in minimizing for u
the function f(., u) over all x satisfying (x, u) C, and we define the function m" F
and the multifunction S" F E by

m(u) inf f(x, u) and S(u) ={x Cu re(u)=f(x, u},
Cu

where C, {x E" (x, u) C}.
We say that the family of problems , satisfies condition (K) at ti if rn is lower

semicontinuous around i with m(ti) finite, S takes nonempty values on some neigh-
bourhood of ti, and for every sequence (e,, u,)- (0+, a) with m(u,)->m(a) and
6.(u,) ;g there exist some sequence (x,), admitting a cluster point and such that
x, S(u,) for n sufficiently large.

Note that such a cluster point necessarily belongs to S(ti).
General assumptions ensuring condition (K) can be found in [7], [13], [29], and

[31]. Condition (K) is, for example, satisfied whenever the projection of C on E is
compact or whenever the multifunction S admits a local selection that is continuous
at ti. It also holds if there is a mapping h" F--> E continuous at ti and a compact H = E
such that C, = h (u) + H for u near

All the results in the rest of the paper will justify, each in its own situation, the
intuitively clear fact" forf convex in both variables u* Ore(a), re(u) inf,f(x, u) and
m(a) f(X, a) we have (0, u*) Of(X, a).

In the same vein it is also clear that for u* e i$m(ti) we have (0, u*)e 6f(X, ).
This illustrates how the Kruger-Mordukhovich subditterential can be useful in obtain-
ing estimates of subditterentials of optimal value functions.

Our aim in this section and the following ones is to give estimates for the Clarke
subditterential of m. In light of the important result of Treiman recalled in Proposition
2.1 it will be enough to establish estimates for 6m() and 6m().

Throughout this section (because of Propositions 2.1 and 2.2) we assume that E
and F admit equivalent norms that are Fr.chet-differentiable off zero. By 15] the closed
balls of E* and F* are w*-sequentially compact.
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PROPOSITION 3.1. Letf" E x F -> be locally Lipschitz, let M" E :: Fbe a multifunc-
tion with closed graph, and let A be a closed subset of E. Let

m(u) inff(x, u)" u M(x), x A}.

Assume that condition K is satisfied at ft and that M is pseudo-Lipschitz at each point
in S() { ft }. Then"

(i) For each u*im(ft) there exist Y,S() and A>O such that (0, u*)

(ii) For each u* am(O) there exist S() and > 0 such that (0, u*)
Ta(aM + dAxF)(* a) TaaM(X, a)+ aA( X {0}.

Proofi (i) Let u*em(ff). There exist e,$0, u,+ff with
m(a), u w,. u* such that the function

u m(u)-(u, u- u.)+ .llu- u.ll
attains a local minimum at u.. By assumption (K) we may suppose that there exists
x. S(u.) with (x.) converging to some e S(). Then if we consider the multifunction
T defined by T(x)= M(x) if x eA and T(x)= otherwise, we have for every
(x, u) GrT and u near u.

-(u, u.)+f(x., u.) e.[lu u.II-<u, u>+ re(u)

.llu- u.ll-<u, u>+f(x, u).

Therefore for n suciently large, by Proposition 1.5, (x., u.) gives a local minimum
of the function

(x, u)+ e.[[u-u.i-(u, u>+f(x, u)+(e.+k+l[ull)d(x, u; GrT),

where k is a Lipschitz constant for f around (, ) and hence (x., u.) also gives a
local minimum relative to A x F for the function

(,) .ll u.II-<u, > +f(x, u)+(. + k + ll)a(x, u).

Denoting by a pseudo-Lipschitz constant for M around (& ) we obtain that (x., u.)
gives a local minimum of the function

(, ) .ll-.ll-<u, u>+f(x, u)+ (. + {lu[l + k)(x, )
+ 3(1+ l)(. + llu[[ + k)d(x).

Choose a real number h g 3(1 + l) sup. (e. + [[u] + k). Then

(3.1) (0, u) a.(f+.+d.)(x.,
and, as (f+ hAM + AdA.F)(X., U.) (f+AA + adAF)(& ), this yields

(0, u*) a(f+ aa. + d.)(,, a) af(,, a) + a.(y, a) + ad(x) x {0}.

(ii) As in pa (i) for some s. $ 0 and T g 3(1 + l) sup. (e. + [[u[ + s.k)the function

(x, ) .llu-u.ll-(u, u>+s.f(x, u)+ va(x, u)+d.(x, u)

attains a local minimum at (x., u.) and hence

(0. u) a.(s.f+ + d.)(x.,
Proposition 2.5 ensures that

(0, u*) ya(A. + d.)(x, a) va.(x, a) + vad(x) x {0},
which completes the proof.
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Remark. By (3.1) we see that it is enough to require instead of condition (K) the
convergence of (Xn)n to some with respect to some topology for which we can pass
to the limit in (3.1). This condition holds in the perturbed control problems considered
by Clarke [7] and Clarke and Loewen [8]. Also, for

m(u) inf {(f(Jx): u M(x), Jo(x) Ao}

whenever M is a convex multifunction, Ao is a subset of some finite-dimensional space
Xo, J and Jo are two continuous surjective linear mappings from X into the finite-
dimensional spaces X’ and Xo, respectively, and the projection of {(x, u): u
M(x), Jo(x) Ao} on X is weakly compact.

If M is a multifunction from E into F with (,)7) GrM, we define the Kruger-
Mordukhovich co-derivative of M at (x, y) as the multifunction from F* into E*
satisfying

x* D*M(, 37)(y*)<=> (x*,-y*) W(GrM; , ),

where N(GrM; , ) denotes the Kruger-Mordukhovich normal cone to GrM.
COROLLARY 3.2. Letf: E - be locally Lipschitz, let M E - F be a multifunction

with closed graph, and let A be a closed subset of E. Let

m(u) inf {f(x): u e M(x), x e A}.

Assume that condition K is satisfied at and that M is pseudo-Lipschitz at each point
in S(a) x {a}. Then

8m( fi) c

and

(3 {u*e F*: OeOf(x)+D*M()(-u*)+N(A;
s(a)

8m(fi)c kJ {u*F*: 0D*M(,)(-u*)+N(A; g)}.
s(a)

Proof. Let u* m(). Then by Proposition 3.1 there exist S(), h > 0 such that

(0, u*) af() x {o}+ ;taaM(, )+,ad() x {0},

and hence by Proposition 2.7 there are

x* tf(X), (x* u* W(M; X,

satisfying

Therefore

x*3 N(A; ,)

x*+x*+x3*=0 and u*=u2*.

0 0f() + D*M()(-u*)+ N(A; ),

and this proves the first inclusion. The proof of the second inclusion is similar.
Before stating the next corollary let us give another description of D*G when G

is a locally Lipschitz single-valued mapping.
PROPOSITION 3.3. Let G E- F be a mapping that is k-Lipschitz around .. For

)7:= G() we have D*G(,y)(y*)=g(y*o G)(X), where g(y*o G)() is the set of
x* E* for which there exist y*, w. y., en , O, xn , x*, w* x* satisfying x*,. (y* G)(x,).
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Proof Let (x*,-y*)e N(GrG; 2, fi). There exist x,* w* x*, y,* w* y., e, 0,
x, - 2, and r, > 0 such that for any x B(x,, r,)

(x* x-xn)-(y*, G(x)- G(x,)} <= .(llx-x. + IlG(x)- G(x.)[I) <= e,(1 + k)llx-x.ll,

and hence x,* e 15;(y,* G)(x,) for e’ e,(1 + k). So x* g(y* G)().
The converse implication is similar.
PROPOSITION 3.4 (Kruger [20]). Let E and F be two Banach spaces that admit

equivalent Frdchet differentiable (off zero) norms. Let G" E F and g" F- be two

locally Lipschitz mappings anti fi :=
Then (go G)(2) U {8(y* G)(2): y*
Remark. (y*o G)(2)= (y*o G)(2) whenever F is finite-dimensional.
COROLLARY 3.5. Letf" E --> and G" E F be two locally Lipschitz mappings, and

let A and B be two closed subsets in E and F, respectively. Let

m(u)=inf{f(x)" G(x)+ue B, xeA}.

Assume that condition K is satisfied at . Then

(i) tm(t) U {u*eAZ(B; G(2)+):Oef(2)+g(u*oG)(2)+AZ(A;2)}
es(a)

and

6m(a)c {u*AZ(B;G(2)+a)’0e)(u*oG)(2)+(A;2)}.
s(a)

(ii) IfF isfinite-dimensional, both inclusions above hold with (u* G)(2) replacing
g(u*o G)().

Proof. Put M(x) G(x) + B. Then M is locally Lipschitz and

AM(X, u)= d(u, -G(x)+ B)= de H(x, u),

where H(x,u)=G(x)+u. Let u*e6m(). By Proposition 3.1 there exist
h > 0 such that

(0, u*) e af(z) x {0} + ,aA(Z, a) +,ad,(z) x {0}

and hence putting 5 G(2) + we obtain by Proposition 3.4 that there are Xl*
y* e A6ds(e) A/’(B; e), (x*, u*2 e g(y* G)(2) x {y*}, x*3 e AdA(2) A/’(A; 2)
satisfying

Xl* + x2* + x3* 0, u2* y* u*.

Therefore u* e AZ(B; 5) and

Oe Bf(2) + g(u* G)(2) + AZ(A; 2).

The first inclusion (i) is then proved and the proof of the second one is the same. So
the proof is complete since (ii) is a direct consequence of (i) for g(u*o G)(2)=
i(u*o G)(2) whenever F is finite-dimensional. [:]

4. Perturbed problems with metrically regular constraints. In this section we con-
sider the perturbed problem u

m(u)=inf {f(x, u): 0e M(x, u), (x, u) e A},

where A is a closed subset in E x F, M" E x F ::t G is a multifunction of closed graph
from E x F into a Banach space G.
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Let us recall that M is metrically regular at (g, 3, 0) GrM with respect to A if
there exist y > 0, X x U a neighbourhood of (g, 3) such that

(4.1) d((x,u),AM-l(o))<-_3,d(O,M(x,u)) forall(x,u)(XxU)0A.

Actually, many results on verifiable conditions ensuring metric regularity are
known (see [1], [16], [17], [19], [25], [26], and the references therein).

LEMMA 4.1. Assume that f is locally Lipschitz. Let u*Om(3), S(3), and
> /  *ll / k) (where k is a Lipschitz constantforfaround (, 3)). IfM is metrically

regular at (, 3, 0), then the point (, 3) is a local minimum for the function
(x, u)- ellu- 311-(u*, u)+f(x, u)+ a’),d(O, M(x, u))+ q(x, u),

where q := a(1 + ),l)dA ifM is l-pseudo-Lipschitz at (, 3, O) and qA otherwise.

Proof. By assumption there exists a neighbourhood Uo of 3 over which 3 gives
a minimum of the function

Choose a neighbourhood X U of (if, 3) with U c Uo and over which (4.1) is satisfied.
Then for (x, u) 6 (X x U) f’l A VI M-l(0) we have

-(u*, 3)+f(X, 3)<= ellu- 31] -(u*, u)+ re(u)

<= e]lu 3[]-(u*, u)+f(x, u),

and hence, by Proposition 1.5, (, 3) gives a local minimum of the function

(x, u)- e[lu-31[-(u*, u)+f(x, u)+ ad((x, u), A t"l M-l(0)).
By metrical regularity (, 3) gives a local minimum relative to A of the function

(x, u)  llu-,211-<u*, u)+f(x, u)+ aTd(O, M(x, u)),

and hence, by Proposition 1.5 again, (g, 3) gives a local minimum of the function

(x, u)  11u-,211-(u*, u)+f(x, u)+ a3,d(O, M(x, u))+ q(x, u).

We denote by PM the function defined by

pM(x,u)=d(O,M(x,u))

and we assume in the rest of this section that E and F admit equivalent Frdchet
differentiable norms.

PROPOSITION 4.2. Assume f is locally Lipschitz, M is regular with respect to A at
each point in S(3) x {3} x {0}, and condition (K) is satisfied at 3. Let u* m(3):

(i) There exist S(3) and a > 0 such that

(0, u*) 6(f+ a)’pM + d/A)(, 3).

(ii) If in addition M is pseudo-Lipschitz at each point in S(3) x {3} x {0}, then there
exist S 3 ), a > O, and > 0 such that

(0, u*) tS(f+ a’YpM + a(1 + yl)dA)(, 3).

Proof. Choose u.oa with m(u,,)- m(a), e$0, u* w*, u* with u* ,m(u,,)
and choose also x, S(u,). By condition (K) we may suppose x.-g S(3). If we
denote by k a Lipsehitz constant forf around (X, 3) and we choose a > (1 + Ilu*Jl + k),
Lemma 4.1 ensures that (for n sufficiently large) the point (x., u.) gives a local minimum
of the function

(x, u) e,, u u, -(u* u) +f(x, u) + a3’pM(x, u) + g/A(X, U).
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As

(f+ aypM + qa)(X,, U,) (f+ aypM + I[tA)(,, a)

we obtain

(0, u*) 6(f+ aT + d/A)(X, O)

and this proves (i). The proof of (ii) is exactly the same.
PROPOSITION 4.3. Assume f is locally Lipschitz, M is regular with respect to A at

each point in S() x {tT} x {0}, and condition (K) is satisfied at . Let u* ()"
There exist S O and a > 0 such that

(0, u*) a(p, + )(:, a).

(ii) If in addition M is pseudo-Lipschitz at each point in S(O) {iT} {0}, then there
exist S O ), a > O, and > 0 such that

(0, u*) 6(aypM + c(1 + Tl)dA)(,

Proof The proof is similar to that of Proposition 4.2.

5. Estimates in terms of subdifferentials of support functions. In this section M is
still a multifunction from a Banach space E into a Banach space F. For x E and
y* F* we put

h(x, y*) sup {(y*, y): y M(x)}.

In all the sequel we assume that M(x) is a closed convex subset in F for each x E
and that F is reflexive. So there exists an equivalent norm on F that is Fr6chet
differentiable off zero and throughout this section F will always be endowed with such
a norm. Moreover, by the lopsided minimax theorem (see [2]) or by the Hahn-Banach
theorem, it is not difficult to see that whenever M(x)

(5.1) AM(X, y) max ((y*, y)-- h(x, y*)),
y* BF.

where Bv. denotes the closed unit ball centered at the origin of F*.
In order to give a relationship between 0A and Oh let us begin with the following

result, which is a variant of Theorem 2.8.2 of Clarke [6].
PROPOSITION 5.1. Let G be a Banach space with B. w*-sequentially compact, and

let S be a sequentially compact space and G. Let g" G for each s S. Assume
that there exists a neighbourhood X of in G and a real number k >= 0 such that for each
s S the function g is finite on X and k-Lipschitz on X. Assume also that the supremum
in

g(x) := sup {gs(X): s S}

is attained for each x X. Then g is finite and k-Lipschitz on X and

Og(Y,) el co (_J {g(X): s 6 S($)},

where S(:) {s S: g(X) g(2)} and

gs(X) {lim x*, x*, Ogs.(x,), s, - s, x X’}.

Proof It suffices to repeat (with very slight modification) the arguments of the
first part of the proof of Theorem 2.8.2 in Clarke [7]. 1
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Remarks. (1) If G admits an equivalent Gateaux-diiferentiable norm, then (see
[15]) BE* is w*-sequentially compact.

(2) If g(X; ) denotes the following "lim sup" of the difference quotient

g(x; v) lim sup t-l[gr(X d- tv) gr(X)],
(x,r)(,s)

t$O

then g(X;. is k-Lipschitz on G and hence the set

og() := {x* G*" (x*, v)-_< gs(X; v)Vv G}

is nonempty, w*-compact and convex, and moreover it is not difficult to verify that

gs(X) = O[]gs(X)

and that the relations

Xn
w* X,x*. o=go(x.), x.- , s.- s,

ensure that x* 0[]gs()).
Furthermore 0[]g(X)= cl co g,(X) whenever S is metrizable and G is separable.
Let r > 0, Mr(x) m(x) + rBF, and hr(x, y*) sup {(y*, y): y Mr(x)}

h(x, y*)+ rl]y*]] ,. As the dual norm of F* is strictly convex (since the norm of F is
Gateaux-differentiable off zero; see 12]), then for each x E the function y* - hr(x, y*)
is strictly convex on its domain.

If M is locally Lipschitz around X in the sense that there exists l>0 and a
neighbourhood X of X in E such that

M(x’) M(x) + lllx x’[IBF for all x, x’ X

and M(X) , then for any x X

h(x, y*) % oe :> h(, y*) % oe : hr(X, y*) <

We set as in [10] (see also [2])

F*M {y* 6 F*: h(X, y*) < c}

and we easily see that F is a convex cone (the barrier cone of M see [2]).
PROPOSITION 5.2. Assume that F is reflexive and endowed with a norm that is

differentiable off zero, that BI:. fq F*M is w*-sequentially closed, and that M is locally
Lipschitz around X with M(2) (). Then, for A : AMr

(--X*, y*) oAr( fi) = X* Ohr( y*)(X).

Proof The set S := BF. [F is w*-sequentially compact and by (5.1)

At(x, y) sup ((u*, y)- hr(x, u*)).
u*S

Now, on the one hand, by Proposition 1.5 we have for any u* BF.
hr(X, u*)= sup {(u*, y’): y’ Mr(X)}

sup {(u*, y’)-d(y’, Mr(X))" y’ F}

sup {(u*, y’)-Ar(X y’)" y’ F}.

On the other hand, the function (u*, )-Ar(X, is concave (because M(X) is convex)
and y* 02Ar(X, Y)=O(dMr())(fi) (see Proposition 5.3). So we obtain

OO((y*, .)-A(X,. )) (/9)
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and

Therefore we have

hr(g, y*)= (y*, jT)-Ar(g,/9).

hr(X, y*) < oo and y* e S(X, fi),

which implies by the strict convexity of hr(,"

S(X, ff)= {y*}.

Applying Proposition 5.1 and setting q,.(x, y)= (u*, y)-h(x, u*), we get

(-x*, y*) O[]qy.(g, y) (0, y*) -O[]hr( y*)(g) x {0}

and hence

X*

Remark. If M is given by M(x)= N(x)+ Q where N is a multifunction which
takes closed, convex, and bounded values and which is Lipschitz around g with
N(g) and where Q is a closed convex cone in F, then it is not difficult to see that

F*M QO := {y. F*" (y*, y)=< 0 Vy Q}.

Thus F*M is w*-closed, which ensures that BF. f3 F*M is w*-sequentially compact
whenever F is reflexive.

The following result, which is used in the proof of the proposition above, will
also be needed in the sequel.

PROPOSITION 5.3. Let k >= O, and let P’G-- H be a multifunction from a normed
vector space G into the convex subsets of a normed space H. Assume that P is pseudo-
Lipschitz at (, ) GrP. Then there exists a neighbourhood X x Y of (, ) such that
for each (x, y) X Y and (x*, y*) OAp(x, y) with > O, we have

y* Odpx)(y).

Proof Choose an open neighbourhood X Y of (:,)) in G x H and a real
number a > 0 such that Ap is a-Lipschitz over X Y. As Ap(X, is convex we obtain,
by Proposition 4.4 of [9],

y* 02( tAp)(X, y)- tOdpx)(y).

The following proposition is an adaptation of the techniques introduced by Clarke
[7] in order to give necessary conditions for optimal control problems in terms of the
Hamiltonian (see also Clarke [6]).

PROPOSITION 5.4. Let (, ) be a local minimum point for the problem

min {f(x, u)" u M(x), x e A}.

Iff and the multifunction M are k-Lipschitz around , then for e small enough and
0< r < k-le 2 there exist x A and u M(x) with

f(, O)<=f(x, u)<-f(X, O)+s2

such that (x, u) is a local minimum of the function
(x, u)-f(x, u)+ ed((x, u), (x, u))+ KdA(X)+ KAy(x, u),

where K is a constant independent of e, x, u).
Proof Suppose that (: + sB) x ( + 2sB) is a neighbourhood over which (X, ) is

a minimum for the above problem and over which f and M are k-Lipschitz. Consider



1034 LIONEL THIBAULT

e < min (s, (k$)1/2). Then for x A f’l (2 + sB) and u Mr(x) (0 + sB) there exists b B
with u rb M(x) gl (5 + 2sB) and hence

f(x, u) f(X, 5) e 2 >= f(x, u rb) f(X, 5) + e2- kr]lb]l >- e2- kr > O.

Therefore by Ekeland’s variational principle (see [2]) there exists x A VI (2 + sB) and
u Mr(x) (0 + sB) such that

]x g]] e, ]u ]] e, f(X, O) f(x, u) f(2,

and (x, u) is a minimum point of the function

(x, u)f(x, u)-f(X, a)+ ed((x, u), (x, u))

over the set {(x, u)" u M(x) ( + sB), x A (X + sB)}. So it suffices to apply
Proposition 1.5 to get the conclusion of the proposition.

We can now give estimates of the subdifferential of the optimal value function in
terms of the suppo function of M.

PROPOSITION 5.5. Let f E F be locally Lipschitz, let M" E F be a locally
Lipschitz multifunction with closed convex values, and let A be a closed subset of E. Let

m(u) inf {f(x, u)" u M(x), x A}.

Assume E admits an equivalent Frdchet differentiable norm (off zero), condition (K) is

satisfied at , and BF is w*-sequentially compact. en for each u*6 6re(O)
(respectively, 6m()) there exists S(O), A > O, and (x*, y*) E* F* such that

(X*, U*--y*) 6(f+AdAv)(, O), -x*Oh(’, y*)(), y*A6dM)()

(respectively, O60h( u*)(ff) + y6dA() and u* AO6M()).
Proof Let u* 6m(O). There exists e, $ 0, u, with m(u,) m(O),

such that the function

u m(u)-(u, u- u,)+ enllU-
attains a local minimum at u. By assumption (K) we may suppose that there exists
x S(u) with (x) converging to some S(a). Then for all x A and u M(x)
with u near u

<u.*, u.)+f(x., u.)=<  .llu- u.II-<u , u>+ re(u)

e.l{u- u,[-<u, u)+f(x, u).

Therefore by Proposition 5.4 there exist a constant a > 0 and (x, u) (x., u.)+ e.B,
which is a local minimum of the function

(x, u) e. llu- u. -(u, u)+f(x, u)+ e. llu- ull + e. llx-xll + AdA(X)+ A.(x, u),

and hence

(0, 0)e 2e.B-(0, u)+ 6(f+ adAxF)(X, U)+ aOr.(X, U),

which implies there exist (z, v)eO.(x, u) satisfying

(-az, u av]) e 2e.B + a(f+ adA.)(x, uL).

Extracting a subsequence if necessary we may suppose that -az w x* and
av .w y., which ensures (x*, u*-y*)e a(f+ada)(, a) and x* e Oh( ., y*)(),
since by Proposition 5.2, we have -az eoh.(.,av])(x).
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Moreover, by Proposition 5.3 we have v* e ad4 (x (u’) and by l-Lipschitz con-
tinuity of M around we have

Mr.(x)c M(g)+r.B+l[lx’-Y,[[B and M(g)c Mr.(g) c N.(x)+lllx-g[[B,
and hence for every u e F

d (x)(u)d(x)(u)-r-l[lx-[[ and d(x)(u)d (x)(u)-lix-]].
Therefore for any u F we have

(v u u) < d (x’ )(u)-d (x)(u’rn rn

d()(u) + lllx [I- (d((u) r. l}[x
and hence

(h-ly*, u a) d2w()(u) dsa(x)(a),
which ensures y* hOdM(,)(a)= h/SM()(a) and completes the proof for u*

For u* Bm(a) the proof is similar.

Acknowledgment. The author is grateful to a referee for his comments.
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ON THE CONVERGENCE OF A MATRIX SPLITrlNG ALGORITHM
FOR THE SYMMETRIC MONOTONE LINEAR

COMPLEMENTARITY PROBLEM*

ZHI-QUAN LUO’:I: AND PAUL TSENG"

Abstract. A matrix splitting algorithm for the linear complementarity problem is considered, where the
matrix is symmetric positive semidefinite. It is shown that if the splitting is regular, then the iterates generated
by the algorithm are well defined and converge to a solution. This result resolves in the affirmative a long
standing question about the convergence of the point successive overrelaxation (SOR) method for solving
this problem. This result is also extended to related iterative methods. As direct consequences, convergence
of the methods of, respectively, Aganagic, Cottle et al., Mangasarian, Pang, and others, is obtained, without
making any additional assumptions on the problem.

Key words, convergence, iterative methods, convex quadratic program, linear complementarity, matrix
splitting, gradient projection, SOR

AMS(MOS) subject classifications. 49, 90

1. Introduction. Let M be an n x n symmetric positive semidefinite matrix and
let q be an element of 92 (the n-dimensional Euclidean space). Consider the following
convex quadratic program:

(P) minimize f(x) =1-(x, Mx)+ (q, x)

subject to x >= 0.

In our notation, all vectors are column vectors, (., denotes the usual Euclidean inner
product, and, for any vector x, x denotes its ith coordinate. We note that all our results
can be extended in a straightforward manner to problems with general box constraints
of the form

l<=x<-c,

where is any element of [-oo, oe) and c is any element of (-oo, oo]" (e.g., uncon-
strained problems). However, in order to simplify the presentation, we will not treat
the more general problems here.

The problem (P), commonly referred to as the symmetric monotone linear com-
plementarity problem, has a number of important applications to, for example,
linear/quadratic programming [BET89], [Man77], [MAD87], [LIP87] and the solution
of certain boundary value problems [COG78], [CGS78], [DeT84].

We make the following standing assumption on (P):
Assumption A. f is bounded from below on the feasible set X [0, oo) ".
Since f is convex quadratic and X is a polyhedral set, it follows from a standard

result in quadratic programming (see, e.g., [Ear71], [FrW57]) that (P) has a finite
optimal value and the set of optimal solutions for (P), denoted by X*, is nonempty.
However, because M is only positive semidefinite, X* may be unbounded.
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research was partially supported by United States Army Research Office contract DAAL03-86-K-0171 (Center
for Intelligent Control Systems), by National Science Foundation grant NSF-ECS-8519058, and by a grant
from the Science and Engineering Research Board of McMaster University.
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From the Kuhn-Tucker conditions for (P) it is easily seen that an x belongs to
X* if and only if the orthogonal projection of x-Vf(x) onto the feasible set X is x
itself, i.e.,

(1.1) x=[x-(Mx+q)]+,
where [y]+ denotes the orthogonal projection of y onto X. Now, let us write M as

(1.2) M=B+C,

for some n x n matrices B and C. In the terminology of numerical analysis [OrR70],
such a pair (B, C) is called a splitting of M. If in addition B- C is positive definite
(not necessarily symmetric), then (B, C) is called a regular splitting ofM (cf. [LiP87]).

Suppose that, instead of solving the nonlinear equation (1.1) directly, we fix a
solution estimate x X and solve the following approximation to (1.1)

(1.3) y [y-(By+ Cx + q)]+,

to obtain a solution y. We can then set x to y and repeat the procedure. We formalize
this procedure with the following iterative scheme. Let (B, C) be a regular splitting of
M. Define a corresponding point-to-point mapping MB:X X by (cf. (1.3))

(1.4) gn(x)={yfft"[y=[y-(By+Cx+q)]+} VxX.

We show in 2 that B is well defined (see Lemma 2(a)). Note that an x is an optimal
solution of (P) if and only if x n(x). Consider the following algorithm for solving
(P).

MATRIX SPLITTING ALGORITHM. Choose an xX. Generate a sequence of
vectors {x, xl, } in X by the formula

(1.5) xr+l=g(xr), r=0,1,....

In order for the algorithm (1.4)-(1.5) to be practical, the splitting (B, C) should be
chosen so that (1.3) is easily solvable. We will discuss such choices in 5.

The first matrix splitting algorithm for solving the problem (P) is the cyclic
coordinate descent method of Hildreth [Hi157]. This method is simple, uses little
storage, can exploit problem sparsity, and is practical for solving large scale problems.
The method of Hildreth was subsequently extended by Cryer [Cry71] to a (point) SOR
method, which in turn was extended by Cottle, Golub, and Sacher [CGS78] and Cottle
and Pang [COP82] to block successive overrelaxation (SOR) methods. Cottle and
Goheen [COG78] further extended the Cottle-Golub-Sacher method to solve problems
with box constraints. An extension of Cryer’s method along a different direction was
proposed by Mangasarian [Man77], which is also closely related to a gradient projection
algorithm of Aganagic [Aga78]. (Applications of Mangasarian’s method to solving
strictly convex quadratic programs and linear programs are discussed in [Man84] and
[MaD87]. Parallel implementation of the method is discussed in [MaD87].) Pang
[Pan82] showed that the above methods (with the possible exception of the block SOR
methods) can be viewed as special cases of the matrix splitting algorithm (1.4)-(1.5).
Pang then proceeded to give an extensive analysis of this algorithm [Pan82], [Pan84],
[Pan86]. Yet, despite their long history and practical advantages, convergence of these
iterative methods remained largely unresolved. (A summary of the current knowledge
is given in [LIP87, 2-3]. See [BET89, Chap. 3] and [Che84] for discussions on gradient
projection algorithms.) In particular, none of the above methods has been shown to
be convergent (in the sense that the iterates converge to an optimal solution) if the
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optimal solution is not unique. Convergence typically requires additional assumptions
on the problem, all of which lead to the compactness of the solution set X*, in which
case the proof becomes rather routine (i.e., checking that each limit point is an optimal
solution). In the absence of any such assumption, it was only known that the gradient
of the iterates converge and that each limit point of the iterates, if it exists, is an
optimal solution. The method of Cottle and Pang [COP82] does generate a limit point,
but this method includes, in addition to the standard block SOR iteration, a projection
step to ensure that the iterates stay bounded and, moreover, it is applicable only to
problems with a network structure. It is the aim ofthis paper to resolve this fundamental
question of convergence by showing that the above methods are indeed convergent
without making any additional assumptions on the problem. In fact, we prove a more
general result that, if the splitting is regular, then the corresponding matrix splitting
algorithm (1.4)-(1.5) is well defined and convergent, and the same conclusion holds
for certain SOR extensions of the algorithm. (To the best of our knowledge, the only
other matrix splitting algorithm that is known to be convergent in the same strong
sense is one considered in Tseng [Tse89]. 1) Our proof is of some interest in itself as
it uses certain (new) contraction properties of regular splitting and gives a detailed
analysis of the trajectory of the iterates near the boundary of the feasible set X.

We remark that even for the simplest instance of the matrix splitting algorithm
(1.4)-(1.5), such as the cyclic coordinate descent method, convergence is very difficult
to establish when the cost function has unbounded level sets. The only other nontrivial
problem having unbounded level sets in the cost function, and for which the cyclic
coordinate descent method is known to be convergent in our strong sense, is a certain
dual problem arising in nonlinear network optimization [BHT87].

This paper proceeds as follows. In 2 we derive a number of properties of the
solutions of (P) and of regular splitting. In 3 we use these properties to prove that,
when the splitting is regular, the iterates generated by the algorithm (1.4)-(1.5) converge
to an optimal solution of (P). In 4 we propose SOR extensions of this algorithm. In
5 we apply the above results to a number of known methods.

In our notation, superscript T will denote matrix transpose and I1" II, I1" [Iv will
denote, respectively, the L_-norm and the L-norm in some Euclidean space. If A is
a square matrix, IIAI] will denote the matrix norm of A induced by the vector norm
I[" [[, i.e., [[a[I maxllxll= [[Ax[[. For any k x m matrix A, we will denote by Ai the ith
row ofA and, for any nonempty I

__
{ 1, , k} and J

_
{ 1, , m}, by At the submatrix

of A obtained by removing all rows of A such that i I, and by Atj the submatrix
of At obtained by removing all columns j of At such that j J. We will also denote
by Span (A) the space spanned by the columns of A. Analogously, for any k-vector x
and any nonempty subset J

___
{1, , k}, we denote by xj the vector with components

xi, J. For any finite set J, we denote by Card (J) the cardinality of J. Finally, for
any J_ {1,..., n}, we denote by J the complement of J with respect to {1,..., n}.

2. Characterization of optimal solutions and regular splittings. In this section we
derive various properties of the elements of X* and the mapping B given by regular
splittings (B, C) of M. These properties will be used in the following section to prove
convergence of the algorithm (1.4)-(1.5).

The first result, which is well known (see [AdG75] or [Man88]), states that Vf is
invariant over the solution set X*.

When the splitting is regular and symmetric, a simpler proof of convergence for the matrix splitting
algorithm with inexact subproblem solution was recently found by Mangasarian (see [Man90]).
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LEMMA 1. There exists a d* 9 such that Mx* + q d* for all x* X*.
The next result shows that, if (B, C) is a regular splitting of M, then B is a

well-defined point-to-point mapping and possesses a certain descent property.
LEMMA 2. Let (B, C) be a regular splitting of M. Then the following hold:
(a) B X X is a well-defined point-to-point mapping.
(b) For any x X,

f(y) f(x) <- (y x, C B)(y x))/2,

where y 4n x).
Proof We first prove part (a). Since B-C is positive definite, it follows from

2B M+(B-C) (cf. M--B+ C) and the positive semidefinite property of M that
B is positive definite. Hence, by a well-known result on variational inequality [BET89,
p. 271], [KiS80, 2], we have that, for any x e X, the nonlinear equation

y=[y-(By+Cx+q)]+,
has a unique solution y. This proves part (a).

Now we prove part (b). It can be seen by using M B + C that, for any x and y
in 9] n,

f(y) f(x) (y x, By + Cx + q) + (y x, C B)(y x))/2.

On the other hand, we see from (1.4) that y 4n(x) if and only if y X and

Biy + Cix + qi >: O, Biy + Cix + qi > O===> yi O / i.

Hence if in addition x X (so that x _>- 0), then (y x, By + Cx + q) <= O. [q

(The results of Lemma 2 are quite well known (e.g., [LiP87]). The proof of part
(b) is based on one given in Lemma 4.1 of [Pan84].)

It can be seen that if the nonnegativity constraints x X are removed, then, for
any splitting (B, C) of M, y= 4n(x) if and only if By+ Cx + q =0, or equivalently
(assuming that B is invertible)

y -B-’(Cx + q) (I- B-1M)x B-aq.
We next study an important contractive property of the iteration matrix I-B-M
when the splitting is regular.

DEFINITION 1. Let Q be an n x n real symmetric matrix and let Null (Q) be the
null space of Q. (Clearly, 91" is the direct sum of Null (Q) and Span (Q).) A matrix
T of size n x n is said to be convergent for Q if T, when viewed as a linear transformation
from 91 to 91", is equal to identity in Null (Q) and is contractive in Span (Q). In
other words, T satisfies

(1) Tz z for all z e Null (Q);
(2) For any z e Span (Q), the sequence {11Tz[I} converges to zero geometrically,

as k-> oe (with a convergence ratio that depends on T only).
The following important result is due to Keller [Ke165, Thm. 2] (see also [PEP79,

p. 201]).
PROPOSITION 1. Let Q be a real symmetric matrix and let N be a nonsingular matrix

for which the matrix

(2.1) N+NT-Q
is positive definite. Then T I- N-1Q is convergent for Q if and only if Q is positive
semidefinite.

As a direct consequence of Keller’s result, we have the following contractive
properties of the iteration matrix I-B-1M, for any regular splitting (B, C) of M.
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LEMMA 3. Let Q be an m m symmetric positive semidefinite matrix and let N, H)
be a regular splitting of Q. Then N is positive definite and the following hold"

(a) There exist p (0, 1) and > 0 such that

hQN-1-I (I-O )z _--<-(1-_0(1 ))llzll Vk>- l, Vz6Span (Q),
h=l

for any _0 (0, 1] and any sequence of scalars {0 , 0, } in the interval [_0, 1].
(b) There exists A >_ 1 such that

for any O_ (0, 1] and any sequence of scalars { 0 , 0, } in the interval [_0, 1].
Proof. From 0 N+ H we have N-H 2N- Q, so the symmetric part of N-H

is N+ Nr- Q. Since N-H is positive definite so its symmetric part is also positive
definite, then Proposition 1 yields that I-N-O is convergent for 0. This implies

(2.2) (I-N-Q)zeSpan(Q) Vz e Span (Q),

and that there exists a p (0, 1) depending on N and Q only such that

(2.3) ]](I-N-Q)z[[<=p[[z[[ VzSpan (Q).

(a) Consider any z Span (Q), any integer k-> 1, any _0 (0, 1], and any sequence
of scalars { 01, 0z, } in the interval [_0, 1 ]. Since Q is symmetric positive semidefinite,
then there exists a w satisfying z Qw and

(2.4) Ilwll-<+/- Ilzll,

where r denotes the smallest nonzero eigenvalue of Q. Let w denote the orthogonal
projection of w onto Span (Q) and let w, wk be given by the formula

(2.5) wh=(I--OhN-1Q)wh-, h=l,.’’ ,k.

Then, z Qw, w Span (Q), and it is easily seen by using induction on h (together
with (2.2), (2.5)) that

whSpan(Q) Vh=0,1,...,k.

Then, for each h {1,. , k}, since wh- Span (Q), we have from (2.3) and (2.5) that

Ilwhl[-- [[(i_ohN-’Q)wh-ll

--II(1 Oh)wh-l-I- oh(I N-Q)wh-ll]

(2.6) _-<(1 0)II w-’ / 0 I[(I- N-’ Q)wh-lll
_-< (1 0) w-’ / 0o wh-’

-<_ (1 -_0(1

where the last inequality follows from Oh> 0_, and hence

w _-< (a -_0(a )) wll _-< (a _0(a )) wll.
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k
This combined with the observation I]h=l (I- OhQN-1)z Qwt (cf. (2.5) and z Qw)
and (2.4) then yields

(2.7) 11(211(1-_0(1

_-< [lOll
(1-_0(1- p))llzll.

By setting r= IIQII/, we complete the proof of part (a).
(b) Consider any z 9", any integer k-> 1, any _0 (0, 1], and any sequence of

scalars {01, 02, } in the interval [_0, 1]. Let us decompose z into the sum of z’ and
z", for some z’ Span (Q) and some z" Null (Q). Since I-N-1Q is convergent for
Q we have (I-N-1Q)z"= z", so that

(I OhN-1Q)z (1 Oh)z"+ oh(I N-1Q)z z", h=l,...,k.

Hence

k

(2.8) H (I--OhN-1Q)z’= z".
h=l

Let z= z’ and let zl, zk be given by the formula

zh (I ohN-1 Q)zh-l, h 1, k.

Then, z Span (Q) and it is easily seen by using induction on h (together with (2.2))
that z h Span (Q) for all h, so (2.3) yields

[[zl[--11(I-
(2.9) _--< (1 Oh)llzh-l[ / O h II(I N-1Q)zh-’

_-< (1-_O(1-p))l[zh-l[, h= 1,..., k.

Hence

k

H (I-OhN-1Q) z’ I[z"ll=(1-o_(1-p))"[lzll--(1-_o(1-p))llz’[I.
h=l

By combining the above relation with (2.8) and using the obvious facts IIz’ll Ilzll,
z"ll -< zll, we obtain

H (I-OhN-1Q)z <= I-I (I-ohN-1Q)z’ +llz"ll
h=l h=l

--<_ (1 _0(1 p)) Ilzll / Ilzll =< 21[zll.

Remark 1. Since I-N-1Q N-I(I-QN-1)N, the two matrices I-N-1Q and
I-QN-1 are similar and therefore have identical eigenvalues. Hence part (b) of
Lemma 3 implies that the eigenvalues of !- QN-1 are also either inside or on the unit
circle.

Remark 2. The relaxation parameters 01, 02, are not needed for establishing
our main result (Theorem 1), but they will be used in 4 when we introduce under/over-
relaxation to the mapping 4.
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Remark 3. It can be seen by using Lemma 3(a) that, for any be Span (Q) and
any yO R,, the sequence of points {yr} generated according to

yr+l____ (I- N-Q)y- N-lb, r=0, 1,.

converges geometrically.
Consider the coordinate descent method for solving the unconstrained version of

(P) (i.e., find an x satisfying Mx + q =0)

yr+l= (I-(E + L)-IM)y -(E + L)-q,
where E and L denote, respectively, the diagonal and the strictly lower triangular part
of M. We assume that q Span (M) so the problem has a solution and that E has
positive diagonal entries so the above iterations are well defined. (Since M is symmetric
positive semidefinite, then a diagonal entry of M is zero if and only if the entire row
(column) of M containing that entry is zero, so the second assumption is really not
restrictive.) As an immediate consequence of Remark 3, we have that the iterates
converge at a geometric rate. This is because the splitting (E + L, LT) is easily verified
to be regular, so since q Span (M), Remark 3 then implies the geometric rate of
convergence of {yr} to some x satisfying Mx + q O.

Lemma 3 in turn implies the following facts.
LEMMA 4. Let (B, C) be a regular splitting of M. Then the following hold:
(a) For any nonempty J {1,..., n}, there exist pj (0, 1) and ’r >0 such that

1[(I- M(Bss)-’)z[I <= ’(ps)gi[zll Vk_>- 1, Vz Span (M.s).

(b) There exists a A >= 1 such that, for any nonempty J { 1,. ., n},

II(I-(B,,)-’M,,)zll<-mllzll Vk>- l,

Proof. Since B- C is positive definite, Bss- Cjs is positive definite. Parts (a) and
(b) then follow immediately from, respectively, parts (a) and (b) of Lemma 3.

Let

I*={i(1,’’’, n}ld* 0}.

Then, for each x* X*, we have M.x*+ q. 0 (cf. Lemma 1), so that

(2.10) q. Span (M.).

Moreover, from (1.1) and Lemma 1 we have that x* Ix* d*]+ for all x* X*. Since
[. ]+ is the orthogonal projection onto the nonnegative orthant, this shows that, for all

I*,

(2.11) d/*>0 and x*-0 Vx*X*.

In the remainder of this paper, we assume that I* for otherwise it is well known
that the matrix splitting algorithm terminates finitely. The submatrix of M indexed by
I* has a number of interesting properties, which we show below.

LEMMA 5. For any J I*, Span (Mj) Span (Mrs) and q Span (Mjj). (Recall
that J denotes the complement ofJ with respect to {1,..., n}.)

Proofi The proof is by contradiction. Suppose that for some J, Mji e Span (M).
It then follows that there exists some vector u }Card(J) such that

(2.12) u, Mi) < 0, Msu O.

Let x be the n-dimensional vector given by x u, xi 1 and xj 0 for all j J with
j i. Then

(x, Mx) u, Mjsu) + 2(u, Ms),
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and it follows from (2.12) that

(x, Mx) < O,

a contradiction of the positive semidefinite property of M. Thus, Span (Mjj)
Span (Mjj). This, together with the fact qj Span (Mj) (of. (2.10) and J I*), implies
qj Span (Mjj). [-]

3. A general convergence theorem. Let {x r} be a sequence of iterates generated by
the algorithm (1.4)-(1.5), i.e.,

xr+l-",9B(Xr), r--0, 1,.

where (B, C) is some regular splitting of M. By Lemma 2(a), {X r} is well defined. We
will show that {x r} converges to an element of X*.

To motivate our proof, note from Lemma 2(b) that, for all r,

-x, -x ))/2
(3.1)

f(xr+l)<:f(xr)__(xr+l (B__C)(xr+l
<_f(xr) ]lXr+l

where y > 0 denotes the smallest eigenvalue of the symmetric part of (B-C). Upon
summing this inequality over all r and using the fact that f(xr) is bounded from below
for all r (cf. Assumption A) and the fact that y > 0, we obtain

(3.2) 2 xr+l- xrl] 2 < oo.
r=O

Hence xr+l- xr--> O, which together with

(3.3) xr+l =[xr+l-(Bxr+l-1I- Cx -Jl- q)]+

(cf. xr+l= Sg,(xr)), the Lipschitz continuity of[. ]+, and the fact B + C M, establishes
the following lemma.

LEMMA 6. (a) X
r+l X, "- O.

(b) xr-[xr-Mxr-q]+ ->0.
Hence any limit point x of {xr} satisfies x= Ix- Mx- q]+ and is therefore

in X*. This result is quite well known (e.g., [Pan86], [LIP87]) and, as we just saw, is
relatively easy to prove. The difficulty lies in showing that {x r} indeed has a limit point.
This is a highly nontrivial task to which the remainder of this section will be devoted.

Remark 4. Equation (3.2) gives an estimate of the rate at which xr+l x O, but
technically speaking, it is not enough for us to claim the convergence of {x r} since it
does not prevent Xr+l- X to decrease like 1/r, in which case Ilxrll- . Intuitively, it
seems unlikely that such a sequence of iterates can be generated by the matrix splitting
algorithm, but to show this rigorously is very difficult, as indicated by the complexity
of the proof given below.

For each x 91", let b(x) denote the distance from x to X*, i.e.,

b(x) min IIx- x*ll.
x*X*

The next lemma, which shows that {Mxr} converges and that {x r} comes arbitrarily
close to X*, follows as a direct consequence of Lemma 6.

LEMMA 7. (a) Mx + q --> d*.
(b) l(Xr) " O.
Proof Part (a) is shown in Theorem 3.1 of [Pan86]. Part (b) is a direct consequence

of part (a) and the upper-Lipschitzian property of the solution set of a monotone
linear complementarity problem (see [Rob81]). [3
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Now let us map out the directions for the most intricate part of our proof. By
Lemma 7(b), we know that {xr} comes arbitrarily close to X*, but we do not know if
it is bounded. Now, it is easily seen from Lemmas 6(b) and 7(a) that those coordinates
x.7, ; I*, stay fixed to the boundary point 0 for all r sufficiently large; so we need to
consider only those coordinates of x indexed by I*. If these coordinates all stay
strictly away from zero (which, for example, holds if every element x* of X* is
nondegenerate in the sense that x*>0 for all i I*), then the problem effectively
becomes unconstrained and it immediately follows from Keller’s result (see Remark
3) that all coordinates of x converge at a geometric rate. Hence the difficulty lies with
those coordinates x7 (i I*) that bounce around the boundary point zero, possibly
causing one of the remaining coordinates to sail off to infinity. To resolve this difficulty,
we will show that these coordinates perturb the movement of the remaining coordinates
only (additively) by their own maximum deviation from the boundary. This fact, shown
in Lemma 8 below, is based on the contraction property of the algorithmic mapping
for the unconstrained case (cf. Lemma 4) and Lemma 5. Then those coordinates of x
that start out far from the boundary will stay far from the boundary (cf. geometric
convergence for the unconstrained case), unless one of the remaining coordinates also
moves far from the boundary, so that, eventually, each coordinate of x either stays
close to the boundary or stays far from the boundary. Those coordinates that stay
close to the boundary are clearly bounded; those coordinates that stay far from the
boundary are also bounded because perturbation by the other coordinates is bounded
and, within themselves, the convergence is geometric (since they are effectively uncon-
strained). We now proceed with the actual proof.

Let

+max /Card (J) ([]1 J [I(BJJ)-’[I
J=_i* I.\ 1-pj

+ + 1)II(BjJ

+
1 p.

The following lemma, based on Lemmas 1, 4, and 5, shows that those coordinates of
x that stay away from the boundary of X are influenced by the remaining coordinates
only through the distance, scaled by /3, of these remaining coordinates from the
boundary of X. This result allows us to separate the effect ofthese two sets of coordinates
on each other.

LEMMA 8 (coordinate separation). Consider any J I*. Iffor some two integers
s >= >= 0 we have x7 > 0 for all J and all r + 1, + 2, , s, then, for any x* X*,

[[x- x*[[ <= Al[x)- xj*[[ + fl max IIx)- xYll.
r{t,"’,s}

Proof. The claim clearly holds if s (since A=> 1). Suppose that s > t. Since

x>0 for all iJ and all r=t+l,...,s, it follows from the fact x+=
x+ (Bx+ + Cx + q)]+ for all r (cf. (3.3)) that

Bjxr+ -+- Cjx -]" qj O, r t, , s- 1,

or equivalently (using Mj Bj + Cj),

Bj(xr+l-Xr)-F Mjx + qj =0, r= t,. , s- 1.

Since J I*, we also have (using Lemma 1 and the definition of I*)

Mjx*+ qj O.
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Combining the above two equalities and multiplying by (Bjj) -1 yields

(Bjj)-IBj(Xr+I--xr)+(Bjj)-IMj(Xr--x*)=O, r= t, s- 1.

This in turn implies, after some rearrangement of terms, that

r+l__ Xj# (I -(B)-1M)(x- x*) -(B)-IM(x x)Xj

-(Bj)-’Bjs(x-’-x), r= t,..., s- 1.

By letting O I (B)-M and successively applying the above recursion for r

t, , s- 1, we obtain

(3.4)

h-1
t+kXj--X*J-(a)h(xtj--X*J) E (G)h-k-I(Bjj)-IMjy(xy

k=O

h-1

E (G)h-k-’(BJj)-IBjy(x)++’ --X5’+k),
k=O

where we denote h s- t. Now we estimate the last sum in (3.4). Let

t+kyk=(Bjj)-lBjs(x -x), k=0,1,’",h.
h-1 h-k-1 k+lThen the last sum in (3.4) can be rewritten as k=O (G) (y yk). By rearranging

the terms within the summation sign, we obtain an alternative form for this sum:

h-1 h-1 h-1

(G)h-k-l(yk+l--yk) [ (G)h-k-lyk+l- (G)h-k-lyk

k =0 k =0 k=O

h-1 h-1-- (G)h-k-l(G)yk+yh--(G)h-ly-- (G)h-k-lyk

k=l k=l

h-1

E (G)h-k-I(G--I)yk+yh--(G)h-ly.
k=l

Since G-I =-(Bjj)-IMjj, this together with (3.4) implies that

h-1
t+kxj-x* (G)h(x--x*) E (G)h-k-I(Bjj)-IMj](X --X)

k=o

h-1

+ E (G)h-k-I(B22)-IMjyk--Yh-t-(G)h-ly.
k=l

Let H I- Mjj (Bjj) -1. Then G= (B..)-IHBjj, SO that (G) h-k-l-- (B.j)-l(H)h-k-lB.j
for all k. This together with the above equation yields

h-1

(x./x.--x*s=(G)h(xtj--x*j) , (B22)-I(H)h-k-IMj] --X)
k=O

h-1

+ E (B.)-I(H)h-k-IMjyk--Yh +(G)h-ly.
k=l

Also, since J c__ I*, we have from Lemma 4 that II(H)h-k-lzll < (m)h--lllzll for any
z e Span (Mjj) and II(G)zll--<allzll for any z. This, together with the above equation
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and the fact Span (Mgy) Span (Mjj) (cf. Lemma 5), implies

h-1

IIx  - x ll ll(O)b(x * x*g)ll+ E I](Bs)-l[l [l(H)h-k-lMji"l,x)’+k X)
k=0

h-1

+ E [l(Ugj)-lll ]](H)--IMjJy[I + [lYhll -+-
k=l

h-1

k---0

h-1

k=l

h-1

 zXllxS-xYli+ ’ ll(n., )-’llllM  ll Z (pj)h-k-, max
k:0 r{t,".,s-1}

h-1

+’rsl[(Bss)-l[I [IMII Z (p,)h-k-, max
k--1 k{1,-.-,h-1}

Ily + I[yhll-F AllY[I

max IIx}-x ll
re{t,...,s--1}

+-,II(B,,)-IlI IIM,,II(1-m)-’ max Ilyll+llyll+zXllyll.
ke{1,..-,h-l}

Since yk (Bss)-lr* t+k , yk --1 t+ktsStxl-x),wealsohave[[ II-<II(B.,.,) B,II IIX3 -xl[forevery
k, and the lemma is proved, lq

By using Lemmas 6-8, we can now prove our main result that {x r} converges (see
Theorem 1). The basic idea of the proof is to show that those coordinates of x that
are bounded sufficiently far away from the boundary of X are essentially unaffected
by the rest. This then allows us to treat these coordinates as if they are unconstrained
and by using the contraction property of B on them, we conclude convergence for
these coordinates.

In our proof, we will make frequent use of the following scalars:

fro= 1,

O’k A + 3 + fl + ( + 1)O’k_l, k=l,2,...,n.

(Note that irk => 1 for all k and is monotonically increasing with k.) We will also use
the fact (cf. Lemmas 6(a) and 7(b)) that, for any 6 > 0, there exists a scalar ra such that

(3.5) (xr) _--< a Vr_--> ra,

(3.6) liXr+l-xrll <--_ 6 Vr >- ra.

Since x/* =0 for all I* and all x* e X* (cf. (2.11)), it immediately follows from (3.5)
that

(3.7) x<=6 Vr>-r, Vie_I*.

Our proof comprises a sequence of three lemmas. The first lemma roughly shows
that if those coordinates of x which start near the boundary of X stay near the
boundary while the remaining coordinates start far from the boundary, then x will
stay close to the optimal solution set.
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LEMMA 9: Fix any 3>0 and let r be a scalar such that (3.5)-(3.6) hold. Iffor
some k {1, , n}, some nonempty J I* and some two integers t’> >= r we have

(3.8) Xi > Crk6 Vi J,

(3.9) xriO’k_l 6 VicJ, Vr=t,t+l,...,t’-l,

then the following hold"
t’(a) xi > trk_16, for all J.

(b) There exists an x* X* such that

Ilxr-x*ll Vr=t,t+l,...,t’-l.

Proof Let x* be any element of X* satisfying (xt) IIxt-x*ll. Then we have
from (3.5) that

(3.10) IIx’-x*ll-<.
X*Also we have from (3.9) that, for all J, x/* -< x + IIx < r_6 / xt- x*ll, which

together with (3.10) implies 0<-x*_-<o-_16+& Since 0_-<x7<_-o’_6 for r=
t, + 1, , t’ 1 (cf. (3.9)), this in turn implies that

(3.11) IxT-x*il<=rk_l/ i_J, r=t,t+l,...,t’-l.

Next we prove by induction that, for r t, + 1, , t’- 1,

(3.12) x > O’k_16 -- 6 Vi J.

Equation (3.12) clearly holds for r (cf. (3.8) and trk => trk-1 + 1). Suppose that (3.12)
holds for r t, + 1, , s, for some s { t, + 1, , t’-2}. We will prove that it also
holds for r s + 1. Since x > 0 for all J and all r + 1, , s (cf. (3.12)), we have
from Lemma 8 that

Ilx- x*]l <_- Allx- x*]l + t max []x- x[],
r{t,." ",s}

which together with (3.10) and (3.11) implies

(3.13) [[x x*ll--< a / (O’k_16 + 3).

Then we have that, for any i J,
s+l > s+l

X.+l>xi_([lx-- 2*11 / IIx* xSll / II2
> -( / IIx*-xll / )
_>_ -( + (+/- +_, +)+)

O"k_16 -- 3,

where the strict inequality follows from (3.6), (3.8), and (3.10). This completes the
induction and proves that (3.12) holds for r t, + 1, , t’- 1. Since (3.12) holds for
r= t, t+ 1,..., t’-l, it can be seen from the argument above that (3.13) holds for
s t, + 1, , t’- 1, which when combined with (3.11) (and using the facts/3 > 1 and
[]z[]_-< []z[[ for all z) yields

IIx- x*ll_-< (zx / t_a /t) Vr=t,t+l,...,t’-l.
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Since A +/O’k_ -at- fl O’k, this proves part (b). From (3.12) with r t’- 1, we have that,
for all J,

t’ t’--I t’--I

Since (cf. (3.6)), this proves part (a).
The following lemma extends Lemma 9 by removing the assumption that the

coordinates that start near the boundary of X remain near the boundary (while still
assuming that the remaining coordinates start far from the boundary).

LEMMA 10. Fix any > 0 and let r be a scalar such that (3.5)-(3.6) hold. Iffor
some k {1, , n}, some J

_
I* with Card (J) _-> Card (I*) k + 1 and some integer

>- r we have

t<o"k_ 8 Vie=J;X > Crkt Vi J, xi---

then there exist an x* X* and a >-t satisfying

(3.14) Ilxr-x*ll=< Vr_-->

Proof. Our proof is by induction on k. By Lemma 9(b), we see that the claim
holds for k 1. (Since in this case J I*, then, by (3.7), condition (3.9) is satisfied
for all t’_> t, so Lemma 9(b) yields that there exists an x* e X* such that IIx x* Iloo -< rk
for all r --> t.) Suppose that the claim holds for k 1, 2, , h 1, for some h _-> 2. We
show below that it also holds for k h.

Fix any J
_
I* with Card (J) _-> Card (I*) h + 1 and any integer for which

(3.15) xi > O’h Vi J,
’< 6 ViJ.(3.16) xi O’h-1

We consider two cases.
Case 1. xi <- O’h_6, for all J and all r ->_ t. Since xi > rh6, for all J (cf. (3.15)),

it immediately follows from Lemma 9(b) that there exists an x* X* such that

IIx <

This shows that (3.14) holds for k h (with = and with the above choice of x*).
Case 2. There exists an r > and an J such that x > rh_6. Let

t’= smallest r (r> t) such that x> rh_6 for some i:J.

Then, by (3.16), xi =< O’h-t for all i_J and all r= t, + 1,’’ ", t’-1. Since xi> O’ht
for all i J (cf. (3.15)), Lemma 9(a) yields that

t’(3.17) xi > O’h-lt Vi J.

Consider the h + 1 intervals

(3.18) [0, o8], (ro, O’1], (O’1, O’2], "’’, (O’h-2, O’h-l], (O’h-l, OO).
t’We have from (3.17) and the fact xi > rh_18 for some i J that the (h + 1)st interval

contains at least Card (J)+ 1 elements from the set {x" "1, x=, ., x’}. Also, (3.7) and
ro= 1 imply that the first interval contains at least n-Card (I*) elements from the
same set. Since Card (J)=> Card (I*)- h + 1, this leaves at most h-2 elements from
that set to go into the remaining k- 1 intervals. Hence, by the pigeon hole principle,
there must exist some j e { 1, 2, , h- 1 } such that
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Let h’ be the largest j for which this occurs. Then the interval (rh,6, o) contains at

" x’,’}. Let J’ be the index setleast Card (J)+ h- h’ elements from the set {X’l’, x2,
" ,6}. Then we havefor these elements, i.e., J’= {i] x > trh

and

X >O’h,3 ViJ, X O’h,_

Card (J’) -> Card (J) + h h’

->_ Card (I*) + 1 h ’.

Moreover, by (3.7), we have J’ c__ I*. Since h’ < h, we can apply our induction hypothesis
to h’, J’, and t’ to conclude that there exists an x* X* and a ?-> t’ satisfying

IIx -x*ll _- Vr_-->.
Since crh ,-< trh, this shows that (3.14) holds for k h (with the given ? and x*).

Hence in either case the claim holds for k h. This then completes the induction
on k and proves the lemma.

We are now ready to prove the following key lemma.
LEMMA 11. For any 6 > O, there exists an x* X* and an > 0 such that

(3.19) IIx r- x*lloo-<_ / Vr_-> .
Proof. The proof is based on Lemma 10. Fix any > 0 and let r be a scalar such

that (3.5)-(3.6) hold. Choose any integer f>_-r and consider the two possible cases:
either (i) x. <-cr, for all and all r >_-f, or (ii) there exists a >_-f and an such that
xi > cr. In case (i), let x* be an element of X* such that b(x) IIx- x*ll. Then we
have from (3.5) that, for all i,

0 <- _-< IIx x*ll-< / a,

Since 0 <-x[ <-r,6 for all and all r >_-f, this implies that

Ilxr- x* Iloo__< o-,,a + a Vr-->E

Hence (3.19) holds with = and with the above choice of x*. Now consider case
(ii). In this case, by the pigeon hole principle, one of the following n intervals

(0"0 0"1], (0"1( 0"2], "’’, (O’n_ll o’na
does not contain any element from {x’l, x2, , x,}, i.e., there exists j {1, 2,. , n}
such that

X (%_16, O’j] Vi.

Choose kto be the largest suchj and letJ {ilxi> r}. Then Card (J)_-> n-k+ 1 and

t<xi > r6 Vi J, xi cr_16 Vi e! J.

Moreover, by (3.7) and crk -> 1, we see that J c_ I*. Hence the assumptions of Lemma
10 are satisfied by k, J, and t, and it follows from Lemma 10 that there exists an x* e X*
and a g->_ satisfying

[iXr-x*ll_-< Vr_>- ?.

Since O"k O’n, this shows that (3.19) holds (with the given x* and with
The following main convergence result then follows as a corollary of Lemma 11.
THEOREM 1. The matrix splitting algorithm (1.4)-(1.5) is well defined and it gener-

ates a sequence of iterates {x r} converging to an element ofX*.
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Proof The algorithm is well defined by Lemma 2(a). Now, for any e > 0, Lemma
1 1 shows that there exists an x* X* and an ?> 0 such that

Hence, for all rl, r2 > , there holds

<= e/2+e/2= e.

This implies that {x r} is a Cauchy sequence so that it converges. By Lemma 7(b), it
converges to an element of X*. F]

4. SOR matrix splitting algorithms. In this section we consider three extensions
ofthe basic algorithm (1.4)-(1.5). First, we consider one that adds an under/overrelaxa-
tion parameter to the algorithm. This extension is motivated by the block SOR methods
of Cottle, Golub, and Sacher [CGS78], of Cottle and Goheen [COG78], and of Cottle
and Pang [COP82] (which introduced a mechanism for overrelaxation) and the methods
of Mangasarian [Man77] and of Aganagic [Aga78] (which introduced a mechanism
for underrelaxation). Second, we consider a Gauss-Seidel extension of the basic
algorithm. In this algorithm, only a subset of the coordinates are relaxed at each
iteration while the other coordinates are held fixed. Last, we consider an SOR extension
of the basic algorithm which allows noncyclic order of relaxation. This third algorithm
contains the previous two as special cases but is shown to be convergent only in a
certain weak sense.

We first describe the under/overrelaxation extension. In the algorithm, we choose
a splitting (B, C) of M and a relaxation parameter 05 satisfying

(4.1) 0 < 05, B C + (1 o5)M is positive definite.

We also choose a second relaxation parameter satisfying

(4.2) 0 < _w =< min { 1, 05 },

and an n n positive diagonal matrix D. Then, for any chosen x X, we generate a
sequence of vectors {x, xl, } in X by the formula

(4.3) xr+’ (1--W")xr + wr:r,
where :r is a solution of the equation

(4.4) y [y D(By + Cx + q)]+,

and w is any scalar in [_w, 05] such that xr+l given by (4.3) is in X.
Note that if (B, C) is a regular splitting and

1
0<o5<1+ Q-’/Mi-’/II

where Q denotes the symmetric part of B-C, i.e., Q=((B-C)+(B-C)T)/2, then
(4.1) is satisfied. Hence, the algorithm above contains as a special case the algorithm
(1.4)-(1.5) (let _to 05 1 and D be the n x n identity matrix). The relaxation parameter
we introduced in (4.3) is useful mainly when tot> 1 (i.e., overrelaxation [OrRT0]),
which in some cases can significantly improve the convergence. Nonetheless, the case
of underrelaxation, i.e., to < 1, is also of some practical interest since, in this case, it
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is only required that B-C be positive definite on the null space of M (instead of on
the entire space) in order for (4.1) to hold. The purpose for introducing the matrix D
in (4.4) is, from the point of view of convergence, largely cosmetic as the presence of
D does not change the sequence of iterates generated. (To see this, note that since D
is a diagonal matrix, y is a solution of (4.4) if and only if y X and Yi =0 for all
such that Dii(Biy+Cixr+qi)>O. Since D,>0 for all i, this set of conditions is
equivalent to y X and y 0 for all such that By + cixr+ q > 0, which in turn is
equivalent to y=[y-(By+ Cx + q)]/ or, by (1.4), y= B(xr).) However, by choosing
D to match the structure of B and C, we can in some cases simplify the form of the
iteration (see 5 for examples). Note that since the sequence of iterates generated is
independent of D, we can also allow D to be time-varying.

By modifying the argument used in 2 and 3, we can show that the algorithm
(4.1)-(4.4) is convergent.

THEOREM 2. For any splitting (B, C) ofM and any scalars _, t3 satisfying (4.1)-
(4.2), any n n positive diagonal matrix D and any x X, the sequence of iterates {x r}
generated by (4.3)-(4.4) is well defined and converges to an element ofX*.

Sketch ofproof. Since 2B=(B-C+(1-)M)+M (cf. M= B+C) and o3M is
positive semidefinite, we have from (4.1) that B is positive definite. The proof of
Lemma 2(a) then shows that /B is a well-defined point-to-point mapping. For r-
0, 1,. , let r be a solution of (4.4). Then from the preceding discussion we have that

r .SB(Xr), r O, 1," ",

SO that {r} is well defined. Since xr+l (1-- ogr)xr-l-r: for all r (cf. (4.3)), {xr} is
well defined.

It remains to show that {x r} is convergent. The proof of this is analogous to that
of Theorem 1, with Lemmas 4, 6, and 8 replaced by more general versions of themselves
that take into account the relaxation parameters. More precisely, by applying Lemma
3 with the identifications Q -> M, N-> B/o, _0 <--> /03, it is easily seen that the
following generalization of Lemma 4 holds"

(a) For any nonempty J {1,..., n}, there exist p (0, 1) and z>0 such that
s+k-1

I] (I-whM(B)-l)z <--z(P)k[Iz[[ Vk---->l, Vs -->0, VzSpan(M).
h=s

(b) There exists a h > 0 such that, for any nonempty J
_
{1,..., n},

I] (I-toh(B)-lM)z --<all ll V/-->I, Vs-->0, Vz.
h=s

By using the above generalized version of Lemma 4 in place of Lemma 4, it can be
Sverified that Lemma 8, with xi > 0 for all J and all r= + 1,. ., replaced by

x>0 for all iJ and all r= t+l,...,s, still holds (possibly with a different
constant/3 that depends not only on M and B, but also on and o3). Also, it can be
verified by using (4.1), (4.3), (4.4), and o) [_(-, (./], for all r, that relation (3.1) still
holds (with a slightly different 3/ given by 7 smallest eigenvalue of the symmetric
part of ((1-)M+B-C)/_), so it readily follows that Lemmas 6 and 7 also hold.

Now, we have from (4.3) that, for all r, X"+--:r=(1--1/or)(xr+--xr), SO

[Ixr+l--,rl] _--<max {1, 1/_ }[Ixr+l--xrl[.
Then, by redefining the scalar tro to be + max { 1, 1/_o) } with the other scalars trl, ,
recursively defined as before, the proof of Lemma 9 (which depends on Lemmas 6-8
only) still goes through. Lemmas 10 and 11 then follow from Lemmas 6, 7, and 9 as
before.
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Remark 5. We can also use different relaxation parametersfor different coordinates
provided that the relaxation parameters are fixed. More precisely, let us consider the
following underrelaxed algorithm:

1-051 (’)1
Xr+l-’- "’. X + "’. B(Xr), r= O, 1,

1 -05. 05,

where x X, o51, , 05, are fixed scalars in the interval (0, 1], and (B, C) is a splitting
of M for which the matrix

2B . -M
1/05,

is positive definite. In the special case where 03 05n, this algorithm reduces to
the algorithm (4.1)-(4.4) using fixed underrelaxation. By suitably modifying the proof
of Theorem 2, it can be shown that this underrelaxed algorithm is convergent.

Now we consider a Gauss-Seidel type algorithm. Let {1,..., n} be partitioned
into m nonempty, mutually disjoint subsets I1,12, , Im (i.e.,// if #j and
11U" U I, {1,. ., n}). For j 1,. ., m, we choose a regular splitting (BjIj, Cjt)
of MI and define a corresponding mapping j:X --X by

(4.5) j(x)=(y"[y=[yj-(Bijiy+Cjx +Mfffxb+qij)]. y=x},
where [. ] denotes the orthogonal projection onto the box [0, OO) Card(/j). By Lemma
2(a), j is a well-defined point-to-point mapping. The mapping has the effect of
applying a matrix splitting iteration to the subset of coordinates indexed by/, while
the other coordinates are held fixed. The Gauss-Seidel matrix splitting (GS-MS)
algorithm generates a sequence of iterates by applying cyclically the mappings
1,"

GS-MS ALGORITHM. Choose an xX. Generate a sequence of vectors
{x, xl, } in X by the formula

(4.6) xr+l=(Sm Q2 Ql)(Xr), r=0, 1," .
It is easily seen that in the special case where m 1, this algorithm reduces to the
algorithm (4.1)-(4.4) with relaxation parameters

_
05 1.

By extending the proof of Theorem 2, we can show that the GS-MS algorithm is
convergent.

THEOREM 3. The sequence ofiterates generated by the GS-MS algorithm (4.5)-(4.6)
converges to an element ofX*.

Sketch ofproof. Similar to the proof of Theorem 2, it suffices to show that Lemmas
6-8 still hold.

We first show that Lemmas 6 and 7 still hold. Since the/’s are disjoint, we have
from (4.6) that

(4.7) (XI1 Xlj Xlj+l Xlm), j 1," m, lr.

Then, by using (4.5) and an argument analogous to that for (3.1), we obtain that

r+l r+l r+l _r+l r+l 2,xi, ", x, x,+,, x.) <--f(x5 ,’.., x,_,, x,, ", x,)  llx, x, ll
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for all r and all j, where y > 0 denotes the smallest eigenvalue of the symmetric part
of Bdj- Cid, minimized over all j. By applying the above inequality recursively for
all j, we obtain that

f(xr+l) <f(xr) "Y 2 xr+’ 2 xr+l X
2

I XIII =f(xr) "YII [r,
j=l

and it readily follows that Lemmas 6 and 7 hold
Now we show that Lemma 8 still holds (possibly with a different/3). Consider

any J I* and suppose that for some two integers,, s ->_~t _>- 0 we have x > 0 ^fr all e J
and all r + 1, + 2,. ., s. Let Jj J/ and Jj J f3/. Then /j. Jj U J for all j,
and we have from (4.5) and (4.7) that, for any r e {t,..., s- 1}, there holds

xr+l r+l0 Bjd I + CJdj xi + 2 MjdkxIk + 2 MjdxI + qJ
k<j k>j

+ x + wtAx + MjAxj,
k<j k>j

k<j k>j

By rewriting the fifth to the eighth terms in the above expression as

we can express the above set of equations using a single matrix splitting as follows"

BJ1 J1

MJ2J

MJmJ

X+1

J1 J1 MJIJ2

+

+ Mj. x ry + qj O,

JJ

Mjj

MJm-iJm

Msm3m_,

or equivalently,

0-- Fx.+l + Gxj + H(x-1- Xry) + Mjjx)+ qs,

(X)+1- X))
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for suitably defined matrices F and H, with G Mjj F. Fix any x* X*. By subtract-
ing the identity 0 Mgx*+ qj (cf. J I* and Lemma 1) from the above equation and
rearranging terms, we obtain

x+1 x*s I F-1Mjs )(xra x’a) F-1Maj(x[i- x) F-1 H(xr+1 x[i),

for r t,..., s-1 Now the matrix difference F-G can be seen to have the form
L+ E- L, where is a certain strictly (block) lower triangular part of Mjj and E is
a block diagonal matrix whose jth diagonal block is Badj-Cjjj. Therefore (z, (F-
G)z)=(z, Ez)>0 for all z 0, where the strict inequality follows from the positive
definite property of the Bjj- Cjjj’s. This shows that (F, G) is a regular splitting of
Mjj. The rest of the proof then proceeds as in the proof of Lemma 8. FI

Remark 6. We can also introduce under/overrelaxation in the GS-MS algorithm.
More precisely, for each j {1,..., m}, let (BII, CIIj) be a splitting of MIIj and o3j
be a scalar in (0, 1] satisfying

BII C+ (1 MIIj is positive definite.

We define sCj as in (4.5) (but with the above splitting) and let j" X X be the
underrelaxation mapping corresponding to j"

(x) )x+ se(x).
Then the underrelaxed GS-MS algorithm comprises applications of the mappings
1,"" ", , in a cyclical manner:

xr+l=( 2 l)(Xr), r=0,1,....

In the special case where o51 o5,, 1, the above algorithm reduces to the GS-MS
algorithm. Furthermore, we can introduce an overrelaxation mechanism at the end of
each iteration,

xr+l (1-- oor)x -I-oor(m 2 l)(Xr), r--O, 1,’’"

where each oa is chosen such that xr+ X and _w < w =< o3. The relaxation parameters
_w and o3 are chosen such that 0 < _w =< min { 1, o5 } and K + (1 o3)M is positive definite,
where K is the n n block diagonal matrix whose diagonal blocks comprise the positive
definite matrices (B-CII +(1-hs)Mlj)/ffs,j= 1,..., m. We can also introduce a
positive diagonal matrix in the definition of s as in (4.4). In the special case where
m 1 and o51 1, this latter algorithm reduces to the algorithm (4.1)-(4.4). Convergence
of the above algorithms can be shown by modifying the proof of Theorems 2 and 3.

We can alternatively extend the GS-MS algorithm to allow under/overrelaxation
(during the updating of each subset of coordinates), nondisjoint subsets /, and
noncyclic order of relaxation. This leads to the following SOR type algorithm, which
we call the SOR-MS algorithm. Let I1," , I,, be a finite collection of nonempty (not
necessarily disjoint) subsets of {1,..., n} whose union equals {1,..., n}. For each
j 1,..., m, we choose a splitting (BII, CII) of Mldj and a oSs > 0 satisfying

(4.8) BIsI CIsI + (1 )MjI is positive definite.

We also choose a second relaxation parameter _ws satisfying

(4.9) 0 < _w <= min {1, o3},
and define s’X - X to be the point-to-set mapping

(4.10) j(x)= {zlz= (1-oa)x + oag(x), z 6 X, for some
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where j :X > X is the point-to-point mapping given by (4.5). The SOR-MS algorithm
generates a sequence of iterates by successively applying the mappings 1," ", m
(but not necessarily in any fixed order):

SOR-MS ALGORITHM. Choose an xX. Generate a sequence of vectors
Xx, ,... in X by the formula

(4.11) xr+j(xr), r=0,1,’’’,

where jO, jl, is some sequence of indices in {1,..., m}.

We will impose the following rule on the order of coordinate relaxation (see, e.g.,
[SAS73], [HeL78]):

ALMOST CYClic RtLZ. There exists an integer ? such that {1,...,m}
{j+,j+2,... ,jr+C} for all r.

The SOR-MS algorithm can be seen to contain most of the earlier algorithms as
special cases. For example, if m 1, then it reduces to the algorithm (4.1)-(4.4). If the
/’s are disjoint, _w a3 1 for all j, and {jo, j,... } {1,. , m, 1,. , m,. }, then
it reduces to the GS-MS algorithm. It also contains other methods as special cases.
For example, if the M’s are positive definite and we choose B Mt for all j, then
(4.8) is equivalent to o3 < 2 and the SOR-MS algorithm reduces to a block SOR method
considered in [Tse88, 6.2]. Furthermore, if the /’s are disjoint and {jo, j,...}=
{1,..., m, 1,..., m,...}, then it reduces to the block SOR methods considered in
[CGS78], [COG78]; and if m n and/ {j} for all j, then it reduces to the point SOR
methods of Herman and Lent [HeL78] and of Lent and Censor [LeC80]. For a final
example, if/ {1, , n} for all j, then it reduces to a matrix splitting algorithm that
alternates amongst m matrix splittings.

We have not been able to show that the SOR-MS algorithm is convergent in the
sense of Theorems 1-3. (The difficulty lies in the proof of Lemma 8, which no longer
goes through when the index subsets I1,""" I,, overlap or when different and time
varying relaxation parameters are placed on different coordinates.) However, by com-
bining the second half of the proof of Theorem 2 with the first half of the proof of
Theorem 3, we can show that it is convergent in the weaker sense of Lemma 7.

THEOREM 4. Let x, x, denote the iterates generated by the SOR-MS algorithm
(4.5), (4.8)-(4.11) under the almost cyclic rule. Then Mxr+q d* and ((xr)--)O.
Moreover, f(x r) tends to the optimal value of (P) and every limit point of {xr} is a
solution of (P).

Although the above result is not the strongest one possible, it nonetheless improves
upon those existing. For example, it shows, for the first time, that the algorithms
considered in [Tse88, 6.2], [HeL78], [LeC80], [CGS78], and [COG78] generate
iterates that come arbitrarily close to the solution set X*.

5. Application to known methods. In this section we apply the results developed
in 3 and 4 to a number of well-known methods and show, for the first time, that
these methods are convergent without making any additional assumption on the
problem. We also extend some of these methods to incorporate overrelaxation.

Example 1 (point SOR method). Suppose that M has positive diagonal entries.
Consider the following well-known point SOR method [Hi157], [Cry71], [Man84] for
solving (P):

x+l
O r+l

X Mox + Mixj + qi 1," , n,
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where a is a relaxation parameter in (0, 2) and [. ]+ denotes the orthogonal projection
onto the interval [0, or). (This method can be viewed alternatively as a (cyclic) coordin-
ate descent method with inexact line search [Tse88, 6.2].) It is easily seen that this
method is a special case of the algorithm (4.1)-(4.4) with o- o3 1 and the following
choices of (B, C) and D"

B=a-IE+L, C=(1-a-1)E+LT, D=aE-1,
where E and L are, respectively, the diagonal and the strictly lower triangular part of
M. Since B-C=(2a-I-1)E+L-LT, which is positive definite for all a (0,2), it
follows from Theorem 2 that this method is convergent. This improves upon existing
results (e.g., [CryT1], [Man84], [LiP87]), which require for convergence either M be
strictly copositive or that a certain Slater condition hold (all of which lead to the
compactness of X*).

Example 2 (gradient projection algorithms). Consider the well-known gradient
projection algorithm [Go164], [LeP65] (also see [Berg2], [BeT89], [Che84], [Lue73])
applied to solve (P),

xr+l [x a(Mx + q)]+,

where a is a positive stepsize. It is easily seen that this is a special case of the algorithm
(4.1)-(4.4) with _w 5 1 and the following choices of (B, C) and D"

1 1
B=--I, C=M---I, D=aL

In this case B-C can be seen to be positive definite for all a <2/[[MII. Hence by
Theorem 1, the algorithm is convergent for all a (0, 2/IIMII). (This result was first
established by Cheng [Che84] for the more general problem of minimizing a pseudo-
convex differentiable function over a closed convex set.) Aganagic [Aga78] proposed
a modification of the above algorithm by adding a relaxation parameter w (0, 1]:

xr+l= (1--w)xr+ O0[Xr- a(Mx+ q)]+.

This algorithm is also a special case of the algorithm (4.1)-(4.4) with _w a5 o) and
with (B, C) and D given as above. Hence, by Theorem 2, this algorithm is also
convergent for all a e (0, 2/ M ). (This improves on the result of aganagic which
requires M to be positive definite for convergence. Furthermore, from Theorem 2 we
see that overrelaxation (i.e., w > 1) is also permissible, as long as

Example 3 (Mangasarian’s algorithm). Consider the following iterative algorithm
proposed by Mangasarian [Man77] (also see [Man84], [MAD87] for applications)

X
r+l (1 (.0)X "- (.O[Xr- al?.(Mx + q + K (x+1- x))]+,

where w e (0, 1], E is an n x n positive diagonal matrix, K is an n x n matrix, and
is a positive scalar. It can be seen that the above algorithm is a special case of the
algorithm (4.1)-(4.4) with 5 w and the following choices of (B, C) and D"

B aE )-I + oK, C M aE)- oK, D aE.

Since B C + (1 w)M 2(aE)-I + 2oK oM, it follows from Theorem 2 that the
above algorithm is well defined and convergent if 2(aE)-l+2oK-oM is positive
definite, which is exactly the condition given by Mangasarian [Man?7, (6)].
(Mangasarian proved that the algorithm itself is well defined for all choices of the
matrix K satisfying either his assumption [Man77, (6)], or the assumption that K is
strictly lower triangular, which was the case of principal concern in [Man77]. He also
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showed that each limit point of the iterates generated by the algorithm is a solution,
but the question of whether such a limit point exists was left open.)

Example 4 (block SOR method). Consider the following block SOR method of
Cottle, Golub, and Sachet [CGS78] and of Cottle and Goheen [COG78] (also see
[COP82]). Partition the index set {1, , n} into tn nonempty, mutually disjoint subsets
I1,’", I,, and assume that MIjlj is positive definite for all j. Choose a relaxation
parameter o5 (0, 2). Then, for any given x X, the method generates a sequence of
iterates {x, xl, } whereby, given x r, a new iterate xr+l is generated as follows.

Let z- x r. Forj 1, , m, compute to be the (unique) solution to the following
system of nonlinear equations ([. ]+ denotes the orthogonal projection onto the interval
[o, o))

zi--[zi-(Miz+qi)]+ Vie]j,

z z-1 V I,
and let z2 (1-w)z2-+w’2, where w is the largest scalar in (0, ] such that zeX.
Then set xr+= z. (This method essentially replaces the strictly lower triangular
(diagonal) part of M in the point SOR method by strictly lower triangular (diagonal)
blocks.) In the case where 1, this method can be seen to be a special case of the
GS-MS algorithm (4.5)-(4.6) with

Bbb Mbb Cbb O,

so that by Theorem 3 it is convergent. If 0 < 05 _-< 1, then by Remark 6 it is also convergent.
(This improves upon the results of [CGS78] and [COG78] which require M to be
positive definite for convergence. It also obviates the need for the projection step
employed in [COP82] to ensure the existence of a limit point.) In the case where
1 < 05 < 2, however, the convergence of this method remains unresolved. It is known
to be convergent only in the weak sense of Theorem 4.

6. Discussions and extensions. In this paper, we have established the iterate conver-
gence of matrix splitting algorithms for solving the symmetric monotone linear com-
plementarity problem when the splitting is regular. Our result improves on the earlier
convergence results in that it does not make any assumption on the boundedness of
the optimal solution set. Our proof makes essential use of linearity of the problem and
certain contractive properties of the iteration matrices. In particular, these contractive
properties enable us to carefully estimate the behaviors of the algorithm near the
boundary of the feasible set.

There are several directions in which our results can be improved. For example,
we may consider solving each of the subproblems (1.5) inexactly. Specifically, consider
the sequence of iterates {x, x2, ,} generated by

Xr+l= .l(X d-er),

where e denotes the "error" vector at the rth iteration. Recently, Mangasarian [Man90]
established the convergence of {x r} under (essentially) the assumption that B is
symmetric and that the error vectors {e r} satisfy

(6.1) y ][er[[ % oO,
r=0

(6.2)
r=0
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We remark that our proof (Lemmas 8-11) can be modified to establish the convergence
of {xr} for any regular splitting (B, C) (not necessarily symmetric) under the same set
ofassumptions (6.1) and (6.2). This is because each error vector e contributes additively
an O(llerll) perturbation to all future iterates (cf. Lemma 4(b)), so the perturbation

O econtributed by all of the error vectors after the rth iteration is only (Yi=r II),
which, by (6.1), tends to zero as r -> . (Condition (6.2) is needed to ensure that Lemma
6 still holds (see [Man90]).)

Another interesting extension of the results obtained here is to analyze the rate
of convergence of the matrix splitting algorithms. Such an analysis has been obtained
by Luo and Tseng [LuT89] for the special case of the coordinate descent method (but
for the more general problem of minimizing, over a box, a function which is the
composition of an affine mapping with a strictly convex essentially smooth function)
and only recently we have been able to extend their analysis to matrix splitting
algorithms.
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Abstract. By making use of extended stochastic Lyapunov functions and martingale limit theorems,
established herein are certain basic properties of adaptive d-step ahead predictors associated with the
extended least squares, stochastic gradient (without interlacing), and monitored recursive maximum likeli-
hood algorithms for recursive identification of an ARMAX system. Both the direct (or implicit) and indirect
(or explicit) approaches to adaptive prediction are considered within a unified framework involving stochastic
regression models. Applications to adaptive control of ARMAX systems are also discussed.
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MLE, stochastic adaptive control, certainty equivalence, asymptotic efficiency
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1. Introduction and background. Consider the ARMAX system (autoregressive
moving average system with exogenous inputs) defined by the linear stochastic
difference equation

(1.1) A(q-1)yn q-aB(q-1)u,, + C(q-)e,

where {y.}, {u.}, and {e.} denote the output, input, and disturbance sequences,
respectively, A >_ 1 represents the delay, and

A(q-) l + aa-1+. .+ apq -p, B(q-1= b +. .+ bkq-(k-l
(1.2)

C(q-1) 1 + clq-14-. + Chq
-h

are scalar polynomials in the backward shift operator q-1. Throughout the sequel we
will assume that the sequence {e.} is a martingale difference sequence with respect to
an increasing sequence of tr-fields . such that

(1.3) sup E([e.l _)< a.s. for some a > 2.

Moreover, the input ut at stage is assumed to be t-measurable (i.e., involving only
the current and past observations Yt, Yt-1, ut-1, , but no future observations). Letting
Xo=(Yo,’’’,yl_p, Uo,’’’, U:Z-A-k, eo,’’’, el-h) denote the "initial condition" of
(1.1), it is also assumed that Xo is ;o-measurable.

Let 1 _<- d <- A. When the system parameters al, , ap, bl, , bk, cl, , Ch and
the initial condition Xo are known, the minimum variance d-step ahead predictor
Y"n+d A E(yn+d I;n) of the output Y,,+a can be determined recursively by the str6m
predictor identity (1.6) below (cf. [1]-[4]). By the division algorithm, there exist

--1polynomials F(z) 1 +flz +" +fd-lZa and G(z) gl + "+ gp(a)zp(a)-I with
p(d) =p v (h- d + 1) such that

(1.4) C(z) F(z)A(z)+ zdG(z),
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26, 1990. This work was supported by the National Science Foundation, the National Security Agency, and
the Air Force Office of Scientific Research.

" Department of Statistics, Stanford University, Stanford, California 94305.
t Department of Statistics, University of Illinois, Champaign, Illinois 61820.
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and therefore (1.1) can be rewritten in the form

(1.5) C(q-1){y,/d F(q-1) -1 -1 -18n+d}-- G(q )y. + q-(a-d)F(q )B(q

This implies that the minimum variance predictor fi.+d is given recursively by

(1.6) C(q-1)fi,,+d G(q-)y. + q-(a-dF(q-1)B(q-1)u,,.
The prediction error of the predictor fi,,+d is

(1.7) %+d Yn+d fin+d q- en+d.

In practice, the system parameters and initial condition are usually unknown, and
we must "adapt" the optimal predictor (1.6) by substituting the unknown entities in
(1.6) by their estimates. The so-called explicit (or indirect) approach of adaptive
prediction is to first estimate the parameters a, , ap, b, , bk, c, , Ch of the
explicit dynamical system (1.1) and then to substitute these parameter values that
appear in the polynomials C(q-1), B(q-1), F(q-), and G(q-1) of (1.6) by their
estimates. In contrast, the implicit (or direct) approach of adaptive prediction is to first
develop recursive estimates 0, of the parameter vector

0=(g,’’’,gp(d),b,(fb)2,’’’,(fb)k+d_,--C,’’.,--Ch)’, where

(1.8) k/d-1. (fb),z- F(z)B(z), so that (fb) b,,
i=1

of the system’s implicit representation that combines (1.5) and (1.7) into the form

Y,+d 0’0, + ,+d, where
(1.9)

On (Yn, Yn-p(d)+l, Un--A+d Un--k--A+2, Yn+d-1, Yn+d-h)

noting that 37,+d 0’0, by (1.6). Letting 33,+d denote the adaptive predictor of Y,+d,
this implicit approach generates 39,+d recursively by

Yn+cl ,b,, where
(1.10)

qb.= y., ,Y,,-p(d)+l,U,-A+d,’’’,U.-k-A+Z, n+d-1, "’,Yn+d-h

For the explicit approach, there is a large literature on recursive estimation of the
parameter vector

(1.11)

of the dynamical system (1.1), which can be written in the regression form

y, O’qY,_l + e,, where
(1.12) , (Y,, Yt-p+l, Ut--A+I, Ut--A--k+2, Et, et--h+l) t"

The recent monographs [2]-[4] provide excellent unified overviews of various recursive
estimation algorithms in the literature. In particular, an important and widely studied
problem concerning, these recursive estimators is under what conditions they converge.
In the seminal papers [5], [6], Ljung developed the ODE (ordinary differential
equation) method for the convergence analysis of recursive estimators 19, of 19. Under
certain a priori boundedness and recurrence assumptions on O,, this method introduces
a space-time renormalization into the recursion for 19,-19 to obtain a nonrandom
ODE as a limit point and studies the limiting behavior of 19, via the stability properties
of the associated ODE. Such stability analysis is often conveniently carried out by
making use of a Lyapunov function. Instead of working with a Lyapunov function
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associated with the limiting ODE, an obvious alternative is to develop an analogue
for the original recursions defining 19.. This is the idea behind the "stochastic Lyapunov
function" approach introduced by Moore and Ledwich [7] and Solo [8]. A basic
ingredient of this approach is to use the underlying system dynamics to develop
recursive inequalities for a suitably chosen nonnegative random function of (R), and
to normalize and transform this function into a nonnegative almost supermartingale
(stochastic Lyapunov function) to which the martingale convergence theorem can be
applied. In particular, for the AML algorithm

(1 13a) 19 =19,_1+P,_1 1(Y,-19’ ), pl__ pln--1 n--1 --1-Jf-fnfn,

(1.13b) d, (y,, y,_p+, u,_a+ ,..., U,-a-k+, :,, ,-h+l)’,

(1 13C) n--l

Solo [8] used this approach to prove the strong consistency of 19 under both the
"persistent excitation" condition

(1.14) n -x il converges a.s. to a positive-definite matrix
i----1

and the "positive real" condition

(1.15) min Re ( 1
>0.

Iz1:1 C(2)

For the AML algorithm, by using martingale limit theorems (not restricted to
convergence) to analyze directly Solo’s recursive inequalities for the quadratic form

(1.16) Q. (19. -19)’P-,

_
(19 -19),

instead of following Solo 8] to transform Q. into a nonnegative almost supermartingale
that converges almost surely by the martingale convergence theorem, Lai and Wei [9]
established the strong consistency of 19. under (1.15) and the much weaker excitation
condition

(1.17) min ( i=1 aIti"qi)"i) "-00 and log max ( i=1 i)’iti)--O(/min( i=1 "dil’ia’tti)) a.s.

Here and in the sequel we use Amax(A) and Amin(A) tO denote the maximum and
minimum eigenvalues of a symmetric matrix A. Because of the Lyapunov-type recursive
inequalities satisfied by Q, which, however, need not be convergent, we will call such
functions "extended stochastic Lyapunov functions" as in [10], where it is shown that
stronger results can often be obtained by applying martingale theory directly to such
functions without transforming them into (convergent) stochastic Lyapunov functions.

In the explicit approach to adaptive prediction, for a recursive algorithm 19,
estimating the unknown parameter vector 19 defined in (1.11), we first use 19, at stage
n to estimate the unknown coefficients of the polynomialsC(q-), B(q-), (q-),
and G(q-) in (1.6), leading to the estimated polynomials C,(q-), h,,(q-), F,,(q-),
and G,(q-) at stage n, and then define the predictor 93,+d of Y,/a by the recursive
relation

(1.18) dn(q-1)n+d ,(q-1)y. + q-(A-d).(q-)j,(q-1)U,,

noting that the coefficients of F(q-) and G(q-) are polynomial functions of the
components of 19 by (1.4). Hence, if 19, converges almost surely to 19 and C(z) is
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stable (i.e., all its zeros lie outside the unit circle), then it follows from (1.16) and
(1.18) that

(1.19) ,=,(fii+d--fii+d)Z=o((y2i-+-uZi))i= a.s.

(cf. Lemma 5 of 2). In most applications, we typically have sample mean square
boundedness for the input-output data, i.e.,

(1.20) lim sup n- (y+ u) < oe a.s.,
i=1

in which case (1.19) implies that

(1.21) n-’ (i+d--i+d 0 a.s.
i=1

A sequence of d-step ahead predictors {),+a} is said to be "globally convergent"
if (1.21) holds (cf. [11]). We have pointed out above that if a consistent estimator O,
of the parameter vector O of the explicit system (1.11) can be found and if C(z) is
stable and (1.20) holds, then globally convergent adaptive predictors can be constructed
by the recursive relation (1.18). However, the requirement of consistency in parameter
estimation is often not needed in the construction of globally convergent adaptive
predictors, particularly if we use an implicit approach. Extending the AML algorithm
to the implicit model (1.9), Sin, Goodwin, and Bitmead [12] constructed d-step ahead
adaptive predictors based on an interlaced AML algorithm and showed that such
predictors are globally convergent under assumption (1.20) and an assumption
analogous to (1.15). As pointed out by Zhang [13], however, their proof uses Solo’s
[8] result (A6) whose proof contains a gap. In 3, where Solo’s result (A6) is shown
to be incorrect without additional assumptions, we prove a stronger result than the
Sin-Goodwin-Bitmead theorem under the additional assumption that
lim sup,_.oo b’,(Y (Dikti)--lkn < 1 almost surely, where the b, are the pseudoregression
vectors in their algorithm.

The global convergence property (1.21) for adaptive predictors is of particular
interest in the adaptive control problem of setting the input ut at stage so that the
output y,+a is as close as possible to some target value Y*+a. When the system parameters
and the initial condition x0 are known and b # 0, the minimum variance controller is
to set u, such that )Tt+x y*+a. In ignorance of Xo and the system parameters, it is
therefore natural to set u, such that 33,+a y*+A, where 33,+a is a globally convergent
adaptive A-step ahead predictor of y,+a. Since )Tt+a y+a- r/,+a, (1.21) implies the
so-called "self-optimizing" property that

(1.22) n -1 (y, y* 7,)2--> 0 a.s.,
=A+l

for the adaptive controller defined by ,+ y,*+a.
In the case where unit delay A 1, Goodwin, Ramadge, and Caines [14] used

this approach in conjunction with the stochastic gradient algorithm

where (h, and ), are defined in (1.10) (with d= 1) and a>0, to establish the self-
optimizing property (1.22) for the adaptive controller that chooses the input u, so that

(1.24) )t+ Yt*+,
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under the assumptions

(1.25) min Re (C(z)-) > 0,

(1.26) B(z) is stable and bl 0,

(1.27) (Xo, el,. , en) is absolutely continuous with respect to Lebesgue measure
for every n -> 1.

Assumption (1.27) ensures that the component of 0n estimating the component b of
0 is nonzero almost surely and therefore we can indeed define ut by Ot4,,=y*,+, i.e.,
by (1.24). As shown in [11] for general delay A but still for d 1, (1.25) and (1.20)
are sufficient conditions for the global convergence of adaptive one-step ahead predic-
tors based on the stochastic gradient algorithm (1.23). Assumption (1.26) is needed to
ensure that (1.20) holds for the adaptive controller (1.24).

For general delay A and d A, Goodwin, Sin, and Saluja [15] extended (1.23) to
the form

(1.28)

in which dn is given by (1.10). Under assumptions (1.25) and (1.20), they showed that
the adaptive d-step head predictors n+d 0’ 4n are globally convergent. By using the
explicit instead of the implicit approach, Fuchs [16], [17] also constructed globally
convergent adaptive d-step ahead predictors of the form (1.18), in which the coefficients
of the polynomials (n(q-), n(q-1), Jn(q-1), and (n(q-) are determined from the
stochastic gradient algorithm (R)n estimating (1.11), defined by

(1.29a) (R)n =(R)n-1 +(a/r,_)n_ e,,

(1.29b) en Yn -(R)’ (I) n--l,

(1.29c)
where . (yn, ,Yn-p+l, /’/n-A+l, Un-A-k+2, en, en-h+

Unlike the single recursion in (1.29), the algorithm (1.28) interlaces d recursions
0j+d(,+l) Oj+d,+(a/r+at)Ch+d,(Y+d(t+)--O+d, Ch+d,), j=0," ", d- 1. It has been an
open problem concerning whether such multiple recursions are indeed necessary and
not just dictated by the stochastic Lyapunov function method of convergence analysis
(cf. 16, p. 219]). By using the extended stochastic Lyapunov function approach instead,
we show in 4 that interlacing is not needed to establish global convergence of adaptive
d-step ahead predictors based on the stochastic gradient algorithm for the implicit
model (1.9), giving a positive answer to this long-standing open problem.

Although the stochastic gradient algorithm (with a scalar gain a/rt) leads to
globally convergent adaptive predictors by either the explicit or implicit approach
under assumptions (1.20) and (1.25), the rate of convergence in (1.21) of such adaptive
predictors is usually inferior to that associated with recursive identification algorithms
using matrix gains, as noted by Lai, Wei, and Zhang [18] who illustrated this point
by the following simple example. Consider one-step ahead prediction in the ARX
system

(1.30) Yn+ ayn + flu. + en+l,

where a[ < 1, the en are independent normal random variables with mean 0 and
variance tr2> 0, and the inputs un are also independent normal random variables with
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mean 0 and variance o---- n-2 for some 0< y<5 and such that {u,} and {e,} are
independent sequences. In this case, for the adaptive predictor Y,+ (R) ’.. defined
by the stochastic gradient algorithm 1.29) with a 1 and, (y,, u, )’, the convergence
rate in (1.21) cannot be faster than n-2 since

On the other hand, the adaptive predictor LSy,+ associated with the least squares estimate
( )- "- y+ of satisfies

aLS x2
=l (+l-y+(1.32) lim sup < a.s.,

log n

which implies that the convergence rate in (1.21) is O(n- log n) (cf. [18, p. 179]).
For the ARMAX system (1.1) with C(q-) 1, although the recursive estimator

(1.13) has been called "approximate maximum likelihood" (AML), it does not arise
from the maximization of the log-likelihood function, as in the off-line (nonrecursive)
maximum likelihood estimator, when the e are assumed to be normally distributed
with mean 0 and variance 2. The recursive maximum likelihood estimator RML2,
introduced by str6m and S6derstr6m, replaces (1.13a) by

(.33a)

where letting ,=(-,,,...,-,,, ,,,...,,,, C,,’’’,C,h)’, define , re-
cursively by

(.33b)

(cf. [2]). This algorithm is based on first replacing the derivative of the log-likelihood
function by its linear approximation around the true parameter and then replacing
the unknown by O,-1, and would therefore lead to an asymptotically efficient
estimator if O,_ should converge to . In 5 we introduce an additional monitoring
scheme to ensure that ,_ is eventually close to , and use the estended Lyapunov
function (1.16) to analyze this modification of the RML2 algorithm, which we call the
"monitored recursive maximum likelihood algorithm." We also extend in 5 the RML2
algorithm (1.33) to the implicit system (1.9) and introduce an additional monitoring
scheme to ensure that the recursive estimates 0, generated by the algorithm are
eventually close to the parameter vector 0 of (1.9). By making use of extended stochastic
Lyapunov functions, we are able to extend (1.32) to adaptive d-step ahead predictors
based on

In summary, the concept of extended stochastic Lyapunov functions provides a
unified treatment of adpative predictors based on various recursive identification
algorithms, using either the explicit or the implicit approach. In particular, we use this
idea to improve in 3 previous results on adaptive predictors based on extended least
squares, to solve in 4 an open problem in the literature concerning the global
convergence of adaptive d-step ahead predictors based on the stochastic gradient
algorithm without interlacing in the implicit approach, and to obtain in 5 an analogue
of (1.32) for the adaptive d-step ahead prediction problem by using the monitored
recursive maximum likelihood algorithm that generalizes the least squares algorithm
in (1.32). These results are of basic interest to adaptive control problems. In paicular,
while (1.21) leads to the self-optimizing propey (1.22) of adaptive controllers based
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on the stochastic gradient algorithm, (1.33) and its extensions in 5 lead to the much
stronger property Y,a+l (Yi-Y*-i)2=O(log n) almost surely for asymptotically
efficient adaptive controllers.

2. Some preliminary lemmas. An important tool for the analysis of recursive
identification and adaptive control algorithms is the following result from martingale
theory.

LEMMA 1. Let { e,} be a martingale difference sequence with respect to an increasing
sequence of o-fields {,} such that (1.3) holds. Let z, be an ,,_l-measurable random
variable for every n.

2 oo}, and for every > 1/2,(i) 1 ziei converges almost surely on {Y,1 z, <

ZiF_, Z -’> 0 a.s. on z oo

Consequently,

(2.1) zie o zi +O(1) a.s.

(ii) E1 I=,1, "Iz, I) almost surely on {sup. Iz.l<}. Moreover,

(2.2) I=,1= I=,1(= Ii--1) + O IZi] on sup Iz, <, Z I=.1

(iii) Let T < T: <... be a sequence of stopping times (with respect to {,}) such
that +,- > d(> 1). Let + and let wj IE
where a, ad are constants. en {wj, ,j 1} is a martingale difference sequence
with supj (ljl" %_1) < almost surely.

For the proof of pas (i) and (ii) of Lemma 1, see [19, p. 157], while paa (iii)
follows from that wj is -measurable and that E(wj[)=0 and

E(Iw;ll)2 E I=E E iSk+i Ik
=1 i=1

While Lemma 1 is probabilistic in nature, Lemmas 2-5 below are algebraic. In paicular,
the algebraic identity (2.3) in Lemma 2 will be applied to analyze various recursive
identification algorithms, in both the explicit and the implicit models. For a

=mx(AA).tix A, dfi I111 sup,,=, IIAxll ’z=

LEMMA 2. uppose that for n < m, t (Yt, Yt-,+, ut_, t--+,
y,+-,, "", 9t+-)’ and C(q-’)(yt+-,+)=O(-’)y,+q-r(q-’)u,, where 0,
d 1, 1, 1, and C(q-) 1 + cq- +. +c-, O(-)
and F(-) y +...+ y-(-) are polynomials in the backward shift operator -.
$ppose that there exist + + h) x 1 ectors Ot sch that)t+ Ot6tfor < m. e
(2.) c(q-’)(y,-yS-m)=-(_-o)’m,_ form+d>
where 0=(g,...,g,, y,..., ,, -c,...,-c)’.

Proo For n < m,

c(-’)(y,+ -,+ ,,+)

c(q-’)(y,+ -,,+)- (c(-’)- ),+ -9,+
(o(q-’)y, + r(-’)u,_) (c,9,+_, +... + c)t+_) o’,t
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LEMMA 3. Let {D,, n >-_ 0} be a sequence ofL x L real matrices such that ,o lID. <
oc and let D(z)=,__o D,z’. Suppose that D(eit)+ D’(e-it) is nonnegative definite for
all [-Tr, 7r].

(i) Let {g,, n=>0} be sequence ofL x 1 real vectors and letf =k--O Dkg-k. Then
N

for any N >-_ O, ,=of;g >- O.
(ii) Suppose that Di =0 for all i> h. Let M >-_ h and suppose that f, ,jh=o Djg,_

for M <= n <- N. Let { r,,, M <-_ n <-_ N} be a nondecreasing sequence of positive numbers.
Then

N h h-j, fg./r. >- . gM_l_tDj+tgM_l+j/rM_l+j.
n=M j=l t=0

Proof. To prove (i), note that

1 i_, (. ),(D(eit -it)(Ngne_in )+D’(e ) E gn eint dt
2 =o 2 ,:o

1
E E E gD j e’(-’)’ e ’ktdt

2 k=0 n=0 m=0

E E gDkg E g E D,-k E g.f.:
k=00mnN n=0 k=0 n=0

----k

Since D(e")+D’(e-’) is nonnegative definite, (i) follows.
To prove (ii) let g > ,

g. f n M and let g, 0 otherwise. Let f =o- D.g,_..
Thenf f, for n M + h andL -f Eg-h D,_g for M n < M+ h. Therefore

)/Z gfn/rn Z gf/rn T g-i+j nM-i+j-k rM--l+j.
n=M n=M j=l k=j

Let S. ’=o g*’* By (i), S. > 0 for all n < N. Since g =0 for n < M, S_I =0.
Summation by pas gives

N N--1

Z g*,e*/r, riS + Z (; r.+)S. O,
n=M n=M

noting that r > -1r.+ > 0. Hence the desired conclusion follows.
LEMMA 4. Let Xl, x2, be x 1 vectors and let A. An_ W

are nonnegative scalars, I is the x identity matrix, and Ao is a symmetric, positive-
definite x matrix.

--1(i) If lim. max(An) <, then Z=I xA x <. If lim. max(An) , then

--1(2.4) Z x,A, x(l+o(1)) logdetA..
i=1

(ii) Suppose that sup. p. < and that AEin(An) and xAx.
enfor every fixed r O, 1, 2,. ,

--1 --1(2.5) x.A.+x. x.A. x. as n .
Proo By Lemma 2(i) of [19],

(2.6) x:Alx, (IA, IA,-I +
Since IA,_I+ pII IA,_ll, it follows from (2.6) that x:Alx, (IA, I-IA_II)/IA, and
therefore (i) follows by the same argument as that used to prove Lemma 2(ii) of 19].
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To prove (ii), we first show that
--1 --1(2.7) xnA,-lXn- xnA, x, as n-+ oo.

By the matrix inversion lemma (cf. [3, p. 824]),
(A._I + phi)-1x,x ’, A,_ + pfl)-i

AI-(A,_I+pnI)-1-
l + x,,(A,_l + pfl)-lx,

and therefore

(2.8) -1x.A, x, x.(A._l + p.I)-lx./{1 + x.(A._l + p.I)-lx.}.
-1 -la-1/2 a-1/21 a-1/2 where B,Since (A.-1 + p.I)-1= A-I/?(I + p.A.-1) ,.-1 A-1, +,,-1 ,.,.-1

Yi= (_p,A,_l)_l i, and since p.amax(A-_l)
_
O (implying that amax(B,

_
O), it then follows

that
--1 zl--1/2v. 2) --1(2.9) x.(A._l+p.I)-lx. x.A._x.+o([l._l . (1 + o(1))x,A,_lXn.

From (2.8) and (2.9), (2.7) follows.
We next show by induction that for r 1, 2,. ,

A-lrx. a-(2.10) x. x. x. as n - oo.

Note that (2.10) reduces to (2.7) when r 1. Suppose that (2.10) holds for 1 <= r=< s- 1.
Since A._,

(2.11)
A;_I A-_/2 I + (A-l?x. t ,z--1/2 --1 Al_/s2-k-------, + p._jA,,_,)

j=l

-1 ,z-l/2,4,_, /..,_,

where

(2.12) C. Y (A._,-1/2xn_s+jXn_s+j..n_s’a-1/2 + p._,+jA._.)-I
j=l

Noting that cll =/max(C) tr (C) if C is symmetric and nonnegative definite, we have
s--1 s--1

(2.13) y ilA;_/,2x._,+x,, a-1/2 -1
-s+--.-s -<- E x._,+A._,x._,+-+ O,

j=l j=l

since (2.10) holds for 1-< r<-s 1. From (2.13) and the fact that p,-,+amax(A;,)=
p.-,+J ami.(A.-,) - 0, it follows that C. {{-+ 0, and therefore by (2.11),

x.A._lX. x.A._x. + o(x.A._,x.).(2.14) --1 --1 --1

In view of (2.14) and (2.7), (2.10) holds for r= s.
For r > 1, since An+ A,, + Y.i= X,+X,++p,+I), we can make use of (2.10)

and the same argument as in (2.11)-(2.14) to show that x’,A-+rx,=
x’.A-lx. + o(x’,,A-lx.), lq

LEMMA 5. Suppose that the polynomial C(z)= 1 + ClZ+’" + Chz is stable. For
j= 1,’’’, h, let {c.,j} be a sequence of numbers such that limn_.oo c.,j= c, and let
C.(q -1) 1 + C.,lq

-1 +. + C.,hq -h.
(i) Suppose that . and dp. are Lx 1 vectors such that C.(q-). oh.. Then there

exist K > 0 and 0 < p < 1 such that for all > m

(2.15) II#,ll--< g p’ll,,,-,ll +p’-" II#,,,-,-II
=0 r=0

Consequently, there exists K’> 0 such that for all n > m,

(2.16) 11,II2_-<K’{ max II:._rl12+
t=m+l O<--r<=h-1 t=m+l
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(ii) Let G(q-’) gl +’’" + gpq-p+l, F(q -1) Yl " - Ykq-k+l, Gn(q-1)
g..l+" + g..pq-p+l, F.(q-1) %.1 +" "+ %.kq-k+l, where lim._o g..j gj and
lim %.j yj for every j. Suppose that

(2.17) C(q-1)fin+d G(q-1)y, + F(q-1)u,, C,(q-1)fi,+d G,(q-1)y, + F.(q-’)u..

)2 (y+ U)).en i=1 (i+d --i+d
Proof For (i), see [19, pp. 161-162] and [9, p. 904]. To prove (ii), note that

by (2.17),

Cn(q-1)(n+d --.+d) C(q-’).+d --C(q-1).+d -(C.(q-1)-C(q-1)).+d

(2.18) Gn(q-1) G(q-1))yn + (rn(q-1)
--( Cn(q-1) C(q-1))f.+d.

Since G, G 0, F, F 0, and C, C 0, it follows from (2.18) and pa (i) of the
lemma that

(2.19) E (5+a-Y,+a)=o (y+ui+yi+a)
i=1 i=1

Again by (2.17) and (i),

o
i=1 i=1

From (2.19) and (2.20), the desired conclusion follows.

3. Extended least squares and the associated adaptive predictors. To begin with,
consider the model (1.1) with C(q-1) 1, i.e., the ARX model. In this case, the AML
algorithm (1.13) reduces to the usual least squares estimator, for which (1.13b) becomes
n=(y.,’’’,Yn-p+l, U.--A+I,’" ",U.--A--k+2)’=n. As shown in [18] and [19], the, satisfyleast squares one-step ahead predictors y,+a t9’

N
2(3.1) (37,+1 Y,+I) I,;.p...<__ O(log det Pv1) for every 0 < 6 < 1,

n=l

where Y’+I 19’, is the optimal one-step ahead predictor of y,+ assuming knowledge
of the parameter vector O (-al, --ap, bl, bk)’ and pl pl_l +,,’ as in
(1.13a). When the sample mean square boundedness assumption (1.20) holds for the
input-output data, (3.1) implies that

N

(3.2) (37,+1-,+1)2= O(log N) a.s. on {lim sup ’,Pn, < 1}.
i=1

For general C(z) satisfying the positive real condition (1.15), Lai and Wei [9]
showed that (3.1) still holds for the adaptive one-step ahead predictors fin+l
based on the AML algorithm On and the pseudoregression vector n defined in (1.13).
It is also shown in [9] that

(3.3) E II*,,-*,,ll2=0 log 2+ Y’. II,I,.ll a.s.
n--1 n--1

N 2 O(N) almost surely by Lemma 1 (ii), NIf (1.20) holds, then since Y,=I en ,=1 [[n[I2-
NO(N) almost surely and therefore Y.n=, IIn[I2= O(N) almost surely by (3.3). Hence,

under assumptions (1.15) and (1.20), (3.2) still holds for the adaptive predictor
based on the AML algorithm.
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In [9], (3.1) was obtained from an analysis of the recursive inequalities for the
extended stochastic Lyapunov function (1.16) that was also used to study the con-
sistency of (R)n. Earlier, Solo [8] used these recursive inequalities to transform (1.16)
into a nonnegative almost supermartingale and thereby applies the martingale conver-
gence theorem to establish the strong consistency of (R)n under assumptions (1.14) and
(1.15). There is, however, a gap in Solo’s proof, as noted by Zhang [13]. Specifically,
Solo’s proof made use of claim (A6) in Appendix I of [8] that for , 1 vectors xi, if

21 IlXi[I 2--- O(n) and E1 XiXf is nonsingular, then xn(E1 XiXti)-lXn -"0. Zhang [13] found
an error in the proof of (A6) and concluded that (A6) is "questionable." In fact, (A6)
turns out to be false, as can be seen from the following example in the scalar case

2u 1. Let J {2, 22, 23, } and let xn 1 if n J and xn n 1/2 if n 6 J. Then n -<1 xi
n +i:2’_-__n 2i< 3n for all n, and xixE/yn 2 > 1/2 for n J, violating (A6)

For d-step ahead prediction, Sin, Goodwin, and Bitmead [12] proposed an
extension of the AML algorithm to construct adaptive predictors using the following
implicit approach. Instead of working with (1.5), they introduced a further repara-
metrization to facilitate the analysis of the AML algorithm that directly estimates the
parameters of this reparametrized model. Applying the division algorithm, they wrote

(3.4) 1 (z)C(z)+ zdt(z),
za- and ((z) 1 "+" 2Z "-" - hZh-1 Letwhere F(z) 1 +fz +. +fa-

(3.5) (z) 1 zat(z) 1 gl za ghZa+h-.
From (3.4), ((z)= l(z)C(z). Multiplying (1.5) by/(q-) gives

(q-’){Y,,+d F(q-’)en+d}
(3.6)

(q_)G(q_)y + q_(A_d)ff.(q_)F(q_,)B(q_)Un"

Therefore, analogous to (1.9), system (1.1) can be written in the prediction form

Yn+d O’On + rln+d where r/n+a F(q-)en+d Yn+d --.n+d,

(3.7) 0- (Yn, ", Yn-p(-+2, Un-a+a ,’’’, Un-k-X-d+3, .,,’’’, Yn-h+l)’,

0 (g, gf + g,’’’, fu-fu-lb,, gl,’" ", g)’.

In analogy with (1.13), Sin, Goodwin, and Bitmead [12] introduced the following
extended least squares algorithm to estimate 0"

(3.8a) 0, On-d + Pn-d4’n-d(yn--O’n-aqbn-d),

(3.8b) p-I -1Pn-d + chnqb

th,,=(Y Yn (d)-d+2 ttn-A+d’’" l’ln---p k-A-d+3
(3.8c)

0 n&n-d, 0’

Thus, (3.8) is an AML-type algorithm which replaces the 37i in n by the "a posteriori"
predictor Olch-d. Note also that (3.8) can be regarded as "interlacing" d unit-delay-type
recursions for O+dt (j 0," ", d 1).

The extended least squares d-step ahead predictor is

(3.9) fin+d O’,&n,
where 0n and bn are given by (3.8). Assuming (1.20) and

(3.10) min Re ( 1 )Izl=, (z) >0,
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Sin, Goodwin, and Bitmead [12] modified Solo’s [8] argument to prove that
n-lye1 (i/d--i+d -*0 almost surely, i.e., the adaptive predictors (3.9) are globally
convergent. As noted by Zhang [13], their proof uses Solo’s [8] result (A6) to conclude
that 4’P.b 0 almost surely. Since (A6) has been shown to be invalid, their proof
only gives that under (1.20) and (3.10),

(3.11) r/-1 (i+d i+d 0 a.s. if lim b,P,b, 0 a.s.
i=1

Modifying the proof of Theorem 1 of Lai and Wei [9] (instead of Solo’s [8]
arguments) and combining it with algebraic details similar to those provided by [12]
leads to the following analogue of (3.2), which is considerably stronger than (3.11).

THEOREM 1. Suppose that the random disturbances e, in the linear stochastic system
1.1 satisfy 1.3) and that the positive real assumption (3.1 O) holds. Consider the extended

least squares algorithm 0, defined by (3.8) for the implicit model (3.7), and its associated
adaptive d-step ahead predictor (3.9). Then for every 0 < 6 < 1,

(3.12) 21 O(log det p-l) a.s.,
i=1

where is defined in (3.7). Furthermore, if (1.20) also holds, then E1 I1 ,112= o()
almost surely and

)2 O(logn) a.s. on{limsup’P..<l}(3.14) ()Ti+d --Yi+d
i=1

Proof Let f.=(O-O,,)’4,,,_d, e.=y,, O’,,-dqb,,-d, ,,=Y,, O’
By (3.16) of [12], (q-’)w.-L. Define

Q,, (o-, )’P-l_d( ,, ).

Fix j c {0, , d 1} and let at, aj+dt for a sequence of vectors (matrices, scalars)
a., so that Ot,j Oj+dt, Ptd Pj+dt, etc. By (3.13) of [12],

(3.16) --!t, (1 b t_l,jPt_l,j)t_l,j)et,j.

As shown in [12, p. 1163], it follows from (3.8), (3.15), and (3.16) that

By (3.8a),

(3.18) -fd (0,_1, O )t )t_l,j -lf qb ’t_,,Pt_l,jdpt_l,( etd rltd) + (tt_l,jPt_l,jgt_l,j Tt,j

Since ,,= wd+ r/,d, it follows from (3.17) and (3.18) that

Qt, Qt_l,j-ft,j(2w,,j-ft,j)

(3.19) + 2 rh.j{ O,--l,j O)t,--l,j "91- tt-l,jPt-l,jt-l,j(et, "qt,j) }
2 --t --t 2+ 2oh jPt-i ,j )t-l,j’Ot, ( t- ,jPt-l,j)t-l,j( 1 -(t-1,jPt-l,jtt-l,j)et,
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which is of the same form as (24) in [9]. Let gi-" wi-f/2. For n =dT+ v with 0 -< v< d,
we obtain by summing (3.19) that

Q,, + Qn-1 +" q" Q,,-d+, Qo +" + Qd-, 2 fg,
i=d

(3.20)
j:O t:l j:,+l t:l/

+ 24S’ P,_ 4St_,,jr/,,j ’_, P,_,,jf,_,,(1 f’ P,_ ,_,,)e2
t--l,j 1,j t--l,j 1,j t,j]"

Since wi (1/(;(q-1))f by the stability of ((z), gi (1/(q-1)-1/2)f and therefore by
the positive real assumption (3.10) and Lemmas 3 and 5(i), there exist 6 > 0 (for which
1/t(z)-1/2-6 is positive real) and K > 0 such that

i=d i=d i=d i=d

analogous to (25) in [9]. Note also that (3.16) and (3.18) are analogous to (26) of [9].
The rest of the proof of (3.12) and (3.13) is therefore the same as that of Theorem !
of [9], where the only references to Solo [8] are related to (24) and (25) of [9], and
(A6) of [8] is never used.

Suppose that (1.20) holds. Since 1 e=O(n) almost surely by Lemma l(ii),
E1 T]

2i:O(t/) almost surely. Hence El f/2:E1 (yi-’qi)2<2(Elyi-k-E1 7)---O(n)
almost surely. Therefore E1 I1ill- o(n) almost surely, which together with (3.13)
gives that

i=1 i:,1 i:1 i=1

implying that 21 4Si 2 O(n) almost surely. Hence

almost surely, and therefore (3.14) follows from (3.12). []

Remark. Unlike the preceding arguments, the proof of Sin, Goodwin, and Bitmead
[12] uses (3.17) to show that

E[n-’Q,,I,,_a]+
(3.22) <- n d)-l Q,,_d + E[( n 1)-1S,_1

pn-’
where S. 2 -,i=d f(gi--1/2pf)+ K, and p and K are chosen by (3.10) so that 1/(z)-
(l+p)/2 is positive real and S.=>0 for all n>-d. Summing (3.22) from d to N and
taking expectations, a crucial step in their argument is to prove that

(3.23) E
n---d

which is then used to show that E(=d n-lf2,,)<c, from which it follows that

a n-lf< almost surely. Sin, Goodwin, and Bitmead [12] prove (3.23) by first
showing that d n-lck’,,-dPn-dCkn-d < O almost surely and then applying the monotone
convergence theorem to conclude that (3.23) holds. However, this application of the
monotone convergence theorem is invalid, and we cannot conclude from the almost
sure finiteness of Z a__ YI n-l(z,/Yl zi) that EZ < c for nonnegative random variables

2z,. In particular, letting z, u,_a f-a in the special case d A 1 and A(q-1)
B(q-1)=C(q-1)=l, consider the following counterexample. Let Vo, vl,’’" be



1074 T.L. LAI AND Z. YING

independent exponential random variables with mean 1. Define Zo=V0, z.=
nI{y,,Ulz<2. }-+- Vnl_{E’-z>_zn} for n >- 1. Then a standard argument shows that
liminf,,_.E(z./Y zi)>0 and that P{n/2<-YI zi<=3n for all large n}= 1. Therefore,
although Z=Za n-(z,,/ zi)-<-3Y z./(Y zi)Z-+-O(1)<CX3 almost surely, EZ=
2 n E Zn/Z1 zi cx3.

Theorem 1 suggests that if we use the extended least squares predictor ).+a 0’. oh.
to predict Y.+a whenever h’.P.4. -< 6 (with 0 < 6 < 1) and use some other predictor
when this condition is violated, then we may be able to achieve a good overall
performance. This idea will be further developed in Corollaries 2 and 3 of 4 where
we will use the stochastic gradient algorithm to give an adaptive predictor of y.+a
when 4.P’. th. > 6.

4. The stochastic gradient algorithm and some extensions. To begin with, consider
the stochastic gradient algorithm (1.29) that estimates the parameter vector (1.11) of
the explicit system (1.1). As an application of Lemma 1 to the extended stochastic
Lyapunov function Q. I[(R). -(R)ll 2, we prove the following corollary, part (ii) of which
deals with a modification of (1.29) that constrains by projection the estimator to lie
inside some convex region. Such constrained algorithms have been studied by Ljung
[5], [6] and Kushner and Clark [20] by the ODE method.

COROLLARY 1. Suppose that minlzl=1Re{C(z)-a/2}>O and that the random
disturbances e, in the linear stochastic system (1.1) satisfy (1.3).

(i) For the stochastic gradient algorithm (1.29),

(4.1) lim sup I1(R),11 < a.s.,

(4.2) E (e,-e,)2/r, <oo a.s.,
n=l

(4.3) Y 11o.-o.-,[I2< a.s.,
n=l

where e, and r, are as defined in (1.29b) and (1.29c).
(ii) Let {D,} be a sequence of closed convex regions in Rp+k+h such that O D,

for all large n. Let HD(X) denote the Euclidean projection ofx into D, i.e., IIx--rID(x)ll
min (llx-ylly D}. Suppose that we modify (1.29a) defining the stochastic gradient
algorithm as

(4.4) t9, I-ID. 0._ -t- ar-l e, dp,,_).

Then (4.1) and (4.2) still hold. If, furthermore, D, D,_I for all large n, then (4.3) still
holds.

Proof (i) Let Oi Iio,-oll 2. From (1.29a) it follows that
2(4.5) Qi Qi-1+2ar711eicbi-((R)i-1-O)+a2rV21eilli-lll.

Replacing ei in (4.5) by (ei- ei)+ ei and summing (4.5) over give that for n > h,

Q. Qh + 2a {ri_l(e ei)dPi_l(Oi_l_O)+(a/2), ri_l(e ,)211,_, =}
i=h+l

(4.6) + a2 rC,_2,ll*i_lll2e2 +2a ei
i=h+l i=h+l

-1 -0)+ arC,_21(eiX {ri_lCJ i_l(Oi_l
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Since ei-ei (y-ei)--O_l(I)i_ is _l-measurable, it follows from (2.1) that

i=h+l
Ei{ -1 -2 2}ri_ltP i_I(Oi_I- O) -- ar_l(e-

(4.7) 0 rT_21[dPi_l(Oi_1-0)]2 / 0 ri_l(e El)2
i=h+l i=h+l

+O(1) a.s.,

noting that II,ll’/r,--< 1. Moreover, YI r=ll,ll=< oo since rt= ro+Y.1 I[ill 2 Hence

r,_ll*,_l]e, 0 ri_ll[*i_l] O(1) a.s.,
i=h+l i=h+l

by Lemma l(ii). By continuity and compactness, we can choose p>0 such that

minll=l Re {C(z)-(a + p)/2} > 0. Moreover, by Lemma 2 (with d 1 and t et),

(4.9) _l(Oi_-O)+(a+p)(e,-ei)/2=-{C(q-1)-(a+p)}(ei-e).

Since II,ll=/r, 1, it then follows from Lemma 3(ii) that

i=h+l
{rT_ll(ei Ei)lff}i_l({i_10)/(a/2)-2 2}ri_,(e

< -l(e, Ei){(.}! -O)/(a/p)(ei 8i)/2}ri-1 i--1(Oi--1
i=h+l

(4.10)
(p/2) -1 (el ei)2ri_

i=h+l

<-(t9/2) --1 (ei e,)2/’i-1 + O(1).
i=h+l

Since ’i_1(0,-,-0) -C(q-1)(e,-

(4.11) rT_l[i_l(Oi_l- O)]a O r_(e- e
i=h+l i=1

From (4.6)-(4.11), it follows that O<={-ao+o(1)} F=I r-i +O(1) almost
surely, giving the desired conclusions (4.1) and (4.2). To prove (4.3), note that by (1.29a),

2[Io,-O,_lll2- a2rT-2111b,-1112{e,/2e,(e,-e,)/(e,-e,)
i=1 i=1

< (a2+ o(1)) --1ri-l(ei- 8/)2-1t- O(1) a.s.,
i=1

by (4.7) and (4.8), noting that II ,ll=/r,-< 1. Hence (4.3) follows from (4.2).
(ii) Suppose that (R)cDi for all i>-m(>h). For i>-m, since D is convex and

O D, it follows from (4.4) that

II(R),- (R)/_1112 < II(R)/_l / ari21e,dp,_l-Oll 2

[10,_1 OII2+ 2arT_11e,/_l(Oi_l O)/ a2 ri_lei}lcYP,_ll
and therefore the same argument as before proves that (4.1) and (4.2) still hold. Suppose
that D_I c D for all _-> m. Then for i-> m, since O-1 e Di_l c D and D is convex, it

2follows from (4.4) that ][0i-0i_1112 II(O,_l/ ari-_11eidPi_l)-Oill 2 a2r72_llldPi_1]12ei,
and the same argument as before shows that (4.3) still holds.
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The ARMAX model (1.1) can be written as a linear regression model (1.12), and
(1.29) represents the stochastic gradient algorithm to estimate the parameter vector O
of this regression model. Making use of (4.1)-(4.3), Fuchs [16], [17] established the
global convergence property (1.21) for the adaptive d-step ahead predictors defined
by the explicit approach (1.18) in which the estimated polynomials are given by the
stochastic gradient algorithm On, under assumptions (1.20), (1.25), and (1.26). An
alternative approach for d-step ahead prediction is to express (1.1) as the regression
model (1.9), in which E(’rln+d[n)--O while q, is o%,-measurable. The stochastic
gradient algorithm estimating the parameter 0 in the regression model y, 0’qn_d + ft,

(i.e., (1.9)) takes the form

(4.12a)

(4.12b)

(4.12c)

(4.12d)

O On-- +(a/r._a)d._a(y.-.),. =(y ),,Yn-p(d)+l, Un--A+d, Un-a--k+2,Yn+d-1, ,Yn+d-h

where p(d)=pv(h-d+l). The extended stochastic Lyapunov function argument
used in Corollary 1 can be modified to prove the global convergence of the adaptive
predictors (4.12d) based on the stochastic gradient algorithm that does not involve
interlacing in the implicit approach. This is the content of the following.

THEOREM 2. Suppose that minlzl= Re {C(z) -(d 1/2)a} > 0 and that the random
disturbances e, in the linear stochastic system (1.1) satisfy (1.3). Consider the stochastic
gradient algorithm On defined by (4.12) for the implicit model (1.9) in which the i and
qi are defined by (1.6) and (1.7). Then

(4.13) lim sup [10n < co a.., IIo.-o._11< a.s.,
nx =d+l

(4.14)
n=d+l

Consequently,

(4.15) n -1

t=d+l

If B(z) 0 and is stable, then on

aoS.

(4.17) d- a 2 -2 2T2r,-a c,-a +2a r/i
m+l m+l

--2 2}.{r_u4,_u(O_- -0)+ ar_a(e-w)l]4_u[[

Qn Q=+2a {rT_ld(ei 31"]i)(l}i_d(Oi_ O)+(a/2)--2ri-d(ei 7i)2[[d,_dll 2}
m+l

{lim sup._oo n -1 Y,=I y,2 < Co} U {lim sup._oo/,/--1 )-’
t=l Jt2 ( 00}.

2(4.16) n -1 (t--t)2-’>O and (y2,+u,+fi2,)=O(n) a.s.
t=d+l t=l

2 CO}.IfA(z) is stable, then (4.16) holds on {lim sup_ n-1 t= u, <
Proof. Let Q, IIo - oll e, yn-)3,. As in (4.6), it follows from (4.12a) that for

n> m,
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Note that r_a, -d, O-d, and e-rh O’l]li_d --O_d(i_d are _d-measurable. Since
"rli--ei+flei_l-i-’’ "+fd_lei_d+l, it follows from Lemma 1 that as n-,

(4.18)

(4.19)

T/i{--1ri_di_d(Oi_d -19)+ ar72a(e, ,)ll,_ll=l
m+l

=o rT)d[dpi_d(Oi_d--O)] +0 ri-a(ei rli +O(1)
m+l m+l

r,_all4)_alln o ri-dll4),-all --0(1) a.s.,
m+l m+l

analogous to (4.7) and (4.8). Choosing p >0 such that Re {C(z)-(d-1/2)a-p} >0 for
all Izl-- 1, we obtain by Lemma 2 that as in (4.9) and (4.10),

(4.20)

{ri-_d(ei- ni)_d(Oi_d 0)+(a/2) r-2(e T]i)2 i-d 2}
m+l

<--- ri-d(ei rli)[{C(q-’)-a/2 pI(e rh)] p r71d(ei ’Oi)2.
m+l m+l

Noting that (4.17) involves 0_1- 0 instead of Oi-d- 0, we write in the case d > 1

d-1

(4.21) Oi-l--O:(O,-d--O)+ E (Oi-s--Oi-s-1).
s:l

Fix s 1,..., d 1. From (4.12a) and the inequality ]x’y[ <- (llxll =+ Ilyll=)/2, it
follows that

ri-d( ei "Oi)( i-d Oi-s Oi-s-1
m+l

(4.22)

a [-’ri-d(ei Tli)i-d ]’[ rls-dei-sd/)i-s-d]
m+l

<(a/2) rid(ei ,Ti)2lli_a[12+ 2 --2 2 2ri-,-aei-slli-s-a[[
m+l m+l

(a + o(1))
m+l

where the last relation above follows from an application of Lemma 1 to

ri-s- (ei-s Tli IIi- d[I
m+l m+l

--2 2 2+ ri_s_d l)i-s-d i--s
m+l

+2 r,_2,_dlli_,_dll2(ei_s 97i_s)i_s,
m+l

2noting that ei-,- n-s if _s_a-measurable and that Ilcbtll2/r, <- 1 and -’1 14t1[2/r, <oo.
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Moreover, analogous to (4.22), we have

Tliri--ld()-d(Oi-s Oi-s-1)
m+l

=< a "Oiri_drT_ls_dt i-dti-s-d(ei 7qi-s)
m+l

-1(4.23) + a
m+l

m+l m+l

o ri-a(ei- r) + 0(1) a.s. by Lemma 1.
m+l

Combining (4.21) with (4.20) and (4.22) gives

{rc,-ld(ei "l’]i)( d(Oi-1 O)+(a/2)--2 )2 2}’i- ri_d(e,- r, cb,-d
m+l

_-<{(d 1)a+o(1)} -2r,_allchi_dll2(ei r/i)2+o(1) p y rT,__la(ei i)2
m+l m+l

r_..s-1._(ei i)[{C(q-1)-a/2 p}(e, i)]
m+l

(4.24)
-(p+o(1)) rJd(e,-,)2+O(1)

m+l

-1r_e(e n)[{C(q- (d-)a-o}(e-n)]
m+l

N -(o+ o(1)) re(e-n)+ O(1),
m+l

where the last inequality follows from Lemma 3(ii). As in (4.11), it follows from
Lemma 2 that

(4.5 r;?[_.(o_: o] o 2 -- (e
m+l m+l

From (4.17)-(4.19) together with (4.21) and (4.23)-(4.25), it follows that Q+
(2ap+ o(1)) +1 ra(e-)= O(1) almost surely, implying (4.13) and (4.14) as in
the proof of Corollary 1. Note in this connection that e-

By (4.14) and the onecker lemma,

i=1

’OS d

:o y+ ui+ f on spr:
i=1 i=1 i=1

From Lemma l(ii), (4.26), and the inequality

(4.27) )3/2<2 (i+rli-Yi)2+4 y+4 7
i=1 i=1 i=1 i=1
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it follows that

(4.28) yi=O(n) a.s. on limsupn -1 (y+u)<oe
i=1 i=1

From (4.26) and (4.28), (4.15) follows.
Suppose that B(z) 0 and is stable, by changing A if necessary, we can assume

that bl 0. Then by (1.1) and Lemma 50),

(4.29) 2 u,=0 Eye+ e =0 y +O(n) a.s.,
i=1 i=1 i=1 i=1

and therefore

2(4.30) ui O(n)
i=1

(4.31) y= O(n)
i=1

and therefore

Ya<2i--- (Yi-fii-rli)2+4 fi-1-4 rt2
i=1 i-----1 i=1 i=1

y +0 33 +O(n)
i=1 i=1

On the event {lim sup,_, n -1 2i=1Y < oe} U {lim sup,_,oo r1-1 2i=1 t2" < 00}, it follows
from (4.28) (4.30), and (4.31) that Y=I (Y2 +u2 + 33,2. O(n) almost surely, and there-
fore Yi=l (Yi-)3i-rt)2= o(n) almost surely by (4.26).

Now assume that A(z) is stable. Then by (1.1) and Lemma 5(i),

yi--O U "-0 E --0 U +O(n)
i=1 i=1 i=1 i=1

aoSo

2 oe}, y,2. O(n) almost surely, andHence on the event {lim supn_.oo n -1 -’i=1Ui < 2i=1
therefore i"=1 33= O(n) almost surely by (4.28) and i=1 (Y-Y- rh)2= o(n) almost
surely by (4.26).

Noting that although the stochastic gradient algorithm leads to the adaptive
controller (1.23)-(1.24) that is self-optimizing, its rate of convergence has been found
in numerical studies to be much slower than that of the more commonly used "least
squares iterations," Sin and Goodwin [21] suggest combining the ideas underlying
both algorithms into what they call a "modified least squares" algorithm for the case
d A 1. Their algorithm has been modified and extended to general d by Zhang [13]
who, defining bn as in (3.8c), introduces the recursions

(4.32a)

(4.32b) rn rn-l+ II&ll =, R, -1(P._a + b.b’.)-,

(4.32c)
Pn=Rn andan=l,

Pn =(rn-a/rn)Pn-a

ifrntr(Rn) <K1 and 49 Pn-a4)n <= K2,

and an 1 / (1 + b’. Pnbn), otherwise,

From (4.26) and (4.29), it follows that
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where K1, K2 are prescribed constants. Under assumptions (1.20) and (3.10), it is
shown in [13] that the adaptive predictors ),/d 0’,hn associated with (4.32) satisfy
the global convergence property (1.21). The modified least squares algorithm of Sin
and Goodwin [21] for the case d -A 1 is similar, but does not include the condition
4’,Pn-Chn -< K2 as in (4.32c) because Solo’s [8] result (A6) has been used to conclude
that 4’,P,-lCh,-0. Zhang [13] finds (A6) questionable and further modifies the Sin-
Goodwin algorithm to patch this gap and to extend to general d.

Instead of using matrix gain (3.8b) of the extended least squares algorithm, which
we have studied in 3, Zhang’s modified least squares algorithm changes this gain by
not including h.4’, into the sum and deflating the matrix by a scalar multiple whenever
certain conditions are not met. Note that the scalar gain 1/r, 1/(ro+Yl 4;ill 2) of the
stochastic gradient algorithm also appears in the condition r, tr (R,)_< K and in the
dampening factor r,-d/rn of (4.32C). Our results in Theorems 1 and 2 suggest a simpler
and more direct way of combining the stochastic gradient algorithm with the extended
least squares algorithm to produce a globally convergent adaptive predictor. This is
the content of the following result.

COROLLARY 2. Suppose that the random disturbances en in the linear system (1.1)
satisfy (1.3) and that the outputs y, and inputs un satisfy (1.20). Assume that (3.10)
holds and that minlzl= Re {C (z) (d 1/2) a } > 0 for some a > O. Define the stochastic
gradient algorithm On by (4.12) and the extended least squares algorithm On by (3.8). Let
fn+d be the adaptive d-step ahead predictor associated with the stochastic gradient
algorithm, as in (4.12d). Take 0 < 6 < 1 and define

(4.33)
fi*,+a O’ ck, if ch_ =6,

fn+a ifdp ;P,dpn > 6,

where Pn and ckn are given in (3.8b) and (3.8c). Then

(4.34) n -1 (.+a-)*+a):O a.s.,
i=1

(4.35) I{[p,,>,}-- O(log n) a.s.
i=1

Proof By Theorem 1, 2 O(n) almost surely since (1.20) holds, and

(4.36) (+d Oqb,)2I(;P,i<-_)= O(1og Amax(pl)) O(1og n) a.s.
i=1

By (4.15) and (1.20),

(4.37) , (,i+a fi+d)2 o(n) a.s.
i=1

From (4.33), (4.36), and (4.37), (4.34) follows.
To prove (4.35), note that for u 0, , d 1,

i<=n,i=-- ,(modd) i=1

by (3.8b) and Lemma 4(i). Since 2 11411- o(,) almost surely, (4.35) follows from
(4.a.

In view of (4.35), the stochastic gradient component of the adaptive predictor
(4.33) is used very infrequently, only at a relative frequency of O(n -1 log n) within n
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stages. At other times, the extended least squares component of (4.33) is used and the
cumulative squared difference between the adaptive predictor and the optimal predictor
at these times is of the order O(log n), as in (4.36). We can introduce at these times
another modification to keep -’i-----1 (;i+d --;i+d within O((log n)3) almost surely if the
inputs and outputs eventually have finite moment generating functions, i.e., if
lim supt_. E exp (h[ut[) < and lim sup,_. E exp (h[y,[) < for some h > 0. This is
the content of the following corollary.

COROLLARY 3. Suppose that the random disturbances en in (1.1) satisfy (1.3) and
that the outputs y, and inputs u, satisfy (1.20) and

(4.39) lim sup {E exp (hlyil) + E exp (hlui[)} < e for some h > 0 and a > O.

Assume that (3.10) holds. Define the extended least squares algorithm On by (3.8). Take
0 < 6 < and define

(4.40)
)n+d 0’th, ifch’P,ch, <= 6,

(log n) ’/ iff’nPnfn > 6,

where Pn and chn are given in (3.8b) and (3.8c). Then (4.35) holds and

(4.41) 2 ()+d--)+d)2= O((log n)) ’+2/) a.s.
i=1

Proof First note from the proof of Corollary 2 that (4.36), (4.38), and (4.35) still
hold in the present case. By (3.10), C(z)(= F(z)C(z)) is stable and therefore C(z) is
stable. From (4.39) it follows that

2 (P{[u,I > 2(h- log n)/}+ P{[yn[ > 2(h- log n)/}) 20(exp (-2 log n)) <c,
n=l n=l

and therefore max (lun[, }y,])= O((log n)/) almost surely by the Borel-Cantelli
lemma. Since C(z) is stable, it then follows from (1.6) and Lemma 5(i) that 37,+a
O((log n)/) almost surely. Hence by (4.40),

I;%>- O (log n)2/ I,> a.s.
i=1 i=1

From (4.35), (4.36), and (4.42), (4.41) follows.

$. Consistent parameter estimation and monitored reeursive maximum likelihood. In
this section we will assume that C(z) is stable. Suppose that we are able to find strongly
consistent estimators On of the parameter vector O defined in (1.11). Then under
assumption (1.20), the adaptive d-step ahead predictor ),+a constructed from On by
the explicit approach (1.18) satisfies the global convergence property (1.21). Here we
will make use of the consistent estimators (R), in another way to provide adaptive
predictors fi+ that satisfy

i= (;+ y+
lim sup
n- log n

(5.1) __<(2d-1)(p(d)+k+d-l+h)lim sup E(r/2, [-d) a.s.,

where p(d)=pv(h-d+ 1) and r/ is defined in (1.7). Such adaptive predictors are
constructed by the implicit approach using the monitored recursive maximum likeli-
hood algorithm defined below. Note that (5.1) is a stronger conclusion than (3.14) on
adaptive predictors based on the extended least squares algorithm. Moreover, while
the extended least squares algorithm needs the positive real assumption (3.10) for
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(3.14) to hold, the monitored recursive maximum likelihood algorithm does not need
such an assumption for (5.1).

The consistent estimators O, will be used to provide "confidence sets" S, for the
parameter vector 0, defined in (1.8), of the implicit system such that S, shrinks to 0
as n->. For example, consider the AML algorithm O, defined in (1.13) with
pseudoregression vectors ,. Under assumptions (1.15) and (1.17), it follows from
Theorem 1 of [9] that {log (1 ][(I)i]]2)}//min(E1 lffJilffJti)-")O almost surely and that

(5.2) O -O O log IIo,II = /1/2
/-min ii a.s.

Since the components of 0 can be expressed as smooth functions of those of (R), (R),
induces a strongly consistent estimator 0,* of 0; in fact, (5.2) implies that

/min (i(i a.s.
i=1 i=1

Hence we can define S. to be a cube with center 0.* and width --min--l/3(l,,-- "[-Eln ()i(t)i.
Then by (5.3),
(5.4) P{O S. for all large n} 1,

and as n-* the width of S. converges to 0 almost surely.
The consistent estimators 0.* and the associated confidence sets S. need only be

updated occasionally at times n(1) < n(2) <. for monitoring the recursive maximum
likelihood algorithm 0. that we now introduce. The basic ideas underlying the algorithm
0. are (i) to extend the RML2 algorithm (1.33) to the implicit system (1.9), and (ii)
to constrain (monitor) the algorithm so that it lies inside S. for n(j)<-n < n(j + 1).
The projection which we use to constrain 0. is taken with respect to the norm induced
by the positive definite matrix P-ld defined in (5.6d) below, instead of the usual
Euclidean norm. For x Rp(d)+k+d-l+h and n(j) <- n < n(j+ 1), let 7r.(x) denote the
unique solution of the quadratic programming problem

(5.5) ("a’n(X) x)’p-ld(Trn(X)--X) min {(y x)’P-a(y-x)},
ySn(j)

i.e.,Tr.(x) is the projection of x into S.(j) with respect to the norm induced by P-la.
It is convenient to choose S.( to be a cube so that we have linear constraints for the
quadratic programming problem (5.5), which can be handled by simple computational
methods (cf. [22]). Define On--(n,l,’" ",n,p(d), b"nl ()n,2 ("ff)n,k+d-1
-c*.,,’’.,--.,h)’ for n > n(1) by the recursion

(5.6a)

(5.6b)

(5.6c)
(5.6d)
where

O,, r,( O,_l + P,,-a,_a(y,,-.,,)),
+ -’n,ln--1 "Jl-" "-Jr- ’n,hn-h Dn, where

(Y )’)n Yn-p(d)+l l’ln-A+d /’/n-k-A+2 n+d-1 n+d-h

Y,,+d O,ck,,,
p-

(5.6e) p. _-> 0 is ft,-measurable with sup p. < a.s.

The following theorem, which is analogous to Theorem 1 on the extended least
squares algorithm, gives asymptotic properties of the adaptive predictors (5.6c) associ-
ated with the monitored recursive maximum likelihood algorithm. These results are
used to establish the conclusion (5.1) for the choice p, 1/n in (5.6d) under certain
conditions on the input-output data and the stopping times n(j) in Corollary 4 below.
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THEOREM 3. Suppose that C(z) is stable and that the random disturbances e, in
the linear stochastic system (1.1) satisfy assumption (1.3). Let n (1) < n (2) <. be
stopping times with respect to {t} and let S,(j) be an ;,o)-measurable, closed and convex
set such that

(5.7) P{O S.O)for all largej} 1 and lim (diameter ofSo)) 0 a.s.
j->

Define the monitored recursive maximum likelihood algorithm O by (5.6), where rr is

given by (5.5) for n(j)<=n<n(j+ 1), and define , and , by (1.6) and (1.7).
(i) Suppose that sup,, le,,I < oo almost surely. Then on the event {Amax(P:1) "--> 00 and

’.P.,,, -> 0},

Y (fii+a--,+d)2<--_(2d--1)Ilimsup E(’rllai_d)+O(1)} log det (pl)
i<=n L ic

(5.8) "- O ( i=1

+ o y Y [11.()-11=+ [l.o)-sll] a.s.
j’n(j)<--n+d s=l

(ii) Suppose that the n(j) are stopping times with respect to {t-d+l} (i.e., {n(j) t}
t-d+l) and such that n(j+l)-n(j)>-d. Then (5.8) still holds on {hmax(pl)’-->O0 and

’.P.. -> 0}.
Proof. Let Q,=(0,,-0)’p-1d(0,,-0). For n(j)<-_n<n(j+l), since zr(x) is the

projection of x into the closed convex set So) with respect to the norm induced by
P_u, it follows from (5.6a) that if 0

Q -< (0_ 0 + P_

_
(y ;))’P:!(0_ 0 +P__(y ;))

(o_ 0)’P!(o_ 0) +’_
(.9)

Q_+,_(o_ 0) +

+ ’ P._._.(y,,n-d

noting that P71 pt-l_l + t’t + ptI. Therefore on the event E A { 0 So for finitely many
j’s},

Q.=< [se’,-,(o,-1 0)]2 + 2
i=n(1)+l i=n(1)+l

-d(Oi-,--O)(yi--;i)

ri-dPi-di-d(Yi--;i)2d-
i=n(1)+l i=n(1)+l

[i_d( ei_l O )2-- O(1)

(5.10) <= [-d( Oi-1- 8)]2 -[" 2
i=n(1)+l i=n(1)+l

x [sc;_d(O,_,- O)+ (y,- 33,-

+2 :’i--d( Oi--1 0)’1i --i=n(1)+l i=n(1)+1

+O(1) a.s.,

ti_d( Oi_l O

ri_dPi_di_d(y __i)2 _[.. 0 Pi
i=l

noting that Oi_ 0 -’> 0 almost surely by (5.7).
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Let Ct(q-1) l+C,lq-l+ "-F t,hq -h, C,.o 1. From (2.3),

C(q-1)[_d( Oi_ O)+ (y,-)3,- r/,)] C(q-1)[’i_d( Oi_ 0)] (-d( Oi-d O)

C(q-1) C,_a(q-1)][’,_a( Oi_ 0)]

h(5.11) + C_d,r;_d_r(Oi_l_r_ Oi-1
r=l

+ ’ 0_a)i-d(Oi-1

noting that C,_d(q-1)_dO b’ h by (5.6b).,_a0 and (Yr=0 C,-d.r,-,-r)O,-1 Cki-dO,-1
Since C(z) is stable and i_a.rCr almost surely as i-*c for r= 1,... ,h, and since
Oi__l--Oi --2 i-1

j=,-s/l (0J 0-1) for s _-> 1, it follows from (5.11), (5.6b), and Lemma 5(i)
that

i=n(1)+l
[:-d(0,-1- 0) + (y- 33,- r/,)]2

(5.12) =o( [_d(0,_1--0)]2)+0(1)i=n(1)+l

[;__,(0, 0,_,)]=
i=1 r=-d+l

a.So

For n(j) < < n(j + 1), Oi-1 S/1o) and therefore (0 0i_1)’ -1Pi_d(Oi--Oi_l)<
l_aP,_a_a(y,-,) by (5.6a). Hence by the Schwarz inequality, on E1 -a

E fq {lim/1_, so/1P/1sc/1 0},

h-1

i{n(1),n(2),...} r=-d/l

1/2 pT_a/2( Oi Oi )]2[l-d-rPi-d -1

(5.13)
i=n(1)+l r=-d+l

-o( i=n(1)/1
i_dPi_di_d(Yi ;i)2) -k O(1)

by Lemma 4(ii). Hence by (5.12) and (5.13),

i=n(1)+1
[:l-d( 0,-1 O) -F (Yi fi, Ti)]2

(5.14)
=o( i=n(1)+l

[l_d(O,_l-- 8)]2) -- 0(1)
+o( i=n(1)+l

l-dPi-di-d (Yi ;i )2)
+o (j)_d_rll -j:n(j)<=n r=-d+l

a.s. on E

noting that 0- 0-1-0 almost surely in view of (5.7).
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Since (y,-,)2=(y,-,-7,)2+2(y,-fi,-i),l,+rl and since y,-fi,-q, and
-dPi-di-d(l) are i_d-measurable, it follows from Lemma 1 that on El,

i--n(1)+1

< {lim sup E ,/2il,-d)+O(1)} -aP,-a,-a
i- i=n(1)+l

i=n(1)+1

-{lim sup E(r/2 ;;i-d -}- O(1) log det Pn-d-1

a.s.,
i=n(1)+l

by Lemma 4(i). Let 0 < A < 1/2. Using the inequality A _-< (1 + A)B + (1 + A-)(A+ B),
we obtain from (5.14) and (5.15) that on El,

E (Yi--i--’rli)2
i----n(1)+l

(5.16) --<- (1 +A2+ o(1)) i [-d(Oi-l--O)]2

i=n(1)+l

+ (log det -1 ( h+d--1 )P._d)+O Y’, E II .(j)_ ll + 0(1) a.s.
j’n(j)<=n s=l

Moreover, using the inequality AB<-_(A2A2+A-2B2)/2, we obtain from (5.14) and
(5.15) that on E1

i=n(1)+l
[l-d( Oi-1- 0)][-d( Oi-1- O) -- (Yi ,

(5.17) _--< (A 2 + o(1)) E [S-d(0,-1- 0)]2
i=n(1)+l

+ o(log det -1 ( h+d-1

Pn-d)+O = +o p + O(1) a.s.
j:n(j)<--n s=l i=1

d-1Writing 0,_1-0 O,-a- 0 +2r_= (0i-r-Oi-r-1), we now proceed to show that on

(5.18)
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Since ’i-d( Oi-a O) is ,i_d-measurable and since ’li e +flSi_l -Jr-" l-fd_lei_d+l, an
application of Lemma l(i) gives

i=n(1)+l (n )-d(Oi-d--O)Tli---O E [’i_d(Oi_d--O)]2 +O(1)
i=n(1)+l

(5.19)
(n )O E [-d( Oi-1- 0)]2
i=n(1)+l

"- O [[-d( Oi--r Oi--r--1)]2
r=l i=n(1)+l

+ O(1) a.s.

For fixed r 1,. ., d- 1, we have analogous to (5.13) that on E1

(5.20)
i=n(1)+l

--d Oi-r Oi-r--1 ]2 0 f-dPi-a(i-a (Y, i )2
i=n(1)+l

+O( E [’n(j)+r-d’[2) -]-O(1)
j:n(j)n-r

Moreover, since Ot_1E Sn(j) if n(j) < < n(j + 1), we obtain by the Schwarz inequality
and (5.6a) that

i{n(1)+r,n(2)+r,...}

El/2 1-1/2[ti-dai-r-dai-r-d( Oi-r Oi_r_l)9i[

(5.21) =<
iV:{n(1)+r,n(2)+r,...}

-dPi-r-di-d )l/2(_r_d Pi-r-di-r-d)1/21 n,I [Yi-r i-l

=< Z -aP-,-di-ani212 + Z l-,-aPi-r-di-r-d(Yi- --.i-r)212"
in

Applying (5.15), Lemma l(ii), and Lemma 4(ii) to (5.20), and combining the result
with (5.19), (5.20), (5.15), and (5.16), we obtain (5.18).

Suppose that sup, I1 < almost surely. Then sup, Inl < almost surely and
therefore

(5.22) 2 2 II<>-dll In-<>+l o 2 II>-sll a.s.
j:n(j)Nn r=l j:n(j)<=. =1

Now assume that the n(j) are stopping times with respect to {,-d+l}- Then for
r 1, , d 1, T & n(j) + r- d is a stopping time with respect to {r,} and r/,s)+r
d

i=lfd_ier+(fo=O). Moreover, II,O)+r-dll is r;measurable. Hence an application
of Lemma l(iii) and (i) gives

d-1

j:n(j)<=n r=l

(5.22’) (E E n(j)+r-d e
j:n(j)<=n r=l

d

Z fcl-ie73+i
i=1

( )+o 22 II=j)+r_ll = + 0(1)
j’n(j)<--_n r=l

a,s.



ADAPTIVE PREDICTION IN ARMAX MODELS 1087

d
Since E ]2i=,fa_ie+,ll7:)< E1/’(lYai=lfa-ie+il I), either (5.22’) or (5.22)
implies that

d-1

j:n(j)n r=l

(5.23) o 2 2 [11.()-,1[ + [[.(a)-,ll =1 + o(1) a.s.
j:n(j)n s=l

Applying (5.15)-(5.18) and (5.23) to (5.10), we obtain that on E,

Q,+(1-2h:+o(1)) [’i-d(Oi-l--O)]2

i=n(1)+l

(5.24) <(2d 1)]lim sup E(V,_a)+o(1)[ log det p,

+ o 2 2 Ell.()-ll + II.()-rll 2] + o(1) a.s.
j:n(j)n r=l

Since Q, 0, it follows from (5.24) and (5.16) that on Ea

(fii __fii)2 (yi_y_i)2
i:n(1) i:n(1)

(1 + A+ o(1))(1 -2A2+ o(1))-l(2d- 1)
(5.25)

x{lim sup E(2 }Ii_a) + o(1) log det P-n-d

j’n(j)n r=i i=1

+ O(1) a.s.

Since A can be arbitrarily small, (5.25) implies that (5.8) holds on E
{log detP}=E {P0 and Amax(pl)}. Since P(E)= 1 by (5.7), the
desired conclusion follows.

COROLLARY 4. With the same notation and assumptions as in eorem 3(i), suppose
that the input-output data satisfy

(.26) (y+ u) O( n and max(y+u)=o(logn) a.s.
i=1 in

Then

(5.27) L IIill =- O(n) and [Isc. 2 o(log n) a.s.
i=1

Suppose furthermore that p, 1/n and that the stopping times n(1)< n(2)<.., are so
chosen that

(5.28) E max (ll.(j)-rl[/ll.(j)-ll 2)- O(log n) a.s.
j:n(j)Nn lNrh+d-1

(which is possible in view of (5.27)). en (5.1) holds.
Proof Since fi y- V and since sup e[ < almost surely, it follows from (5.26)

that

(5.29) IIo, ll:=o(,) and max l[0,ll2=o(logn) a.s.,
i=1 in
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where qi is defined in (1.9). By Lemma 2,

C q-1)(Y, -fin "On) -( O,,-a O )’( qbn-d

(5.30) --(O,-d--O)’,-d, and therefore

,-d(q-1)(y, --ft, ,) --( O,-d O)’,-d,

noting that

(5.31) ,_d--,_d=--(O,’’’,O,y,_--fi,_l--n,_l,’’’,y,_h--,_h--,_h) ’.

Since O,-d 0 almost surely, it follows from (5.29), (5.30), and Lemma 5(i) that

(5.32) i= (y,-fi-)=O([[O_d-Ollll_dlz)=o(n)=, a.s.,

n

In view of (5.31), it follows from (.29), (5.32), and (5.33) that

(5.34) and max llllo(ogn) a.s.
i=1 in

Since (q-1) by (5.6b), (5.27) follows from (5.34) and Lemma 5(ii).
Suppose that 1In and that (5.28) holds. Since pl=PI+

llI/j, Ain(P)(lo(1))logn() and
almost surely by (5.27). Since log det Pl(p(d)+ k+ d- 1+ h) log Ax(P), the
desired conclusion (5.1) follows from (5.8), (5.27), and (5.28).

Theorems 3 and 2 have recently enabled us to provide an asymptotically ecient
adaptive control rule in the general delay case and without stability assumptions on
A(z), (cf. [23]). The rule involves parallel implementation of the stochastic gradient
and monitored recursive maximum likelihood algorithms. The stochastic gradient
component of the controller serves to stabilize the system even when A(z) is not stable,
as an application of Theorem 2. Together with an occasional dither signal to peurb
the target values, it also leads to well-excited blocks of input-output data from which
strongly consistent recursive estimates of the system parameters can be obtained by
the method of moments to guide the recursive maximum likelihood algorithm, giving
a control rule that can be shown by an application of Theorem 3 to satisfy

(y-y )
lim sup

log n

(2d-1)(p(d)+k+d-l+h)limsupE(_d) a.s.

in the general delay case and without assuming A(z) to be stable (cf. [23]).
Instead of the preceding implicit approach, it is natural to ask whether similar

results can be obtained by the explicit approach, involving the monitored recursive
maximum likelihood estimator O of the parameter vector O=(-a,...,-ap,
b,. bk, Cl," Ch)’ for system (1.1)"

(5.36a)

(5.36b)

(5.36c)

(5.36d)

) TTn ) -+- Pn_ n_ e. ),

n -’ n,1 n--1 "Jr’-" -Jr- n,hn-h ---(3. where, (Y,,," Y,,-p+l, u,_x+," U,,-A-k+2, e,,," en-h+l)’,

e,,=y,,-(R)’n--1 n--l

pl= pl + -r,.
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The rn in (5.36a) is the projection, with respect to the norm induced by P-’n-,--
n-,

into a closed convex subset Snj) which can be conveniently chosen to
be a cube in R++. An analogue of Theorem 3 for the adaptive one-step ahead
predictors )n+, (R)’.n can be proved by similar (and simpler) arguments and is given
in the following.

THEOREM 4. Suppose that C(z) is stable and that the random disturbances en in
the linear stochastic system (1.1) satisfy assumption (1.3). Let n (1) < n (2) <. be
stopping times with respect to {fit} and let Sn(j) be an n(j)-measurable, closed, and
convex subset ofRp+k+h such that P{O Sn(2) for all large j} 1, where we define ) and
t by (1.11) and (1.12). Define the monitored recursive maximum likelihood estimator

)n by (5.36), where rn is given by (5.5) (with d 1 and Snj) c Rp+k+h) for n(j) <- n <
n(j+ 1). Then on {Amax(pl)- cx3 and ;Pnn --0},

(5.37)

( h )j:n(j)<=n+l r=l

For d > 1, analysis of the adaptive d-step ahead predictors defined from On using
the explicit approach (1.18) becomes prohibitively difficult because of the inherent
nonlinearities in (1.18) and (1.4), and it is doubtful that they would provide sharp
results of the kind given by the implicit approach in Corollary 4.
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Abstract. First, a review of some recent developments in stochastic adaptive control of linear stochastic
systems is given. By integrating and refining several basic ideas in these developments, a relatively complete
asymptotic solution to the adaptive control problem is then provided for such systems. The solution involves
parallel implementation of a few basic recursive identification algorithms that serve to complement each
other. It also involves occasional use of a dither signal to probe the system for information.

Key words, stochastic adaptive control, linear systems, self-optimizing, self-timing, asymptotic efficiency,
stochastic approximation, recursive maximum likelihood, method of moments, occasional excitation, general
delay, colored noise, martingale theory
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1. Introduction. A widely used stochastic model in the time series and stochastic
control systems literature is the ARMAX system (autoregressive moving average system
with exogenous inputs) defined by the linear difference equation

(1.1) A(q-1)y, B(q-)un_d + C(q-1)e,

where {yn}, {un}, and {e} denote the output, input, and disturbance sequences,
respectively, d >-1 represents the delay and

(1.2)
A(q-1) 1 + alq

-1 -.I-. q-. apq -p,
C(q-1) 1 + clq

-1 .-I- .-I- Chq-h
B(q-i) bl -i-. -t- bkq-(k-)

are scalar polynomials in the backward shift operator q-. Throughout the following
we assume that bl 0. Because of its theoretical interest and practical importance, the
problem of determining the inputs u, to keep the outputs Yn+d as close as possible to
certain target values Y*,+a when the system parameters are not known in advance but
have to be estimated "on-line" (i.e., during the operation of the system) has been an
important topic in the subject of stochastic adaptive control. str6m [1] and Kumar
[2] have provided comprehensive surveys of the developments concerning this problem
up to the early 1980s. In this paper, we first review several recent results and then
integrate and refine some basic ideas in the literature to develop a relatively complete
asymptotic solution to the adaptive control problem for ARMAX systems.

Throughout the following let Xo (Yo,’’’,Y-p, Uo’’" tl2-d-k, eO,’’’, El-h)’
denote the "initial condition" of (1.1). Letting go be the tr-field generated by Xo and
letting cg be the tr-field generated by {Xo, e,. ,, e,}, it will be assumed that

(1.3) {e, , n >- 1} is a martingale difference sequence such that E(e cg,_)_ tr-
(nonrandom) > 0 and sup, E(le,[[d_l)< c almost surely for some a > 2.

The input u, is assumed to be "nonanticipating" in the sense that it involves only the
current and past observations y, yn-1, Un-1,’’" and possibly also some extraneous

* Received by the editors November 21, 1989; accepted for publication (in revised form) July 26, 1990.
This work was supported by the National Science Foundation, the National Security Agency, and the Air
Force Office of Scientific Research.

t Department of Statistics, Stanford University, Stanford, California 94305.
t Department of Statistics, University of Illinois, Champaign, Illinois 61820.
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randomization co,. Specifically, for n >- 1, we assume that u, is measurable with respect
to the g-field n generated by {xo,Yl,’’’,y,, ul,’", un_l, col,"’, co,}, where

(1.4) co, is independent of {Xo, el, e2,’" "} 1,3 {COl,’’’,

In view of (1.1), (1.3), and (1.4), an induction argument shows that

(1.5) "="and{e"’"’n>=l}isamartingaledifferencesuchthatE(el"-l)=
tr

2 and sup, E(I[I_I)< almost surely.

We call the polynomial B(z)= bl +’" "+ btcg-1 stable if all its zeros lie outside the
unit circle. We will also call two or more polynomials coprime (or relatively prime) if
their greatest common divisors have degree O.

In principle, given a (joint) probability distribution of the random sequence
{Xo, e, e2,’" "} and a prior distribution r of the unknown parameter vector

(1.6) 0 (--al,’’’ --ap, bl,... bk, Cl, Ch) t,

the problem of adaptive control of system (1.1) with quadratic costs is simply a dynamic
programming problem in which the "state" is the conditional distribution ofthe original
system state and parameter vector given the past observations (cf. [2]). In particular,
we can use backward induction to solve the dynamic programming equations for inputs
Ul," UN_d that minimize

(1.7) Eo E (Yi-Y*)2 dr(O),
i=d+l

for every given horizon N, where the y* are nonrandom target values for the outputs.
However, the dynamic programming equations are prohibitively difficult to handle,
both computationally and analytically. Moreover, the need to specify a realistic proba-
bility law for the initial condition Xo and the unobservable random errors e, together
with a reasonable prior distribution for the parameter vector 0 in this Bayesian approach
may also cause difficulties in practice.

Despite these difficulties in the implementation ofthe Bayesian approach, Bayesian
analysis of some very simple examples has provided important insights into the structure
of optimal control rules. In particular, Feldbaum [3] and subsequent authors have
shown that Bayes rules have the "dual control" function of both probing the system
for information about its parameters and trying to drive the outputs toward their target
values (cf. the review and references in 5 of [2]). ]kstr6m [1, p. 478] has provided
an interesting numerical example, which took 180 CPU hours to compute on a VAX
11/780 computer, to illustrate this dual control effect in the adaptive control problem
(1.7) for the simple ARX model

(1.8) y, -ozyn_ [3bin_ +

with independently and identically distributed zero-mean normal e,, a normal prior
distribution for/3, known value a 1, and N 30, y* 0. The example shows that
the Bayes rule takes relatively large and irregular control actions to probe the system
when the Bayes estimate/3t of/3 has poor precision, but is well approximated when
/3t has high precision by the "certainty-equivalence" rule

(1.9) itUt --Yt.

Suppose that in/str6m’s example concerning the ARX model (1.8), instead of
assuming c to be known and/3 to have a normal prior distribution, we assume/3 0
to be known and a to have a normal prior distribution. This problem turns out to be
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more tractable and can be used to derive lower bounds on the cost of Bayes rules.
First, note that for any nonanticipating input sequence {u,},

(1.10)

Eo, E (Yi- el)2 d(oz) E E{(ay + flui)2}
i=2 i=1

N-1

=> E E{[a E(a lYl, Ul," ", Yi, Ui)]2Y}
i=1

In particular, for a nonanticipating input sequence {un} that satisfies the property

N

(1.11) lim N-1 , (yi--ei)2=O a.s. [P,] for every
]V- ----2

it can be shown that

(1.12)
{a E(a lYl,/,/1, Y, ui)I2Y2i

i=1

2 0.2=(1+o(1)) Yt-18, Yt-1 Y2+0(1) logn a.s.
i=1 t=2 t=2

for every a. The first relation in (1.12) makes use of the representation of the Bayes
estimate E(aIy, u,..., y, u) in the Gaussian model as a convex combination of
the prior mean of a and the least squares estimate of a based on the data
{y, Ul, y,, u} (cf. [4, p. 32]). Noting that (1.11) implies that y,2. o.2N and
supi__<Ny o(N) almost surely [P], the second asymptotic relation in (1.12) can be
proved by a partial summation argument similar to that of [5, pp. 1206-1207]. From
(1.10) and (1.12), it follows by an application of Fatou’s lemma and Fubini’s theorem
that

(1.13) E E (Y,-e)2 dTr(a)>=(l+o(1))0.log N
i----2

for all nonanticipating input sequences {un} satisfying (1.11).
Lai [4] has extended the results (1.10), (1.12), and (1.13) above for the regulation

problem (1.7) (with y*-=0) to general ARX models (1.1) (with C(q-1) 1) and unit
delay d 1. Specifically, assuming b( 0) to be known and putting a truncated normal
prior distribution r on h b-l(a, ap,-b2,"’,--bk)’, it is shown in [4] that in
analogy with (1.13),

(1.14) I { NEx E (Y,-e,) dTr(A)>-(l+o(1))0.2(P +k-1) logN
i=2

for all nonanticipating input sequences {un} satisfying (1.11) and the additional growth
2 ncondition that un O( almost surely for some 0 < 6 < 1. The truncated normal prior

distribution 7r in (1.14) is the restriction of a standard multivariate normal distribution
to the A-region defined by the following:

(1.15) A(z) and B(z) are stable, and the polynomials alzP-l+’’’+ap and
zk-lB(z-) are relatively prime.

In the case of unit delay d 1, if all the parameters of system (1.1) are known, then
the optimal controller chooses the input u, at stage so that E(yt+l;t)=y*,+l, and
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its output at stage + 1 is Yt*+l d-et+l. In view of this, Lai [4] defines the "regret" at
stage N of an input sequence {un} to be

N N

(1.16) gs {y,--(y* +e,)}2= {E(y,[.fi_l)-y*}2.
=2 =2

Note that (1.14) above represents a lower bound for the expected regret in the regulation
problem y*=0 within a Bayesian framework. For general delay d, definition (1.16) of
"regret" can be extended to

N N

RN E {E(Y,I-a)-Y*} Y. (Y,-Y*-rh)2, where
i=d+l i=d+l

(1.17)
"q,= yi--E(yi[.fi-d) ei+flei-1 +’" "+fd-lei-d+l for i>-d,

with fl,’" "fd-1 depending only on A(z) and C(z), as will be shown in 2. The regret
RN, which is 0 for the optimal controller assuming knowledge of all system parameters
so that ut is determined by E (Yt+dl.ft)--Y*t+d, can be regarded as the cumulative cost
up to stage N due to lack of knowledge of the system parameters in an adaptive
controller. Since

(1.18) E E (Y,-Y/*)- =E(RN)+E 2 rl
i=d+l i=d+l

the problem of minimizing the total expected quadratic cost is equivalent to that of
minimizing the expected value of the regret Rv.

An input sequence {un} is said to be "self-optimizing" (or "globally convergent")
if

(1.19) R,/n-O a.s.

Using martingale theory (cf. Lemma 1 of 2) and the identity +l(yi-y*)2=
d+l r/,E’+d+l (Yi--Y*--rh)E+2Y.d+l (y-y*--rl)rh, it can be shown that (1.19) is
equivalent to

(1.19’) n -1 (yi y* )E-- O’d & O’2( l +f’ + +f_l) E’Od a.s.
d+l

Since tr is the long-run average cost of the optimal controller defined by E (Yt+d ’fit)
Y*t+d that assumes knowledge of the system parameters, the equivalence between (1.19)
and (1.19’) explains the term "self-optimizing" (cf. [2], [6]).

The idea of working with the "regret" instead of the original cost criterion in
opimization problems with unknown parameters was introduced by Lai and Robbins
[5] in the context of choosing the design levels to minimize E(Y.1 y) in the two-
parameter regression model

(1.20) y,, fl(u,,-1-1)+ e,,,

with independently and identically distributed normal errors e, such that Ee 0 and
Ee 12 tr2. If/x is known, then u, ---/z is the optical choice of the design levels. However,
this experimental design does not provide any information about the unknown slope
/3. To resolve the dilemma between the control objective of setting the inputs near/x
and the need for information to estimate /3 and /x, Lai and Robbins [5] started by
considering the situation in which/3 0 is known. In this case, the maximum likelihood
estimate based on UO,Yl,’’’, tln-l,Yn is 12,=n-7= (tli_l--fl-lyi), and therefore
/2,-/x =-n-1 =1 e//3 irrespective of how the design levels u are chosen. This
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suggests that there is no conflict between information (to estimate ) and control
(setting ui at the current best guess of/z). In particular, the certainty-equivalence rule
u, 2t has regret

(1.21) R= (y-e,)e= - e, -crlogn a.s.
i=2 i=1 t=l

(cf. [5]). Moreover, if we put a normal prior distribution on then the ,separation
principle shows that the Bayes rule minimizing I E,(R) d() is simply given at
every stage by

(1.22) ut E( Uo, y, , u,_, y,)= t + O(t-1),
and therefore as in (1.21), the regret of this Bayes rule also satisfies

(1.23) R, log n a.s.

(cf. [4]). Without assuming fi( 0) to be known in advance and without assuming the
e to be normal, Lai and Robbins [5] made use of the theory of adaptive stochastic
approximation to find an input sequence {u,} whose regret R, also has the same
logarithmic order (1.23) as the Bayes rule that assumes fi to be known and the e to
be normal.

Note that (1.23) clearly implies the self-optimizing propey (1.19). For the
regression model (1.20), it is in fact very easy to construct self-optimizing inputs by
using schemes with "forced" learning (cf. [2, p. 348]). We need only make sure that
there is enough information to estimate fi and consistently by setting the design
levels at K during stages n < n2 <. and at K2( K) during stages n < n <.
where {n} andn} are disjoint sequences of positive integers such that n/i and
n/i . Let fi, and , be the least squares estimates of the slope fi and the intercept- based on all the observations at times nNt and nNt. The inputs ut=
-(k,/t)ILo are self-optimizing, noting that the times n and n at which "probing
inputs" are introduced occur infrequently. However, the fact that , and , are based
only on observations at these infrequent times suggests that the self-optimizing rule
may be quite inefficient since we are wasting the information from the other observa-
tions. Therefore, not only should an asymptotically efficient control rule have the
self-optimizing propey (1.19), but it should also be able to attain the logarithmic
order (1.23) for the regret, emulating the Bayes rules that assume knowledge of ft.

Because of the dynamical structure defined by the linear difference equation (1.1),
the problem of adaptive control of system (1.1) is much more complex than that of
the regression model (1.20). For example, if A(z) is not stable, then using white-noise
probing inputs may lead to exponentially divergent output trajectories. In fact, the
impoant and challenging problem of finding self-optimizing control schemes for (1.1)
that can be implemented in real time has been an active area of research since the
seminal paper of str6m and Wittenmark [7] on "self-tuning regulators."

The "self-tuning" idea is to sta by considering the case where the system
parameters are known, for which the optimal controller can be represented in some
convenient recursive form, and then to replace the parameters in the optimal controller
by recursive estimates that converge. str6m and Wittenmark [7] showed that if the
recursive estimates, which they chose to be of least squares type, should converge to
some limit, then substituting the parameter vector in the optimal controller by this
limit must necessarily give the optimal controller, justifying the use of the adjective
"self-tuning." A central problem with this approach, which still remains unsettled, is
whether the least-squares-type estimates are indeed convergent. Goodwin, Ramadge,
and Caines [8] circumvented this problem by introducing another method, called the
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"stochastic gradient" (stochastic approximation) algorithm, to estimate a linear trans-
formation 0* of the parameter vector 0, and were able to establish the self-optimizing
property (1.19’) for their scheme. In 2 we give a brief review of several ideas in these
and subsequent developments.

Sections 2 and 5 also review some recent results on d-step ahead adaptive predictors
constructed by the so-called direct (or implicit) method. These results enable us to
unify, integrate, and extend two different approaches of constructing self-tuning control
rules. The first approach, to be considered in 3, uses a scalar gain in the recursive
identification algorithm, as in the Goodwin-Ramadge-Caines [8] method and sub-
sequent modifications thereof. We will focus on one such modification, proposed by
Caines and Lafortune [9], that adds a dither signal to the control action to persistently
excite the input-output process for consistent estimation of the system parameters. In

3, we give a short proof of the main results of [8] and [9] by using a different
argument, which also enables us to substantially generalize the algorithms of [8] and
[9]. In particular, we can modify the continually disturbed control scheme of Caines
and Lafortune [9] by only adding the dither signal occasionally, giving an "ocasionally
excited" input-output process. Using the input-output data only from those stages at
which the system is excited by the inclusion of the dither signal, we show in 4 that
strongly consistent estimators of the system parameters can be obtained by the method
of moments.

As noted by Sin and Goodwin [10], although the global convergence proofs in
[8] only apply to the stochastic approximation scheme, "it seems that in practically
all applications of stochastic adaptive control, a least squares iteration is used" since
"it generally has much superior rates of convergence compared with stochastic approxi-
mation." Instead of a scalar gain as in [8], a matrix gain such as in the str6m-
Wittenmark scheme is typically used. In 5 we consider this alternative approach that
involves a matrix gain to construct self-tuning controllers. In particular, by using a
consistent but inefficient estimator such as that developed in 4 to monitor a recursive
maximum likelihood estimator of the parameters in a reparametrized model, d-step
ahead adaptive predictors associated with the recursive identification scheme are shown
not to differ very much from the minimum variance predictors that assume knowlege
of the system parameters. This result also suggests the possibility of achieving a
logarithmic order for the regret (see (1.24) below) by using the certainty-equivalence
rule associated with the monitored recursive maximum likelihood algorithm to define
the inputs when certain conditions are met.

In 6 we show that by a parallel implementation of stochastic approximation
(involving a scalar gain) and monitored recursive maximum likelihood (involving a
matrix gain), a self-tuning controller that integrates both methods can be constructed.
The stochastic approximation component of the controller serves to stabilize the system
even when A(z) is not stable. Together with an occasional dither signal to perturb the
target values, it also leads to excited blocks of input-output data from which strongly
consistent estimators of the system parameters can be obtained by the method of
moments to guide the recursive maximum likelihood algorithm. The monitored recur-
sive maximum likelihood component of the controller can be shown to satisfy the
conditions of the main theorem of 5. Not only is the resultant self-tuning controller
self-optimizing in the sense of (1.19), but it also attains the following logarithmic order
for the regret:

(1.24) Rn<-(l+o(1))o’a{(pv(h-d+l))+h+k+d-1}(2d-1)logn a.s.,

where r] is defined in (1.19’). Here and in the sequel we use v and ^ to denote
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maximum and minimum, respectively. Moreover, if log (1 --2i=1 y/,2)__ o(log n), as in
the regulation problem (y*-= 0), we can further strengthen (1.24) into

R.<=(l+o(1))od((pv(h-d+l))+d+k-2}(2d-1)logn a.s.

Note that in the case where d 1 and C(q-1) 1 (so that h =0), (1.25) reduces to

(1.26) R.<-_(l+o(1))o(p+k-1)logn a.s.

Comparing (1.26) with the lower bound (1.14) for the expected value of Rn within a
Bayesian framework that assumes knowledge of bl in advance, we see that the certainty-
equivalence rule thus constructed closely emulates the performance of the Bayes rule.
Lai [4] calls such control rules "asymptotically efficient," in analogy with the minimal
order of magnitude (1.23) for the regret Rn in adaptive control of the simple regression
model (1.20). Extensions of these to multivariable systems will be considered in 7,
which also contains several other concluding remarks.

2. Adaptive prediction, recursive identification, and some basic lemmas. To begin
with, consider the unit-delay, white noise case (i.e., d 1 C(q-1)), for which (1.1)
can be written as a stochastic regression model

(2.1) y,,+l= O’q,, + e,,+l,

where 0=(-al,...,-%,bl,...,b) and
When 0 is known, the minimum variance 1-step ahead predictor of Y,+I is E(yt+l[,)
0’tp,, and the optimal controller chooses ut so that 0’qt Y*+I An obvious modification
of this control rule for the case of unknown 0 is to "adapt" the optimal predictor 0’p,
by substituting the unknown 0 by the least squares estimate 0,, which has the recursive
representation

(2.2a) Ot 0,_1 + Pt-I@-I(Y,- Ott-ll/]t-1),

(2.2b) P,-- Pt-1- Pt-l OtOttPt-1/ (1 --I--

A first difficulty with this straightforward approach is that the controller O’tO, Y,*+l
need not be well defined since the coefficient bt of u, in 0’,tp, may be 0 unless some
continuity assumptions are made on the distribution of { e,}. For the regulation problem
y* 0, .str6m and Wittenmark [7] circumvented this difficulty by reparametrizing
(2.1) as

Y,+I bl (u, A’X,) + e,+l, where

(2.3) A (al/bl,’", ap/bl,-bz/bl,’",-bk/bl)’,

X,, (y,,, ", y,,_p+,, u,,-1 ," ", U,,-k+l)’,

and replacing the unknown bl by b 0 while using the least squares criterion to estimate
A. They also showed that if the estimates should converge then they must converge to. However, a difficult open problem is whether with positive probability these estimates
may fail to converge in their certainty-equivalence regulator

(2.4) b(ut-A’tXt)=O, where A,=argmin (y-bui_l+bA’X_l)2.
i=1

Instead of adhering to a prior guess b of b, an obvious modification of the
.str6m-Wittenmark approach is to update this guess with the current and past data.
Lai and Wei [11] recently considered this modification under the assumption that A(z)
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is stable. They also introduced occasional blocks of white-noise probing inputs and
used only the data from these stages of forced learning to obtain a strongly consistent
estimate b(t) of bl. Replacing b by b(t) in (2.4) whenever b(t)# 0 and the number
of probing inputs up to stage does not fall below some threshold Kt (with Kt
and Kt =o(log t)) leads to a certainty-equivalence regulator, for system (1.1) with
d 1 and C(q-1) 1, whose regret has the logarithmic order (1.26), as shown by Lai
and Wei [11]. A key step in their proof is the analysis of the cumulative squared
difference 1 (37+--t+l)2 between the optimal predictor 37+1 0’G b(ut- A’Xt) and
the adaptive predictor 33t+1 b(t)(ut-A’tXt) in the stochastic regression model (2.3).

For the unit-delay colored-noise case, (1.1) can still be written in the form of a
stochastic regression model (2.1) with 0 given by (1.6) and

(2.5) , (Y,,, Y,-p+l, u,, Un_k+l, En, ,F,n_h+l) t.

However, the regressor q,, contains unobservable components
Replacing the unobservable e by their estimates gi in the recursion (2.2) leads to the
"extended least squares" algorithm of the form

(2.6) Ot Ot--1 qt_ pt_lPt_l(y Ott_ltt_l) p-l Pt-l-1 _]_
t

(2.7) t (Yt,’’’, Yt-p+l, /’/1, Ut-k+l, t, t-h+l) t.

The estimates gi of ei in (2.7) are given either by the residuals ?i Yi- O’ich-l, in which
case (2.6) is called the AML algorithm, or by the prediction errors gi Yi-
in which case (2.6) is called the RML1 algorithm. Assuming that

(2.8) Re(1/C(eit)-l/2)>O for all t [-r, r],

Lai and Wei [12] showed that for the AML algorithm 0, and its associated adaptive
1-step ahead predictor 93./1

)1/2/,I1/2[p-1II0o 011- O({log Amax(n:l,, .--min,--n )) a.s.,

(2.9)
114,,-q,ill- O(log  max(p:l)) a.s.,

(2.10) (O’q-Od) Ii4,p4<__l=O(logAmax(P-1)) a.s. for every 0<<1.
i=1

Making use of (2.9) and (2.10), they proved not only the self-optimizing property
(1.19) but also the much stronger conclusion R=O(logn) almost surely for a
modification of the certainty-equivalence rule based on the AML algorithm, under the
assumptions of boundedness of the target values y*, stability of the open-loop plant
(i.e., A(z) and B(z) are stable), and assumption (2.8) for C(z). A basic ingredient of
this modification is a simple criterion to decide whether information is inadequate for
approximating the unobservable 0’0, by 0’t4. When the data show inadequate informa-
tion for such approximation, instead of adhering to the certainty-equivalence formula
O’,b,--Y*+I to determine the output u,, [12] proposes to introduce a block of white
noise perturbations to improve the information content of the design, in such a way
that the number of these perturbations up to stage n is kept within the order O(log n).
This approach ensures that 0’tqt is eventually close to 0’G whenever certainty-
equivalence inputs are used, although 0t may not converge to 0. In fact, "self-tuning"
holds in the sense that

(2.11) Z (Otl]Yt--Ott(t)2-- O(log n) a.s.
t<= O;qbt =Y+I
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For this case of general delay d, it is convenient to reparametrize (1.1) in the
following prediction form. By the division algorithm, there exist polynomials F(z)=
l+flZ+"" "+fd-lZa-l and G(z) g +. .+ gp(d)Zp(a)-lwithp(d) p v (h-d + l) such
that

(2.12) C(z) A(z)F(z)+ zeG(z),
and therefore (1.1) can be rewritten in the form

(2.13) C(q-1){Yn+d F(q-)e,,+a} G(q-)y,, + B(q-)F(q-1)u,,

(cf. [2, p. 368], 13, p. 268], 14, p. 134]). Hence, in the case ofknown system parameters,
the optimal d-step ahead predictor 37n+a _a E(Yn+aln) is given by

(2.14) .,+d+C.,+d-+" "+Chn+d-h=G(q-1)y,,+(BF)(q-1)U,,

where (BF)(z)=B(z)F(z)=b+(bf)2z+...+(bf)k+d_Zk+d-2, and its prediction
error is

(2.15) r/,+d A Y,,+d --Y+d F(q-)e,,+a.

Let

(2.16) 0 (gl, gp(cl), bl, (bf)2,..., (bf)k+d-1, --C,,’’’, --Ch)’.

Since Y,,+a 37,+a + r/,+d, we have by (2.14) the following prediction form of (1.1)"

(2.17)
Yn+a ’@n + "On+a, where,, (Y,,, Y,,-pa)+,, u,,, ln_k_d+2, n+d-1, n+d--h) t"

In the case of known system parameters, the optimal controller chooses u, so that
fi+d Y.*+.d. Without assuming knowledge of the parameters, it is natural to replace
37+d 0’bn in the optimal controller by an adaptive predictor 33+d. In particular,
Goodwin, Ramadge, and Caines [8] defined )3n+d by replacing the 37i in n by the
target values y* and the unknown parameters ff in (2.16) by a stochastic gradient
(stochastic approximation) estimate of the form

(2.18a) 0". O*.-d + (a/ r*.-d)Ch*.-d(y. 0’’

(2.18b) r,* r*,-d + II  *ll =,
where qb*,=(Y,,’’’,Yn--p(a)+l,Un,’’’,U,--k--a+2,Y*+d--1,’’’,Y*+d--h)’ and u, is
defined by

(2.18c) O*’ qb *, y*,+d
To ensure that the coefficient b*., of u, in (2.18c) is nonzero almost surely, Goodwin,
Ramadge, and Caines assume that

(2.19) (Xo, el, ", e,) is absolutely continuous with respect to Lebesgue measure
for every n >_- 1.

Their use of the scalar gain 1/r*,_d in (2.18) instead of the matrix gain (Pff+
b*th as in (2.2) or (2.6) considerably simplifies the analysis. Under certain

additional stability and positive real assumptions on B(z) and C(z) and boundedness
assumptions on {y*}, they proved the self-optimizing property (1.19’) for the certainty-
equivalence rule (2.18c) in the case d 1 and also in the case C(q-) 1 and general
d. For general delay and colored noise, Goodwin, Sin, and Saluja [15] suggested
replacing (2.18b) by

(2.20) r.* rn*-i d-II =,
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and showed how to extend the argument in [8] to prove the self-optimizing property
of their scheme.

Clearly, other recursive identification algorithms can also be used to define adaptive
predictors 33n+d and thereby to construct certainty-equivalence rules. The direct (or
implicit) approach of adaptive prediction is to first obtain a recursive estimator 0n of

t.he.parameter 0 ofthe implicit system (2.17) and then to substitute the optimal predictor
0’qn of Yn+cl by 0’,bn, where bn is a pseudoregression vector in which the undetermined
components 37i of qn are replaced by O_d)i_d, of. [13, p. 181]. We have recently
developed in [16] analogues of the bound (2.10) for the cumulative squared difference

(’,- 01bi)2 between the optimal d-step ahead predictor ’q, and the adaptive
predictor 0b associated with a variety of recursive identification algorithms, including
stochastic gradient, extended least squares, and monitored recursive maximum likeli-
hood. In particular, for adaptive predictors associated with the stochastic gradient
algorithm, the results of 16] are summarized in the following.

THEOREM 1. Suppose that Re {C(eit)-(d-1/2)a}>O for all ]t[ <- 7r and some a>0,
and that the random disturbances en in the linear stochastic system (1.1) satisfy assumption
1.3). Let p (d) p v (h d + 1 ). Consider the stochastic gradient algorithm that estimates
the parameter 0 in the reparametrized model (2.17) by the recursion

(2.21a)

(2.21b)

(2.21c)

(2.21d)

Then

(2.22)

On, On-l, + (a/ rn-a)(Yn -n,)qbn-a,,

(y Yn-p(d)+l, Un, Un-k-d+2, Yn+d-l,G,

r r-/ I1,11 =

.f,,+,, O’n,Gfn,G

lim sup 0n, < a.s.,

),Yn+d-h,G

(2.23) (’$~ 0i,b,’ .)2 o(rn)+ O(1) a.s.
i=1

Moreover, if B z is stable, then

(2.24)

lim n-1 (O,i 0,Gti,G)2 0 and
i=1

lim sup n -1 (y + u) < c
n-cx i=1

The proof of Theorem 1 and.of analogous results for other recursive identification
algorithms in 16] makes use of the idea of "extended stochastic Lyapunov functions."
For an algorithm with a matrix gain Pn-d of the form p-i -1P,-1 + )tt, [16] makes
use ofthe extended stochastic Lyapunov function (0. )’P-ld(On ), which typically
does not converge. For the stochastic gradient algorithm with the scalar gain 1! rn-d,

[16] uses Q II0,-11= as the extended stochastic Lyapunov function and derives
from the recursion (2.21a) recursive inequalities for Qn. In the case of unit delay
(d 1), Goodwin, Ramadge, and Caines [8] also derived similar recursive inequalities.
However, in order to apply the martingale convergence theorem, they introduced a
transformation of the form Zn Qn+ Sn/rn-1 with Sn_->0, and used the recursive
inequalities to conclude that Zn is a nonnegative almost supermartingale (or stochastic
Lyapunov function; cf. [17], [18]). Instead of relying on the martingale convergence
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theorem, 16] works directly with the recursive inequalities for Qn and applies certain
martingale limit theorems, restated in Lemma 1 below for subsequent reference, to
analyze these recursive inequalities, which turn out to involve not only Qn but also

-d 2/,1 (’i-Oi,oqbi,o) ri Thus Theorem 1 follows from such analysis of Q,
LEMMA 1. Let { e,} be a martingale difference sequence with respect to an increasing

sequence ofcr-fields {ff} such that sup E([enll ,-1) < almost surelyfor some a > 2.
Let z be an _l-measurable random variable for every n.

(i) 1 ziei converges almost surely on { z2i< }, and for every l >

ZiE Z -’> 0 a.s. on z oo

Consequently,

(ii) -’ln IZiJE2i O( lnlZil almost surely on {supn Iz,[ < oo}. Moreover,

(2.26) [z, le= 2 [z, lE(2i1i_1)-31-o Izi on sup Iz.I <, 2 Iz.I
In 3 and 6 we apply Theorem 1 and some extensions thereof to develop, for

general delay and colored noise and without stability assumptions on A(z), asymptoti-
cally efficient adaptive control schemes that satisfy (1.24) or (1.25) by using parallel
implementation of 0,o and three other recursive identification algorithms. The remain-
der of this section states for subsequent reference some algebraic lemmas on the
dynamics of (1.1) and on recursive estimation of its parameters.

LEMMA 2. Suppose that for n <= < m, )t (Yt, Yt--v+l, Ut, Un--g+l

3,+-, ",.f,+a-h)’ and C(q-)(Yt+d rh+d) G(q-)yt +F(q-1)ut, where C(q-1)
l+Clq-+’’’+Chq-h, G(q-)=gl+’’’+gq-- and F(q-1)=y+...+y,,q--arepolynomials in the backward shift operator q-1. Suppose that there exist + + h) 1
vectors Ot such that +d O’ <,qb, for n < m. Then

(2.27) C(q-1)(ys--;s--qs)=--(Os_d--g)’qbs_d for re+d> s>=n+d,

where = (gl, g, y, YK, --C, --Ch)’.
LEMMA 3. Let {D,, n >= 0} be a sequence ofL x L real matrices such that 20

o and let D(z)=,=o D,z". Suppose that D(e")+ D’(e-’) is nonnegative definite for
all

(i) Let {g,, n >= 0} be a sequence ofL x 1 real vectors and letfn Y=o Dg,_. Then
N

for any N >= O, Y,=of’,,g, >= O.
(ii) Suppose that D 0 for all i> h. Let M >= h and suppose that f, h=o Dgn_

for M <= n <= N. Let { r,, M <= n < N} be a nondecreasing sequence ofpositive numbers.
Then

N h h-j

Y’, f’,g,/ r, >-- ., E g’l--tDj+tg-a+/ rM-l+j.
n=M j=l t=0

LEMMA 4. (i) Consider the linear system A(q-)y, q-dB(q-)u, + C(q-)e,, in
which A(q-), B(q-), and C(q-) are the polynomials (1.2) in the unit delay operator
q-. Suppose that b # 0 and that B(z) is stable. en there exist K > 0, 0< p < 1, and
ao, a,, o, fl,, such that max ([a[, [,I) K’ and for all n,

Ut 2 iYt+a-i iet+a_ Kp’-" 2 lu.-l + ly.+a- l +
i=o i=o v=l v=l v=l
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Consequently, there exists K* > 0 such that for all >- n + d,

2 <K* 2 2 2
Ui-d Yi -F ei -F Un-

i=n+d i=n-p+d i=n-h+d

(ii) Suppose that the polynomial C(z)=l+clz+.. --ChZh is stable. For j=
1,. ., h, let {%2} be a sequence ofnumbers such that limn_ cnj c, and let Cn (q-l)
1 + %lq-1 +. + Cn,hq -h. Suppose that n and dn are L x 1 vectors such that Cn(q-1)scn
dpn. Then there exist K > 0 and 0 < p < 1 such that for all > n

II ,II K II --rll
i= r=0

For the proofs of Lemmas 2 and 3, see 16]. The main ideas of the proof of Lemma
4(i) are given in 11, pp. 470-471], and the proof of Lemma 4(ii) uses similar arguments
(cf. Step 1 in the Appendix of [12]).

LEMMA 5. Let An be a symmetric, positive-definite L x L matrix. Suppose that

(2.28) log tr (An)-< (1 + o(1))log n as no,
and that there exist f(<-L) linearly independent L x 1 vectors vl,. ., vr satisfying the
condition

(2.31) p--a lim inf max

Suppose that (2.31) is not true. Then in view of (2.30), there exist orthonormal vectors
XC,. "’, XL which are limit points of the sequences {x,,.()}, ., {x,,(z)} such that
maxc Ivan] =0 for j L. Hence the ohonormal vectors Xc,’"’, X belong
to the ohogonal complement,of the linearly independent set {v,. -, v}, which is
impossible since (L L+ 1) + L> L.

Since (j))2Zn,n(j) >oiAnvi j= (ViX.... Zj=I (ViXn,=.t(j))2hn,=.(j), it follows from
(2.30) and (2.31) that for all large n,

(2.32) A,,=,j) <2p-2 max ]v;A,vi[, j= 1,...

From (2.32), it follows that for all large n,
L

log detA, log X,,.()2p-2 max log (v’A,v)+(L-) logtrA,

(1 + o(1))(L- ) log n,

by (2.28) and (2.29).
LZMMA 6. Consider the matrix polynomials (over the complex field)

A(z) I + Az +. + a,z’, B(z) B1 +. + Bz-,
(2.33)

C(z) I + Cz + + Chzh,

We first show that

vAnv)/log n O for 1,. ., L.(2.29) lim log

Then lim supn_. (log det An)/log n <- L- .
Proof Let An,,"" ", An, be the eigenvalues of the symmetric matrix An, and let

xn,, , xn,L be corresponding orthonormal eigenvectors. Let 7r, be a permutation of
{1,..., L} such that

(2.30) max ]vx,,,(,)l > > max I’1)iXn, qrn(L)].
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where I is the identity matrix and the Ai, Bi, and Ci are v v matrices such that det B(z) 0

for all [z <- 1. Let. , e_ w_ eo, Wo, e Wl be independent, bounded v 1 random
vectors such that the ei have a common distribution with mean 0 and positive-definite
covariance matrix , and the wi have a common distribution with mean 0 and positive-

definite covariance matrix V. Let d >= 1 and let Ti Ei’4Y F1Ei_ /" "/ Fd_lei_d+l where

F , Fd-1 are nonrandom u , matrices. Let yi q + wi-a and define u by the linear

difference equation

(2.34) A(q-)yn B(q-)Un_d + C(q-)e,,

where q- denotes the backward shift operator. Suppose that the matrix polynomials
zPA(z-), zk-1B(z-l), and zhc (Z-l) are left coprime, i.e., the determinants of their
greatest common left divisors have degree O. Then the ,(p+k) ,{p+2(k-1)+1}
matrix H has full rank ,(p + k), where

H E{(y’ y’p U’-d U’d-k+l)
(2.35)

(Yh ," ", t--d-1 yt_h_(k_l) Wt_d, W -p-(k-1)v)}-

Proof. Let b (z) det B(z) and let/(z) denote the adjoint of B(z). Then

(2.36) (z)B(z)=b(z)I, degb(z)<=,(k-1), deg/(z)_<-(,-1)(k-1).

Since b(z) 0 for all Izl_-< 1, we can invert (2.34) as

(2.37) u-a {(q-1)/b(q-1)}{A(q-1)y-C(q-1)en}.

Suppose that H is not of full rank. Then there exist 1 vectors 7r,’.’, rp,
y y_)H=0, i.e.,’)/o, ’)/k-l, not all 0, such that (Try, ., rp,

(2.38) E r,y_,+ YU-d-i Y’-j O, j h+l, ,h+(k 1)v,
i==1 i=0

(2.39) E 2 7"1" iY-i + -iyiU-d W’__j =0, j=d," d+p+(k-1)v.
i=1 i=0

Let

p k-1

(2.40) L(z)= 7rlz i, F(z)= y’iz’.
i=1 i=0

Since yn r/ + W-d, it follows from (2.37) that

p k-1

Y. rlyn_+ ylu,,-d-={L(q-)+F(q-)(q-)A(q-)/b(q-)}(q+ W-d)
i=1 i=0

(2.41) _{F(q_l)(q_)C(q_l)/ b(q_)}e.

Recalling that {wt} and {et} are independent zero-mean random vectors with
positive covariance matrices, (2.41) (with n-0) and (2.39) imply that

L(q-) / F(q-1)(q-1)A(q-)/ b(q-) q-(p+(k-+lg(q-

for some power series R(z) ,=o pz’, where the p are I u vectors such thato IlPill <. Therefore

(2.42) b(z)L(z) + F(z)(z)A(z) b(z)zP+(k-1)’+l g(z).
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In view of (2.36) and (2.40), the left-hand side of (2.42) is a matrix polynomial of
degree less than or equal to (k-1)v+p, and therefore (2.42) implies that R(z)=0.
Hence

(2.43) b(q-’)L(q -1) -F(q-1)(q-’)A(q-’).

From (2.41) and (2.43), it follows that

(2.44)
p k-1

q- , "ylUn- =--{1-’(q -1 ’)2 rry,,_ d-i );(q- C(q-)/b(q-)}e,,=-Y. d’iEn--i
i=1 i=0 i=0

for some nonrandom v x 1 vectors di such that Yo Ild, < oo. Recalling that cov (e,) is
positive-definite and that Ys es + Fles-l+" + Fa-le,-a+l+ ws-a, it follows from
(2.38) and (2.44) (with n =0) that

(2.45) F(z)B(z)C(z)=b(z) Z dtiZ -" d’Z
i=o i=h+(k-1),+l

In view of (2.36) and (2.40), the left-hand side of (2.45) is a polynomial of degree
<_-k-1 +(v-1)(k-1)+ h < h+(k-1)v+ 1, and therefore (2.45) implies that

h

(2.46) F(z)B(z)C(z)= b(z)D(z) where D(z)= d
i=0

From (2.40) and (2.43), O=L(O)=-F(O)BTIA(O)=-y’oB7’, noting that
(O)/b(O)=(B(O))-= B- and that B1 is invertible. Hence %=0. Therefore F(z)=
k-1 ,)/ zi k-2 p--1

2i1 z Y:o Y+’lZ, L(z) z :o 7r+’ z. Setting z 0 in (2.46) then gives
z. Hence (2.43)(det B(0))d=0, implying that do 0 and therefore D(z) z Eh__- d+l

and (2.46) can be written as

F*(z)B(z)A(z)/b(z) -L*(z), F*(z)B(z)C(z)/b(z) D*(z), where

p-1 k-2 h-1(2.47)
L*(z) F*(z)= D*’71"j+1ZJ, ’Yj+l ZJ, (Z)-- Z dj+lZ.

o o o

Let N(z)= Zk-IB(z-1) B,zk-’ +’’ "+ Bk, /3(z)= det (N(z)) and let (z) denote the
adjoint of a(z). The/3(z) z(k-’) det (B(z-’)) and likewise (z)= z(k-)(-’>/(z-’),
SO

(2.48) (z-,)/b(z-1) zk-ll(z)/(Z).

By (2.47) and (2.48),

{zk-2r* z-l)}{ O(Z)/[3(Z)}{zPA(Z-1 )} --Zp-1L*(Z-1

{zk-2F*(z-1)}{o(z)/(z)}{zhc(z-1)}= zh-ID*(z-1).
k-1 i-l{(z)/(z)}(zPA(z-1),zhf(z-1)) is a matrix polynomial. ThisHence 1 Yk-iZ

implies that ’/t ’)tk_l-’0 by Lemma l(ii) of [19], since (z), zPA(z-), and
zhC(z-a) are left coprime. Hence F(z)= zF*(z)=0, and by (2.43), L(z) =0, contradict-
ing that 7r,. , ,’/’/’p, Yo, Yk-1 are not all zero.

3. Stochastic gradient algorithms and occasionally disturbed control schemes. As
an application of Theorem 1, we give a short proof of the self-optimizing property
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(1.19) of the Goodwin-Ramadge-Caines scheme (2.18) in the unit-delay case (d
1, p(d) =p v h), under their assumptions (2.19) and

(3.1a) B(z) is stable,

(3.1b) Re{C(et)-a/2}>O for allIt[-< r,

(3.1c) {Yt*} is a bounded nonrandom sequence.

In view of (2.18c),the vector b,* in (2.18) is equivalent to (2.21b). Moreover, by (2.18c)
and (3.1c), sup, n- (0*’b*)2 < almost surely. By (2.17) and (2.18c), y.+-e.+-
y*+=’,,-O*’ch*,, and therefore by Theorem 1, n- (y-y*i-e)2O almost
surely, i.e., (1.19) holds for the Goodwin-Ramadge-Caines scheme (2.18).

To obtain strongly consistent estimates of the parameter vector (1.6) in the
unit-delay case, Caines and Lafortune [9] replaced the definition of b* and (2.18c)
in the Goodwin-Ramadge-Caines scheme by

O* rh * -F Wn,
(3.2)

6* (Y,,""", Y,,-p(1)+l, Un, Un-k+l, Y*, + w,,_,, Y*+,-h + W,-h)’,

where wt is independent of {Xo, e, e2, ", u, ., ut_, w, ., w,_} and such that
Ewt O, Ew2, v > 0 and supt Ew4, < . They proved that for this modified scheme

(3.3) n- (yi-y*i -Wi_l-8i)2O a.s.
2

Replacing y* in the preceding paragraph by y/*+ w_, we can also obtain (3.3) as
another corollary of Theorem 1. Making use of (3.3), Caines and Lafortune [9] showed

converges almost surely to a positive-definite matrix. Using thisthat n i= IJJit
"persistent excitation" property of the p and Solo’s [20] consistency theorem for the
AML algorithm, they obtained strongly consistent AML estimates of the system
parameters. The control scheme (3.2), however, is not self-optimizing since (3.3) implies
that n -1 Z2 (Y-Y* e)" v > 0 almost surely (cf. [9]). To preserve the self-optimizing
property, the white-noise perturbations w, should only be introduced in (3.2)
infrequently, with relative frequency diminishing to 0, as will be done in Theorem 4
below.

The interlacing algorithm (2.18) is a composite of d recursions for O+,,a(n >-1),
j-0, 1,..., d--1. In contrast, the stochastic gradient algorithm of Theorem does
not involve such multiple recursions, and handles general delay d in exactly the same
way as it handles the case d 1. Thus, Theorem 1 leads to a stochastic gradient
certainty-equivalence rule that differs from that of Goodwin et al. [8], 15] in the case
where d >-2 since interlacing is no longer needed.

The proof of Theorem 1 given in [16] can be readily extended to the situation in
which the stochastic gradient scheme is applied only to broken blocks of successive
observations and in which white-noise perturbations w are introduced only occasion-
ally, an improvement over the Caines-Lafortune [9] continually disturbed control
scheme. Moreover, our modification also works for general delay d without interlacing,
and by choosing the perturbations w to have a continuous distribution, we can further
dispense with the restrictive assumption (2.19) in the Caines-Lafortune scheme. This
is the content of Theorem 2.

THEOREM 2. Suppose that Re {C(et) -(d -1/2)a} > 0 for all t} <= r and some a > O,
and that the random disturbances e, in the linear stochastic system (1.1) satisfy assumption
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(1.3) with supn en < c almost surely. Let p(d) p v (h d + 1). Let mo 0 and let
nl < ml < n2 < m2 <" be stopping times (with respect to {,t}) such that

(3.4) mj nj >- d + h.

Let {w} be a sequence of random variables such that

(3.5) w is independent of {Xo, el, e2," ", ul,"" ", U-l, Wl," ", W_l} and the wn
are identically distributed with a common continuous distribution such that
Ew, O, EWl v > O, and IWll <- c.

Define the modified stochastic gradient algorithm 0,6 recursively asfollows" Choose 00,6
such that its component bo,6 estimating the component bl of the vector 0 in (2.16) is
nonzero. Let 0, 0o, for < n + d. Let

(3.6) ,,d (Y,, Yn-p(d)+l, Un, Rn-k-d+2, Wn-l, Wn-h)"

For mj-1 + d 1 < n < n + d, define 0,, 0_,+d-l,d. For n + d n m + d 1 define
(3.7a) 0,, 0,_, + (a/,-d)(Y, W,-d),-d,d,

j--1 m.+d-1

(3.7b) -= E E ,-,l=
i=1 t=ni+d

+ 1 v y,_ v u]._,
i=1 u=0 u=l

log2 2v y2,,, ,,v f_., 2
U tli-

i=1 u=0 ,=1

Suppose that for nj <-n < mj the input u is chosen so that

(3.8) 0’,6ch,6 w if bn,6 O, and u w otherwise,

where b,6 is the component of O,6 estimating bl. Define qt as in (2.15). Then P{bn,6
0} 0 for every n and

mi+d-1
(3.9) limsupllumj+a_,6l[<o, limy (yt--Tlt--Wt_d)2/mj_l’--O a.s.

j--cx3 j--cx3 i=1 t=ni+d

Proof. We first prove by induction that P{b,,6 =0} =0 for every n. By our choice
of 00,6, this is clearly true for 0(= mo) -< n < n + d. Suppose that this is true for all
n -< t- 1. If nj + d -< <= m + d 1 for some j, then by (3.7a) and (3.8) together with
(2.17),

b,.6 b,_,6 + (a/ .-d)(’,-d + rl,

(3.10) bt_l,6nt-a(t_dbt_d,6)-l(’tt_d nt-Tqt--Wt_d)

x ,_e- ay,_e_- 2 iu,_e_- ,*w,_e_ a.s.,
i=0 i=-1 i---1

where the I, ., I* represent the components of O_e,6. Since w_a is independent of
S, "’0o,o," ",Or-l,6, tPt-d, X’o, rt-d, q, Yl,’’’,Y-d, Ul,’’’,U-d-1,

Wl,’’’, Wt-d-1) by (3.5) and (3.7), and since Wt-d has a continuous distribution, it
then follows from (3.10) that P{b,,=OIS,} =0. If m_ + d- 1 < < n + d for some j,
then b,,6= b,,_,,6, and by the induction assumption, P{b,,_,,6 0} =0.
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For simplicity, we will use 0. and b. to denote 0n,e and b.,6. For nj =< n < rnj,
since b.. 0 almost surely, (3.8) implies that w. 0’b. almost surely. Therefore by
Lemma 2, with probability 1,

(3.11) C(q-1)(y,--Wt_d--rl,)=--(O,_a--)’,_d fornj+d<--t<--mj+d-1.
Let e,= y,-W,-d. From (3.7a) and (2.17), it follows by simple algebra (cf. the proof
of Theorem 1 given in [16]) that

0.,+/_- 11 = 0,/_- 112

(3.12)

mi+d-1

t=ni+d

+ (a/2) ~-2 )2r,_a(e,- r/, q,-a =}
m.+d -1 m.+d -1

+ a2 ~-2 2 2

t=ni+d t=ni+d

First note that { ni + d =< =< mi + d 1 } {ng -< d} { mi > d} 6 -a. Further-
more, c,_a, r’t-a and e,-r/, O’O-a-O’-ach,-a are o%_a-measurable. Therefore an
application of Lemma 1 (of. the proof of Theorem 1 given in [16]) shows that with
probability 1,

j mi+d -1
(3.13) E

i=1 t=ni+d

~--2 2 ~-2 2
rt_d t-d I1=. 0 E r,-d .-, o(1).

i=1 t=ni+d

j mi+d --1

(3.14) E Y rTYal14,,_ali(e,-nt)n, o E ..-2rt_d(e,--rh)2 + O(1).
i=1 t---ni+d i=1 t=ni+d

Writing 0,_1-0== (Ot_s--Ot_s_)nt-(Ot_d--) and noting that O,_=O,_s_ if
n-<_ t- s < n + d, the same argument as that used in [16] for the proof of Theorem 1
can be used to show that with probability 1,

(3.15)

+o(),

mi+d -1

i=1 t=ni+d

0 S" rt_d[ ff) t_d( Ot_d O)]2~-2 q- O
t=ni+di=1 t=ni+d

j mi+d--1

i=1 t=ni+d
{,a( e, rl,)qb ’,-a( 0,_, ) + (a/2) 7_a (e, r/,)2 ,- =}

mi+d-1
(3.16) _--< -(p + o(1)) 2 ~-1 2r,_a(e,-rh) + O(1)

i=1 t=ni+d

mi+d-1
,d(e,-rl,)[{C(q-1)-(d-1/2)a-p}(e,-rh)],

i=1 t=ni+d

where p >0 is so chosen that minl,l_<_, Re {C(e")-(d-1/2)a-p} >0.
From (3.11), it follows that

(3.17)
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k+d-1 b. Us-- -It- es + Z h
Using the recursion Ys =-YP=I a.ys_. +Y..=d -d+ v=l ce._, we can
proceed inductively from 1 to (d- 1)v 1 to show that

)max Y,+t y2.,_, v u2.._ v 22.,._
l<=t<--d-1 v=l v=l-d

in which the left-hand side is interpreted as 0 if d- 1 0. Since sup, le,] < oo almost
surely, this implies that with probability 1,

k+a --2 p(a)-I )(3.18) max (y2 2 2.,+,+r/.,+,)=O Iv V .v X y2ni.l ni_
l^(d-h)<--t<=d-1 v=l v=O

Recalling that sup, Iw,]=< c and that e, =y,- W,-d, we then obtain from (3.17) and
(3.18) together with the definition of ,,-1 in (3.7b) that with probability 1,

mi+d -1
(3.19) E E

i=1 t=ni+d

~--2 ~--1r,_a[cb,_a(O,_d--g)]2=O rt_a(et rt,) +O(1).
t=ni+d

Since Re{C(ei’)-(d-1/2)a-p}>O for all [t]<- or, it follows from Lemma 3(ii)
that

mi+d --1

E , FT1d(e,-rl,)[{C(q-’)-(d-1/2)a-p}(e,-rh)]
i=1 t=ni+d

j h h-1

(3.20) <= Z . Z Cl+.(en,+d-l-v-- nni+d-l-v)(e.,+d-l+l-- nn,+d-,+l)/.i-]-l-I
i=1 /=1 v=O

1 j hlhl{ ,1/2 }2 L mi(et_t)2+" P X --,-- Z 1/2:1/2 (e.,+a_.-*l.,+a_.) +i=,2 i=1 /=0 v=l p tni+l rt-d
using the inequality lAB] <- (A2 + B2)/2 and noting that n + d + h _-< mi. Moreover, since
e, y, w,_a and sup, (Iw l / almost surely, it follows from (3.18) and (3.7b)
that

h

(3.21) Y Y (e,,+d-,-- rt,,+d-,)2/,, < OO a.s.
i=1

Combining (3.16) with (3.20) and (3.21) gives
j mi+d-1

i-=1 t=ni+d

~--1

(3.22)
mi+d-1

--<-(p/2+o(1)) E Z 7713(e,-rh)2+O(1) a.s.
i=1 t=ni+d

From (3.12)-(3.15), (3.19), and (3.22), it follows that
m.+d-1

IIo.,+d-, =<-(p/z+o(1)) 2 2 ---1 )2rt-d(et 7, + O(1) a.s.
i=1 t=ni+d

Hence lim supj  112< and Y m,+a- ~- )2=lt=,,+a rt-a(et r/, <m almost
surely, implying the desired conclusion (3.9) by the Kronecker lemma. D

COROLLARY 1. With the same notation and assumptions as in Theorem 2, let

%==1 (m-n). Assume furthermore that B(z) is stable and that

i=1 -=0 r,=l i=1 v=O v=l

(3.23) 0(#) a.s.
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Then

t mi+d-1 mi+d-1
(3.24) E y2+ E 2

U,_a =O(j) a.s.,
i=1 t=n t=ni+d

mi+d-1
(3.25) lim E E (y,-rh-w,_a)/j=O a.s.

j-->cx i=1 t=ni+d

Proof. From (3.6), (3.7b), and (3.23), it follows that

(3.26) mj--1 0 j + (y2t-d + U,-d) a.s.
i=1 t=ni+d

Since bl # 0 and B(z) is stable, an application of Lemma 4(i) shows that

(3.27) < K y + e+ u.U t--d
ni+d -p+d -h+d

for some K > 0. In view of the assumption that supt letl < o almost surely, it follows
from (3.26), (3.27), and (3.23) that

(3.28) mj--1 0 j + 2 Y Y a.s.
i=1 t=ni+l

Letting et y,- W,-d, it follows from (3.9) and (3.28) that

mi+d--1 mi+d -1
2 2 et--2<2 2 Y {72+(e,,
i=1 t=ni+d i=1 t=ni+d

(3.29)

=O(:j)+o j+ Z yt
2 a.s.

i=1 t=ni+l

2 2Since y2<2et+2=Wt-d, the desired conclusion (3.24) follows from (3.29), (3.23), and
(3.27). Moreover, from (3.9), (3.26), and (3.24), (3.25) follows.

The proof of Theorem 1 given in [16] can also be readily extended to show that
the same conclusions hold for the following modification of the stochastic gradient
algorithm (2.21), noting that condition (3.32) below implies that pn is ofn_d-measurable
and that (a d-pnWn)2 aa, (pnOtn_d,Gn_d,G)2-- O(rn_d). This modification can be used
to define the input u, by

(3.30) O’t.t.G Y*+a,
since bt,G # 0 almost surely even without the continuity assumption (2.19) (cf. Theorem
2 and [21]).

THEOREM 3. Suppose that in Theorem 1 we change (2.21a) to

(3.31) 0.. On_l,G+(Ce-+-pnWn) -1r,,-a(y,

where n., :.., and r. are still given by (2.21b)-(2.21d), 0 < a < a, the w. are random
variables satisfying (3.5) for some c > O, and

(3.32) p,. (al/a l/2--a)/{r-l/flO;_d.._d, v c}.

The initial value 0o, is so chosen that bo, O, where bn, denotes the component of0,
estimating bl. Then (2.22) and (2.23) still hold and

(3.33) P{b,,=0}=0 for every n.

Moreover, (2.24) also holds if B(z) is stable.
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4. Occasional excitation and strongly consistent parameter estimates using the
method of moments. Throughout this section we will let n < m < n2 < m2 <" be
stopping times such that (3.4) holds, and define the modified stochastic gradient
algorithm 0..6 and the associated pseudo-regression vector b..d as in Theorem 2.
Letting

(4.1) J= [._J ( n,, hi+ 1,..., mi 1},
i=1

we will assume that, as in Theorem 2, the inputs u, are determined by (3.8) for n J.
Making use of Corollary 1, we show in the following theorem that the input-output
data at stages J have certain excitation properties, which we will use later for the
construction of strongly consistent estimates of the parameter vector 0, defined by
(1.6), of system (1.1).

THEOREM 4. With the same notation and assumptions as in Theorem 2, assume
that B(z) is stable. Suppose that

mj nj is ;,j-measurable, mj nj oo, and

(4.2) l v X y2j v Y 2 2
u.j_ 2v Y v ,_

v=0 =1 i=1 v=0

O(mj- nj) a.s.

Let 4j E=I (mi- ni) and define
St- (Yt-1," Y,-p, u,-a," Ut-d-k+l)’,

(4.3) Zt (Yt-h-1, Yt-h-k+, Wt-a,

Then (3.24), (3.25) hold and there exists (p + 2k 1) x (p + k) nonrandom matrix H such
that

(4.4) lim E E ZtX’t 4j H a.s.
j--> i=1 t=ni+p+k+h+d

If the polynomials zPA(z-1), zk-IB(z-) and zhC(z-) are coprime, then H hasfull rank
p+k.

Proof In view of (4.2), (3.23) holds and therefore by Corollary 1, (3.24) and (3.25)
hold. By Lemma 4(i), there exist constants C > 0, 0 < p < 1, and ao, al, ,/30,/31,
such that I ,1 and

(4.5)
Ut-d aoYt +" + at-.y. + floet +" + t-.e. + At,. for >_-- n + d,

where IA,..I-< Cp’-" X lY.- I/
s=l s=l s=l

From the definition of m t,ni+d it follows that

(o)(k--1E E 2 <(k+ +h) C2 fl2s 2a,..,+a= p Z Z u.,_
i=1 t=n+l+d s=l i-1 v=l

(4.6) p

y,,+d_,,+h sup e, o(j) a.s. by (4.2) and (3.18).
v=l

Let t Yt "tit Wt_d. By (3.25), J mi 2= t=.,+a 6t o(4j) almost surely and therefore

i=1 t=nl+l+d s=ni+d i=1 t=ni+l+d s=ni+d s=ni+d
(4.7)

E a.s.
i=1 s=ni+d t=0
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(4.8)

For fixed r_-> 1 and s _-> 1, s’-> 0, since et-r is t_l-measurable and {ni + s _-< t_-<

mi- s’} t-s by (4.2). We can apply Lemma l(i) to conclude that for every 6 > 0,
-s’

1/2+6)E Y e,_re,=o(j a.s
i=1 t=ni+s

0.2 #j a.s.

--s’
2(4.10) Y E w,---v#j a.s.

i=1 t=ni+s
--s’ j --s’ --s’

(4.11) 2 E e,.w, + 2 2 e,w,_,. + 2 2 e,_rW, =o(#)/2+) a.s.
i=1 t=ni+s i=1 t=ni+s i=1 t:ni+s

Since Tt e, +fet-1 +" "+fa-let-d+, it follows from (4.8)-(4.11) that for every fixed
L,

lim Y Y (rl-h- + Wt-h-l-d, Tt-h-k+l
j-c i=1 t=ni+p+k+h+d

-I- Wt_h_k+l_d Wt_d, Wt_p_k+l_d)

(4.12) x Tt_ "aI- Wt_l_d," ", "Ot-p "q" Wt-p-d, Olr(Tt-r -Ji- Wt_r_d) -Jl- ret_r, ",
O

20r(Tqt-k+l-r q- Wt-k+l-r-d)q-ret-k+l-r ej: gl a.s.,

where HL HL(ao, aL, o, ,f, ,fa-, 2, v) is a nonrandom matrix.
Since sup, (1 ,1 + Iw, I)< almost surely, and since

(4.13) limsup sup
L i=1 t=n Os<t r=L+l

Since y, , + W,-d + , with = ,=,,+d 6 O(#) almost surely, it follows from
(4.5)-(4.7) together with (4.12) and (4.13) that (4.4) holds with H(=lim H) equal
to the common expected value of the stationary sequence of random matrices

", + ",

x 2
j=O

2 {j(t+l--k--j + ’+l-k-j-d)+jt+l-k-j}
j=0

where fi, g, +.. "+fa-g,-a+a and..., g_a, ff_, go, fro, g, ff,.., are independent,
bounded random variables such that the g have the same distribution with mean 0
and variance 2 and the ff have a common distribution with mean 0 and variance v.
Let fft-a =Z=o {aj(fit-+ fit-j-a)+flgt-j}. Then by the definitions of a and B,

a(q-’)(t + t-a) B(q-1)"u,_ + C(q

Hence by Lemma 6, H has full rank p + k.
In view of Theorem 4 on occasionally excited input-output systems, we can use

the instrumental variables Zt defined in (4.3) to construct strongly consistent estimates

Moreover, by (2.26),
m.t -s’

(4.9) 2 2
i----1 t=ni+s

Likewise, in view of (3.5), we have
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of al," ", ap, bl," bk based on the input-output data at stages J. We can then
estimate consistently the autocorrelation function of the colored-noise sequence {e, +
Cl En--1 "-[- .-[- ChEn_h}.

COROLLARY 2. With the same notation and assumptions as in Theorem 4, suppose
that the polynomials zPA(z-), zk-B(z-), and zhC(z-*) are coprime. Let A
(-al,""",-ap, bl, bk)’. Define

mi

’mj V Vj )-1 V E E Ztyt where
i=1 t=ni+p+k+h+d

.(4.14)

vs= E E z,x’,,
ni+p+k+h+d

and the inverse is the Moore-Penrose generalized inverse. Then

(4.15) hmj-h-o(#j-1/2+) a.s.

for every 6 > O. Let

(4.16) e. y,- hsX,,

(4.17) pm(V)= 2 2 ej, tej, t-v 2 v=0,...,h.
i=1 t=ni+p+k+h+d t=n + k+h+d

Then p,,(v) converges almost surely to the covariance p(v) between C(q-l)et and
C(q-1)e,_ (which is the same for all since E(el o_1) o2); in fact, for every 6>0,

-1/2+) for O, 1, h.(4.8) Om()--O() 0( a.s.

Remark. In view of (4.16), the numerator of (4.17) can be expressed as

j m m

i=1 t=ni+p+k+h+d i=1 t=ni+p+k+h+d

mi

i=1 t=n+p+h+k+d

mi

+ ltrnj E E XtXtt-v)lmj,
i=1 t=ni+p+k+h+d

which can therefore be updated at stage m without calculating the residuals

Proof Since y, X’A + e, +Clet_ +" + Chet-h, it follows from (4.14) and (4.3)
that

(4.19) Am A +( Vj V)-’ V Y f
i=1 t=ni+p+k+h+d

(6t +" "+ ChEt-h)(Yt-h-1, ", Yt-h-k+l, Wt-d, ", Wt-d-p-k+l) t.

In view of (3.5), (3.24), and Lemma l(i), we have for every 6> O,
mi

E E (Et-[-’" "+ChEt-h)(Yt-h-l,’’’,
(4.20) i=l t=,,+p+k+h

1/2+8
Yt-h-k+l, Wt-d, Wt-d-p-k+l)’-- O(:]-j a.s.

Since Vj/j - H almost surely and since H’H is positive definite by Theorem 4, (4.15)
follows from (4.19) and (4.20).
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Noting that ej.t C(q-1)et d- (h hmj)’Xt and that
[IX, 2) O(/) almost surely by an argument similar to the proof of Theorem 4, we
obtain from (4.15) that for every 6 > 0,

1/2+6(4.21) Z Z {em,,e,,_-[C(q-)e,][C(q-)e,_]}=o( a.s.
i=1 t=ni+p+k+h+d

for =0, 1,..., h. Moreover, by (4.9) and (4.10),

Z E {(, + c,,_, +...+c,_)(,_+...+c,__)-p(,)}
i=1 t=ni+p+k+h+d

(4.22) /2+=o(v a.s.

for every 6>0. From (4.21) and (4.22), (4.18) follows.
Suppose that mj is so chosen that in addition to (4.2) we also have

(4.23) mj-nj=O(j_), j_a=O(mj-nj) a.s.

Define an estimate s (), , J))’ of s (, c, , Ch)’ by the following one-
step modification of Wilson’s [22] iterative algorithm

(4.24) sj+ T((0)+ pm(O),’" ",(h)+ pm(h))’,
h-- j)(j)where () =o ,+. =0,. h) and Tj is a (h + 1) x (h + 1)-matrix whose

(, ) element is #J +-) setting ) 0 for i> h or < 0. The basic idea behind
(4.24) is essentially the same as Solo’s [23] recursive implementation of Wilson’s
algorithm, and analogous to [23], we initialize (4.24) by setting o)> 0= o)
o and perform a stability test for the polynomial h +)Z,=o ", redefining (4.24) by
sj+ =sj if the stability test fails.

From (4.23) it follows that lim supj j_/j < 1 almost surely and therefore for
every 6 > 0, j= /2+ < almost surely, implying that

(4.25) (1 +/2+) converges a.s. as n.
j=l

Fuhermore, (4.23) implies that j= O(_) almost surely, and by (4.18), for every
6>0,

(4.26) max pm(U)--p_,(U)l 0(TM) a.s.
0uh

Hence a straightforward modification of Solo’s argument in [23] can be used to show
that sj s almost surely; moreover, further application of (4.26) gives the convergence
rate sj-s O(:-1/2/) almost surely for every 6 > 0 (cf. [24]). Throughout the sequel
we will let

(4.27) 0mj (A’,,+, o’/)/cr(0J),’’’ Or(hi)/O’<0/))’.
Therefore under the assumptions of Corollary 2 and (4.23), 0,,+ provides a strongly
consistent estimator of (A’, cl,..., Oh)’( 0, by (1.6)); in fact,

(4.28) 0,,+=0+o(:j-/2+a) a.s. for every 6>0.

5. Matrix gain and the monitored recursive maximum likelihood algorithm. By
introducing occasional white-noise perturbations and applying the modified stochastic
gradient algorithm 0n.6 in conjunction with these white-noise perturbations to define
the inputs un for n J as in (3.8), we showed in 4 that the input-output data at stages



1114 TZE LEUNG LAI AND ZHILIANG YING

J have sufficient excitation properties to provide strongly consistent estimators
of 0. These estimators are updated only occasionally at stages n =rnj and therefore
can afford more computational complexities than the stochastic gradient algorithms
0,,, 0,,d, and the monitored recursive maximum likelihood algorithm 0,,M, to be
introduced below, which must be updated at every stage n.

The strongly consistent estimate 0,,j of the parameter vector 0 in the explicit
dynamical system. (1.1) induces a strongly consistent estimate 0,, of~the re-
parametrization 0 in the implicit system (2.17), since the components of 0 can be
expressed as continuous functions of those of 0 in view of (2.12). For example, in the
case d 2, it follows from (2.12) that fl el- a, gi ci+ a+ aif for 1, , p v
(h-l), where we set ci=0 for i>-h and aj=0 forj>p; moreover, (bf)=b+b_lfl
for i= 2,..., k, and (bf)k+ bkf. The convergence rate (4.28) for 0,, implies that
in the reparametrized model (2.17) we again have

O=+o(#f’/2+) a.s. for every 6>0.

Therefore, takin.g 0< 6 < 1/2 and c>0 and letting I denote the cube in Rp(d)+k+d-l+h

with center at 0,, and width c#]1/2+, we obtain from (5.1) that

(5.2) P{ I for all large j} 1;

moreover, Ij shrinks to as j--> oe with probability 1.
The basic ideas of the monitored recursive maximum likelihood algorithm 0,,M

for the estimation of 0 are" (i) to extend the classical recursive maximum likelihood
(RML2; cf. [25]) algorithm to the implicit system (2.17), and (ii) to constrain (monitor)
the recursive algorithm so that it lies inside the "confidence interval" Ij for , <_- n < ,j+,
where (,j+ >) , ->_ mj is so chosen to accommodate the time for carrying out the more
intensive computations required by 0,,. The projection that we use to constrain 0,,M
is taken with respect to the norm induced by the positive-definite matrix P2-d defined
in (5.4d) below, instead of the usual Euclidean norm. For x e Rp(d)+k+d-a+h and
t, =< n < u+, let r(x) denote the unique solution ofthe quadratic programming problem

(.(x)-x)’ -’P,_d(Tr,,(x)-x)=min {(y--x)’p-1d(y--x)},
ylj

i.e., 7r,(x) is the projection of x into lj with respect to the norm induced by P-Id.

The choice of a cube for the confidence region Ij implies linear constraints for the
quadratic programming problem (5.3), which can be handled by simple computational
methods (cf. [26]). Define

O,,,M (if,,,,,’’’, ,,,,p(d), b", (bf),,,z, (bf),,,k+d-, --Cn,1 --n,h)’

for n > v by the recursion

(5.4a) On,M ’7"gn On-l,M + P,,-a,,-d Y,, ,,,M ),

(5.4b)
,, + c",,,,,_, +’’’ + ’,,,h,-h b,,M, where

4’,,,M (Y,,, Yn-p(a)+l, Un, Un--k--d+2, n+d--l,M n+d -h,M t,

(5.4c) )3.+d,M 0’n,M ()n,M

(5.4d)

where P is a positive-definite matrix and 0,,M represents an initial guess of (e.g.,
set O,M fire,), and I denotes the identity matrix.
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The recursive algorithm 0.,4 in (5.4) involves the ._d-measurable matrix gain
P.-a {P-1a-1 + .-a’-a+ I/(n-d)}-1. Since 7r.(x) is the projection of x into the
closed convex set Ij with respect to the norm induced by P-1d, it follows from (5.4a)
that the extended stochastic Lyapunov function Q. _a (0.,4 ),pla(0.,4 ) satisfies

Q. <= (On_l,M 3"-I-" Pn-dn-d(Yn fin,M))’P-1d( On-,,M / P.-dn-d(Yn --fin,M))

Q.-1 +(n--d)-ll[o.-1,M--ll2+[;-d(O.-1,4--)]2

+ 2’.-d(0.-1, )(y. --fi.,t)+ ’.-dP.-d.-d(Y. --)3.,t)2,
for vj _--< n < v+. By making use of Lemmas 1, 2, and 4(ii) to analyze the above recursive
inequalities, we have established in [16] the following basic property for the adaptive
d-step ahead predictors fi.+d,V 0’.,t4).,M, which will play a key role in the develop-
ment in 6 of asymptotically efficient certainty-equivalence-type rules whose regrets
have the logarithmic order (1.24) or (1.25).

THEOREM 5. Suppose that C(z) is stable and that the random disturbances e. in
the linear stochastic system (1.1) satisfy assumption (1.3) and the boundedness condition
sup. le.I < eo almost surely. Let Vl < v2 <" be stopping times with respect to {t} and
let I be an -measurable, closed, and convex set such that (5.2) holds and

(5.5) lim (diameter of I) 0 a.s.
j

Define the monitored recursive maximum likelihood algorithm O.,t by (5.4), where 7r. is

given by (5.3) for v <= n < vj+l. Assume that

(5.6) Amax(pl)-cx3 and ’.P..-O a.s.

Let crEd ErlEd, where rlt is given in (2.15). Then

{E(yt+d i;t 2__y,+a,M} < (2d 1)(r] + o(1))(log det
i--1

(5.7)
+o(log n)+o Y’, 2 [[lvj-rll2/l[:.,-rll] a.s.

j:vj<=n+d r=l

6. Adaptive control schemes based on parallel recursive identification algorithms. In
this section we construct a class of certainty-equivalence-type rules that involve parallel
implementation of the recursive identification algorithms 0.,a, 0.,d, and 0.,M described
in 3 and 5 and whose control inputs are determined by one of the following three
equations at every stage t: (i) (iii) 0’Ot,Gt,G Y*t+d, (ii) 0’
where Y*t+d represents the target value at stage + d, and the wt represent extraneous
white-noise perturbations that satisfy condition (3.5). We will show that such adaptive
control schemes have logarithmic order (1.24) for the regret Yd/l (Yi--Y/*-- r/i)2 under
the following assumptions on the linear stochastic system (1.1):

(6.1) B(z) is stable.

(6.2)

(6.3)

Re{C(eit)-(d-1/2)a}>O for all It[_-< 7r and some a>0.

The polynomials zPA(z-1), zk-ln(z-1) and zhc(z-1) are coprime.

(6.4)

(6.5)

{e,} satisfies (1.3) and sup, [e,[ < o almost surely.

The target value y,* at stage n is ,_d-measurable and 1 y,2 O(n) almost
surely, yn.2= o((log n)) almost surely for some 0< y < 1.
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For the stochastic gradient algorithm bn,, we use the version defined by (3.31),
(3.32), and (2.21b)-(2.21d). To define the sequence of stopping times nl < ml < n2 <"
associated with the modified stochastic gradient algorithm 0n,d (cf. Theorem 2), take
a nondecreasing sequence of constants K, >= d + h such that

(6.6) K,, -, K,, O((log n)(1/2)^(1-Y)), K2n O(K,,),

where 3,(<1) is the same as in (6.5). Define inductively

(6.7)

(6.8)

j-1

nj inf n > mj_1" E (mi ni) <- K,, and
i=1

y2n_ V E
r=0 r=l

( p(d)-I

m/ n+ K,,.v lv 2
Ynj_r V

r=-0

k+d -2
2 ).. ln-r

r=l

X log2 2 v y2,,_ v 2 U,,,_
i=1 r=0 r=l

Note that the ng and mg defined by induction in this way are stopping times with
respect to {oft} and satisfy conditions (3.4) and (4.2).

Let J [,_Ji {n" ni <= n <- mi-1}, as in (4.1),J={tJ" t-_< n}, and use (3.8) to define
the input u at stage n if n J. Using 4 (S) to denote the number of elements of a set
S, define un for n J by

(6.9) 0 n,GdPn,G Y*n+d if #(J,)_-< K 1/2 and n J.

By (3.33), (6.9) is well defined almost surely. Note that n is the first time n after rnj_
for which (J_) =< K (signalling too few white-noise excitations) and the subvectors
(Yn,’’’,Yn-p(d)+l)’ and (U-I,’’’,U-k-d+)’ of b, have squared lengths
-<_K,/log2 (Kn + 2), and that m-n is a simple function of K and these components
of b,,. By Lemma 7 below, the stopping times n and m defined by (6.7) and (6.8)
are indeed finite almost surely. Moreover, they satisfy condition (4.23) in view of
Lemma 9(i) below.

With nj and m thus defined, define the recursive method-of-moments estimator

0 as in 4, which induces a strongly consistent estimate 0, o,f the reparametrization
0 in the implicit system (2.17). The cube I with center at 0, and width cf1/+

is used to define the monitored recursive maximum likelihood algorithm 0,,4
(,,1, ", ,n,pd, b",l," , --C,h)’by (5.4), in which 7r is given by (5.3) for , =< n -< U+l,
where uj(=>m) represents the time at which the auxiliary consistent estimate ff is
available for monitoring the 0,4. In conjunction with (3.8) and (6.9), we complete the
specification of the input sequence {u} by

(6.10) 0’,,4b,,4 Y*,+d if *(Jn) > K 1/2 and n

setting u, w, in the case where b,l =0 (for which u, is not well defined by (6.10)),
and applying (6.9) when n _-< ’1. Since 0,,M --> 0 almost surely and since bl 0, it follows
that with probability 1, /,,1 0 and u, is well defined by (6.10) for all large n.

THEOREM 6. For the sequence of control inputs u defined above by (3.8) for n J
and by (6.9) and (6.10) for n ! J,

(6.11) limsup (y,-y*-q,)E/logn<-(2d-1)(p(d)+k+d-l+h)EEd a.s.,
n--*c i=d+l
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under assumptions (6.1)-(6.5), where rli is defined in (2.15) and p(d)=pv (h-d + 1).
Iffurthermore

(6.12) log (1+ i=l
y/.2)=O(1Og n) a.s.,

then (6.11) can be strengthened into

(6.13) limsup (y,-y*-’q)2/logn<=(2d-1){p(d)+k+d-2}Erla a.s.
nc i=d+l

We preface the proof of Theorem 6 by the following five lemmas.
LEMMA 7. Suppose that the inputs un are so chosen that (6.9) holds. Then #(J)= o

almost surely.
Proof. On the event {#(J)< c}, it follows from (6.9) that 0’,bn, Y*+a for all

large n, and therefore by (2.24) (cf. Theorem 3),

(6.14) y2,,_ + 2 u,-r O(N) a.s. on {#(J) < m},
=1 I. r=0 r=l

noting that Y (y/,)2 O(N) almost surely by (6.5). Since K, o, (6.14) implies that

p(d)-I

P{#(J)<oo}=P #(J)<oo and Y
r=0

k+d -2

yn_r+ 2

<-- K,/log2 (K, +2) for infinitely many n’s} =0,

where the last equality follows from (6.7). Hence #(J)= c almost surely.
Define the following subsets of integers _>-d + 1"

(6.15)
/2AN={t<=N’t-dC_J and#(Jt_a)<=K,_d}={t<=N:(6.9)isusedatn=t-d},

1/2 l {t < N" (6 10) is used at n= t-d}.LN={t<=N’t-dC_J and #(Jt_a)>Kt_as

LEMMA 8. (i) #(J,)= O(K,,) almost surely.
(ii) 2d+l (Yi--Y*i --rli)2-- O(n) and 21 (yi +u)= O(n) almost surely.
Proof (i) Let ::zJ’--2J=l (m--ni). From (6.7) it follows that

2 2 =< (K,,j +2).(6.16) ==j--1 <= K,,j, Yn-r V Un-r
\ r=0 r=l

Clearly (6.8) implies that

(6.17) 2v Z y2,, v 2 2u,,_ =0 (m-n) =0(#).
i=1 r-----0 r=l i=1

From (6.8), (6.16), and (6.17), it follows that with probability 1, for all large j,

(6.18) #j<=(mj-nj)+ K,<=2K,j + {K,/log2 (Knj +2)} log2 #j.

Since (6.18) implies that log #j <= (1 + o(1)) log K, almost surely, we obtain from (6.18)
that #-<_(3+o(1))K, almost surely, giving the desired conclusion in view of the
monotonicity of K,.
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(ii) Since yt* 33,, for A, and yt* 33t,M for L,, it follows from Corollary
1, (6.18), (6.5), and (6.6) that

(6.19)

(Y,-Yt*-r/t)2= E (Y,-)3,,-rh)2+ E (Y,-)3,,t-rh)2

tAn tLn

+o(K,(log n) r) a.s.

By Theorem 3, (2.23) holds and therefore by the Kronecker lemma,

(6.20) (y, 33,, r/t) 2 0 (y2+u2t)+ 2
Yt, + O(1) a.s.

Since C q-1)( yt .t, rt, O ,_d. )’Cb t-e, by Lemma 2 and since 0t_e, 0
0 almost surely, it follows from the stability of C(z) and Lemma 4(ii) that

(6.21)

(yt2+ ut) + ,2
Y,,M + 0(1) a.So

By (6.19)-(6.21) together with (6.4) and (6.5),

(6.22)
yt_--<2 (yt*+ r/,)2+2 (y,-yt*- ,)2

(nld hid n-1
^2 ^2)O(n)+o y2t+ U2+t E (Yt,G+Yt,M) a.s.

Moreover, by (6.20)-(6.22) and (6.4),

yt,G+ y,,,<=2 (y,-y,,-rh)+2 (y,_y,,_,q,)2

(6.23) + 4 (y,- rh)2

O(n)+ o YZt+ uZ+t E (Yt,+Yt,lVt) a.s.

Since B(z) is stable, we can use Lemma 4(i) together with (6.4) to obtain that

(6.24) u, 0 y + O(n) a.s.

From (6.22)-(6.24), it follows that

n-d
-2 -2 2 O(n) a.s.(6.25) (y2 + Yt, + yt,) O(n) a.s., Y u

Combining (6.19)-(6.21) with (6.35), we obtain that Y (y,-y*-rh)2=o(n) almost
surely. [3

LEMMA 9. (i) lim inf,,_ # (J,,)/K,, > 0 almost surely.
(ii) lim,, # (A,,) < almost surely, and therefore P{(6.9) is not used to determine

the input u, for all large n} 1.



THEORY OF SELF-TUNING CONTROL 1119

Proof By Lemma 8(ii), P(12o) 1, where )o= {lim sup,_ n -1 E1 (Y/2+u/2) <e}
On o, for all large n,

(6.26) min Ut-r < min K,/log2(K,+2).
[n/4]N

In view of the definition of nj in (6.7), (6.26) implies that either ::(J[n/4]) >= Kin or
there exists nj {[ n/4], n/4] + 1,. , n/2]}. Since mj nj _>- Kn and since Kn is nonde-
creasing, it then follows that on fo, :(Jn)>= Ktn/41 for all large n, and therefore by
(6.6), K, o(g[n/4]) O(#e(Jn)), so there are only finitely many m’s for which 4 (J,,) -<
K1/2 []

LEMMA 10. [[/)n,MII 2= o(K v (log ?/)’/), where y is given in (6.5).
Proof. From (3.25), it follows that

(6.27) max (Yt- wt_a r/) o(j) a.s.
nj+d<=tmj-l+d

Since 4j O(K,) almost surely by Lemma 8(i) and since Iw, l-< c, it follows from (6.27)
that

(6.28) lim{ max (yt-rlt)2/Kt}=O a.s.
jcx3 nj+d<=t<=mj-l+d

Defining q, by (2.17), we obtain by (2.15) that

ck,,,M q’, (0,’’’, O, Y,+a-, ,+a-,,w Tin+d-1 ,"
(6.29)

Since by Lemma 2,

C(q-1)(y, --n,M qn) ck’,-a,M(

Yn+d-h n+d-h,M Tl n+d-h)’.

o)- o),

and since Ot, (,,,...,-c",,,...,--C",,h)’, it follows from (6.29) and (2.16) that

(6.30) d,-d q-’)( y, -,,lVt ft,)= ’,-a( On-a,M ),
where (z-) 1 + c,,z +. .+ t,hZ -- C(z) almost surely (as t- oe). In view of (6.30)
and Lemma 4(ii), there exist D > 0 and 0< po < 1 such that with probability 1,

(6.31)

Y, )3t,M 7, -< D sup

i=,-d-(p(d)vh) }’-’(ly, l+ln, I)+ X po lu,Po
i=v-k-2d

h-1

+Dpo E
r=0

for all > v.

Since B(z) is stable, it follows from (6.31) and Lemma 4(i) that for some A>0 and
0< p < 1, we have with probability 1,

(6.32)

where U is a nonnegative random variable.
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Take any 0< < 1. Since Ot 0 almost surely, it follows from (6.32) that there
exists a random variable z such that with probability 1,

(6.33) [yt-,t,M-Vhl<=6max(lyi-qi[+lvtil+lei[)+6 for t>_z.

By choosing z large enough, we also have with probability 1 that

(6.34) ;,,=y iftz and t-dJ,

in view of Lemma 9(ii) and (6.10), and that

(6.35) [Y, ntl < 6Ki/2t if >=z and t- d e J,
in view of (6.28). From (6.33)-(6.35), it follows that with probability 1,

[y,-,lN 6K/Z+ly[+6 max [y-l+6 max ([[+[e[+l), t
iNt iNt

and therefore

(6.36) (1-6) max ly-[<= max ]yl+6K/2+O(l), as t.
it it

Since 8 can be arbitrarily small and since 0(1) almost surely, we obtain from
(6.36) and (6.5) that

(6.37) y= o(K, v (log t)) a.s.

By (6.37) and Lemma 4(ii), u= o(K,+ v (log t)) almost surely. Moreover, by (6.33)
and (6.37), y, o(K, v (log t)) almost surely.

n+dLEMMA 11. (i)limsup,= (y-;i.-)Z/logn(2d-1)(p(d)+k+d
1 + h)E] almost surely.

(ii) Define the (p(d) + k + d 1 + h) x vectors

(6.38) v=(0,...,0,1,0,...,0)’,i=l,...,h, v+=0.
en v, ., v+ are linearly independent, and for 1,. ., h + 1,

(v,_a, O log n+ (y)
t=d+l

Proo (i) By (5.4b), n(q-1)n=n,M, where d(z)= l+,z+..
almost surely. Hence by Lemmas 4(ii) and 10,

1= o(K v (log n)’) a.s.(6.39)

Moreover, by (5.4d),

hmin(P-l)>-( i-1) "log n,
i=+1

and therefore in view of (6.39) and (6.6),

;P,, <-]]sc, ll2/Amin(P: 1) o(1) a.s.

Hence we can apply Theorem 5 together with (6.40) and Lemma 8(i) to conclude that
n+d

Z (Yt-ft.M-rlt)2<-(2d-1)(ErlZa+o(1))log det Pl+o(log n)
tl

(6.40)
+ o(K 2. v K,(log n) r) a.s.

By (6.6) and (6.39), Amax(e-l-+-n,,t=,,+l ttt):o(rl log n) almost surely. Hence the
desired conclusion follows.
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(ii) Fix i= 1," ’’, h. From (6.38) and the definition of bt,M in (5.4b), it follows
that vickt-a,l Yt-i,M. Combining this with (6.34) gives that with probability 1,

(VlCt-d,M)2<= (y-)+O(*(J.+h) sup II ,, ll
t=d+l t=i+l tn-d

(y)+o(K] v K.(log n)),

by Lemmas 8(i) and 9. Moreover, by (6.34), with probability 1, for all large t,

D+lt_d,M Ott_d,M =(O--Ot_d,M)tt_d,M+y if t-d J.

Since (--Ot-d,M)’t-d,M C(q-1)(Y,--fit,M--t) by Lemma 2, it then follows that

t=d+l t=l t=l / tn-d

a.s.
t=l /

by (i). Since b # 0, it is clear that v,..., Vh+l are linearly independent.
Proofof eorem 6. From (6.19), (6.6), and Lemmas 8(i) and 9(ii), it follows that

(6.41) (yt-y-t)= (yt--fi,M--t)2+o(logn) a.s.
i=l tL

From (6.41) and Lemma 11(i), (6.11) follows.
Suppose fuhermore that log (1 +1 (y)2) o(log n) almost surely. Defining the

linearly independent vectors v,. ., h+l by (6.38), we obtain by Lemmas 4(ii) and
ll(ii) that for i= 1,..., h+ 1,

(v’)=O 2 (v’.) =O logn+ 2 (Y) a.s.,
tNn tn =1

noting that C(q-)(v’,) v ,,, where C(z)= 1 +C,,Z+" "+C,.hZ C(z) almost
surely. Since P2 P-+=,+ (,’,+ t-I) it then follows that for i= 1 h + 1,

vp v)=log , v+ [(v:)+-llvll] =O(loglogn) a.s.

By (6.39), with probability 1, for all large n,

(6.43) log tr (P2)Nlog (n log n) log n.

Combining (6.42) and (6.43), we can apply Lemma 5 to conclude that

limsup(logdetP)/lognN(p(d)+k+d-l+h)-(h+l)=p(d)+k+d-2 a.s.

Therefore by (6.40),

limsup (y,-fi.-,)/lognN(2d-1)(p(d)+k+d-2) a.s.
tn

This and (6.41) give the desired conclusion (6.14).

7. Extensions to multivariate systems and concluding remarks. Suppose that in
(1.1), the y, e, and U-d are v x 1 vectors, and A(q-X), B(q-), and C(q-) are matrix
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polynomials of the form (2.33) in the backward shift operator q-1. As in (6.1), we will
assume that B(z) is a stable polynomial, i.e.,

(7.1) det (B(z)) 0 for all Izl <-- 1.

Moreover, analogous to (6.3)-(6.5), we will assume the following:

(7.2) The polynomials zPA(z-), zk-B(z-) and zhC(z-1) are left coprime.

(7.3) { en, n, n _--> 1 } is a martingale difference sequence such that E (ene’] n-) E,
a positive-definite nonrandom matrix, supn E(ll  ll almost surely
for some a > 2, and supn I1 < almost surely.

(7.4) y,* is an fin_d-measurable ul vector, I[y/*ll =- O(n) almost surely and
Ily.*ll o((log n)) for some 0< y<l.

In view of (7.1), BI(= B(0)) is nonsingular.
Let 0 (-A, , -At, B1, , Bk, C1, , Ch)’, analogous to (1.6). In the unit-

delay case d 1, we can write (1.1) as a stochastic regression model (2.1) with
)n (Y’n, Y’n-p+,, U’ Un_k+l, en, en_h+l) t. The optimal controller
assuming knowledge of 0 and the initial condition xo determines the input un by the
equation

(7.5) Oil]In n+l

In ignorance of 0 and Xo, the so-called explicit (or indirect) approach of adaptive
control is to replace 0 in (7.5) by a recursive estimator On and qtn by a pseudoregression
vector thn that substitutes the unobservable ei in qn either by the prediction error
y- O’-lth-i or by the residual y- O’d_l. In particular, Chen [27] used a modified
least squares algorithm for On, while Chen and Caines [28] used a stochastic gradient
algorithm, and showed that the certainty-equivalence controller associated with either
algorithm has the self-optimizing property (1.19) (with Rn =2 IlY,-Y*-ell) under
certain assumptions.

In the unit-delay, single-input, single-output case (i.e., d 1 ,), instead of the
implicit approach as in 6, we can use the explicit approach involving a parallel
implementation of the stochastic gradient algorithms 0n,, 0n.d and the recursive
maximum likelihood algorithm 0n, that are obvious modifications of (2.21), (3.7),
and (5.4) for estimatin.g the parameter vector (1.6) of the explicit model, instead of
the parameter vector 0 of the implicit model (2.17) considered in 6. As shown in
16], there are exact analogues of Theorems 1 and 5 for the explicit case, and Theorems

2 and 3 can clearly be extended to the explicit case as well. The same argument also
works for multivariable systems, for which we replace assumption (6.2) by

(7.6) C(e")+C’(e-")-aI is positive definite for all Itl_-< 7r and some a>0,

as has also been assumed by Chen and Caines [28]. Note that Lemma 3, which is a
key tool in the proof of Theorem 2, has been stated for the multivariate positive real
assumption (7.6). Moreover, Lemma 6, which is a key tool in the proof of Theorem
4, has also been stated under the multivariate coprime condition (7.2). Hence it is
straightforward to generalize Theorem 4 to the multivariate case, and we can therefore
obtain strongly consistent estimates of (-A,...,-Ap, B,... ,Bk)’ by using the
instrumental variables Z, Yt-h-1, ", Yt-h-k+l, Wt-1, ", Wt_p_k) where the wi
satisfy the multivariate version of (3.5) and have a common positive-definite covariance
matrix. A multivariate extension of the recursive implementation (4.24) of Wilson’s
[29] spectral factorization algorithm for multivariate time series can also be used to
obtain strongly consistent estimates of C,..., Ch, leading to the auxiliary estimator

0,, that satisfies (4.28).
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Hence for unit-delay multivariate systems, under assumptions (7.1)-(7.4) and
(7.6), we can modify the construction in 6 (by using the explicit instead of the implicit
approach) to obtain certainty-equivalence-type control rules that satisfy

(7.7) limsup [[y,-y*-eill2/logn<=u(p+k+h)tr(E) a.s.
nx3 i=2

Furthermore, if log (1 +E y*ll =) o(og n) almost surely, then in analogy with (6.14),
(7.7) can be strengthened as

(7.8) limsup Y [lyi-Y*i-e, ll2/logn<=,((pvh)+k-1)tr(E) a.s.
nx i=2

For the case of general delay, the construction in 6 generalizes immediately to
multivariable systems that satisfy either

(7.9) Aj=ajI forj=l,...,p,

so that A(q-1) can be reduced to a scalar polynomial 1 + alq
-1 +. .+ apq -p, or

(7.10) Cj--cjI forj=l,. ., h,

so that C(q-1) can be reduced to a scalar polynomial 1 + 1q-lq--.. .d-Chq-h. When
(7.10) holds, C(z) commutes with any v x , matrix polynomial and the minimum
variance d-step ahead predictor 37, -a- E(yt/d [t) can still be written in the form (2.14)
with FB instead of BF, where F(z), G(z) are matrix polynomials uniquely determined
by (2.12) (cf. [14, p. 135]). Hence a straightforward generalization of the construction
in 6 (using the implicit approach) leads to adaptive control rules that satisfy

(7.11) lim sup
no i=1

where r/t F(q-1)e,, under assumptions (7.1)-(7.4) and (6.2), noting that C(z) can
be treated as a scalar polynomial in this case.

Case (7.9) has been studied by Goodwin, Ramadge, and Caines [8]. Let (z)=
det (C(z)) and t(z) be the adjoint of C(z). Let F(z), G(z) be the matrix polynomials
uniquely determined by (2.12). Then (1.1) can be written in the following (d-step
ahead) prediction form:

(7.12) (q-1)[yn+d F(q-1) e,+a] G(q )(q-1)y,, + F(q-1);(q-1)B(q-1)u,,
(cf. [8, pp. 852-853]). Hence, under assumptions (7.1)-(7.4) and

(7.13) Re{O(e")-(d-)a}>O for all Itl<_- and some a>0,

a straightforward generalization of the construction in 6 gives adaptive control rules
whose regrets Yi=l Ily,-y*,-F(q-’)e, have logarithmic order. For d 1 (unit delay),
assuming the positive real condition (7.13) together with some other conditions,
Goodwin, Ramadge, and Caines [8] used the stochastic gradient algorithm to construct
self-optimizing controllers in this case.

The logarithmic order for the regret of asymptotically efficient control rules also
appears in the following classical problem of stochastic adaptive control. Consider k
independent statistical populations specified respectively by univariate density func-
tionsf(y; 0j) with finite means (0),j 1,. , k, where the 0 are unknown parameters
belonging to some set 19. How should we sample yl, y2," sequentially from the k
populations to maximize, in some sense, the expected value ofthe sum Sn Yl +" "+ Yn
as n ? This is the so-called "multi-armed bandit problem," whose name derives
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from an imagined slot machine with k-> 2 arms. When an arm is pulled, the player
wins a random reward. For each arm j there is an unknown probability distribution
IIj of the reward. The player’s problem is to choose a sequence of pulls on the k arms
so as to maximize the long-run expected total reward (cf. [2], [30]).

Let 0=(0,..., Ok)’ fit,*(0)=max_<_tz(0j). When 0 is known, the optimal rule
is to sample from the population whose mean attains tz*(0). Without assuming 0 to
be known, an adaptive allocation rule u is a sequence of random variables u, u2," ",

taking values in the set {1,..., k} and such that the event {u, =j} ("sample from Hj
at stage n") belongs to the r-field ,_ generated by the previous observations
u, y, , u,_, y,_. Robbins [30] formulated a notion of "asymptotic optimality"
for an adaptive allocation rule u as attaining

(7.14) lim n-lEoSn---I,z*(O) for all 0O.

This is analogous to the "self-optimizing" criterion (1.19’) for adaptive controllers in
the ARMAX system (1.1). In the case k 2, Robbins introduced the following class
of certainty-equivalence rules with forced learning to achieve (7.14). Sample from II1
during stages n < n2 <’’" and from I-[2 during stages n* < n* <..., where {n} and
{n*} are disjoint sequences of positive from II2 during stages n* < n2* <" , where {n}
and {n*} are disjoint sequences of positive integers such that n/i- and n*/i-.
At stage n C_{n, n2,’’ ", nl*, n*,... }, sample from the population with the larger
sample mean.

For an adaptive allocation rule, EoS, =Y= tz(O)EoT,,(j), where T,,(j) denotes
the total number of observations from H up to stage n (of. [31]). Thus, maximizing
EoS,, is equivalent to minimizing EoR,, where we define the regret R, by

(7.15) R, (Iz*(O)-tx(Oj))T,,(j),
j:(Oj)<l*( O)

which is a weighted sum of the sample sizes from the "inferior" populations. Note
the analogy between (7.15) and (1.16). Lai and Robbins [31] recently showed that for
any adaptive allocation rule satisfying EoR,, o(n") for every a > 0 and every 0, we
also have

(7.16) lim inf EoR./log n > (ltl,*(O)--(Oj))/I(O, 0"),
no j:lx( Oj)< *( O)

where /x(0*)=max__</x(0) and I(0,) denote the Kullback-Leibler information
number. Moreover, adaptive allocation rules that attain the asymptotic lower bound
in (7.16) at every 0 are constructed in [31] for various parametric families of distribu-
tions. Such rules involve certain upper confidence bounds for z(0) and are typically
of the form: Sample at each stage from the population with the largest upper confidence
bound. These upper confidence bounds are constructed by using generalized likelihood
ratios, analogous to the maximum likelihood approach of 5 that has been used in
the construction of asymptotically efficient adaptive controllers for the ARMAX model
in 6.

As pointed out in [32], a common difficulty in the multi-armed bandit problem,
the adaptive control problem in ARMAX systems studied herein, and the multiperiod
control problem of choosing the design levels u in the regression model (1.20) to
minimize E(u y) is the dilemma between the object of efficient control and the need
for information in estimating the system parameters. Although a Bayesian formulation
(involving a suitable prior distribution on the unknown parameters) and the associated
Bayes solution should, in principle, be able to resolve this dilemma, the Bayesian
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optimal control problem is prohibitively difficult to solve either numerically or analyti-
cally. A useful heuristic principle described in [32] to avoid these difficulties is to
consider the fictitious situation that assumes knowledge of some crucial parameter(s)
so that there is negligible conflict between estimation and control, leading to a more
tractable Bayes problem. Analysis of this fictitious situation yields the asymptotic lower
bound (7.16) for the expected regret in the multi-armed bandit problem, the logarithmic
order (1.23) of the regret of the optimal rule in the multiperiod control problem for
the regression model (1.20) with known/3, and the asymptotic lower bound (1.14) for
the Bayes regret in the regulation problem for the ARX model that assumes bl to be
known (cf. [4], [5], [32]). The ensuing task, therefore, is to develop recursive control
schemes whose regrets do not exceed asymptotically those in (7.16), (1.23), or (1.14),
even when all parameters are unknown.

For the adaptive control problem of ARMAX systems, we have shown, in 6 that
a modified version of the simple certainty-equivalence idea is powerful enough to
accomplish this task. Since the goal is to emulate the performance of the Bayes rule,
which is too complex even for off-line implementation, it is intuitively clear that a
statistically efficient estimator should be used for the certainty-equivalent rule. This
explains the use of the monitored recursive maximum likelihood algorithm introduced
in 5. Except in the white-noise case C(z)= 1, the estimating equations defining the
off-line maximum likelihood estimators (assuming independently and identically dis-
tributed Gaussian disturbances ei) are highly nonlinear. However, when monitored by
an auxiliary consistent estimator, the recursive maximum likelihood estimator
(which corresponds at every stage to a one-step Gauss-Newton iteration to solve the
off-line estimating equation) is asymptotically as efficient as its off-line counterpart (cf.
[33]). The need for an auxiliary consistent estimator (which we construct by the method
of moments applied to blocks of well-excited input-output data) accounts for the
modification (3.8) of the certainty-equivalence rule based on 0n,4. During the initial
stages when the auxiliary consistent estimator may not be sufficiently reliable, it
seems more prudent to use the stochastic gradient algorithm 0n,6 (which is known
to have a stabilizing effect) instead of the (possibly not well monitored) 0n,M in the
certainty-equivalence rule. This is the rationale behind the additional modification
(6.9) of the obvious certainty-equivalence rule based on 0,4. Since the algorithms
0,a4, 0,, and 0,, used in the certainty-equivalence inputs of Theorem 6 are all
recursive, running them in parallel does not cause difficulties for on-line
implementation.

As shown in [33], the classical method of moments, which involves only a fixed
number of auto/cross-covariances that can be easily updated, offers a reliable and
versatile way to construct consistent recursive estimators in ARMAX systems but has
not been fully explored in the recursive identification literature. Although the method
of moments and its application only to certain segments of all available data are
inefficient statistical procedures, they provide valuable initial parameter estimates
around which we can linearize the complicated nonlinear estimating equations that
define the statistically efficient but computationally intensive off-line maximum likeli-
hood estimators. Such linearization leads to the monitored recursive maximum likeli-
hood estimator of 5, which is asymptotically as efficient as its off-line counterpart.
Note in this connection that although the AML algorithm (2.6) has been called
"approximate maximum likelihood," its statistical properties are actually unrelated to
those of the off-line maximum likelihood estimator associated with Gaussian ei.
Although it has some resemblance to the iterative EM algorithm that is sometimes
used to compute the off-line maximum likelihood estimator, the AML algorithm is
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nothing more than a formal extension of the recursive least squares algorithm (2.2)
and can run into serious difficulties when C(z) differs so much from 1 (the white-noise
case) that the positive real assumption (2.8) is violated (cf. [33]).
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SENSITIVITY ANALYSIS OF OPTIMAL CONTROL PROBLEMS FOR
WAVE EQUATIONS*
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Abstract. Differential stability of the optimal solutions to an optimal control problem for hyperbolic
partial differential equation is shown. The related results on the sensitivity analysis for hyperbolic equation
with respect to perturbations of the coefficients of elliptic operator are provided.
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1. Introduction. This paper is devoted to the sensitivity analysis of the boundary
control constrained optimal control problems for the wave equation. We use the method
proposed in [$6] combined with the recent results on the regularity of solutions to the
wave equation [LLT], [LT1]. We consider for simplicity a quadratic problem; however,
the same argument can be used in the convex case.

Since, in general, the model of the distributed parameter system described by the
wave equation may not be known exactly, our results can be used to evaluate the
increments of an optimal control corresponding to the given increments of the data,
e.g., variable coefficients of the partial differential equation, or to the perturbation of
the domain of integration.

For a specific convex optimal control problem any optimal control satisfies the
necessary and sufficient optimality conditions in the form of an optimality system [L2].
By inspection of the optimality system it follows that in the case of control constraints,
an optimal control is given by the unique fixed point of a metric projection onto the
set of admissible constraints. This particular form of the optimal control allows us to
obtain the right derivative of an optimal control with respect to the parameter. To this
end the notion of Hadamard directional differentiability of the metric projection onto
the polyhedric convex set in Hilbert space [H1], [M], is used. It seems that the same
method of sensitivity analysis can be used for some nonconvex optimization problems
such that the related results on the H61der continuity of an optimal solution with
respect to the parameter are known, such problems are the subject of a paper in
preparation. There are several papers and monographs concerning the sensitivity
analysis of finite-dimensional problems, in particular, in mathematical programming.
On the other hand, the infinite-dimensional case requires the knowledge of the new
results on the differential stability of metric projection onto the specific convex, closed
subsets of Sobolev spaces. Such results are known in general only for a class of
polyhedric sets [H1], [M], [RS2] defined by specific local constraints.

We provide here the results on sensitivity analysis for the wave equation which,
we believe, is interesting on its own. We restrict ourselves in the present paper to a
model problem. However, the method proposed here is general and can be used for
a broad class of control problems including a class of state constrained optimal control
problems, such as those considered in [RS1] in the elliptic case.
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Consider the following optimal control problem depending on parameter e [0, 6).
PROBLEM (P). Find an element u K that minimizes the cost functional

(1.1) I(u) 1/2(Ry(T), y( T))a
over the convex set K c L2(E) of the form

(1.2) g {u L2(E)[0 -< u(x, t)<= M for a.e. (x, t) E}.

Here by y we denote the solution of the state equation

(1.3) Ytt A(x, O)y in II (0, T)

with the Neumann boundary condition

Oy
(1.4) u on E

On

subject to initial conditions

(1.5) y(0) =yo, y,(0):yl in

where u L2(E) is control, and Yo L2(f) and Yl Hi() are given elements. Here we
have used the following notation:

A(x, O)y div (aVy) Vy H2(l)),
eel0,6), 6>0 is parameter,

R", Q=x(0, T), T>O,

F 0, O x (0, T),

ax,

H() for s0 denotes the usual Sobolev space of order s. H-S() (H’())’ where
the duality is understood with respect to the pivot space L().

The following assumptions are imposed on the data of the problem: c R is a
bounded, open domain with the smooth boundary F. The coecients a(x) are given
by (for each e > 0)

(1.6) a(x) aO(x)+ ea(x)+ o(e)(x) in C(a),
where ao(x) c > 0 in

and either

(1.7) (i)

(1.7) (ii)

R L2(f) L2(f), R=R*>0

R (HS(l)), 0< s <5 and yo H/(); Yl (H1/2([))’= H-1/2(-), or

R (H(Ft); HS-’(ft)), 1-<s-< and yoH3/2(a), ylCH1/(]).
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It is standard to show that the optimal solution u to the problem (P) exists, is
unique, and

[u[x_-< C uniformly in e > O.

The same holds true for unbounded set (1.2) of admissible controls, i.e., for M +oo.
Our main goal in this paper is to characterize the right-derivative q of the unique

solution u K of Problem (P) with respect to the parameter e at e 0.
Several results on differential stability of solutions to control problems for elliptic

and parabolic partial differential equations are given in [S1]-[$7] and [MS]. Problems
with the state constraints are considered in [RS1]. The related results on sensitivity
analysis of the variational inequalities can be found in [M], [H-S-Z], and [FP].

In the hyperbolic case, the main difficulty is related to the intrinsic "low" regularity
of the solutions with the boundary inputs in LZ(E). In fact, standard regularity theory
for the wave equation with boundary nonhomogenous data (see [LM]) is inadequate
to obtain the results on differential stability for Problem (P). To cope with the problem,
we shall use the recently obtained (in [LT1 ]) "sharp" regularity results for the Neumann
problem, which will play a crucial role in our analysis.

Our main result is formulated in the theorem below.
THEOREM 1. For each e > O, e small enough

(1.8) u Uo+ eq+ o(e) in Lz(E),

where Io( e)l/ 0 with c O.
The element q L2(E) is given by a unique solution of the following optimal

control problem.
PROBLEM (Q). Find an element q S c LE(E) that minimizes the cost functional

(1.9)

over cone

J(u) 1/2(Rz( T), z( T))n +1/2lul 

S {u LZ(E)[u(x) >- 0 a.e. on {Uo(X) 0},

(1.10) u(x) <=0 a.e. on {Uo(X)= M},

(Uo(X, t)+ ao(x)po(x, t))u(x, t) dE=0}.

Here we denote by poe Lz(E) the trace on E of the adjoint state associated to the
problem (Po) (i.e., (P) with e 0), i.e., p-= Po satisfies

0
p,=a(x,O)p, nn p =0,

p(T) =0, p,( T) Ry( T).

The state z for Problem (Q) is given for a given control u L2(E) by the unique
solution of the following system:

1.11 z, div aoVz + alVyo)

0Z a
-u+--Uo onE,(1.12)

On ao

(1.13) z(0)=0, zt(0)=0 inn,

in Q,

where yO is the solution of system (1.3)-(1.5) for e =0 and for u Uo.
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By standard argument it follows that an optimal control u is uniquely determined
by the optimality system [L2]. Let us recall that to derive the optimality system for
Problem (P) we define the Lagrangian

(u, y, p)-- -(y,, p,)o + (y,(T), p(T)).-(y, p(0)).

+(aVy, Vp)o-(u,ap)r.+1/2[ul+1/2(Ry(T),y(T)), y(0) yo.

The first-order optimality conditions

(@yL(u, y,p); By)o =0 VBy,

(pL(u, y,p); Bp)o =0 VBp,

uK: (uL(u,y,p),v-u).>-_O VvK,

where By, BpH’(O, T;L2())ffL2(O, T; HI(y)), By(O)=O, Byt(O)=O lead to the
following optimality system.

Find (u, y, p) such that the following system is satisfied:
State equation:

(1.14) yt A(x, O)y in Q,

(1.15) OY- u on E,
On

(1.16)

Adjoint state equation:

(1.17)

y(0)=yo, Y(0)=yl in.

pt A(x, O)p in Q,

(1.18) OP-o onE,
On

(1.19) p(T)=0, pT(T)= Rye(T)

Optimality conditions:

(1.20) uK" Ir.(u+ap)(v-u) d,>-O

We see that an optimal control u takes the form

u II(-yap) H(-{ap}l);

VvK.

here y (HS(12); HS-1/2(1-’)), s > 1/2 is the trace operator, H denotes the metric projec-
tion in L(E) onto the convex set (1.2); the explicit form of H is given by (2.17).

The outline of the paper is as follows. In 2 we recall the basic results for the
wave equation that we need in the sequel. We also present a result on the directional
differentiability of the metric projection onto the set of admissible controls.

In 3 we formulate the results on the sensitivity analysis for the wave equation
and prove the main result of the paper. In 4 and 5 we provide the proofs of the
results on the sensitivity analysis of the solutions of the state equation used for the
Theorem 1.

2. Preliminaries.
2.1. Wave equation; regularity of the solutions. We will consider the optimal

control problems for hyperbolic problems. First we recall the basic facts on hyperbolic
initial boundary value problems that we use in the sequel.
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Let us consider the wave equation

(2.1) Ytt=div(aoVy)

Oy
(2.2) u on E,

On

(2.3) y(O) =yo, yt(O) =yl infl,

where ao(" cl(fi) is a given coefficient and u(. 6 L2(). We assume that ao(x) >- c >
0, x 1. The initial conditions yo L2(’), Yl H-I(). The solution y(. of system
(2.1)-(2.3) can be represented (see lET2]) in the form

(2.4)

where the linear mapping

y(t) (Lu)( t) + C( t)yo+ S( t)yl,

L L2(E) - L2(Q)
takes the form

Here A:L(L()) denotes the generator of the analytic semigroup associated
with A(x, O) and zero Neumann boundary conditions with

D(A) {y e H(a); Oy/Onlr 0},

C(t) and S(t) are cosine and sine operators associated with A, and the Neumann
operator is defined as follows:

N: L:(r) L2(a),

(2.6) -div (aoV(Nu))+Nu =0 in,

(2.7)
o(Nu)

u on r.
On

By applying the regularity results of [LM] we obtain

(2.8) L (L2(E); C[0, T; H1/2(fl)]).
Hence the adjoint (adjoint in the sense of L2-topology) operator

(2.9) L* (LI[0, T; (H1/2())’]; L2(Z)),
where L* is defined as follows"

(.0 (*f( **s*(,-f( &= ao s*(,- f(, &
F

To obtain (2.10), we use

which can be obtained using Green’s formula.
We will also need some propeies of the linear mapping

and of the adjoint mapping

(.3 .(/y (,
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where

(L*rb)(t)=ao(S*(T-t)d/)lr ’p L2([I)

and X’ stands for the dual space to X with respect to L2(tl) topo!ogy. To obtain
(2.12), we have used the following identification:

(2.14) D(A) H2O(tl), 0 <- Q<.

In the case where the coefficient ao in (2.1) is replaced by a C1() all the results
remain valid with the estimates independent on 0<_-e <_-6 in (2.8) and (2.12).

The partial differential equation interpretation of (2.10) is as follows:

(L*f)(t): aow(t)lr,

where w(t) satisfies

wtt= A(x, O)w+f(t) in Q,

OW
m=O onE,
On

Similarly for (2.13),

where z(t) satisfies

w(T)=wt(T)=O intl.

(L*Ty)( t) aoz( t)lr

z. A(x, O)z in Q,

OZ
-0 onE,

On

z(T)=0, zt(T)=y intl.

In the sequel we will need stronger regularity results than those given in (2.8) and
(2.12). In fact we will need "sharp" regularity results, which are collected in the lemma
below.

LEMMA 1 [LT1]. Let p be arbitrarily small.
(i) LT W(L(E); D(A1/4+a)) a (H1-2c-2(); D(A3/4-P))
(ii) L*T .P((D(A/4+a))’; Z2()) f"l .Y(D(A/4-); H1+2-2());
(iii) Le (L2(E); C[0, T; D(A/4+’)])f-I.(H-2-2(,); C[0, T; D(A3/4-)]);
(iv) Le(H(E);H+I/2+2(Q)) provided that for s+1/2+2a>=}, 0_<-s<=l, the

compatibility condition u (0) 0 on F is satisfied.
Here 1/20_-< a =< ao(ll) with Co(II) depending, in general, on the geometry of the

domain
Remark 1. In [LT1 it was shown that for smooth domains tl we have ao(tl) -> 1/20.

However, in the special cases of the domain tl, the value of ao(tl) may be bigger. For
example, if tl is a sphere (respectively, parallelepiped) then ao(tl) 1/6 (respectively,
41-). In any case, the results of Lemma 1 state that the regularity of the solutions to the
wave equation with Neumann boundary data is "at least 1/10" derivative higher
than the regularity predicted by the standard theory. In our applications, however, the
exact value of ao is not important. It is crucial, however, that ao> 0.
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2.2. Projection in L2(). Let K c L2() be a set of the form

(2.15) K={vL2(,)lO<-_v(x,t)<=M,(x,t),}.
Let us denote by II: L2(Z)- L2(Z) the metric projection in L2(Z) onto the set of
admissible controls K, i.e.,

(2.16) tf L)-(E) [IIf-fl min Iv-fl..
vK

It can be shown that

(2.17)

therefore,

(2.8)

where

(2.19)

Hence it follows that

(2.20)

is continuous for all s e [0, 1 ].

(IIf)(x, t)= min {M, max {f(x, t), 0}};

(IIf)(x, t)= F(f(x, t)),

r> M,
F(r)= r, O<=r<=M,

0, r<0.

We also have the following result on the directional differentiability ofthe mapping:

I’[: L2() L:(E).
LEMMA 2. For 7. > O, 7" small enough

(2.21) /h L2() II(f+ 7"h) II(f)+ 7"II}h + o(7"),

where 11o(7")11L2(.)/7" * 0 with 7" $ 0 and II’f" L:(E) - L:(Y) is the metric projection in L:(E)
onto cone

sy {v L(Z) lv(x, t) >= 0 if (IIf)(x, t) =f(x, t) O,

(2.22)
v(x, t) <--_ 0 if (Hf)(x, t) f(x, t) M,

v(x, t) 0 if (IIf)(x, t) 0 andf(x, t) < 0

or (IIf)(x, t) 0 andf(x, t) > M}.

Proof of Lemma 2 is given in [$3].

3. Sensitivity analysis of optimal control problem. For any parameter e [0, 6) the
solution of state equation (1.3)-(1.5) takes the form (2.4) i.e.,

(3.1) y(t)=(Lu)(t)+C(t)yo+S(t)yl, t[0, T];

therefore we denote

(3.2) y(T) LT,U + C( T)yo + S( T)yl.

Cost functional (1.1) can be rewritten as

I(u) =1/2(RLT,U, LT,U)n + (RLT,U, C( T)yo+ S( T)yl)n
(3.3)

+1/21ul+const (Yo, el)=1/2(lu[+(Bu, u).)-(f, u)v.+ const,
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where

(3.4)

(3.5)

Be L*T,RLT,,
f -L*T.R[C( T)yo + S( T)yl].

The unique optimal control u K that minimizes functional (3.3) over the set
K c L2(E) can be characterized as the unique fixed point

(3.6) u II[-Bu +f]

where the metric projection H in L2(E) onto K is defined by (2.17).
Below we formulate several lemmas that are fundamental for the proof of the

main result. The proofs of the lemmas are relegated to 4.
LEMMA 3 (regularity of optimal controls). For e [0, 6)

where the constant C depends only on the data of the problem and not on e > O.
From Lemma l(iii) and Lemma 3 we obtain Corollary 1.
COROLLARY 1. For p > O, p arbitrary small

Lu C[0, T; H3/2-2(’)]
uniformly in e > O.

LEMMA 4. For any u Hi(E) we have for e > 0, e small enough

where

is given by (4.18) and

Bu=Bou+eB’u+o(e)u inL(,),

B’ =-(HI(); L2())

VuHI(Z): [o(e)ulx/e->O withe,O.

LEMMA 5. Assume that Yo H1/-(O), Yl H-/2(I]) For e > O, e small enough

f =fo+ ef’ + o( e in L2(E),
where f’ is given by (4.27), and Io(e)l/e-0 with e$O.

Next we show that u is Lipschitz continuous with respect to e. Equation (3.6) is
equivalent to the following variational inequality.

Find

(3.7)

hence we have

(3.8)

(3.9)

and therefore

(3.10)

u K" (u + Bu f, v u).>- O /v K,

(u+Bu-f, Uo- u)x=> O,

(-Uo + Bouo-fo, Uo u )x --> O,

luo-ul+(B(uo-u), Uo-U)
<--(fo-f,uo-u)x+((Bo-B)uo, Uo-U).

By Lemma 4, it follows that

(3.11) (Bo- B)uo eB’uo+ o(e)

where Io(e)[/e -. 0 with e $ O.

in L2(Z),
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In view of (3.11) we have

(3.12) I(Bo- B)uol <= Ce
for some constant C, which is independent of e [0, 6).

Similarly, by Lemma 5

Ifo-flr, <= Ce.

Finally from (3.10), in view of (3.12) and since

(Bu, u). (RLzu LT,U), 0 U

it follows that

(3.13) lu -uol <-c .
Now we are in a position to prove the theorem.

Proof of Theorem 1. Let e, be a sequence such that e, $ 0 with n-> . In view of
(3.13) it follows that

1
(u -Uo) -<C,

hence there exists an element q L() such that

(3.14) u Uo/ eq/ r(e) in L2(E),
where

r(e)/e - 0 with e $ 0 weakly in L().
In the sequel we denote e for e.

We will prove that the element q is uniquely determined and characterized as the
solution to Problem (Q) and that actually r(e)/e-O strongly in L(). To this end
we shall use the results of Lemmas 3-5.

By Lemmas 4 and 5 we have

B=Bo+eB’+o(e) in(Hl(E); LE(E)),
f=fo+ef’+o(e) in L2(E),

(3.15)

(3.16)
where

(3.17)
and

(3.18)

(3.19)

and therefore

(3.20)

VU E HI(): Io(e)ul,/e--->O with e tO

B,Bo.(L2(Z)) uniformly in e>0,

B’ (HI(); L()),

Bu -f Bouo-fo+ e[B’uo+ Boq-f’]+ o(e) in L2(Z).
The explicit forms of B’, f’ are given in (4.18) and (4.27), respectively. From the
right-hand side of (3.6), in view of (2.21) and (3.20) it follows that

u II[- Bu -L] n[-Bouo+fo]
(3.21)

+eII_o,o+ro[-B’uo-Boq+f’]+o(e) in L2(Z),
and therefore in view of (3.14) we obtain

(3.22) q rt_ouo+o[-B’Uo- Boq +f’],

(3.23) r( e o e ).
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Hence by (3.22) we have

q S{--Bouo+fo
since H’" L2(E)-* S{_Bouo+Yo}C L2(E) is the metric projection in L2(E) onto the cone
S_Bouo+fo L2(E).

Since the optimality conditions for the control problem under consideration read

Uo K" ft. (u+ aoPo)(V Uo) dE

(Uo + Bouo -fo, v Uo)r. <- 0 Vv K,

it follows that we can identify

(3.24) aoPolz BoUo-fo.
Thus in view of (3.7), it follows that the cone S_o,o+yo S_,,opol coincides with

S {v L2(E) Iv(x, t) >- 0 if Uo(X, t) -ao(x)po(x, t) O,

v(x, t) <= 0 if Uo(X, t) -ao(x)po(x, t) M,
(3.25)

v(x, t) 0 if Uo(X, t) 0 and po(x, t) > 0

or Uo(X, t)- M and ao(x)po(x, t)<-M},

which, in turn, by (3.7) is equivalent to the cone S defined by (1.10).
By standard arguments in optimization theory, we can show that in view of

(1.14)-(1.20) Problem (Q) is equivalent to the following optimality system.
Find (q, z, w) such that the following system is satisfied:
State equation"

(3.26) z, Ao(x, O) z + div (aoVy) in Q,

Oz a-q+uo onE,(3.27)
On ao

(3.28) z(0) 0, zt(0) 0 in f.

Adjoint state equation:

(3.29) w, A (x, )w + div (aoX7p) in Q,

(3.30) OW_o onE,
On

(3.31) w(T)-0, w, T) Rz( T) in f,.

Optimality conditions:

(3.32) qeS" f.(q+aow+aapo)(V-q) dE_->O VveS;

therefore the solution of Problem (Q) takes the following form"

(3.33) q II-,opol(-aowl.- apol,.).
On the other hand, by using the definitions (3.4), (4.18), and (4.27) of Bo, B’, and

f’, it is straightforward to verify that

(3.34) -aowlx- apol. =- -B’uo+f’ in L(E);
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therefore q given by (3.22) coincides with q defined by (3.33), and thus q defined by
(3.22) is the unique solution of Problem (Q).

The proof of the theorem is thus completed. It remains to establish the validity
of Lemmas 3-5.

4. Sensitivity analysis of the wave equation. We will prove that operators

B (L2(E); L2(E))
and elements f L2(;) are differentiable with respect to the parameter. We recall that

(4.1) B L*T,RLT,
where (1.7)(i) is satisfied, i.e.,

(4.2) g (HS(f)), O<=s<=1/2
or (1.7)(ii) is satisfied and

(4.3) f -L*,R[C(T)yo+ S(T)yl].

We start with the proof of Lemma 3.

Proof of Lemma 3.
Step 1.

(4.4) f H(E) with the norm uniform in e.

Note first that by (1.7)

(4.5) R[C( T)yo+ S( T)yl] H1/-2(f) D(A1/4-).
Here we have used the regularity of map R together with the well-known properties
of sine S(t) and cosine C(t) operators (see IF1]):

C(. )" D(A’) C[0, T; D(A’)],
(4.6)

S(. ): D(AS) --> C[0, T; D(AS+I/2)].
By Lemma l(ii) applied to the representation (4.3) and by (4.5), we obtain

f e HI+2-(E) uniformly in e > 0,

which in particular implies (4.4).
Step 2.

(4.7) u H4 (E) with the norm uniform in e > 0.

By Lemma 1(i) we have

LT, e (L(E); D(A1/a+a) H1/-+-"(f)).
Hence

(4.8) RLT, (L2(Z); H-1/2+za(a)= D(A’/4-a)’)

and by interpolating the regularity results given by Lemma 1 (ii) we obtain

(4.9)

Thus

(4.10)

and by the result of Step 1

(4.11)

L*T, ,(D(A1/4-a)’; H4()).

L*T,RLT, (L:(E); H4a())
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with the norm uniform in e > 0. The result in (4.7) follows now from (4.11), (3.6), and
(2.20).

Step 3.

(4.12) uH8"(,).
By interpolating between the results in Lemma 1(i), we obtain

(4.13) LT, (H4(); D(A1/4+3) H1/2+6"(f)).
Hence

(4.14) RLT, (H4"(); H-1/2+6(12) (D(A1/4-3"))’).
Interpolating between the results of Lemma l(ii) gives

(4.15) L*T, ((D(A1/4-3))’; H8"()).
By (4.14), (4.15), and (4.7)

,L*T,RLT,u H8(X),

which result combined with (4.4) gives

-Bu+feH8’(E).
The final conclusion in (4.7) is obtained, as before, by combining (4.15), (3.6), and
(2.20).

Step 4.

(4.16) u Hi(E).

We apply the "bootstrap" argument by "boosting" successively the regularity of u by
the "4c" derivative. The procedure ends when the maximal regularity of the map Lr,
is achieved. Indeed, at the last step we have

LT -(H1-2-’(); D(A3/4-o))
and to obtain higher regularity of the map LT, we need the compatibility condition
u(t =0)=0. Since such a condition does not hold, in general, we must stop our
argument, obtaining

LTtle D(A3/4-0) H3/2-20(’).
Applying once more the regularity of L*T,R, we obtain

L*T,RLTu H+E-EP()c H()
for p arbitrarily small. Hence

-Bu +f H’(E)
and the application of (2.20) yields the desired conclusion. 0

Proof of Lemma 4 will follow through the sequence of propositions whose proofs
are given in 5.

PROPOSITION 1. Let p be arbitrary small For any u H1-2’-2P()
(Lr Lr,)u eL’u + rl(e),

where

rl(e)-0 in D(A1/4-p) with e 0
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and

Lr (H1-2-2P(E); D(A1/4-P)).
PROPOSITION 2. For any u H1-2-2(E)

L*TR(LT- LT,)u eL*TRL’TU + r2(e)

where

and

r2(e)-0 in L(,) with e - 0

L*TRL’Te (HI-:--P(E); L2(E)).
PROPOSITION 3. For any fe D(A1/4-0)

(L’T-- L*T,)f eL*T’f+ r3(e)

where

and

where

and

L*T’ .(D(A1/4-P) L2(E)) and L*T’ is given by (5.23).

PROPOSITION 4. For any u H1-2a-P()

L*T L*T, RLTU eL*T’RLTu + r4(e

L*T’RLT ,C(H1-2a-2P();

Proof ofLemma 4. We have

So S Uo L*T L*T, RLTUo+ L*TR LT LT, Uo + L*T, L’T)R LT LT, Uo

[L*T’RLT + L*TRUT]Uo+ 0()

eB’uo+ o(e),

(4.17) o(e) r2(e) + r4(e)--(L*T,--LT)R(LT----LT,)Uo,
(4.18) B’u (L*T’RLT + L*TRUT)U.

From Propositions 2 and 4 it follows that with Lr and L*T’ given by (5.4) and (5.23)

S’ e (H1-2-2P(); L2()),
hence in particular

B’e (H’(:); L(:))

where
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and r2(e)/e-O, r4(e)/e0 in Lz(E) with e 0. We also have

1_. (L*T,- L*T)R(LT LT,)Uo (L*T, L*T)R 1__ [eL’TUo + r(e)].

By Proposition 1

(4.19) R(L’ruo+ rl(e)/e) is uniformly bounded in H-1/2-20() D(A1/4+P) ’.

Moreover,

(4.20) r(e)/e-O in D(A’/4+P) ’.

On the other hand, for all f D(Aa/4+P)
(4.21) (L*r, L*r)f[[ L2()--0.
Indeed from Lemma 1 (ii) we obtain, in particular,

(4.22) [[(L*T, L*T)f[[ L2()<---- C Ilfl[ (O(A1/4+))
On the other hand, it can be shown by standard methods that forf D(A/)

(4.23) (L*, L*)fll (.-0.
To see (4.23) it is enough to write

w( L*T, L*T)T
with

w(t) aoO(t)lr + (ao- a)zlr,
,tt-Aff;= e div[(al + ro/e)VS(T- t)j,

(4.24)
(T) ,(T) 0, Olr 0,

z(t)=S(T-t)f

Since S(T-t)f C[0, T; D(A)c H2(O)] uniformly in e

(4.25) Ilz(t)lvll <= c in c[0, T; H3/2(F)]
and the right-hand side of (4.24) converges to zero strongly in C[0, T; L2(f)]. By
standard results - 0 in C[0, T; H(f)],

hence, in particular by the trace theorem,

w lv-* 0 in L2().
This together with (4.25) proves (4.23). Formulas (4.22), (4.23) and density of D(A1/2)
in D(AI/4+) imply (4.21). To complete the proof it is enough to note that by (4.19),
(4.20), and (4.22)

L*r, L*r)Rr e )/ e - 0

and by (4.19), (4.20), and (4.21)

(L*T, L*T) RL’Tuo 0

Hence

L*T, L*T)R L’TUo + r, e )/ e - O

which completes the proof of Lemma 4. []

in L-(E)

in L2(Z).

in L2(Z),
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Proof ofLemma 5. We assume that

yoED(A1/4),
and we denote

Then

Let a ao+ eal + to(e).
Since

where

Hence

Therefore

where

ylE(D(A1/4))

X( t) =- S( t)yl / C( t)yo,

X(t) =- S(t)yl + C(t)yo,

w(t)=-X(t)-X(t).

w,=Aw(t)+(A-A)X(t)

0 on E,
On

w(0) w,(0) 0 in f.

in Q,

(A-A)y= -e div [(al +r(e))vY]
(A-A)X -e[g. + aVg VX],

ro(e)) 1 al
ge

__
al +

E ae ao
---g withe0.

w(t)= S(t-’)(A-A)X(z) dz

- s(-- g ,-x(,+ aVg. VX(r)] dr.

w(t) -e S(t-z) g d. X(z)+ aoVg" VX(z) dr+ r(e)

eX’(yo, Yl) + r(e),

le r(e)= S(t-z) g dT.---5 X(’)-g d. X(7")

+[aoVg" VX(-)-aVg. VX,(z)]) dr.

Let us consider the case (1.7)(ii) (case (1.7)(i) is simpler, and hence is omitted). We
shall show that

fo [ d2 (ao) ](4.26) X’(yo, Yl)= S(t-z) g
dz

X(’)+ aoV VX(z) dz

belongs to C[0, T; D(A/4-)], and (1/e)r(e)->O in C[0, T; D(A1/4-P)].
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and

In fact, since

d2x
dt2

(.)= AC(. )yo+ AS(. )Yl C[0, T; (D(A1/4+P))’]

(4.6) implies that

Since

VX C[0, T; D(A’/4+’)’],

X’(yo, Yl) C[0, T; D(A’/4-’)].

IIx xll 0,

using a similar argument as before, we can also show that

r(e)/e-->O in C[0, T; D(A’/4-)].
By (4.26), regularity of R, and Lemma l(ii), we obtain

L*TRX’(yo, y,) L2(X).
Since

Proposition 3 yields

R[C( T)yo+ S( T)y,] D(A1/4-’),

L*T;R[C( T)yo+ S( T)yl] e L2(X).
Writing

f -fo (L’T-- L*T.)R C( r)yo + S( T)y,] + L*T,R[X-X],

and using the result of Proposition 3, Lemma l(ii), and (4.26), it follows that

f-fo=ef’+r(e),

where r(e)/e-->O in L2(E) and

(4.27) f’=L*T’R[C(T)yo+S(T)yl]+L*TRX’L2(E)

with X’ given by (4.26) and L*T’ given by Proposition 3 (see also (5.23)). This completes
the proof of Lemma 5.

5. Proofs of Propositions 1-4.
Proof of Proposition 1. Let

Then

(5.1)

With

wtt= Aw+(A(x, O)-A(x, O))Lu

OW
-0 onE,

On

w(0) w,(0) 0 in 12.

in Q,

a ao+ eal + to(e)
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we have

]A(x’ O)-A(x’ O)]Y= -e div [(al +r(e))VY]
hence

d2
IA(x, o) A(x, O)]Lu -e g-i Lu

where

r0(e)] 1 al(5.2) g -= al + - g with e $ 0.
e ae ao

The convergence takes place in C1(). Thus after denoting

(LT--LT,)U= w(T)=-e S(T-’) g d--z(Lu)(r)+h" V(Lu) dr

e S(T-r) g dr(Lu)(r) +. V(Lu)()] d- tS(T-r)

d2 d2
g d.--z(Lu)(r)-g dr(Lu)(r))+(h. V(Lu)(r)-h" V(Lu)(’)) dr.

Let us denote

(5.4)
L’TU=---- S(T-r) g dr--z(Lu)(r)+h" V(Lu)(’r) dr

S(T-’) div(aVLu(’)) d’,

--rl(e u)/e S(T-’r) g d,r-(Lu)(’r)-
d2 ]g
d

(Lu)(r) dr

+ S(T-’)[h. V(Lu(r))-h. V(Lu)(r)] dr.

To prove Proposition 1 we need to show that

(5.6) L’T =’(H1-2a-2P(); D(A1/4-P))),
(5.7) rl(e, u)/e-->O inD(A1/4-), uEHI-Z’-zo().

To accomplish this we first observe that

d 2

dt2 L E W(H1-2-20(E); C[0, T; (D(A1/4+o))’]),

(5.9) VL E =qg(H1-2a-2t(); C[0, T; D(A1/4-P)]).
In fact from Lemma l(i), we obtain

ALE (H’--2(Z); C[0, T; (D(A1/4+P))’]).
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We also have that

ANLu A1/4+pA3/4-pN, Lu E (D(A1/4+P)) bounded.

Thus with u E H1-2-2(E)
(5.10) ALu-ANLu C[0, T; (D(A1/4+P))’].
On the other hand, we have

d2

(5.11)
dt

(Lu) A AN]Lu.

Therefore (5.8) follows from (5.10), and (5.11) and (5.9) follow from Lemma l(ii) and
from the derivative theorem in [LM]. To continue with the proof of (5.6) we recall
that for any T > 0

(5.12) S(. (D(Ar); C[0, T; D(AV+a/2)]),
(5.13) C(. (D(AV); C[0, T; D(AV)]).

Thus by the viaue of (5.8) the expression in the bracket in (5.4) is in
C[0, T; (D(A/4-))’] for u e H--2o(E), hence by (5.12), (5.13) Lu D(A1/4-)
for u H--(E) which a posteriori implies (5.6). As for (5.7), we note that by the
same argument as before we have

(5.14)
Thus to prove (5.7), we first show that

(5.15) Iltu--tullrCO,T;OA/4-,>O for u nl-="-2o(Z).
Indeed, from (5.1)-(5.3

By (5.2), (5.3), (5.8), (5.9), and (5.12)

(5.17) IILu- LUIIC[O,T;D(A’/4-)]O.
On the other hand, from Lemma l(iv) we have

(5.18) IItu-tull,=- C uniformly in e >0.

By compactness of the imbedding

H/-() H/-()

and by (5.17), we obtain

(5.19) llZu Lull- 0,

which implies (5.15). The next step is to prove that for u H1-2-2(),
r(e,u 0 in D(A1/4-) with e 0.

Indeed, this follows from the representation (5.5), (5.12) and from the following
convergence results which, in turn, are the consequences of (5.10), (5.11), (5.15):

(5.e0 llv( )u to,o-4- 0,

d
(5.2) (-)u 0.

L2[0, T;(D(A/4+o) ’]
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ProofofProposition 2. This follows from Proposition 1, from the assumption (1.7)
which implies

R (H1/2-P(-); (H’/+’(O))’),

and from smoothing property of L’T, i.e.,

L*Te ((D(A1/4+))’; L(E))

(see Lemma 1 (ii)). [3

Proof of Proposition 3. Let

w(t) [S(T- t)- S(T- t)]f.

Then

(L*T L*T.)f aoS T t) aS T t)]Jr aowit + (ao a)Zlr

where w(t) satisfies

wtt=Aw+(A-A)S(T-t) inO,

OW
(5.22) -0 onE,

On

w( T) w,( T) O inO

and z(t)= S(T-t)f. Here (see (5.2), (5.3))

d2
(A- A)S(T- t)f= -e g S( T-t)f+h. VS(T-t)f].

Thus

w(t)= f
r

S(’- t)(A-A)S(T-r)fdt

=e S(r-t) gdr--(S(T-r)f)+h.V(S(T-r)f) dr

fiT [ d2

+e S(r-t) g dr---(S(T-r)f)

-g d.--(S(T-r)f)+h. V(S(T-r)f)-h. V(S(T-r)f) dr.

Denote

d2
L*T’f =-- -L* g d.--Z (S( T-r)f)+h. V(S(T-r)f)]

(5.23) alS( T- )3r

al-L*[div (alV(S T-. )f)] +-- L*f,
ao



SENSITIVITY ANALYSIS FOR WAVE EQUATIONS 1147

d2 d2

r3(e,f)/e =- L* g dr---(&(T-r)f)-g dr--(S(T-r)f)

(5.24) +h. V(&(T-r)f)-h. V(S(T-r)f)]
+ q.(e) L*rf+(al + rile)wit.ao

Then

(L’r-L*r,)f eL*r’f+ r3(e,f).

To prove Proposition 3 we need to show that

(5.25) L*r’ (D(A’/4-); L2()),

(5.26) r3(e,f)/e+O in L2(E) forfe D(A/4-).

Since

d 2

dr2 (S( T- r)f) AS( T- r)f

By (5.12), (5.13)

(5.27)
d2

dt2
S( T- (D(A1/4-’); C[0, T; (D(A’/4+))’]).

Also

(5.28)

Lemma l(iii), after using duality, we obtain in particular

(5.29) L* G (LI(0 T; D(A1/4+)’); L2(E)).

(5.25) follows now from (5.27), (5.28), Lemma l(ii), and (5.23).
As for (5.26), we write

r3(e,f) r*3(e,f) r*3 (e,f)
E E E

where

E ao

By the result of Lemma 1 (ii)

r e ){[ L*fl[ (x> --> O, f D(A1/4-o).
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Noting that

eL*T g-S(T-t)f+hV(S(T-t)f)wlr ao

and that

d2

dt2
S( T- )f= AS(T- )f (D(A3/4+")) ’,

VS(T-.)feD(A1/4-).

By (5.29) we also obtain that

(ao+) Wlr-*O in L2().

Thus

r* (e,f)-0 in L2(X).

As for 73, note

To prove (5.26) it is enough to show that

(5.30) Ir"3(e,f)/elr.-O forfe D

where D is a dense subset of D(A1/4-P). In fact, let

D=-D(A).

Then it is straightforward to show that

(5.31) II[&(T,’)- S(T,’)]flIc[0,T;D(A)] "-)0"

Consequently,

(5.32) [&(T,. )- S(T,. )]f 0
C[O,T;L2(-)]

and

(5.33) IIv[& T,. S( T,. )]fll (o,;(m] - 0.

Formula (5.2), (5.3), (5.32), and (5.33) applied to the representation (5.24) together
with regularity result (5.29) imply (5.26) as desired. D

Proof ofProposition 4. This follows from Proposition 3, after taking into account
the regularity of mapping R, as well as the regularity of mapping Lr given in Lemma
l(i), i.e., Lru D(A3/4-0) (see Corollary 1). [-1
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BOUNDARY CONTROLLABILITY OF THE COINCIDENCE SET IN THE
OBSTACLE PROBLEM*

VIOREL BARBUf AND DAN TIBA

Abstract. Considered is a controlled obstacle problem on a domain fl with the control u U appearing
in the boundary data. Given an open and smooth subset D of fl, it is proved via optimization arguments
that the problem D Eu is approximately solvable. Here Eu is the coincidence set corresponding to boundary
control u.

Key words, obstacle problem, coincidence set, variational inequality, optimal control

1. Introduction. Let 11 and D be bounded domains of RN, N >__-- 2, such that D c 11.
We will assume that 012 and 0D are smooth manifolds of class C where rn is a natural
controlled number such that m > N/2.

Consider the controlled obstacle problem on

Ay 0 in {x 1"; y(x) > (x)},

(1.1)
Ay _-< 0 in fl,

y _-> q in 12,

y u in

where u Hm-1/2(O), and o cm(ff).
For any u, we denote by Eu {xf; y(x)=o(x)} the coincidence set of the

obstacle problem and introduce the notation o O\D.
In terms of variational inequality, problem (1.1) can be written as

(1.2) yKu; f, Vy. V(y-z) dx<-O, lzK,,

where K, {y H (-) y __> q in fl, y u in Ofl}.
We will study the following controllability problem:

(1.3) Find u Hm-1/2(O’) such that D c E.

This, in general, is not a well-posed problem. A common way to solve it is to
transform it, via the least squares approach, into an optimal control problem governed
by the variational inequality (1.2) (see [1], [4]). Here we will approach this problem
by reformulating it as follows:

(P) Find u Hm-1/2(O) such that y" o on OD and yU -_> o on o.

* Received by the editors May 8, 1989; accepted for publication (in revised form) November 30, 1990.
? Department of Mathematics, University of Iai, 6600 Iai, Romania. The author is currently at the

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025.
t Institute for Mathematics, Academy 14, Bucharest, Romania.
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Here y e Hm(12o) is the solution to the elliptic boundary value problem

Ay=0 info,

(1.4) Oy
inOD, y=u inO12,

Ov Ov

where OlOv is the inward normal derivative to OD.
We note that under our assumptions by standard exifftence results on elliptic

boundary value problems, for every u eHm-1/2(012), problem (1.4) has a unique
solution y" H’(12o)c C(12o) (see [3]).

The relationship between problems (1.3) and (P) is clarified by Lemma 1.1 below.
LEMMA 1.1. Assume that Aq <=0 in D. If y Ku is the solution to problem (1.4),

then the function defined by

(1.5) 37(x) y(x) ifx fo, y(x) q(x) ifx D,

is the solution to the elliptic variational inequality (1.2).
Proof Since OD is smooth we see by (1.5) that)Te H1(12) and

a.e. in 12o, a.e. in D, 1, 2, , n.
OX OX OX OX

This yields, via Green’s formula,

IV" 7(-z) dx= f Vy" (y-z) dx+ Ioq" (q-z) dx

o av
(y z) do-

D

D

(2.1) Aq(x) <= 0 Vx e D,

a (x) >- o Vx aD,(2.2) av

as claimed.
Lemma 1.1 shows that problems (1.3) and (P) are equivalent. However, problem

(P) seems to be more convenient since it is governed by a linear elliptic equation, and
so a least squares type approach will transform it into a convex control problem. Here
we will use this approach to show that under suitable assumptions, problem (1.3) is
approximately solvable in a sense to be explained later (see Theorems 2.1 and 2.2
below). This is quite an unexpected result if we take into account the complicated
geometry ,of the coincidence set and it may be viewed as a controllability result for
the coincidence set of the obstacle problem. In 5 we will obtain similar results for
the obstacle problem with Neumann boundary conditions.

We will use the usual notation for the spaces of continuously differentiable
functions and for Sobolev spaces on fo, 12, and 012.

2. The main results. Throughout this section we will assume that p C"(12)
satisfies the conditions
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where OlOv is the inward normal to OD. Assume further that 0D is of class C"; m > NI2.
THEOREM 2.1. There is a sequence {(u,,y,)}c Hm-1/z(of)xHr"(12o) satisfying

system (1.4) along with the constraints Yn >-- q in 12o and having the following property:
(a) For every smooth part F of OD there is no open domain II 12o such that

OH 710D F, OH 0 012 ( is a smooth submanifold of 012 and

(2.3) Y-k(x) > q(x) Vx H

for some subsequence nk -- CX3.

Denote 12 {x 12o; y,(x) q (x)}. Theorem 2.1 shows that for every subsequence
{nk}-+ the set f-l,k 12 does not contain any open domain H such that 0I-Ifq0D

and OH f-)0f are smooth parts of OD and 012, respectively (see Fig. 1).

FIG.

Roughly speaking this means that 12, "asymptotically cover" the boundary OD.
If Aq __< 0 in Do then as an easy consequence of the Hopf maximum principle it follows
that any open domain 12 of 12o having the property that y, =q in 012’o\0D, belongs
to 12,. This fact allows us to precisely give in this case property (a), and so to give a
more precise meaning to Theorem 2.1.

If Aq _> 0 in 12o then, again by the maximum principle, it follows by (1.4) that for
every u Hm-1/2(012) either yU=q or yU> q in 12o0D and {x; yU(x)= q(x)}c 012.
Hence if A > 0 then problem (P) has no solution.

THEOREM 2.2. For every e > 0 there is a connected open subset Q of 12o such that
m(12o\Q) <- e and a sequence {(u,, y,)}c H’-/2(012) x Hm(12o) satisfying system (1.4)
and

(2.4) y, >-- q a.e. in Q,

(2.5) yn - q weakly in L2(OD).
(Here m is the Lebesgue measure in RN.)

3. Proof of Theorem 2.1. Consider the following family of optimal control
problems" (Pn) Minimize{ooy(x) dx+(1/2n)llu[[2nm-,/2(o)} on all (u,y)
H’-1/(012) x Hm(12o) subject to system (1.4) and to the state constraint y(x)>= q(x)
for all x 12o.

LEMMA 3.1. Problem (P,) has unique solution (u,, y,). Moreover, there are the
functions p, Wl’q(12o) 1 _-< q < N/(N- 1) and the Borelian measures tzn M(o) that
satisfy the system

Ay, O in 12o,

(3.1) Oy
inOD, y=u in

0, 0,
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-Ap,= l, in

(3.2)
1 in OD,

Op

(3.3)
Op,

n
0,

(3.4) IX,,(y,, z) >-- 0 Vz e C(fio), z >= q9 on rio.
Here F" Hm-/2(O) H-m+/2(O) is the canonical isomorphism of the space

Hm-/2(O-) onto its dual, and (3.2) is considered in the following weak sense"

(3.5)
D

(3.6)

where (.,.) is the duality pairing between H’-/2(Of) and H-m+/2(O-). We note that
since p, W’q(Oo) the trace of p, on OD belongs to W-/"’"(OD), and so (3.6) makes
sense.

ProofofLemma 3.1. We will show that there is at least one admissible pair (u, y).
Then by standard division it follows that problem (Pn) has a unique solution (u,, y,).
Moreover, we have for A- 0

(3.7) u- u, strongly in Hm-1/9-(O),
(3.8) y -* y strongly in H’(fo) C(fo),

where (u, yx) is the solution to the following penalized problem"

(3.9) Minimize {o Y dtr+(1/2n)llull2n /oa)+(1/2A) aol(Y q)-I dx} subject
to (1.4).

It is readily seen that there exists p H2(fo) such that

-Apx =/3x(y ) in 12o,

(3.10) Op
-1 in0D, p=0 in0,

(3.11)
Opa --1n Fu onOO,
0v

where/33 (r) -A- r-, for all r R.
Now let us remark for later use that there are uo H"-/(Of) and yo Hm(fo)

such that yo(x) > (x), for all x 1o and

Ayo=O in0,

(3.12) Oyo
in0D, yo=Uo in0f.

O,

Indeed, it suffices to take uo H"-/2(Of)71C(012) such that

inf uo > sup

If Yo is the corresponding solution to problem (3.12), then it follows by assumption
(2.2) and the strong maximum principle that the infimum of Yo on go is attained on
0f only. Hence infao yo> supa q, as claimed.
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Thus there is p >Osuchthatyo+pW >- p on 12o for all we L(12o)with WllL(ao)_--< 1.
Multiplying (3.10) by y- Yo-pw and integrating on 12o, we get, after some calculation
involving Green’s formula,

P fa Apaw dx<=-Ia (y- yo)Ap dx

because

fo Io ap
(Y Yo) do" (u Uo)

Ou

-foo (y -Yo) dtr- n-l(Fu;, ux- Uo)

1
_[: 2)(Y;, )(Y Yo- pw) >= ([(ya q) -I(Yo + pw )-[

Hence

(3.13) f lapel dx-< C VA > 0,

where C is a positive constant independent of h and n.
This implies that (see [3])

(3.14) p l.,(,o < c
where 1 -< q < N/(N- 1). Hence there is Pn e W’q(12o) and /n e M(fio) (the space of
all Borel measures on 12o) such that on a subsequence -> 0

Pk - Pn weakly in

and on a subnet (generalized sequence) of {fl(y-q)},

/3(y-q)-->/n weakstarin

Then, letting tend to zero in (3.10) and (3.11), we see that Yn, U,, p,, and /n satisfy
(3.1)-(3.4), thereby completing the proof of Lemma 3.1. Moreover, by estimates (3.13)
and (3.14) we see that

(3.15) I[.ll,(o)/llp.llw,,O(.o)<_- c Vn.

Let us show that (un, y,) satisfy the conditions of Theorem 2.1.
Let us assume that there is a domain H c 12o satisfying condition (a) and argue

from this to a contradiction. Since as readily seen by (3.4) support n c {X; yn(X) (X)}
we have

(3.16)

--Apnk 0 in l-I,

OPnk_l in 0HOOD,
0v P"k=0 in oHf)

and

(3.17) OPnk -1n FUnkOv
in oH o12.
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By estimate (3.15) we may assume without any loss of generality that

(3.18) p,,,,--> p weaklyin Wl"q(flo).

Moreover, it is easily seen that n-lFu,,,,-->O strongly in H-m+l/2(O[-). Thus letting nk
tend to +o in (3.16) and (3.17), we see that p satisfies the equations

Ap 0 in H,

(3.19) 0p
-1 inaIIaD, p=O inaIIafl,

0v

(3.20) P=o in 01-I (q 0f.

Let xo 017 (’1012 be fixed, and let r > 0 be a sufficiently small number such that
,(Xo) f n(Xo) r.

Let a C(B2r(Xo) be such that a 1 in Br(Xo). Then the function/ ap satisfies
the equation

A/=Va. Vp+pAad&fg inB2,.(Xo) U

and

/=0 inOU.

Since g Lq(u) we infer by the classical result of Agmon-Douglis-Nirenberg
that/ W2’q (U) and therefore V/; Lq*(U) where 1/q* 1/q 1/N. Repeating this
argument several times and keeping in mind that/ p on Br(xo), it follows by standard
interior and boundary regularity for elliptic equations (see, for instance, [3]) that

C2(B,(xo) ) where 6 is suitable chosen. Since Ap 0 in B,(xo) f-) 1 and by (3.20)
p =Op/Ov =0 on 0flVI B,(xo) we conclude by the unique continuation theorem that
p 0 in B,(xo) [I. Inasmuch as p is analytic in II we infer that p- 0 in II, and this
contradicts the boundary condition Op/O, 1 in OH 0D. The contradiction we arrived
at completes the proof.

Remark 3.1. To obtain an approximate solution to problem (P) we may use
instead of (P) an optimal control of the following form:

(3.21) Minimize{oDY(X) do’+(1/En)llull<on} subject to (1.4) and state con-
straints y ->_ q in rio.

Note that for every u L-(dfl) problem (1.4) has a unique solution y L2(flo) and
y H2(\/)) for any domain [’l, Dccfl so that (3.21) makes sense. The solution
(u,, y,) to problem (3.2) can be obtained as a limit for A-->0 of the solution (ua, yx)
to the approximating optimality system (3.10) where ux n(Opx/Ou).

4. Proof of Theorem 2.2. Let Q be a connected open subset of fo such that
m((flo\Q) --< e and for a sufficiently small
{x 12o; dist (x, 0fl) < } c Q.

Consider the following optimal control problem:

(4.1) Minimize {1/2oD (Y-- 0) d’+(1/2n)llull"-’/om} on all
(u, y) H"-l/(dl2) x H"(fo) subject to system (1.4)
and to the state constraint y => o in Q.

Approximate problem (4.1) by the following family of penalized problems"

(4.2) Minimize {1/2 oD (Y-- 0) d’+(1/2n)l[ull"-’/o)+(1/2Z) o ((Y- q)-) dx}
subject to (4.1).
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If (u, y) is the optimal pair of problem (4.2), then we have as in the proof of
Lemma 3.1 that

u-. u, strongly in Hm-1/2(012),
(4.3)

Yx - Yn strongly in H" (12o),

and

--Ap X/3(y q) in 12o,

(4.4) Op_y_q in0D, pa=0 in 012,
Ou

Opx
n 1Fu in 012,

where (u,, y,) is the solution to problem (4.1), p H2(12o), and X is the characteristic
function of the domain Q.

Then, arguing as in the proof of Theorem 2.1, we conclude that .{pa} is bounded
in w’q(12o) {Ap} is bounded in L(12o); therefore there are p, w’q(12o) and/x,
M(fo) such that

-Ap. X/. in 12o,

(4.5) -y,-q inOD, y,=0 in 012,

n -Fu,, in 012.
Ov

For n-> oe, {y,} is bounded in LZ(oD) and by estimate (3.15), {/x,} is bounded in
M(l)o}, and {p,} is bounded in Wl’q(12o). Thus there are p Wl’q(12o) and/x M(l)o)
such that

-Ap XdX in 12o,

op
(4.6)

Ov
g in OD, p 0 in 012,

Op
0 in 012,

where g w-lim Y-k-q in LZ(oD). In other words,

(4.7) (/X)(O) In Vp" Vq dx- fo 6g do"
D

Hence

-Ap 0 in 12o\ Qe,

p =0, v0___. 0 in012.

Then, arguing as in the proof of Theorem 2.1, we deduce by the unique continuation
theorem that p-0 in flo\Q. Since p is analytic in 12o\Q and consequently in a
neighborhood of OD we infer that p =0 in v. If in (4.7) we take supp q c 12o\0 we
see that g-= 0, as claimed.
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Clearly this argument implies that y,- q weakly in L2(0D), thereby completing
the proof.

5. Neumann boundary conditions. Consider the controllability problem (1.3) for
the variational inequality

y Ay 0 in {x f; y(x) > q(x)},

(5.1) y--Ay<=O inf,, y_-->o inf,,

0
--y u in 0fl,

where u H’-3/2(01), i.e.,

(5.2) Find u H"-3/2(01) such that D c Eu, where D is a given smooth subset of
f and Eu is the coincidence set associated with problem (4.1).

We will assume as above that q 6 C"(), OD is of class C ’, and

(5.3)
q-Aq>_--0 in D,

>--_0 inOD.

Then, arguing as in the proof of Lemma 1.1, which remains true in this case, we
may reduce problem (4.2) to

(P1) Find u H"-3/2(012) such that yU=q on OD and y">_-q on f, where yU is
the solution to boundary value problem

(5.4)
y Ay 0 in 12o,

oy oq oy
inOD, -u inO.au o, o,

Also in this case we have a controllability result of the nature of Theorem 2.1.
THEOREM 5.1. There is a sequence (un, yn) Hm-3/2(Ofl) x H"(fo) satisfying sys-

tem (5.4) and the constraints y, >-q in fo, and having property (a) of Theorem 2.1.
If it is assumed further that

(5.5) q-hq >= 0 inOo,

then every subdomain f of fo such that y. =q on Of’o\OD belongs to f..
In other words, u. is an approximating solution to controllability problem {u

Hm-3/2(O’)’, E, = D}.
Since the proof of Theorem 5.1 is similar to that of Theorem 2.1, it will only be

sketched.
Consider the following optimal control problem"

(P) Minimize {OO Y dr+(1/2n)[lU[[2H"-3/2(am} on all (y, u)e H’(Oo) x
H’-3/2(Of) subject to (5.4) and to state constraint y-> p on fo.

We associate the following penalized problem:

(5.6) Minimize{aoYdO+(1/2n)l[ull2i-i,,,-3/2(o+(1/2h) o [(y- q)] dx} subject to
(5.4)

and denote (un, y.), (ux, yx) the corresponding solution to problem (P.) and (5.6),
respectively.
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We have for A 0

(5.7)

(5.8)

and

gh -’> gn strongly in Hm-3/2(012),
strongly in H (12o)

(5.9)
pa Apa a(ya p) in 12o,

Opa_l inOD, Op.=O in 012,

(5.10) pa + n-lck(ua) =0 in 012,

where ck’Hm-3/2(O12)-H3/2-m(ol’]) is the canonical isomorphism of the space
Hm-3/(012) onto its dual H3/2-m(012).

If (Uo, Yo) is the pair defined as in the proof of Theorem 2.1, then o=OYo/OV is
an admissible control for problem (P,) and we find, as there, the estimate

D D
(5.11)

-/ (Y -Yo) dtr- n -1 < 4(u), u- Uo> --< C,
doD

where C is independent of h and n. (Here (., .) is the duality pairing between
Hm-3/2(012) and H3/-m(012).) Hence {p Ap} is bounded in L1(12o) and so by Lemma
2.3 of [3] it follows that {p} is bounded in w1’q(12o), where 1-<_ q < N(N-1). Thus
we may pass to limit in (5.9) to get the optimality system associated with (P,)

(5.12)
y,, Ay,, 0 in 12o,

Oyn Oq Oyn
in0D, =u,, in 012,

Or, Or, Or,

(5.13)
Pn -Apn =/x,, in 12o,

Op,,_ 1 in OD, Op_.__, 0 in 012,
Or, Or,

(5.14) p,+n-l&(Un)=O in0,

(5.15) /x, M(12o), /x,(y, z) _-> 0, Vz C(12o), z _-> o.
The solution p, wl’q(fo) to system (5.13) should be understood, of course, in

the weak sense (3.5), i.e.,

/z,(O)-Ia Vp, VO dx y Odr=0, V,O G H (12o
D

Note also that the estimate (3.15) remains valid in this case. Arguing as in the proof
of Theorem 2.1, it follows that (u,, y,) has the property required for 12,.

Now, if there is rI flo satisfying condition (a) of Theorem 2.1, we have

p, Apn,, 0 in H,

Opn_ 1 in OH f3 OD, OPn____ 0 in OH f’l Of,
Or, Or,

p,, n-l flp(Un) inOl-lf3012,
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and letting nk-- q-CX3 we see that there is p Wl’q(’o) such that

p-Ap=0 inH,

OP_l in 0Hfq0D, 0P=0 in 0H(’I012,
Ou Ou

p=0 in 0Hfqa.

As seen in the proof of Theorem 2.1 this implies, via regularity theory for elliptic
boundary value problems and the unique continuation theorem, that p 0 in H, thereby
completing the proof.

The theorem below follows by a similar argument.
THEOREM 5.2. For every e > 0, there is an open connected subset Q of 12o such

that m(o\Q) <= e and a sequence {(un, yn)}c Hm-3/2(012) x H’(flo) satisfying system
(5.4) and conditions (2.4), (2.5) in Theorem 2.2.
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A SUBSPACE DECOMPOSITION PRINCIPLE FOR SCALED GRADIENT
PROJECTION METHODS: GLOBAL THEORY*

J. C. DUNN-

Abstract. Fast gradient projection methods for constrained minimization problems, mina J, achieve
their superior asymptotic convergence rates by scaling the objective function gradient VJ(u) prior to the
projection step. The scaling procedure investigated in this article decomposes VJ(u) relative to specially
constructed complementary orthogonal subspaces N and T, multiplies the N-component of VJ(u) by a

positive scalar Su(U), transforms the T-component of 7J(u) with a bounded linear operator ST: T-+ T, and
adds the resulting vectors to obtain the scaled gradient of J at u. A global convergence analysis is undertaken
here for scaled gradient projection (SGP) methods that utilize this technique and a compatible steplength
rule of the Bertsekas-Gafni type in closed convex i) defined by m smooth inequality constraints. Extensive
comparisons are drawn with a related SGP method based on the Gafni-Bertsekas dual cone decomposition
technique. The two SGP schemes have similar global convergence properties, but the subspace decomposition
procedure is generally easier to implement, and is better suited to convergence acceleration in nonpolyhedral
12. A comprehensive local convergence theory has also been constructed for the new scheme and will be
presented in a sequel to this article. In general, SGP algorithms are well suited to optimal control problems,
network flow problems, and other cases where gl is a Cartesian product of simple convex sets.

Key words, gradient projection, scaling, convergence acceleration

AMS(MOS) subject classifications. 49D07, 65K10, 65B99

1. Introduction. The gradient projection (GP) methods in [1]-[10] and the more
recent scaled gradient projection (SGP) algorithms in [7] and [11]-[15] are useful for
a variety of specially structured constrained minimization problems

min J(u),

where J is a smooth real function on a real Hilbert space { o//, (.,.)} and gl is a nonempty
closed convex set in . These algorithms generate successive feasible approximations
ui 1" recursively with

(la)

where at each u 1),

(lb)

(lc)

(ld)

(le)

(lf)

(lg)

(lh)

(li)

1) l)N -"
vN=SNPN(-VJ(u)),

vT PTSTPN.(-VJ(u)),

N a closed convex cone containing K (u),

K(u) the normal cone at u {w: Vv , (w, v- u) 0},

N* the dual cone for N= {w*: Vw N, (w*, w) 0},

T={VN}N*,

T] the closed linear hull of T,

* Received by the editors October 24, 1988; accepted for publication (in revised form) September 11,
1990. This investigation was supported by National Science Foundation research grant DMS8702929.

? Mathematics Department, Box 8205, North Carolina State University, Raleigh, North Carolina
27695-8205.
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(lj)

(lk)
(ll)

[d, SN [Ul2 > O,
Sr a bounded linear map from T] into T] such that

(e.(-VJ(u)), sP.(-vJ(u)))>- olleN.(-J(u))ll 2

Ils[]--<l,
o" max s, subject to

S
-{1,3,3, .},

and

(lm) J(u) J(Pa(u + sv)) >- 8{(sNs)-’[lu + svr ea(u + sv)ll 2 + (PN.(-VJ(u)), VT)S),
and where 8 and/3 are fixed real numbers in (0, 1), a and/Xo," ,/x3 are fixed positive
real numbers, and PA denotes projection into the set A (relative to the fixed metric in
a//). In practice, Ni, SN, and ST are further restricted at each iteration by auxiliary
rules designed to control global and local convergence behavior.

When N and s 1, the scheme (1) reduces to a.simple Goldstein-Levitin-
Polyak iteration [1], [2],

i+1 nct(Ui o.iVs(ui))
with a steplength rule of the Bertsekas type [3]. In this case, the corresponding iterate
sequences {u i} behave globally and locally like their steepest descent counterparts for
unconstrained minimization [16], [17]. More specifically, {J(u)} is generally decreas-
ing, limit points of {u } are stationary, and u typically becomes "more stationary"
with increasing i; however, the asymptotic rates of improvement may be quite poor,
depending on the local structure of J and 1) [5], [6]. On the other hand, if f 07/and

N {0} K (u), then (1) reduces to an unconstrained variable metric gradient iteration,
L/i+1 l.,i -o-iSiVj(u i)

with steplengths r of the Armijo-Goldstein type 18]-[20]. Under these circumstances,
it is possible to secure both the desired global convergence properties and fast
asymptotic convergence rates by fixing in (0, 1/2), setting a 1, and making sure that
the scaling operators S approximate the Newtonian transformations (V2J(ui))-1 on
the span of {7j(ui)} when u is near a nonsingular local minimizer of J [16], [17],
[20]. Hence for general closed convex f c a//, the question is this" Are there cones N
large enough to preserve rudimentary descent and limit point stationarity properties
for (1), yet small enough to ensure that the corresponding scaling subspaces T] will
support Newton-like convergence-accelerating operators Sr ? Bertsekas 11 and Gafni
and Bertsekas [12] were the first to show that these two antagonistic requirements can
indeed be satisfied in polyhedral convex sets f. The present article analyzes an
alternative to the construction in [12] outlined previously in [15]; this alternative SGP
scheme works in polyhedral f and also in nonpolyhedral l-I prescribed by finitely
many smooth nonaffine inequality constraints.

The general cone construction in [12] proceeds from an aftine inequality
representation

(2a) f { u" Vj , (a, u) b _-< 0},
where is an index set, a , and b ; in a Hilbert space, every closed convex f
has such a representation, with j finite only if f is polyhedral. Let eo be an arbitrary
but fixed positive real number, and at each u , put

(2b) d(u) Ilu Pa(u VJ(u))[[,
(2c) e(u) min {eo, d(u)},
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(2d) (u) {j : (aj, u)- b >- -[la[[e(u)},
(2e) C(u)= {w’Vj (u), (w, a) =< 0}.

If d(u)= 0, then u is stationary, i.e.,

Vvf, <VY(u), v-u>>=O,

or equivalently,

-VJ(u)K(u).

In this case, any closed convex cone N D K(u) will serve for (1). If d (u)# 0, then u
is not stationary and [12] employs cones N satisfying

(2f) N=C(u)*={w*’VwC(u),(w*,w)<=O}

(actually, [12] imposes the somewhat stronger condition (13) in 3).
The cone C(u)* is expressly designed to contain not only K (u) but all neighboring

normal cones K(u’) for u’ f near u, and it is this feature that ultimately yields the
robust global limit point stationarity theorem for (1)-(2) in arbitrary closed convex f
[12]. Furthermore, if f is polyhedral and u is sufficiently close to a nonsingular local
minimizer /(i.e., a a satisfying standard Kuhn-Tucker second-order sufficient condi-
tions), then C(u)*= K(), and the cone T corresponding to the lower bound N=
C(u)* in (2f) is just the tangent space K()+/- for the unique polyhedral face O%
containing /in its relative interior ri o%. For N C(ui)*, any sequence {u g} generated
by (1)-(2) will converge to / from nearby starting points and eventually enter and
remain within ri O%. In effect, these processes terminate in an "unconstrained" variable
metric gradient iteration for J restricted to a translate ofK ()+/- T. Hence in polyhedral
f, (1)-(2) is locally linearly convergent to nonsingular minimizers /, and can be
superlinearly convergent if N= C(u)*, 3 (0, 1/2), c 1, and the scaling operators Sr
asymptotically approximate the inverse reduced Hessians

PT,V2J( ui)I-T
in the one-dimensional subspaces generated by PT’VJ(u). On the other hand, no
comparable convergence acceleration claim is made in [12] for nonpolyhedral f, and
it is unlikely that such a result can be proved. For example, suppose that 0//= 3 and
f is the unit ball B(0, 1)= {u" JJu[[ =< 1} with affine inequality representation

B(0, 1)= {u" Vj 6 fl, (j, u)- 1 -<0},

where

fl; S(0, 1)= {j 6 07/. [[jl[ 1}.

Near any nonsingular boundary point minimizer / $(0, 1), it seems clear that Newton-
like convergence acceleration is possible only if T] approximates the two-dimensional
space tangent to the smooth manifold S(0, 1) at fi; however, for any u near but not
equal to fi, the sets C(u) and C(u)* in (2) are dual nondegenerate right circular cones,
the cone T corresponding to N-C(u)* is typically a generator in C(u), and [T] is
then a subspace of dimension one.

The alternative SGP formulation in [15] restricts the cone N to the family of
closed subspaces containing K(u); under these circumstances, [T]--T= N*-N’,
and (1) reduces to the simpler subspace decomposition and scaling scheme

(3a) u P(u + rv)
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with

(3b)

(3c)
(3d)
(3e)
(3f)
(3g)

(3)

(3i)

(3j)

and

(3k)

Om= -srcPVJ(u),

o- -ST-P-VJ(u),
N a closed subspace = K(u),

K(u)={w: Vv12,(w, v-u)<=O},
T= N+/-,

1.63 - SN 13,2,

bounded linear map from T into T, such that

(P.VJ(u), ST.P.VJ(u))>= tZol]P.VJ(u)ll
s --< t,,,

cr max s, subject to

S
--6{1,/3,/3 2, }

J( u J(P(u + so))>= 6{ SNS)- tt + SOT Pf( tt + so) II2 PTVJ tt ),
The subspaces N are further restricted as follows in closed convex sets with smooth
inequality representations"

(4a) f {u: gi(u)-<_0, 1,... ,m}.
Fix Co> 0 and 0 > 1 (see Note 2 at the end of 3) and at each u , put

(4b) d(u) Ilu P,(u V/(u))ll,
(4c) e(u) =min {Co, d(u)},
(4d) o(U) {j: g(u) 0},

(4e) ,,(u) {j: g(u)>--OllVg(u)lle(u)}o(U),
(4f) ego(U) {Vg(u)}5o,),
(4g) (u) {Vg(u)}j, Co(U),

(4h) No(u) o(U) U {0}],

(4i) N(u) qd(u) (.J {0}] = No(u).

(Observe that the sets o(U), o(u), do(U), and q3(u) may be empty at certain u 1.)
Then [15] requires that

(4j) N = N(u).
This condition implies (3e) under the standard assumptions set forth in the following.

Constraint Qualification (Q). Either
(i) The functions gj in (4a) are affine, i.e., g(u)=(aj, u)-b, with a q/ and

b ; or
(ii) Equation (4a) is a normal representation for f, i.e., for all u el2, 3o(U) is

linearly independent.
Unless otherwise noted, it will be assumed that (4a) satisfies (Q).
When (Q) holds, the Hilbert space extension of the Farkas lemma [21] guarantees

that K (u) consists of zero and all nonnegative linear combinations of vectors in Co(U),
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and hence that N(u)D K(u). Moreover, the normality condition (Q)(ii) typically does
hold when is the kind of convex set for which the projections in (3) are readily
implemented, e.g., Cartesian products of orthants, boxes, simplices, balls, cylinders,
convex figures of revolution, and the like (feasible sets of this type are commonplace
in optimal control and network flow applications [11]-[15]). On the other hand, in
nonpolyhedral sets (4a), the subspace N(u) is not large enough to contain neighboring
normal cones K(u’), and hence the global convergence proof strategy developed in
[12] for (1)-(2) cannot be applied to (3)-(4). A different approach based on special
properties of the normal cone K(u) in sets (4a) is fully developed in 2-4 below.
The resulting limit point stationarity theorem is somewhat narrower than its counterpart
in [12] for arbitrary closed convex sets; however, the scheme (3)-(4) is generally easier
to implement than (1)-(2), and its local convergence behavior appears equal or superior
to the behavior of (1)-(2) in closed convex sets (4a) satisfying (Q). When f is
polyhedral, and when N= C(u)* in (1)-(2) and N= N(u) in (3)-(4), the correspond-
ing SGP iterations turn out to be locally equivalent near nondegenerate stationary
points, i.e., the two schemes generate identical iterates near fi even though N(u)
C(u)* in general. With reference to [12], this means that (3)-(4) can be locally
superlinearly convergent to nonsingular minimizers a in polyhedral sets (4a) if sN and
ST are properly chosen. More generally, in any closed convex set (4a) satisfying (Q),
the iteration (3)-(4) is at least locally linearly convergent to nonsingular local
minimizers fi, and will converge superlinearly to such a’s when $r asymptotically
approximates certain Newtonian scaling operators described in [14] on the span of
{PT,VJ(ui)}. Proofs for these claims are supplied in a sequel to the present article.

The cost of computing the various projections and Newtonian scaling operations
is clearly an essential practical consideration that limits the application of SGP methods
to problems with specially structured feasible sets and objective functions. Nevertheless,
the class of likely problems is surprisingly large and includes the k-stage input-
constrained discrete-time optimal control problems treated in [11] and later in [7] and
[13]-[15]. For these problems, l is a Cartesian product of k simple convex sets defined
by separable constraints, N(u) and T(u) are Cartesian products of k mutually
orthogonal subspaces, and Newtonian scaling can be computed cheaply with dynamic
programming methods or other techniques, typically in O(k) flops. Under these
circumstances, or(u) is also readily computed, and the cost per iteration for Newtonian
SGP schemes is some fixed multiple of the unscaled GP cost, with a cost multiplier
that depends on the complexity of the stagewise loss functions and dynamical transfor-
mations, but does not depend on k. For a more detailed discussion of these points,
see [14], [15], [22]. For network flow applications of the SGP scheme, see [12].

2. The Bertsekas-Gafni steplength rule. Fix u in 1" and v in o//, and put

6(tr) P(u + crv)

for or_>--0. Our immediate objective is to show that near o-=0, the quotients
tr-l(VJ(u), u-b(tr)) and tr-l(j(u)-J(d(tr))) are uniformly bounded below by a
certain measure of nonstationarity for u when v satisfies (1). This bound points directly
to the steplength rule (lm) and is crucial in the global convergence analysis for (1)-(2)
in [12] and (3)-(4) in 4.

Since P is nonexpansive,

(5)
and therefore

(6) J(u)-J(6(tr))=(VJ(u), u 6(tr)) + o(tr).
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By the Hilbert space projection theorem [23],

u +v () K(())
and thus

<v, 6()- u>_-> 116()- nil =.
Observe that by Lemma 2.2 of [24]

(7a) -VJ(u) P(-J(u))+ P.(-VJ(u))

with

(7b) (P(-J(u)), P.(-J(u)))=O.

Hence, if v satisfies (1), then

(8a) crsu(VJ(u), u-6()>_-> Ilu/v-6C)ll)-IIvll=2/<x,
with

(8b) x=(vT-+sNPn.(-VJ(u)))6 T.

This estimate is carried further in the next two lemmas.
LEMMA 1. Let f be a closed convex set. Fix u in and v in ll. Then for all x

and r,

xK(u)* and o’>-O(x, cb(o)-u)>-(x, v)o-+llxllr/(o-),
where

n(,) o(,)

as o" --> 0+.
Proof. Observe that v-PK(u).vK(u) and therefore (x, v-Pc(u).v)<=O for x in

K(u)*. Furthermore, by Lemmas 2.4 and 4.6 of [24],

c(o’)- u (PK(u).V)o’+ o(r)
and thus

<x, o() u> >__ <x, >+ llxll, o().
LEMMA 2. Assume that is a closed convex set. Fix u in , suppose that J is

Frdchet differentiable at u, and let v satisfy (lb)-(ll). Then for all cr > O,

(VJ(u), u-6(r))->_ (sl(r-:llu+rVT-6(r)ll:+(P.(-VJ(u)) VT>)O’+

where

x [vT-+ snPn.(-VJ(u))] T

and

v()=o()

as r-> 0+. In addition, for a fixed in (0, c) and all r (0, ],

slr-=llu / rv- ((r)ll /(P.(-VJ(u)), v)>-_ d,(u) >= O,

where

dl(U) ((P,(-VJ(u)),sn min {1, (sNa)-2} d(u)2,
d(u) [lu P.(u -VJ(u))l

/fP,.(-Va(u)) o,
/fp,.(-v.(u)) =o,
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and

dl(U) =0<=>u is stationary.

Proof. By construction, Tc N*c K(u)*, x T and (x, vN)=0. Hence the first
claim follows at once from (8) and Lemma 1. The remaining claims are consequences
of the coercivity condition (lk) and the following key monotonicity conditions proved
in [12], [9], and [8]. For all r, 7-,

(9a) z > >0- () nil--> 7-1111#(7.)
(9b) 7" > >0 6()- nil >--II 6()-
Thus if Pn.(-VJ(u))# O, note that W--PTW T* for all w % and therefore

(10)

(e,,,.(-v.(u)), v)=(e.(-vr(u)), PSe.(-V(u)))

>= (Pn.(-VJ(u)), ST-PN.(-VJ(u)))
>_ ollpN.(-Vj(u))ll
>0.

On the other hand, if Pu.(-VJ(u))=O, then vT=O and PN(-VJ(u))=-VJ(u), and
conditions (9) therefore yield

slr-= u / O’VT , (,) =-- SNE(SN,)-=IlU Pn(u SltrVJ(u))ll :z]
=> sv min {1, (sva) -:} d(u),

where d (u)= 0 if and only if u is stationary. To complete the proof, observe that if u
is stationary, then 0= IIP,,(.(-J(u))ll >- IIP,,.(-J(u))II.

The foregoing development parallels 12] with one notable departure: in 12], the
cones N are required to satisfy a condition that implies (2f) (see (13) in 3). Under
these circumstances, Lemma 1 can be strengthened and the estimates in Lemma 2 are
obtained with r/(r)=0 for llvll<(u) (see (2c)). Improvements of this kind are
needed later on in the global and local convergence analyses for (1)-(2) and (3)-(4);
however, Lemma 2 is strong enough to establish the following basic strict descent
property in the general setting of (1).

LEMMA 3. Let the hypotheses ofLemma 2 hold andfix 6 in (0, 1). Thenfor sufficiently
small cr in (0, a ],

(lla)
>-d,(u)o-

with d u > 0 and

(llb) dl(U)--OC:u is stationary.

Proof If u is stationary, then Pu.(-VJ(u)) vr d(u) dl(U)=0, and b(r)= u
for all cr _-> 0; in this case (1 l a) holds trivially for all o--> 0. If u is not stationary, then
(6) and Lemma 2 give

J(u)-J(ck(o-)) >- [slo--=llu / o-vT.- 6(o-)llz /<PN.(-VJ(u)), vT.)]o-/ o(o-)
>- dl(u)r + o(r)

as r-->0+, with dl(u)>0. Now observe that for some o’1 (0, a] and all r (0, o"1],
the foregoing estimate holds with

o() (1-6)dl(U)(1-)[sTvlo--llu+o-vT.-4,(o.)ll+(P.(-VJ(u)), v.)], n
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COROLLARY 1. Thefixed points of the SGP iteration (1) coincide with the stationary
points ofJ in .

Proof Suppose that v and cr are determined by (1). If u is stationary, then b(r) u
(see the proof of Lemma 3). Conversely, if u is not stationary, then J(u)-J(ch(r)) >-

tSdl(U)O" > 0 and therefore b(tr) u. [3

Lemma 3 justifies the Bertsekas-Gafni steplength rule in the general setting of
(1). No matter how the cones are constructed, the rule (lm) is well posed and strictly
decreases J when u is nonstationary. Consequently, the sequences {j(ui)} produced
by (1) are typically decreasing and must converge to - or some finite limit. In the
latter case, it can be shown that the quantities o’id(bli)2 and ui+l-u must converge
to zero. While these results alone do not ensure limit point stationarity or convergence
of {u i} to any limit, they are important in the development of global and local
convergence theories for (1)-(2) and (3)-(4).

LEMMA 4. Assume that 1 is a closed convex set and that J is Frdchet differentiable
in l-l. Let {u i} and {0"i} be generated by (1). Then {j(ui)} is nonincreasing and either

(12a) lim J(u) =-oo

or

(12b) lim J(bl i) inf J(u i) > -o0
i-->

and then

(12c) lim o’illpN,*(--Vj(ui))[12--O,

(12d) lim (ri)-lllui- u*+’ll 0,

(12e) lim ui- ui+lll2 0,

(12f) lim tyid(ui)2--O.

Proof Lemma 2 and (lm) imply that {J(ui)} is nonincreasing. If {J(u)} is also
bounded below, then (12b) holds and

lim (j(ui)-j(ui+))=O.

The estimates (12c)-(12e)now follow easily from (lm), (10), and (11). To prove (12f),
observe that (lj)-(ll), (7), and (9) yield

cd(ui) (s iIV O" i)-, ui -Pn( u -s

))11<-_ (2o-’)-’llui-Pn(u’-so vJ(u’
u ’- / /

with

c min { 1, (t/./,3) -1} > 0.

Multiply both sides of this inequality by x//, and (12f) will then follow from (12c)-
(12d).

3. Limit point stationarity. Lemma 4 falls short of establishing that every limit
point of {u } is stationary. This basic result will follow from (12f) if it can be shown
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that the steplengths cr associated with convergent subsequences of {u i} are bounded
away from zero. Positive lower bounds for r have indeed been demonstrated in [3]
and [5] for unscaled GP algorithms (1) with N a//; however, the proofs in question
require locally Lipschitz continuous gradients VJ, and do not extend readily to SGP
iterations (1) with arbitrary closed convex cones N= K(u). Reference [9] uses a
different approach to establish limit point stationarity for unscaled GP processes (1)
in polyhedral 12 when VJ is merely continuous; with small modifications, the techniques
in [9] will also prove the somewhat stronger result

lim d(u) =0

for unscaled GP when VJ is uniformly continuous. Once again, however, the proof
technique in [9] does not seem to work for (1) with arbitrary closed convex cones
N = K(u). It would appear that some further restrictions are needed on the cones N.

Proposition 2 of [12] establishes limit point stationarity for SGP sequences {u }
generated by (1)-(2) and the special class of closed convex cones

(13a) N Ci C(ui)*,

where

(13b) Ci= {w: Vj fli, (w, aJ) <= 0}
and

(3c)

Nevertheless, with minor alterations the proof in [12] actually works for any closed
convex cones N containing C(u)*, and, in particular, for any closed subspaces
N= C(u)*. As explained below, this simple revision quickly yields a limit point
stationarity theorem for the alternative SGP scheme (3)-(4) in polyhedral convex
however, a more extensive proof modification is needed for (3)-(4) in nonpolyhedral
sets (4a).

The following results sharpen the estimates in Lemmas 1 and 2 when the cones
N satisfy (2).

LEMMA 5. Let u belong to a closed convex set gl with representation (2a). Fix e > 0
and put

o(u) {j: <aj, u)- b; _>- -II all },
C(u)={w: (a, w) =< 0, Vj oCt(u)}.

Then for all u’ , x and v in all, and cr >- 0

and

Ilu’-ull<K(u’)= C(u)*

x C(u) and llvll < <x, ()- u><x, v>.
Proof Suppose that u’ f and u’- u < e. Let w be a nonzero vector in the cone

C(u), choose h > 0 such that 0 < h w -<- e u’- u 11, and put v u’ + hw. Ifj (u),
then

(a, v)-b=(a, u)-b+(a, u’-u)+(a, w)h

< Ilall(- / Ilu’- ull / hll wll)
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On the other hand, if j E (u) then for any h > 0,

(aj, v)-bJ=(a, u’)-b+(a, w)h<=O.

Consequently, v f and hence for all w* K(u’),

(w*, w) h-l(w*, v u’) <- 0.

Since this estimate holds for any vector w in C(u) it follows that K(u’)c C(u)*.
Therefore, in view of (5),

e > llvll OK(()) G(u)*

u+v-6() G(u)*

VxG(u), (x, u+,v-4,(,))<=o.

LEMMA 6. Assume that is a closed convex set with representation (2a). Fix u in

f, suppose that J is Frdchet differentiable at u, and let v satisfy (lb)-(ll) and (2). Then
for all r > 0

(u) > llvll<VJ(u), u ck(cr))>= [srltr-2llu + crvT- ck(tr)ll2 +(pN*(-VJ(u)), VT)]tr,

where the bracketed term on the right is bounded below by the quantity dl(U) in Lemma
2 when tr (0, a ].

Proof. The lemma is proved by a repetition of the proof of Lemma 2, with Lemma
1 replaced by Lemma 5, and e e(u). [3

Lemma 6 removes the restriction (13) imposed in Proposition 1 of [12] and
produces a straightforward extension ofthe limit point stationarity result in Proposition
2 of [12].

THEOREM 1. Assume that f is a closed convex set with representation (2a). Let J
be continuously Frdchet differentiable in f and suppose that {u i} is generated by an SGP
iteration (1)-(2). Then every subsequential limit of {u i} is stationary.

Proof Let Z1 be an infinite set of positive integers and suppose that ui- fi for
i6Z1. Since f is closed and d(.) is continuous, t7 must lie in fl and d(ui)-d(O),
6 Z1. As in the proof of Proposition 2 in [12], it will now be shown that d() > 0 is

impossible and that fi must therefore be stationary.
Suppose that d(tT)> 0. Then by (12f)

In this case, the rule (lm) yields

(14a)
j(u j(dDi)<[(-l ii -1 -l iis) Ilu+ r-

+(PN,*(-VJ(ui)), V-)j--Io"i

for Z and sufficiently large, where

(14b) d/)i--- pl2(ui qc--lo-ivi).

Furthermore, since VJ(. and e(. are continuous, (lj)-(ll) imply that for some M > 0,

(15)

(16)

and

’ (, / )llVJ(ui)[I M,

cri v --> o, Z1,

/3-1’11vll < e(u’), i Z1, sufficientlylarge.
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In view of Lemma 6, inequality (5), and the mean value theorem, there are vectors

iE ’ on the line segment joining u and 4 such that

j(gli) _j(i) (Vj(ui), gli_ i>_

__> (--lis)--l[iui + --1 VT_
2

+(pN,.(_Vj(ui)), V)fl-li-

for i Z and suciently large, with

Conditions (lj), (lk), inequality (10), and the foregoing estimates now yield

MIIVJ( VJ( ui) >= (1 )[2(fl-1’s)’-= Ilu + fi -l iOiT__ 6 [12

for E Z1 and sufficiently large, with

IIv.(’)- v.(u’)II o,

Consequently,

(17a)

(17b)

and therefore

+ ollm,.(-VJ(u’))ll] o

--1 --1) [lu +t3 -6 11-o,

PN"(-Vj(ui))@O, iZl,

This contradiction proves that d(t)> 0 is impossible. ]

The following observation yields a corollary of Theorem 1 for SGP processes
(3)-(4) in polyhedral convex sets.

Note 1. If has a representation (4a) satisfying the constraint qualification (Q)(i),
then the Farkas lemma implies that the cone C(u)* in (2) consists of zero and all
nonnegative linear combinations of vectors in the set {aJ}j(u) with J(u) defined by
(2d). Since the index set (2D) is no larger than its counterpart in (4e), it follows that
C(u)* is contained in the closed subspace N(u) in (4i). Hence for polyhedral convex

satisfying (O)(i), the scheme (3)-(4) is subsumed by (1)-(2).

VT’--O E Zl,

because of (11). On the other hand, conditions (lj), (9), and the nonexpansive property
for Pn give

d u’) <-(-’o-is)-’l]ui- Pn( u -lo’iSiNVJ( ui)
< (--1 --1 --lii

(-,is)-,llui + --livi-6 +2;+ llP,*(-v2(u

for i Z and suciently large, and so

lim inf (-lg’s)-l][u’ + -I
iZ
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COROLLARY 1 OF THEOREM 1. Assume that f is a polyhedral convex set with a
representation (4a) that satisfies the constraint qualification (Q)(i). Let J be continuously
Frdchet differentiable in 2 and suppose that {u i} is generated by an SGP iteration (3)-(4).
Then every limit point of {u i} is stationary.

Proof. The proof is immediate from Note 1 and Theorem 1.
It has just been observed that (3)-(4) is a special case of (1)-(2) in polyhedral

convex sets; moreover, it can be shown that if we choose N C(u)* in (1)-(2), then
the resulting SGP iteration is actually equivalent to some iteration (3)-(4) with N
N(u) near nondegenerate stationary points t7 satisfying

(18) -VJ(ft) ri K(ft);

i.e., the two constructions generate identical iterates near ft even though N(u) C(u)*
in general. On the other hand, in nonpolyhedral convex sets (4a), N(u) and C(u)*
can be very different objects indeed, and (3)-(4) is neither a special case of (1)-(2),
nor is it locally equivalent to (1)-(2). In particular, this means that limit point
stationarity for (3)-(4) cannot be inferred from Theorem 1 in nonpolyhedral sets.
Nevertheless, all limit points of (3)-(4) are stationary in closed convex sets (4a)
satisfying (Q)(ii), and a proof can be based on the following alternatives to Lemmas
5 and 6.

The term b(o-) appearing in Lemma 6 actually depends on u and v as well as
and for present purposes it is better to stress this dependence explicitly by writing
P(u + try) in place of b(cr).

LEMMA 7. Let ft be a nonstationary point for J in a closed convex set f with a
representation (4a) that satisfies the constraint qualification (Q)(ii). Let N(u) be defined
by (4) at uf, put T(u)= N(u)x, and assume that the functions gj in (4a) are
continuously Frdchet differentiable at ft. Then for each M > 0 there are corresponding
numbers A>O, p>O, and >0 such that for all o’ (0, A], uB(ft, p)fqf, x T(u),
and v B(O, M),

with

<x, p(u+v)-u)>(x, v>+ Ilxll(o-, , )

r/(tr, u, v) -KIIVg(P(u + v))- Vg(u)ll=

- IIg(e(u + v)-(ull

Proo (Q)(ii) and the Farkas lemma imply that each u e , K(u) consists of zero
and all nonnegative linear combinations of vectors from the linearly independent set
%(u). Fuhermore, (5) implies that for all 0, u e , and v e B(0, M)

Since g and Vg are continuous at fi, it follows that for some p > 0, A > 0, y > 0, and
all u B(fi, Pl) , [0, All, v B(0, M), and c

Po(Pn(u + v)) Po(),

{Vg(Pn(u + qv))}o(a is linearly independent,

and

Z cVg(P.(u + ,rv)) >- E c
jeo(a)
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Now write

with

and

(x, P(u+,v)-u)=(x, v),-(x, g,(, u, v))

6(o’, u, v) (u + o’v Pn(u + o’v)) K(Pn(u + o’v))

[[(, u, v)[ =< 2Mo’.
For each u e B(tL Pl)[ 12, O" [0, All and v B(O, M), there is a corresponding non-
negative c e R such that

(jC:o(Pa(u+ov))::#cj=O), j= 1,..., m,

b(o’, U, V) Z cjVgj(P(u + o’v)),
j=l

and

and therefore

with

2yMo >= c
j=l

-(x, (,, u, v))>_-[Ixlln(,, u, v)- (m )x, Z cVg(u)
j=l

n(o, u,

Now consider that for all u 12, r _-> 0, v B(0, M), and j o(Pa(u + o-v)) there is a

:J e 12 on the line segment between u and Pa(u + o’v) such that

gj( u >- IlV gj( Mo

with

J- <-M/ u- II.
This follows at once from (5) and the mean value theorem. Since the functions e(.)
and Ilvgj()ll are continuous and positive at a forjeo(fi), and since 0> 1 in (4), it
is now apparent that for some p e (0, p], A e (0, All and all u e B(fi, p) fq 12, r e [0, A],
v e B(0, M), and j e oo(Pa(u + cry)),

gj( u >= -[[Vgj(u)lle(u)+ (1/211V gj( u e u IlVgj(J)- Vgj( u Mo-)
->

and therefore

and

for all x T(u). [3

o(P,,(u + o-v)) (u),

E cjVgj(u) N(u),
j=l

x, Z qvg(u)) =o
j o(Pla( u+o’v
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LEMMA 8. Let be a nonstationary point in a closed convex set f with a representa-
tion (4a) that satisfies the constraint qualification (Q)(ii). Assume that J and thefunctions
gj in (4a) are continuously Frdchet differentiable at f and suppose that v is determined
by (3b)-(3j) and (4) at each u cO. Then for some p > O, A>0, K >0, and all u
B(ft, p)f’)f and cr (0, A],

where

+sllxll(r, u, v),

x (v.- s,,,P.VJ(u)) e T,

q(o-, u, v) -,llVg(P(u + o-v))-Vg(u)llzo-,

and the bracketed term on the right is bounded below by dl (U) in Lemma 2 when r (0, ce

and N*= N+/-= T.
Proof Since VJ(. is continuous at fi, and

Ilvll II-sPVJ(u)- sPVJ(u)ll (.tl -- )llVJ(u) II,
it follows that ]]v[I is bounded above by some M> 0 when u is near t7 in f. Now
repeat the proof of Lemma 2, with Lemma 1 replaced by Lemma 7.

THEOREM 2. Assume that is a closed convex set with a representation (4a) that
satisfies the constraint qualification (Q)(ii). Let J and the functions gj in (4a) be con-
tinuously differentiable in and suppose that {u i} is generated by an SGP iteration
(3)-(4). Then every subsequential limit of {u i} is stationary.

Proof. The proof scheme for Theorem 1 can be used here as well, with Lemma 8
taking the place of Lemma 6. Once again, if u i- tT, Z1, then t7 must lie in f.
Moreover, if d(t) > 0 then assertions (13)-(16) must hold as before, except that now
IT]= T= N-= N*. Let M be the bound in (15). Then for all sufficiently large
conditions (5), (13), Lemma 8, and the mean value theorem imply that for some sci f,

j(u i) _j(i) (Vj(ui), U i)__ MIIVj(i)

with

and

Srllxill [Ivg(6i)-Vg(ui)ll=/-’ O"i- MllVj(i)-Vj(u’)ll-’o.

IIsi- 6i11 -< ui <=

llxill IIv iT- sPT,VJ(u’ )11

=<M.

These estimates and (14) now produce

M[[VJ(i)-Vj(ui)[] + K3llVg(i)-Vg(ui)]12

(1 8)[2(fl-’ -1 i i) 2]s)-=llu + ,v II=+ollP’VJ( u >0

for large Z1, with

IlvJ(i)-Vj(ui)ll 0, i Zl,
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and

IIVg(c’)-Vg(u’)ll2->o, iEZ

This leads to (17) as before, and from here on the proof is the same as the proof for
Theorem 1.

Note 2. Theorems 1 and 2 remain valid if the function e(. in (2) and (4) is
replacedby any continuous measure of nonstationarity (i.e., any nonnegative con-
tinuous real function whose zeros coincide with the stationary points of J in ; in
particular, this means that the parameter 0 in (4) can be absorbed in e(.) and is
therefore superfluous in the present context. In fact, Theorem 1 continues to hold if
C(u)* is replaced by any closed convex cone with the inclusion property expressed
in Lemma 5 when e e(u), and e(.) is a continuous measure of nonstationarity.
However, local convergence proofs for (1)-(2) and (3)-(4) are more closely tied to
the forms imposed on (u), C(u)*, and N(u) in (2) and (4); this point is developed
further in a sequel.

4. Global convergence in compact level sets. If all limit points of the sequence { u
lie in a closed set 6e, and if every subsequence of { u i} has a limit point, then it is easily
seen that {u i} must converge to 6e, i.e.,

lim inf ui- u 0.
i-> uST

Moreover, if is a finite set and if

lira Ilu’ u

then {U i} must converge to some vector in 5, i.e.,

=luEA, limui=u.

These general observations and the results in 2 and 3 produce a global convergence
theorem for SGP iterations in compact sets, i.e., a convergence result that applies to
all SGP sequences {u i} irrespective of their starting points u in f.

THEOREM 3. Let J be continuously Frdchet differentiable and assume that one of
the following conditions holds:

(i) f is a closed convex set with representation (2a), and {u} is generated by an
SGP iteration (1)-(2).

(ii) f is a closed convex set with representation (4a) satisfying the constraint
qualification (Q), gj is continuously Frdchet differentiable for j= 1,..., m, and {u i} is
generated by an SGP iteration (3)-(4).

In addition, suppose that the level sets ofJ in f are compact. Then {u i} converges
to the subset of stationary points

and

5= {u: d(u) =0 andJ(u)<-j(ul)}

lim d(u) 0.

Furthermore, if is a finite set, then {U i} converges to some vector in .
Proof By a straightforward application of Lemma 4, Theorem 1 arid its corollary,

and Theorem 2, the theorem is proved. [3
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THE SENSITIVITY OF OPTIMAL CONTROL
PROBLEMS TO TIME DELAY*

F. H. CLARKE? AND P. R. WOLENSKI$

Abstract. A general class of time-delayed optimal control problems is studied. The goal is to
characterize, in terms of the multipliers occurring in the necessary conditions, the rate of change of
the value of the problem with respect to change in the delay. In particular, criteria for this dependence
to be differentiable are given as well as a formula for the derivative. These appear to be the first
results of this type.

R4sum. On !tudie une classe gnrale de problmes en contrble optimal avec retard, le but
tant de caractriser le taux de change de la valeur du problme par rapport au changement du retard,
et ceci en terme des multiplicateurs figurant dans des conditions ncessaires d’optimalit!. Comme
cas particulier, on donne des critires impliquant que cette fonction soit diffrentiable, ainsi qu’une
formule pour sa d!riv!e. Ces r!sultats semblent tre les premiers de ce genre.

Key words, delayed systems, hereditary, retarded, nonsmooth analysis
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1. Introduction. Differential-difference equations and time delay (other termi-
nology: lag, retarded, hereditary) optimal control problems have long been recognized
as important models for real-life phenomena. However, explicit solutions to such prob-
lems are difficult to represent in even the simplest cases. If the time delay is very small,
it may be preferable to ignore the delay and assume that the system is instantaneous.
What error accrues from this simplification? The present paper addresses the issue of
the sensitivity of the value function in time delay optimal control problems to small
changes in the delay parameter. In the case of differential-difference equations, an
explicit formula is derived for the derivative of the trajectory endpoint with respect
to the delay.

Consider the following time delay optimal control problem:

min J(x, u) over

x(.) absolutely continuous on [a, b], u(.) measurable on [a, b] satisfying

&(t) (t,x(t),x(t- A),u(t)) a.e. t e [a,b],

(1.1) u(t) e U(t) a.e. t e [a,b],

for te [a-A,a].
Here J is a Bolza-type functional, and the data is given under appropriate assumptions
(see 3). The delay A is constant but is a parameter of the problem. Let V(A) be the
optimal value. The first main result (Theorem 3.1 below) contains bounds for certain
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work was supported in part by the Natural Sciences and Engineering Research Council (Canada) and
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Dini derivatives of V. These estimates contain a term of the form

(-O(t), 2(t A)} dt,

where x(.) is an optimal trajectory of (1.1), and q(.) is a "piece" of the adjoint variable
associated with x(.) arising from the maximum principle. The integral (1.2) is of a
type introduced here for the first time, for it couples the derivatives of primal and
dual variables. It is not known whether (1.2) has geometrical significance.

It is more delicate to prove the opposite bounds on the Dini derivatives. Essen-
tially, we need information on the limiting behavior of (1.2) under certain perturba-
tions of the data, but this is difficult to obtain without introducing further assump-
tions. Two approaches are taken. The first hypothesizes "pointwise convergence of
optimal controls" (see (H8) in 3) for which the conclusion (Theorem 3.2) is that
one-sided derivatives of V in A actually exist and equal the respective bounds found
in Theorem 3.1. The extra hypothesis (H8) is unsatisfactory due to its impractical
nature, but on the other hand, we know of no example for which it fails. The sec-
ond approach introduces a smoothness assumption on the Hamiltonian (see (H9) and
(H10) in 6), and the derivatives of V are described (Theorem 6.1) in terms of Hamil-
tonian multipliers. The main results are reformulated in Theorem 7.1 for the case in
which an endpoint constraint x(b) E C is added to the basic problem (1.1).

The basic theory of differential-difference equations is covered by Bellman and
Cooke [BC2], Halanay [H1], and Driver [D2]. The major research trend is to treat
time delay problems under the general framework of functional differential equations
(see Hale [H2]). The state space in the latter is infinite-dimensional, which is appro-
priate in generalizing many topics from ordinary differential equation theory. Our
approach is to revert back to a finite-dimensional viewpoint, which is natural under
the circumstances. The problems under consideration here have constant delay, which
could be zero. For simplicity, only one delay component is taken account of, but
multiple delay components could be easily handled by the same methods.

A consequence of our results identifies the derivative of the trajectory endpoint
of an ordinary differential equation (o.d.e.) whenever a time delay is introduced into
the equation (see 8). Not much attention has been given to the behavior of systems
under a change in the delay. Sugiyama IS] has shown that the trajectory depends
continuously in the sup norm with respect to the delay parameter. Bellman and Cooke
[BC1] obtained this result earlier with linear systems. The Sugiyama result follows
directly from ours. Driver [D1] has derived conditions in which delay equations exhibit
the same asymptotic properties as those without delay.

An introduction to time delay optimal control problems can be found in Ouzthreli
[O], Warga [Wl], and Manitius [M1]. The time-delay version of the maximum principle
was proven by gharatishvili [K]. See [P, 27]. Clarke and Watkins [CW] derived a
nonsmooth version of the maximum principle in the form of a Hamiltonian inclusion,
a result crucial to the treatment of endpoint constraints in 7. Necessary conditions
with nonsmooth data are also given by Warga [W2], [W3].

As already mentioned, our basic theory is applicable for only constant delay
parameters. It would be of interest to extend our results to allow for delays dependent
on time, state, and/or control. Maximum principles are available for such problems.
See Banks [B] and Manitius [M2]. The impediment to generalizing our methods in
this direction occurs in Lemma 4.1, where we must differentiate a function of the form
A ----. (x(t- A)), where is C and x(.) is merely absolutely continuous. If A is
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a function of other parameters, such a (Banach space) differentiation is difficult to
perform and utilize.

The methodology in the proof is that of nonsmooth analysis. We first bound
the upper Dini derivative by a certain generalized directional derivative, which in
turn is represented as the support function of the generalized gradient (Clarke [C1]).
Since the generalized gradients are characterized as the closed convex hull of weak
limits of proximal subgradients, the bound is seen to be a limit of more manageable
quantities. The line of reasoning to this point has become standard [C1], [C2]. The
novel approach in this paper is in the problem formulation and the consequent proximal
subgradients that come under consideration. In brief, we will be led to consider
proximal subgradients of an augmented value function V(A, a), where (A, a) E +
L2[a, b]. The variable A is the delay parameter, and a is a perturbation of the dynamic
equation. The variable a does not appear in the original problem but is introduced
to monitor the A-dependence. In general, proximal subgradients in a product space
split into proximal subgradients of the components (not true of generalized gradients).
This is of paramount interest to us, because the subgradient with respect to a can be
calculated and represented as a dual variable (the nondelay case is in Clarke [C2]),
whence the subgradient with respect to A procures a specific representation.

The outline of the paper is as follows. Section 2 contains preliminaries (problem
formulation, maximum principle, proximal analysis); 3 contains the basic hypotheses
and the statements of two main results; the proofs are given simultaneously in 4;
5 weakens the smoothness hypothesis on the endpoint cost function l; 6 offers a
Hamiltonian approach to a lower bound; the main results are formulated in 7 to
include an endpoint constraint; and, in 8, the results are illustrated by three examples.

2. Preliminaries. This section contains basic definitions and reviews some pre-
liminary results. The analysis of estimating the Dini derivatives of the value function
will require introducing certain modified and perturbed problems. We begin by de-
scribing the basic problem and these alterations of it.

Throughout the paper, c(.) is a fixed Lipschitz continuous function of order Ildlloo
on [a- A, a], where A > 0. In all choices of A below, it is understood, if not explicitly
stated, that 0 < A < A. Suppose we are given

(The double arrow denotes that U is a set-valued map.) Precise assumptions on the
data will be given in 3. The functional J is defined by

(2.1)
J" [0, A) x AC[a, b] x//f[a, b] ----, I U {..-I-oc},

J(A,x(.),u(.))=e(A,x(b))+ L(t,A,x(t),x(t-A),u(t))dt,

where x(t- A) is set equal to c(t- A) whenever t- A _< a. Here and elsewhere,
ACn[a, b] denotes the absolutely continuous functions on [a, b] into n (the subscript
n will be dropped if the dimension is clear from the context), and ’[a, b] is the set of
measurable functions from [a, b] into m. If u(.) e ’[a, b] satisfies u(t) e V(t) almost
everywhere t [a, b], then u(.) is called admissible.
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The problem p(A) is defined as

min J(A,x,u) over (x,u) satisfying

&(t) (t,A,x(t),x(t- A),u(t)) a.e. t e [a,b],

(2.2) u(t) e U(t) a.e. t e In, b],

(t) (t) or t e [-/, ].
Suppose that v(.) E L2m[a,b] (:- the square integrable functions on [a,b] with

values in Rm; again the subscript m will be dropped whenever the dimension is clear
from the context). The problem Pv(A) is defined in the same manner as p(A) except
that the term Ilu- vii is added to the objective, where I1" 112 denotes the L2[a, b]
norm.

Suppose that a(.) E L2n[a,b]. The problem P(A,a) is the same as p(A) except
that now the dynamic equation is replaced by the perturbed equation

(t) (t,/, (t), (t -/), (t)) + (t).
The problem Pv(A, a) is defined by incorporating both alterations of the last two

paragraphs.
The optimal value of P(A) is denoted by V(A). Similarly V(A), V(A,a),

V,(A, a) denote optimal values of Pv(A), P(A, a), Pv(A, a), respectively.
Given u(.) ’[a,b] admissible, a(.) L[a,b], and /X [0,), our assump-

tions on will imply that there exists a unique x(.) AC[a,b] satisfying 2(t)
(t,A,x(t),x(t-A),u(t))+a(t) almost everywhere t [a,b], andx(t-A)= c(t-A)
whenever t- A <_ a. This trajectory will be denoted by xa If a 0, we will simply
write x,. The optimal solutions of P(A), that, is the controls that are minimiz-
ers, will be denoted by E(A). Similarly, we use the notation Ev(A), E(A,a), and
r(,).

The (pseudo-) Hamiltonian ,, is defined by

Z’[a, ] [0,/) ’
2(t,A,x,y,u,p) (p,(t,A,x,y,u)) L(t,A,x,y,u).

The preparation for and statements of the main results can be given more succinctly
by utilizing ’. The classical maximum principle as it applies to the problem p(A)
is due to Kharatishvili (see [K]) and says the following.

MAXIMUM PRINCIPLE. Suppose that u(.) E(A) and set x(.) xu,/x(.). Then
there exist absolutely continuous functions p(.) and q(.) from In, b] into Rn so that

(i)
(ii)

and

(iii)

() v(, ()), () 0,

[9(t) -.2[*(t, A, x(t), x(t A), u(t), p(t) + q(t + A))

((t) ----22*(t A x(t),x(t A), u(t),p(t) + q(t + A))

a.e. t [a, b],

a.e. t [a,b],

for almost all t [a,b],
maxt(t, A, x(t), x(t A), u, p(t) + q(t +
occurs.at u u(t).

over u e U(t)
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In the above, the star (*) denotes transpose and, whenever t+A >_ b, then q(t+A)
is set equal to zero. Part (i) is the tranversality condition, (ii) contains the adjoint
equations, and (iii) is the maximum condition.

Let P be a problem as described above, and its set of optimal solutions. Fix
u(.) E E. The maximum principle is applicable under the assumptions invoked in 3.
Also, the pair (p, q) (referred to as a Pontryagin multiplier) is unique, and for nota-
tional convenience we set M(u, P) (p, q). Note that this notation and terminology
is retained in the case when P P(0). In this special case, where A 0 and the
problem is without delay, multipliers that arise from the usual maximum principle
are broken into two pieces to become multipliers in our sense (this is illustrated in
Example C of 8).

Techniques of proximal analysis play a prominent role in the analysis below. We
give here a concise compilation of the material that will be used. The reader may
consult [C1] or [C3] for a complete introduction to these ideas.

Suppose X c_ , where is a real Hilbert space with inner product (., "/.
Suppose f R1 is locally Lipschitz near X and xo E X. An element is a
proximal subgradient of f at x0 if there exists a > 0 and a neighborhood Y of xo so
that for each x Y, we have

(2.3) f(x) > f(xo) 4- (,x xo)  llx xoll 2,

The presubdifferential f(xo) and the generalized gradient Of(xo) of f at xo are
defined as the weak limits of proximal subgradients and the closed convex hull of
these, respectively:

f(xo) ={/ 2" there exist sequences {xi}=l and {/i} in

(2.4) so that xi xo strongly, fli /3 weakly and/3i is a proximal

subgradient of f at xi},

and

Of(xo) cl co bf(xo).
In view of the extension to Hilbert spaces of Clarke’s proximal normal formula (see
Sorwein and Strojwas [BS] or Loewen [L]), the definition of Of(xo) coincides with the
usual definition that is given in [C1]. In particular, if x0 is in X and w , the
following holds:

(2.6) limsup
f(x + hw) f(x) sup{(w,Z/" Z E Of(xo)}.

h,O

The left side of (2.6) is denoted by f(xo; w). Note that cOf(xo) on the right side of (2.6)
can be replaced by 3f(xo). The set-valued map x --. Of(x) is upper semicontinuous
in the strong to weak topology, which means that if xi xo strongly and 3i 3o
weakly with/3i Of(xi), then 3o e Of(xo). The same is true for 3f(x).

The only Hilbert spaces of interest here will be n and 1 x L2n[a, b]. The notation
(., .) will be used to denote the inner product on 1 x n2n[a, b] as well as the usual
inner product on n. This should cause no confusion. Hence for (A, a), (A,, a’)
1 x L2n [a, b], we write

((A, a), (A’, a’)) A. A’ + (a(t), a’(t)) dt.
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3. The main result. Recall the problem formulation P(A). The basic hy-
potheses on the data l, L, , and U are the following. The notation LA (respec-
tively, L1, L2) is used to denote the derivative of A L(t, A, x, y, u) (respectively,
x --. L(t, A,x, y, u), y--. L(t, A, x, y, u)), and similarly for CA, 1, 2.

(H1) i’[0,)x--lisC1.

(H2) L" [a, b] x [0,) xn xn xm 1 is measurable in the first variable
whenever the other variables are held fixed. For almost all t e [a, b], L
is continuous in (A,x,y,u), and LA, L1, L2 exist and are continuous in
(A,x,y,u).

(H3) " [a, b] x [0,) xn x" xm __., ,, is measurable in the first variable
whenever the other variables are held fixed. For almost all t E [a, b],
is continuous in (A,x,y, u), and CA, 1, 2 exist and are continuous in
(A,x,y,u).

(H4) U [a,b] Rm is measurable with nonempty compact values, and
sup(lu u e U(t)) <_ /l(t) almost everywhere t e [a,b] for some
/1 L2[a, b].

(H5) and [a, b] are such that for each R > 0, there exists rR > 0 so that
whenever c e L2[a,b] with 11112 <_ R, u(.) e//’[a,b] with u(t) e V(t)
almost everywhere t e [a,b], and A e [0,), the solution x(.) that
satisfies &(t) (t,A,x(t),x(t- A), u(t))-t-a(t) almost everywhere t
[a, b] and x(t)= c(t)on [a- A, a] also satisfies
denotes the sup norm on [a- A, b].

(S6) For each r > 0, there exist at(’) e L2[a,b] and ’r(’) e Ll[a,b] so
that I1 + ICAI + 121 + IL21 - at(t), I11 " ILl +
almost everywhere t e [a, b] whenever the arguments (/X,x, y, u) satisfy

e [0, < < e

(H7) For each A e [0, ), (x, y) e n n, and almost all t e [a, b], the set
(((t,A,x,y,u),L(t,A,x,y,u)/) u e V(t), >_ O) is a closed convex
subset of n

Remarks. (i) Assumption (Hb) is satisfied, for example, if sup (l(t,
u e U(t)} <_ "2(t)/ "3(t)(Ix / lYl). almost everywhere t e [a,b], where
Ll[a, b]. The proof is an exercise in applying Gronwall’s inequality and is left to the
reader.

(ii) The growth conditions in (H6) and regularity conditions in (H3) on combine
to guarantee that the dynamics in each problem P(A, c) are satisfied by at least one
x(.). The convexity assumption (HT) assures that the solution set is nonempty for
each problem P.

(iii) As mentioned in 2, techniques of nonsmooth analysis play a prominent
role, and so it may be somewhat surprising that we hypothesize C data rather than
Lipschitz. The only difficulty in weakening the assumptions in this manner occurs in
Lemma 4.1, where a chain rule is used with one of the functions absolutely continuous
and not known to be Lipschitz. Hence if L or are Lipschitz but not C1, nonsmooth
chain rules (see, for example, [C1]) apparently do not apply. It is not clear how to
overcome this obstacle. No difficulty arises, however, if the endpoint cost l is assumed
merely Lipschitz in the state variable, and we will do this in 5.
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To facilitate the statements of the main results, we define the following functional

E: [0, ) x ACn[a, b] x [g’[a, b] x AC2n[a, b] -- 1o
(3.1) E(A,x, v, (p, q)) "= -2[(t,A,x(t),x(t A),v(t),p(t)+q(t + A))+ (((t),ic(t- A)) dt.

Ift-A<_a, then x(t A) "= c(t A), and if t + A _> b, thenq(t+A) :=0. The
first main result follows.

THEOItEM 3.1. Assume that (H1)-(H7) hold, and let Ao [0,). Then

limsup
V(Ao + h) V(Ao) < inf E (Ao, xv,zx, v, M(v, P(Ao)));h\0 h ve(o)

(b) IfAo > 0, then

liminfV(A+h)-V(A) > sup E(Ao,xV,o,v,M(v,P(Ao)).
h/0 h ve(o) \ ]

The proof will be given in the next section. Note that we avoid negative arguments
in discussing V, since the problem P(A) is not even defined for A < 0.

Theorem 3.1 provides estimates on two Dini derivatives of V(A). Subtleties arise
in attempting to apply the same proof technique to obtain similar estimates on the
complementary Dini derivatives. As we will see, the complications surface in taking
limits of terms that have the same form as the integral term in (3.1). We next address
this issue in further detail, which will serve to motivate the added assumption in
Theorem 3.2.

Let a e L2[a,b], Vh e E(A+h, a), Xh(’) Xh’/X+h(’), (Ph,qh) M(vh, P(A+h)),
and define Wh(.) by

w (t)
0
-(s,A + h, Xh(S),Xh(S-- A- h),Vh(S),ph(S)+qh(S + A + h)) ds.

Then the integral term in (3.1) with this data is

(3.2)
b

Wh (b) + (--Oh (t), iCh (t A h)) dt.

We are interested in the behavior of (3.2) as h 0. The natural inclination is to
apply the Dunford-Pettis criterion to {h} and {2h } and obtain absolutely continuous
functions q(.) and x(.), for which subsequences of {h} and {2h} converge to and
2 weakly. However, as the first and most serious objection, this is inadequate in
determining the behavior of the integral in (3.2). Second, the wh(b) term depends on
the optimal controls Vh(’), and it does not follow that wh(b) will converge as h 0
to an appropriate limit (an ad hoc and unsatisfactory convexity hypothesis could be
introduced on the function (cg/OA)22(t, A,x, y, .,p) to mollify this objection). A third
obstacle arises in determining the limiting function q(.). Is it a piece of the multiplier?
The answer is "not necessarily," for the Pontryagin multipliers M(v,P(A)) do not
have sufficient closure properties under perturbations of the data to assure this.
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One approach that overcomes the three above-mentioned pitfalls is to hypothesize
"convergence of optimal controls." Another, more readily verifiable, approach will be
given in 6. Consider

(H8) Fix Ao E (0, A) (respectively, A0 0). For each pair of sequences
{ci}l c_ L2 [a b] and {h}i=1 with ci 0 and hi ---* 0 (respectively,
hi 0) as - , there exists (vi(.)}=: with v e E(Ao / hi, a) so
that a subsequence of (vi(.)} converges almost everywhere on [a,b] to
some v(.) e//Y[a, b].

In a practical situation, (H8) may be very difficult to verify. On the other hand, it
seems that producing an example for which it fails is not trivial. If v(.) e E(A),
then we will show that (H8) holds under (H1) (H7) for the problem Pv(A). It is
this fact that allows for the estimates in Theorem 3.1 to be obtained without further
assumptions. Unfortunately, the penalization technique is inapplicable for estimating
the opposite bounds.

The following asserts the existence of one-sided derivatives of V.
THEOREM 3.2. Let Ao [0, A), and suppose (H1)-(H8) hold. Then

(a)
hX,01im

V(Ao + h)h V(A0)
e(/Xo)inf E(Ao, xV,o, v,M(v,P(Ao)));

(b) If A0 > 0, then

lim
Y(A0 + h)- Y(Ao)

t/o h
sup E(Ao,xV,ZXo,v,M(v,P(Ao))).v(/x0)

The proof will be given in 4, simultaneously with that of Theorem 3.1. A criterion
for two-sided differentiability can be immediately deduced from Theorem 3.2. We state
this in the following corollary.

COROLLARY 3.3. Let A0 e (0, A), and suppose (H1)-(H8) hold. Suppose fur-
ther that E(A0) consists of a single element v. Then V is differentiable at A0, with
derivative

( )dV(A0) E A0,xv,/x0,v,M(v,P(A0))

Note that, as a consequence of the expressions derived in Theorem 3.2 for the
one-sided derivatives, we conclude that V will not be differentiable, in general, when
the solution to the problem is not unique.

4. Proof Of Theorems 3.1 and 3.2.The proofs of Theorem 3.1 (a) and 3.2 (a)
are broken into seven steps. The basic outline of the proof is this. It is shown first
(Step 1) that the value function is locally Lipschitz in (A,a) on [0,)L2n[a,b]. Next,
estimates of the lim sup in Theorem 3.1 (a) and the analogous limit in Theorem 3.2 (a)
are obtained (Step 2) by introducing a modified problem and applying the formula
(2.4). This estimate further leads to introducing an auxiliary optimization problem
arising from the definition of proximal subgradients. Since a solution of this auxiliary
problem is known, necessary optimality conditions are applied (Step 3) to derive the
main identity. The necessary conditions in the maximum principle then represent
(Step 4) a proximal subgradient as a multiplier. The previous material is brought
together (Step 5) into upper and lower estimates involving rather complicated limits.
Finally, extensive limiting arguments (Steps 6 and 7) finish the proof of Theorem
3.1 (a). The proof of Theorem 3.2 (a) will be completed by altering slightly the final
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limiting arguments. The proofs of both (b) parts require only minor modifications in
Step 2.

Step 1. It will be first shown that V(A,a) is locally Lipschitz in (A,a) on
[0,) x L2[a,b]. Fix A e [0,) and R > 0. Set r := rR, where rR is as in (Hh).
Suppose that al, a2 e L2[a, b] are so that 1101[12, [[02[12 R. Let u(.) e E(P(A, al)),
and let x(.) xal (’) and x2(.) x. Recall that this means

2(t) (t,A,x(t),x(t A), u(t)) + a(t) a.e. t E [a,b],

x(t)-c(t) for te[a-A,a],

and x2(.) is a similar solution with a replaced by a2. We have for each t [a, b],

(.1) () () as + (() + ())l() ()1 as

where 7(.) e [,b] and (.) e [a,b] are chosen as in (H6). om (4.1) and
Gronwall’s lemma, we deduce that

(4.2) x (t) x(t)J kJa al[
for each t [a,b], where k (b-a)/2(1 + (]Tr + ]ar]) exp(7] + ]lar])).
Now (x2, u) satisfies the dynamics of P(A, a2), so we have

V(A, a2) J(A,x,u)
b

t(A, x2(b)) + L(t, A, x2(t), x2(t A), u(t)) dt

(4.3)
<_ e(zx, (b))+ L(t,A,x(t),(t- A), u(t)) dt

+ k2 [x(b) x2(b)[ + (’r (t) + ar(t))lx(t) x2(t)[ dt,

where k2 sup{Vet(A,) I1[[ <_ r}. The last inequality is an immediate conse-
quence of the mean value theorem, (H1) and (n6). Recall that u e E(P(A, al)), so
from (4.2) and (4.3)we have

(4.4) V(A, a2) _< V(A, a) + k3]la a2ll2,

whr ( + I111 + I111).
By retracing the above steps with a and a2 interchanged, we conclude from (4.4)

that V(A, .) is locally Lipschitz. Moreover, note that the Lipschitz constant does not
depend on the choice of A [0, A).

We now turn to the Lipschitz dependence with respect to A. Let R > 0, 0 <
A < A2 < A, and a L2[a, b] with I[al12 _< R. Set r rR. Let u E E(P(A, a)), and

u,A1 X,A2let xl(.) x (.) and x2(.) (.).
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We have for each t [a, b]

Ix(t) x(t)l <_ I2(s) 22(s)l as

I(,zx,(,(-
(4.5) (s, A2, x2(s),x2(s A2), u(s))l ds

{()( ) +()1( ) x( )1

+r(s)]x(s) x2(s)) ds,

where ar (’) and r (’) are as in (H6).
Consider the second term in the integrand on the right side of (4.5). For each

s [a, t], we have
(4.)

( ) ( )] (,) as’ + x( ) ( )

] ((,) + (,)) ds, + x( ) x( )l,
--2

where we set a(s) (s) and a(s) 0 if s < a. Next, we use HSlder’s inequality
twice:

(r(s’) + (s’))ds’ds

(4.7) I[a[l (ar(s’) + a(s’))ds’ ds

I111( 1)/ I(’) + (s’)lds’ds
-&

ubini’s theorem applied to the double integral on the right-hand side of (4.7)
gives

I(s’) + (s’)ds’ds < Ir(s’) + (s’)dsds
Js--& Ja-A Js-z

(-)1 + 1.
Inserting this into (4.7) yields the estimate

(4.8) t a(s) s-A(ar(s’)_ + a(s’))ds’ds _< I,ar[,2(,,ar],2 + ,a)(A2- A).

Now we multiply (4.6) by a(s) and integrate from a to t. In light of (4.8), we obtain

.[()( ) ( )ds
(.)
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Plugging (4.9) into (4.5), we have

Ix(t) x(t)l <_ k(A2 A) + (a(s + A2) + %(s))lx(s) x2(s)lds,

where k4 --Ilarlll + 11ll2(llll2 / R), and ar(s + A2) is set equal to zero if s + A2
exceeds b. Another application of Gronwall’s lemma yields the inequality

(4.10) ]x(t)- x2(t)l kh]a2 a l,
with k5 k4(1 + (llI2 + IIllx) exp (llllx + IIllx)).

Analogously, similar reasoning shows that estimate (4.10) holds whenever 0
A<A <A.

The argument that derived (4.3) from (4.2) can be utilized here with only minor
modifications and the analogue to (4.4) is

(4.11) [V(A2, a) V(A1, a)[ k6[A2 All
for some constant k6 that is independent of a e n2[a, b], provided [a[[2 R.

Finally, let R > 0 and set k max {k3, k6} where k3 and k6 are as in (4.4) and
(4.11). For each A1, A2 e [0, A) and hi,a2 e n2[a,b] with [[a[[2, [a][ R, we
have

Y(,)- V(a,) Y(a,)- V(a,) + V(a,)- Y(a,)

This is the statement that V is locally Lipschitz on [0, A) x L2[a, b]. E]

Unless noted otherwise, Ao E (0, A) is fixed. The case Ao 0 will be handled
separately at the end.

Step 2. Fix v E E(Ao). Since Vv(A) >_ V(A) for all A [0,) and Vv(Ao)
V(Ao), we have

limsup
V(Ao + h) V(Ao) < limsup

Vv(Ao + h) Vv(Ao)
h\O h h\O h

_< lim sup
h\0

c-0

Vv(A+h,a)-Vv(A,a)

Vv((Ao, 0); (1, 0)).
Formula (2.6) is applicable because Vv is locally Lipschitz by Step 1. Hence the last
above term equals

sup {#: (#, ) OYv(Ao, 0)},
where the subgradient is taken with respect to both variables (A, a) + x L2[a, b].
This, in turn, can be expressed in terms of weak limits via (2.4) and (2.5), and since
v E(Ao) is arbitrary, we obtain the following estimate:

(4.12) limsup
V(Ao +h)- V(Ao) < inf sup #,

h\O h ve(o)

where the sup is taken over sequences {(A, c)}=l, {(#, )}=l of l x L2[a, b] such
that (A, c) (Ao, 0) strongly, (#,) (#,) weakly (for some/ E L2[a, b]), and
(#,) is a proximal subgradient of Vv at (A, c).
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A lower bound can also be obtained in a similar fashion. We have

V Ao + h) V(Ao)
lim inf > lim sup
h\O h h’,,0

AA
c--,0

V(A-h,a)-V(A,a)

-V((Ao, 0); (-1, 0))

inf {#" (#, ) e OV(Ao, 0)}.

In a manner analogous to the above, we obtain the lower estimate

lim inf
Y(Ao / h) V(A0) > inf(a. 13) #,

h

where the inf is taken over sequences { (Ai, hi)}=l, { (#i, )}l of l x L2 [a, b] such
that (A,) (Ao, 0) strongly, (#i, f) (#, 3) weakly (for some e L2[a, b]), and
(#i, 3) is a proximal subgradient of V at (A, hi).

Step 3. The bounds (4.12) and (4.13) introduce proximal subgradients and allow
for the exploitation of the proximal subgradient inequality (2.3). The next lemma
contains the fundamental identity. In this step and the next, we will take the lemmas
with the object in mind to proving the estimates in Theorem 3.1. Similar statements
are valid if the subscript "v" is dropped throughout, and these latter versions are
required for the proof of Theorem 3.2.

LEMMA 4.1. Suppose that (A,c) e (O,A)x L2[a,b], v e L2[a,b], and u e
Ev(A, a). I.f (#, ) e l x L2[a, b] is a proximal subgradient of Vv at (A, ), then

b0
l(A,x(b))+ {L/x(.) / (/(t) Ca(.)) / <(.)(-(t))- L(.) &(t- A)>} dt

where x(.) x’A, and in the integrand, the functions with (.) are evaluated at
x(t

Proof of Lemma 4.1. By the definition of proximal subgradients, there exists
a > 0 so that for all (A,, c’) e (0, A) x L2[a, b] near (A, a) in norm, we have

If y(.) e AC[a--, b] with (.) e L2[a, b] and y(t) c(t) on [a- A,, a], and u(.)
f[a, b] with (t) E U(t) almost everywhere t e [a, b], then Vv(A’,
Ilu- vii22, where a’(t)’= (t)- (t, A, y(t), y(t- A’), u(t)). Substituting this choice
of variables into (4.14), we can write

b

J(A’, y, ) + Ilv vii22 #A’ + (fl(t), (t, A, y(t), y(t A’), (t)) (t)) dt

(4.15)

Now since u Ev(A,a), the left-hand side of (4.15) has a localJJminimum in the
variables (A,, y, ) at (A,x, u). Substitute (x, u) for (y, y) in the left side of (4.15),
and take the derivative with respect to A at A. The result is zero, and the bounds
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on the integrands assumed on (H6) allow for differentiating under the integral. We
obtain

(4.16)
b0

J(A x, u) + ((t) CA (t, A, x(t) x(t A) u(t))

+ (t,A,x(t),x(t- A),u(t))(-ic(t- A))dt 0.

Recall that

b

J(A,x,u) =/(A, x(b))+ L(t,A,x(t),x(t- A), u(t)) dt,

and hence
(4.17)

OJ.A(x,u) (A,x(b)) + LA(t,A x(t),x(t- A),(t))dg

+ (L(t,A,x(t),x(t- A),u(t)),-ic(t- A)) dt.

Substituting (4.17) into (4.16) and rearranging terms gives

, (,())
+ {L/x(.) + ((t), (.)> + ((.)(-(t)) L(.),2(t- A)>} at,

which is the assertion of the lemma.

Step 4. The proximal subgradient inequality (4.15) can also be used to obtain
information on the nature of (.). The following lemma is an extension of Clarke [C2,
Thm. 2.1] to problems with delay.

LEMMA 4.2. In the notation of Lemma 4.1, we have -(t) p(t) + q(t + A),
where (p, q) M(u, Pv(A, a)).

Proof. Replace A, by A in (4.15). Then it immediately follows from (4.15) that
(x, u) is a local optimal solution to the optimal control problem

min i(A, y(b)) + L(t, A, y(t), y(t A), u(t)) + lu(t) v(t)l 2

+ ((t), (t, , (t), (t -/), (t))

+ l(t) (t,/, (t), (t -/), ,(t)) (t)

+ (t, A, x(t), x(t A), u(t))12 dt

over possible (y, ), and where (t) is viewed as an additional control variable z without
constraint. The maximum principle as given in 2 is applicable and asserts that there
exist absolutely continuous functions p(.) and q(.) from [a, b] to n such that
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(i)
(ii)

and

(iii)

-p(b) Vi(A, x(b)), q(b) O,

.-15(t) -L(t, A, x(t), x(t A), u(t)) (t, A, x(t), x(t A), u(t))(t),
a.e. t E [a, b],

-O(t) -n(t, A, x(t), x(t A), u(t)) (t, A, x(t), x(t A), u(t))Z(t),
a.e. t [a, b],

max { (p(t) + q(t +

- lz (t,
over u U(t), z occurs at u(t), z 2(t).

In the term maximized in (iii), substitute u(t) for , and differentiate with respect
to z. Since this derivative is zero at z 2(t), it follows that -(t) p(t) + q(t +
A). By substituting this into (ii), it becomes clear that the adjoint equations of
the maximum principle applied to (u, Pv(A,a)) hold for (p,q). To conclude that
(p, q) M(u, Pv(A, a)) we must show that the maximum condition holds.

Again from (iii), we have that

(4.18) max { (p(t) + q(t + A), (t, A, x(t),x(t- A),

L(t, A, x(t), x(t A),

al(t,A,x(t),x(t A), ,) (t,A,x(t),x(t- A), u(t))l 2 }
over u U(t) is achieved at u(t) U(t). Let S c_ Rn R1 be defined by

S := {(-(t,A,x(t),x(t- A),),L(t,A,x(t),x(t- A),)+ I-v(t)] + 5)"
_> o, v(t)},

and let so E S be chosen as

so (-(t,A,x(t),x(t- A),u(t)),L(t,A,x(t),x(t- A), u(t)) +
It follows from (4.18) that

min {((p(t)+ q(t + A), 1), sl + als- s012 }
over s S is attained at s so. Now from the convexity hypothesis (H7), we have
that S is convex. So from elementary convex analysis min ((p(t) + q(t + A), 1), s} over
s S is attained at s so. Reverting back to the original notation, this means that
the max of

{{p(t) + q(t + A), (t,A,x(t),.x(t-
over , U(t) is achieved at u(t). This is the maximum condition that finishes
the demonstration that (p, q)

Step 5. We now apply the results of Steps 3 and 4 to the proximal subgradients
that arise in Step 2. The outcome of doing so is summarized in the following.



1190 F. H. CLAItKEAND P. It. WOLENSKI

LEMMA 4.3. We have

lim sup
h’0

V(Ao + h) V(Ao) < inf lim sup
h v(o) (,)

inf E(A,x’/ u,M(u, Pv(A,a)));ur(A,)

(b)

liminf
V(A + h)- V(Ao) > liminf sup E(A,x’ u,M(u,P(A,a)).

h\0 h (A,) ue(A,) \

In (a), the limsup is taken over (A, a) -, (Ao, 0) in 1 L2n[a, b] such that Vv has a
proximal subgradient at (A,a). In (b), the liminf is taken over (A,a) - (Ao, 0) in
R L2n[a, b] such that V has a proximal subgradient at (A, a).

Proof. (a) Recall estimate (4.12). Let v E E(Ao) and {(Ai,
be sequences of which the sup is taken over in (4.12). Pick any ui E Ev(Ai, hi) and
set xi (.) u ,A

Xa, (.). In light of Lemma 4.2, we may write
where (pi,qi) M(ui,Pv(Ai, ai)). Observe that qi(’) satisfies

-i(t) --:-X/*(t, Ai,xi(t),xi(t Ai), ui(t),pi(t) + qi(t + Ai))Oy
a.e. t [a, b],

and hence from Lemma 4.1 we conclude that
(.9)

#i --t(Ai, xi(b))- -- t, Ai,xi(t),xi(t- Ai), ui(t),pi(t) + qi(t + Ai)

Now (4.12) says that the right upper Dini derivative is bounded above by lim supi_oo #i,
and we have seen that each #i is represented as in (4.19). By then taking the inf over
v E(Ao), it follows that (a) holds.

(b) The proof of (b) resembles that of (a). Estimate (4.13) gives a lower bound
of the right lower Dini derivative of V at Ao in the form lim infi-oo #i, where #i has
the representation (4.19) for some ui E(Ai, hi). (Here we need to utilize the versions
of Lemmas 4.1 and 4.2 that are without the subscript "v.") This is one of the choices
the liminf on the right side of (b) is taken over, hence estimate (b) is valid. [

The rest of the proofs of Theorems 3.1 (a) and 3.2 (a) now consists of calculating
the lim sup and lim inf that occur in the right-hand sides of Lemma 4.3. Our proof will
actually show that for fixed v E(Ao), the limsup in the right-hand side of Lemma
4.3 (a) exists as a limit. Toward this end, we next show in effect that for v E E(Ao),
the problem P.(Ao) satisfies (H8). In evaluating the liminf in (b), we will not need
this lemma, but rather will invoke (HS) directly.

oo L2LEMMA 4.4. Let v e E(Ao) and suppose {hi} C_ R and {a}i= C_ [a,b]
are sequences such that hi - 0 and laill2 0 as - . Let ui Ev(Ai, hi). Then

(that not re abe ed) u (t) at, o t
t e [a, b].



THE SENSITIVITY OF OPTIMAL CONTROL 1191

Proof. Note that Vv(A, a) is continuous in (A, a) (Step 1). Hence

V(Ao) Vv(Ao, 0) lim V(Ai,

Suppose [[ui- vii -/, 0 as -- c. Passing to a subsequence if necessary, assume
[lui- vii2 >_ 5 > 0 for all i. Now V(A, a) is also continuous in (A, a), and so

V(Ao) V(Ao, 0) lim V(A,

_< liminf J(Ai,xi,

< v( Xo) 5.

The last inequality follows from (4.20) and the assumption Ilui- vii > 5. This is a
contradiction, so we must have lui- vii --+ 0, whence it follows that a subsequence
satisfies ui(t) -+ v(t) almost everywhere t e [a, b].

Step 6. In this step, we show that the almost everywhere convergence of opti-
mal controls induces nice convergence properties of the associated trajectories and
multipliers.

We first focus attention on the limsup in Lemma 4.3 (a). Fix v(.) E E(Ao). Let
oo L2[a, b] be such that Ai A0,{/ki}= C_ [0 /k) {a,}i= C_ 0, and hi(t) --. 0

almost everywhere t E [a, b] as oc. For each i, let ui E(A, a). Passing to
a subsequence if necessary, and in view of Lemma 4.4, we may assume ui(t) --, v(t)
almost everywhere t [a, b]. For the sake of brevity, let x(.) (.),
xv’A(’), (Pi(’),qi(’)) M(ui,Pv(Ai, ai)), and (p(.),q(.))= M(v,P(Ao)).

LEMMA 4.5. As oc, we have

(a) xi(t) -- x(t) uniformly over t e [a,b],

(b) ici(t) --. 2(t) almost everywhere t [a, b].

Also, subsequences of {pi}, {qi} (that are not relabeled) satisfy

(c) qi(t) --. q(t), pi(t) - p(t) uniformly over t e [a, b],

(d) (ti(t) - (t(t), [9i(t) -- (t) almost everywhere t [a,b].
Proof. By (H5), there exists r > 0 so that IIx il _< r for i. Therefore from

(H6) and 2i +ai, we have lici(t)l <_ a(t) for some a L[a, b]. The Dunford-Pettis
criterion implies that a subsequence (that is not relabeled) of {&i(.)} has a weak
limit point (.), whence it immediately follows that z(t):= c(a)+ ft :(s)ds satisfies
xi(t) z(t) for each t [a, b]. In fact, the convergence xi(t) --, z(t) is uniform over t
[a, b] since I&i(t)l is bounded independent of by an L function. Then for almost all
t [a,b], we have 2i(t) (t, Ai,xi(t),xi(t-Ai), ui(t))+ai(t) ----. (t, Ao, z(t),z(t-
A0),v(t)) as -- , where we set z(t) c(t) if t < a. In particular, then, {ki(.)}
converges weakly in L[a, b] and almost everywhere on [a,b], and by the uniqueness
of weak limits, the limit functions must coincide. Thus k(t) (t, Ao,z(t),z(t-
Ao), v(t)) almost everywhere t [a, b] with z(t) c(t) for t [a- A0, a]. However,
x(.) is the unique function satisfying this equation, so we must have z x. Therefore
(a) and (b) hold.
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Now consider the convergences in (c) and (d). Since (p, q) M(u,Pv(A,a)),
we have

0,

ibi(t) (t, Ai, xi(t), xi(t Ai), ui(t))(pi(t) + qi(t + Ai))
L(t, Ai,xi(t),xi(t- Ai),ui(t)) a.e. t E [a,b],

ti(t) (t, Ai,xi(t),xi(t Ai), ui(t))(pi(t) + qi(t + Ai))
Ll(t,A,z(t),xi(t- A),u(t)) a.e. t e [a,b].

Similar arguments that were used to prove (a) and (b) can be used here. We merely
sketch this: first obtain a priori bounds on IPil +lqil from (U6), (4.21), and Gronwall’s
lemma. Second, it follows from (H6) and (4.21) that 1gi(t)] + ](li(t)l

_
r(t) for some

a(.) L[a,b]. Thus we can deduce the existence of a weak limit point (i5(t), O(t))
of a subsequence of {(i5i(t),i(t))} from the Dunford-Pettis criterion, and for which
(pi(t),qi(t)) (p(t),q(t)) uniformly over t [a,b] as - c. Third, we also have
from (4.21) and Lemma 4.4 that (i5i(t),)i(t)) converges almost everywhere t [a,b].
By the uniqueness of weak limits, the limiting function must be (i5(t), O(t)). It is clear
from (4.21) that (p, q)satisfies

p(b) Vl(Ao, x(b)), q(b) O,

[9(t) (t, Ao, x(t),x(t Ao), v(t))(p(t) + q(t + Ao))
L(t, Ao, x(t),x(t- Ao),v(t)) a.e. t [a,b],

-(t) (t, Ao, x(t),x(t- Ao), v(t))(p(t) + q(t + Ao))
n(t, Ao, x(t), x(t Ao), v(t)) a.e. t e [a, b].

This says that (p, q) satisfies the transversality condition and the adjoint equations
associated with (v,P(Ao)). To finish the proof of (c) and (d), it is only left to show
that the maximum condition also holds.

Recall that the pseudo-Hamiltonian is defined by

(t, A, x, y, u, p) ((t, A, x, y, u), p) L(t, A, x, y, u).

We must show that for almost all t E [a, b],

(4.22) max fff (t, Ao, x(t),x(t Ao), u,p(t) + q(t + Ao))

over u U(t) is achieved at u v(t).
Let t [a, b] so that the following four conditions hold:

(i) ai(t) --, 0 as c,
(ii) ui(t) --, v(t) as
(iii) and L are continuous in the other variables whenever t is fixed,
(iv) for each i, define Oi(u) by

Oi(u) 2[(t, Ai,xi(t),xi(t Ai), u, pi(t) + qi(t + Ai)) -lu
then max Oi(u) over u U(t) is achieved at u ui(t).

The t for which (i)-(iv) hold consists of a set of full measure in [a, b]. Define (I)(u) by

O(u) 2(t, Ao, x(t),x(t Ao), u,p(t) + q(t + Ao)) -lu- v(t)l.



THE SENSITIVITY OF OPTIMAL CONTROL 1193

A consequence of (i), (iii), and the convergences in parts (a) and (c) is that (u)
(u) uniformly over u e V(t). Obviously, from (iv), we have (u(t)) >_ (u) for all

u e U(t). Hence letting c, we deduce from (ii) that

(4.23) max O(u) over u e U(t) is achieved at u v(t).

The difference between (4.23) and (4.22) is that the term In-v(t)l 2 appears in (4.23),
but not in (4.22). Now a convexity argument similar to that used in the proof of
Lemma 4.2 can be applied here to conclude that (4.22) follows from (4.23). (See
(4.18) and the succeeding lines.) []

There is an obvious analogue of Lemma 4.5 that will be used in evaluating the
liminf on the right side of Lemma 4.3(b). Unlike with (a), an element v E E(Ao)
is not fixed first, but rather will be obtained from (H8). Suppose that we are given
{(A, a)} as in (4.13) and {u} satisfying u e E(A, a). We assume that (H8) holds,
so there exists v ’[a, b] such that an (unrelabeled) subsequence of {u} satisfies
u(t) - v(t) almost everywhere t [a,b]. We show that this v(.) is optimal for
P(A0).

LEMMA 4.6. Let v(.) be as the previous paragraph. Then v(.) E(A0).
UiAiProof. Let x(.) xa (.) and x(.) xV,ao(.). We can show as in the proof of

Lemma (4.5)(a) that x(t) --, x(t) uniformly over t e In, b]. It then follows from the
basic assumptions that J(A,x, u) J(A0, x, v) as . We have

V(A0) V(A0,0) lim V(A, a) (by Step 1)

lim J(A,x,u)

J(A0, x, v).

It is now immediate that v(.) E E(A0). D

The analogue of Lemma 4.5 for the small change in data just introduced can now
be discerned. Assertions (a)-(d) hold for u e E(A,a) x(.) (.), x(.)
xv,/Xo(.), (p,q)= M(u,P(A,a)), and (p,q)= M(v,P(Ao)).

Step 7. We are ready to address the convergence of the integrals in Lemma 4.3.
The next two lemmas are given abstract formulation so that they can also be used in
6. They concern weak convergence with deviating arguments.

LEMMA 4.7. Suppose that (.) e L2[a, b], {(.)} C_ L2[a, b] satisfy
for some /(.) e L2[a, b], and (.) (.) weakly in L2[a, b]. Let {h} C_ R be such
that h - 0 as - . Define (t) (t- h) if t- h In, b], and let q2(t) take
on any values with absolute value less than /(t) if t-h In, b] (and so that (.)
remains measurable). Then i(.) --, (.) weakly in L2[a, b].

Proof. Let e > 0 and g e n2[a, b]. There exists continuous f on [a, b] such that
If g112 < e. We have
(4.24)

b

(g(t), (t) (t)} dt
a

b

b

-< e(]lll2 + I]]]2) + (f(t), (t) (t)}dt.
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Let ai a / hil and bi b- hi I. Then for each we have

(f(t), i(t)) dt (I(t), i(t hi))dt + (f(t), i(t))dt
,]\[,]

b-h a(f(t+hi)-f(t), i(t))dt- (f(t i(t)) dt
ai-hi ,b][aii,bii]

The dominated convergence theorem implies that each of the first three ingegrals
on the right-hand side goes to ero as

f(f(t),(t)}dt as , since i weakly. We conclude from (4.24) that
i weakly in [a, b].

LMMa 4.8. Suppose ha (.), {i(.)}, nd {i} re s in emm 4.7.
Suppose further ha functions (.) and
some (.) e L2[a,b], and that gi(t) g(t) almost everywhere t
Then

Proof. By Lemma 4.7, we have

(4.2) {9(t), i(t)} dt {9(t), (t)} dt

as ---, o. By assumption, I((t)-(t), (t))l is bounded almos everywhere t e [a, b]
by an L[a, b] function and goes to zero almos everywhere t [a, b] as oc. Hence
the dominated convergence theorem and (4.2) yield

(gi(t), q2i(t)) dt (gi(t) g(t), i(t)) at + (g(t), i(t)) at

(g(t),(t))dt

as oc. This proves the lemma.

COROLLARY 4.9. Let {xi}, {qi}, x, and q be as in Lemma 4.5. Then as
we have

((ti(t),ici(t Ai)) dt ((t(t),ic(t Ao))at.

PROOF: Apply Lemma 4.8 to (t) (t- Ao), i(t) ici(t- Ao), hi Ai- A,
g(t) O(t), and gi(t) (ti(t). It is routine to check hypotheses, and the conclusion
follows directly.

End of the proof of Theorem 3.1. Recall Lemma 4.3(a). Fix v E(Ao). Let
{ (Ai, ai)} be a sequence for which (Ai, ai) (A0, 0) in norm and V has a proximal
subgradient at (Ai, ai). Let ui Ev (Ai, ai). We pass to a subsequence if necessary
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so that ci(t) 0, ui(t) --, v(t) almost everywhere t E [a,b], and so that the
convergences in Lemma 4.5 are valid. It follows from (H1) that

0 0

From (H2), (H3), and Lemmas 4.4 and 4.5 (a), (c), we conclude that

(O/OA)2[(t, Ai, xi(t), xi(t

converges for almost all t E [a, b] to

(O/OA)2[(t, Ao,x(t),x(t Ao), v(t),p(t) + q(t + Ao))
as c. Since each of these functions is bounded by an L [a, b] function independent
of i, the dominated convergence theorem implies

(4.27) (t, Ai, xi(t),xi(t- Ai), ui(t),pi(t)+ qi(t + Ai))at

- 2U(t, Ao,x(t),x(t- Ao),v(t),p(t) +q(t + Ao)) dt

as . Finally, from Corollary 4.9, we have

(4.28) (dl(t),(t A)) dt ---, (O(t),(t Ao)) dt

as oc. Now the convergences (4.26), (4.27), and (4.28) hold for an arbitrary
v N(Ao). Hence we conclude from Lemma 4.a(a) that

(4.29) limsupV(A +h)-V(A) < inf {g(Ao, x(b))
h\O h veCXo)

b [2[(t, Ao, x(t) x(t--Ao)v(t)p(t)+q(t+Ao))

where (.) xv,Ao(.) and (p(.),q(.)) M(v,P(Ao)). This finishes he proof of
Theorem a.1 (a).

The proof of (b) is analogous go that of (a). The only significant change is in Step
2, where we note that

limsup
V(A h) V(Ao) < inf -Vv(A) Vv(A h)

h\O h v(Ao) h

< sup Vv((Ao, 0); (1, 0)).
v:(Ao)

The rest of the proof proceeds as before; note that the statement of Theorem 3.1(b)
ensues from replacing h above by -h.

End of the proof o:f Theorem 3.2. To prove Theorem 3.2 (a), it suffices to show
that under assumption (H8), the right-hand side of Lemma 4.3 (b) equals the right-
hand side in (4.29), since, in view of Theorem 3.1(a), the limit exists and is equal to
precisely that quantity.
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Let { (Ai, hi)}1 be such that (Ai, hi) (Ao, 0) and V has a proximal subgra-
dient at (Ai, hi). Let ui E (Ai, hi), and invoke (H8). We obtain a subsequence (not
relabeled) and v(.) e ’[a, b] so that ui(t) - v(t) almost everywhere t e [a, b]. By
Lemma 4.6, we have v(.) (Ao). As pointed out at the end of Step 6, the assertions
of Lemma 4.5 are valid with the data introduced here, and thus Corollary 4.9 is also
valid. All of this leads directly to the convergences in (4.26), (4.27), and (4.28) for an
appropriate subsequence. Therefore, from Lemma 4.3 (b), we conclude that

--Z t, Ao, x(t), x(t Ao), v(t), p(t) + q(t + Ao)

+ (0(t), $(t- Ao))] dt),
where x(.) XV,Ao(.) and (p(.), q(.))- M(v,P(Ao)). The conjunction of (4.30) with
(4.29) finishes the proof of Theorem 3.2 (a).

The proof of (b) requires the same modification as the one made in the proof of
Theorem 3.1 (b). D

Proof with Ao 0. The only difficulty in letting A0 0 occurs in Step 2. It is
not permissible there to have the delay parameter be less than zero. However, we can
do the following (the notation is as in Step 2)"

limsup
Y(h) Y(0) < limsup

Vv(h) V(O)
h%O h h\O h

<_ lim sup
h%0
o---,0

V,(A+h,a)-V,(A,a)

_< lim sup lim sup
A’0 h0

-.-0

V,(A’+h,a)-Vv(A’,a)

<_ lim sup V((A, 0); (1, 0))
A’0

lim sup sup #,
A’,0

where the last sup is taken over (#,/) e Rz x L2[a,b], {(#i.,/3i)}=z C_ R x L2[a,b],
{(Ai, ai)} C_ (0, A) x L2[a, b] with (Ai, hi) (A, 0) in norm, (#i,/i) -- (#,/)
weakly, and (#i,/3i) is a proximal subgradient of Vv(.,.) at (Ai,ci) A standard
diagonalization argument can be used to absorb "limsup" into the set at which the

A\0
sup is taken over. That is, the right-hand side of (5.7) equals

{ #’ (#,/), {(#,/)} with (A, a) - (0, 0)sup

in norm, (#i,/i) - (#, Z) weakly, and (#,/)

is proximal subgradient of Vv (.,.) at (Ai, hi) .
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From here, the proof of Theorem 3.1 proceeds, commencing with Step 3 precisely as
before, with A0 replaced by 0 throughout.

The proof of the opposite bounds with Ao 0 contains no surprises. The slight
modification in the limits introduced in (4.31) can be carried over to the situation in
Theorem 3.2. Then as expected, the rest of the proof proceeds as before.

5. Lipschitz terminal cost. In this section, we consider problems in which the
terminal cost function I is assumed to be merely Lipschitz in the state variable. In
addition to its intrinsic interest, the results here will be applied in 7, where endpoint
constraints are introduced and a nondifferentiable penalization function will be needed
to treat them. In place of (H1), we consider

(HI’) I [0,) n ---. 1 is C in the first and locally Lipschitz in the
second variable. Furthermore, the set {(A,x,) e xl(A,x)} is
closed in [0, A)

Recall from (2.4) that ( denotes the presubdifferential. The x subscript indicates
that this is taken with respect to the x variable while A is held fixed. Obviously,
(H1) implies (HI). The closure statement is equivalent to saying the multifunction
(A, x) l(A,x) is upper semicontinuous on [0,) . We point out that (HI’)
is satisfied whenever l is C in A and convex in x.

The notation of the previous sections is maintained, except that the multiplier
sets must incorporate new boundary conditions. For u E E(A), M(u,P(A)) is the
set of pairs of absolutely continuous functions (p, q) that satisfy the transversality
condition

e 0,

and also satisfy the adjoint equations and the maximum condition of the maximum
principle. In other words, the difference between what we now call M(u, p(A)) and
the function with the same designation in the previous sections is that M(u,P(A))
includes all functions having the possible boundary conditions (5.1).

The maximum principle is still valid under (HI). That is, u E E(A) implies
M(u,P(A)) . The result of this section is a direct extension of the main results
from 3.

THEOREM 5.1. Assume that (HI’), (H2)-(H7) hold and Ao (0, A). We have

limsup
V(Ao + h)- V(Ao) < inf sup E (Ao, xv,A, v, (p, q)),

h\O h vEE(Ao) (p,q)EM(v,P(Ao))

and if A0 > O, then

lim inf
V(Ao + h) V(Ao)

k sup inf
h/zO h ve(Ao) (P,q)M(v,P(Ao)) E(Ao, xv,A,v, (p,q));

(b)

lim inf
h\0

In addition, assume that (H8) holds at A0. Then

V(Ao + h)- V(Ao) > inf inf E (A0,x’,0 v, (p, q)),h veE(A0) (p,q)eM(v,P(Ao))

lim sup
h/’0

V(Ao + h)
sup sup E iAo, xV,o v, (p, q),

h veE(Ao) (p,q)eM(v,P(Ao)) \ /

and if A0 > O, then
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(c)

(d)

In addition to the assumptions of (b), suppose that for each v E (Ao),
M(v,P(Ao)) consists of a single element. Then for all Ao e [0, A),
limh\0(Y(A0 + h) Y(Ao)/h) exists, and for all Ao e (0, A),
limh/0(Y(A0 + h)- Y(Ao)/h) exists, and are equal to the respective
quantities as in Theorem 3.2.
In addition to the assumptions of (c), suppose that (Ao) consists of the
single element v. Then, ifAo > O, the two-sided derivative (d/dA)y(Ao)
exists and equals E(Ao,xV,ao,v, (p,q)), where M(v,P(Ao))= {(p,q)}.

PROOF" This is nearly identical to the proof given in 4. First, note that (HI’) in
place of (H1) does not affect the proof that V is locally Lipschitz in (A, a). The only
significant modification needed in 4 occurs in the proof of Lemma 4.5, where we must
now pass to another subsequence of {pi} if necessary to assure that -pi(b) converges
to -p(b). That the transversality condition (5.1) holds in the limit follows from (HI’).
Since M(v, p(A)) may contain more than,one element, the limsup on the right-hand
side in Lemma 4.3(a) may no longer be an actual limit, and this is reflected in the
theorem by taking the sup over M(v,P(Ao)). [

6. The lower bound with Hamiltonian multipliers. In this section, we use
a Hamiltonian approach to obtain a lower bound for the right lower Dini derivative
of V(A). The idea here, conceptually disjoint from assuming (HS), is to analyze the
limiting behavior of trajectories and multipliers that satisfy a Hamiltonian inclusion.
The optimal controls will play no major role, and for this reason we introduce the
notation

(/) := (x,(.) e r()},

(,) := {x,(.) e r(, )}.
First, some preliminary definitions and remarks. Recall that the pseudo-Hamiltonian

Xd is defined by

2(t,A,x,y,u,p) (p,(t,A,x,y,u)) n(t,A,x,y,u).

We now define the (true) Hamiltonian H by

H.[a, ] [0, ) --, ,
H(t,A,x,y,p) max{2[(t,A,x,y,u,p) u e U(t)}.

For a(.) L2[a, b], the Hamiltonian associated with P(A, a) is denoted by Ha. Evi-
dently, Ha H + (p,a(t)). The generalized gradient of H with respect to (A,x,y,p)
(always written as OH) can be calculated as follows (see [C1])"

(6.1) OH(t,A,x,y,p) cl co { (fl[(t,A,x,y,u,p),
x*(t, A, x,y,u,p), O----’*(t’A’x’y’u’P)’Oy (t,A, x,y,u))

u e V(t) such that g(t, A, x, y, p) [(t, A, x, y, u, p) }.
Throughout this section, we will assume (HI’) rather than (HI). In the definition
of the (Hamiltonian) multipliers, we add an extra component w to what is usually
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done so as to manage the explicit A-dependence. Let x(.) E E(A). Then the set of
Hamiltonian multipliers hT/(x, P(A))is defined by

//(x, P(A))= (w,p,q) e AC2n+l[a,b]

w(a) O, -p(b) e vhxi(A, x(b)), q(b) O, and

(-(v(t),-[9(t),-O(t),&(t)) e og(t,A,x(t),x(t- A),p(t)+ q(t + A))

t e [a, b] .
)

Whenever t + A >_ b, q(t + A) is set equal to zero. For a problem p(A, a), and with

x(.) e ](A, a), then h:/(x, P(A, a)) is defined similarly with H replaced by Ha.
Suppose that v e E(A), and let x(.) xv,(.) and (p,q) e M(v,P(A)). Define

w [a,b] - 1 by

w(t) 2[(s,A,x(s),x(s-A),v(s),p(s)+q(s+A))ds.

It follows from the maximum principle and (6.1) that (w,p,q) //(x,P(A)). In
general, M(x,P(A)) will contain other elements, which is true even for problems
without delay; see Clarke [C2]. It can be shown, however, that if H is C in (A,x, y),
then /(x,P(A)) { (w, p, q) (p, q) e M(v,P(A)), w(.) as in (6.2)}. Indeed, from
[C1, Tam. 2.8.2] it follows that H is regular (see [C1, p. 39]), and consequently OH C_
O(,,y)H OpH, where the subscripts on 0 indicate a partial generalized gradient (see
[C1, Prop. 2.3.15]). If H is C in (A,x, y), then O(A,x,y)H is the ordinary gradient.
Thus, in light of (6.1), (w,p,q) e /(x,P(A)) implies that (p,q) e M(v,P(A)) and
w(.) is defined by (6.2).

A necessary condition for x(.) e (A) is that /(x,P(A)) . This necessary
optimality condition is applicable under weaker smoothness assumptions than we have
hypothesized. In brief, the C regularity in the state variables can be relaxed to mere
Lipschitz with the Lipschitz constants satisfying an analogue of (H6). See Clarke and
Watkins [CW].

The advantage Hamiltonian multipliers wield over Pontryagin multipliers is that
./(x, P(A)) has more robust closure properties (see Lemma 6.3 below). An alternative
approach, that we do not develop, would be to deal with measure-relaxed problems
in the sense of Warga [Wl]. In any case, the convergence of the integral term in (3.2)
remains problematic. We are only capable of overcoming this obstruction to our proof
technique by invoking one of the following hypotheses:

(H9) For almost all t [a, b], (O/Oy)H(t, A,x, y,p) exists and is continuous
in (A,x, y,p).

(H10) For almost all t e [a, b], (O/Op)H(t, A, x, y, p) exists and is continuous
in (A,x, y,p).

Unlike (H8), (H9) or (H10) can often be verified directly and simply. For example, if
the control is separated from y, then (H9) holds. That is, suppose that has the
form T(t, A, x, y, u,p) f(t,A,x,y,p)+f2(t,A,x,u,p)where f, f2 are measurable
in t, smooth in (A,x,y,p), and f2 is continuous in u. Then by using (6.1), we can
easily verify (H9). Mayer problems with linear dynamics and the example considered
in 8C exhibit this structure. An instance in which (H10) holds is when is linear in
u and L(t, A,x, y, .) is strictly convex.
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The functional E, which is analogous to E of (3.1), is defined by

/)" [0, 5) ACn[a, b] x x ACn[a, b] R1,

(A,x(.), w,q(.)) -l(A, x(b)) + w + (-O(t),(t A)) dt.

The main result of this section follows.
THEOREM 6.1. Suppose that (HI’), (H2)-(H7) hold. Assume further that either

(H9) or (H10) holds. Then for Ao e [0, A), we have

(a) liminf
Y(A + h)- Y(Ao) > inf inf /)(Ao,x,w(b),q);

h\O h xEf](Ao) (w,p,q)Ell(x,P(Ao)

(b) If A0 > O, then we have

limsup
V(Ao + h)- V(Ao) g sup sup (Ao, x,w(b),q).

h/O h ef:(Ao) (w,p,q)e.Q(x,P(Ao))

Proof. We give the details for (a) and with A0 E (0, A); part (b) and the case

Ao 0 are handled as they were in 4. We commence as in 4 through Lemma 4.3,
where we now are only interested in the lower bound in Lemma 4.3 (b). Suppose that

L2{(Ai, a)}=l C_ [0 A) x [a, b] satisfies (A, a) (A0, 0) as , and that Y has
a proximal subgradient at (Ai, hi). Let ui E E(Ai, hi) and (pi, qi)
and set xi(.) ’As (.). Definewi [a b] --, Rl by

0
wi(t) -ff’(s, Ai, xi(s),xi(s Ai), ui(s),pi(s) + qi(s + Ai)) ds.

Then we have (wi,pi, qi) e M(xi,P(Ai, ai)) for each i. As used in the proof of
Lemma 4.5, we can obtain a priori bounds on xi(t)l, lpi(t)], and qi(t)l indepen-
dent of and t e [a,b]. Note from (H6) that (i(t),i(t),Oi(t),&i(t)) 7(t) for
some 7(.) L[a,b]. Then the Dunford-Pettis criterion provides a subsequence of
{(wi,pi, qi,xi)} (which is not relabeled) and absolutely continuous functions w,p,q,
and x so that (wi(t),pi(t), qi(t),xi(t)) (w(t),p(t), q(t),x(t)) uniformly over t e [a, b],
and (i,i, Oi,&i) (,, ,) weakly in L3n+[a b] as .

LEMMA 6.2. Let x(.) be as in the last paragraph. Then x(.) (Ao).
Proof. The following is adapted from a standard existence theory argument. Let

F’[a, b] x [0, ) x x n n x be the multifunction defined by F(t, A, x, y)
{((t, A, x, y, u), L(t, A, x, y, u) + 5) u U(t), 5 0}. The values of F are closed
and convex by (HT). Also, F is measurable in t and continuous in the other variables
(see [C1, 3.1]). Define

z(t) L(s,A,x(s),x(s- A), u(s)) as.

Then
(&i(s)- ai(s),i(s)) e F(s, Ai,xi(s),xi(s- Ai)) a.e. s e [a,b].

Note that &i(.) -hi(.) (.) weakly in L[a, b], and passing to another subsequence
if necessary, there exists z(.) e AC[a, b] so that zi(t) z(t) uniformly over t e [a, b],
and i(.) --, (.) weakly in L[a, b]. Furthermore, the convex analysis argument used
in the proof of [C1, Thm. 3.1.7] can be applied here with only minor modifications
(to incorporate the delay A and delay component y), and this yields that

(&(t),k(t)) e F(t, Ao, x(t),x(t- Ao)) a.e. t e [a,b].
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Consequently, (x, z) can be represented from the Filippov lemma as the solution of

(6.3) 2(t) (t, Ao, x(t),x(t- Ao), v(t)),

(6.4) 2(t) =L(t, Ao, x(t),x(t-Ao),v(t))+6(t),

where v(.) f[a,b] satisfies v(t) U(t) almost everywhere t [a,b] and 6(.) is
measurable with 6(t) >_ 0 almost everywhere t [a, b]. We hve

V(Ao) lim V(A,

(6.5) lim l(Ai,x(b)) + z(b) (since u

(o, (b)) + z(b)

Moreover, it follows from (6.4) that

z(b) >_ L(t, Ao, x(t), x(t Ao), v(t)) dt

>_ V(Ao)-/(Ao, x(b)) (by (6.3) and definition of V)

z(b). (by (6.5)).

The conclusion is that Y(Ao) J(Ao, x, v), and since x(.) xv,ao(.) by (6.3), we
deduce that x(.) e (Ao).

LEMMA 6.3. Let (w,p,q,x) be as above. Then (w,p,q) e 21/(x,P(Ao)).
Proof. For each i, the transversality condition

() 0, -(b) e (,(b)), q() 0

is satisfied. Now (wi(a),p(b),q(b),x(b),A) (w(a),p(b),q(b),x(b),Ao) as c.
Hence by (HlP), we have

(.) (a) 0, -() e (o,x()), () 0.

Also, for each and almost all t E [a, b], the Hamiltonian inclusion

(6.7) (-@(t),-[9i(t),-ti(t),&i(t)) e OHa(t, Ai,xi(t),xi(t- Ai),pi(t) + qi(t +
holds. Recall that Ha H + (p, a(t)). Using (6.1), we easily see that OHa C_ OH
(0, O, O, a(t)), where (0, 0, 0, a(t)) 1 n n n. Without loss of generality,
a(t) 0 as --. x) almost everywhere t e In, b]. The modification in the proof of
[C1, Thm. 3.1.7] to delay problems, which was also used in the proof of Lemma 6.2,
implies that the Hamiltonian inclusion (6.7) is preserved in the limit as c. That
is, we have

(6.8) (-b(t),-(t),-(t(t),ic(t)) e OH(t, Ao,x(t),x(t- Ao),p(t) + q(t + Ao))
a.e. t [a, b].

By definition, (6.6) and (6.8) say that (w,p,q) e M(x,P(Ao)).
We now come to the part of the proof where an extra hypothesis is required.
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LEMMA 6.4. Suppose that either (H9) or (H10) holds. Then

(6.9) (O(t),hc(t A) dt -, ((l(t),c(t Ao))dt

as i-. oc.

Proof. Recall that (Oi(.),&i(.)) --, (O(.), &(.)) weakly in Ln[a,b and (pi(t),
qi(t),xi(t)) (p(t),q(t),x(t)) uniformly over t [a,b]. It was mentioned in the
preliminaries of this section that H and H are regular, and so

(6.10) OHa C_ O(A,x)U x vOyH (o(t) + OpH).

Suppose that (S9) holds, and thus oyg {O/OyH} almost everywhere t e [a, b].
Since (w,pi,qi) e M(x,P(A,a)), we have by (6.10) that

(6.11) -i(t) O/OyU(t, Ai,xi(t),xi(t- Ai),pi(t) + qi(t + Ai)) a.e. t e [a,b].

Since (w,p,q) e M(x,P(Ao)) (Lemma 6.3), we also have that

0
H(t, Ao x(t) x(t- Ao),p(t)+ q(t + Ao)) a.e. t e [a,b]

By invoking (H9), we have that the right-hand side of (6.11) converges almost every-
where t e [a, b] to the right-hand side (6.12), wherefore i(t) (t) almost everywhere
t E [a, b] as ---, c. Now the assumptions of Lemma 4.8 for the data gi 0i, g ),
i(t) i(t- Ao), (t) (t- Ao), hi Ai- Ao can be easily verified. The
conclusion of Lemma 4.8 with this data is (6.9).

Now suppose that (H10) holds, and thus cOpg {O/OpH} almost everywhere
t e [a,b]. Since (wi,pi, qi) e M(xi,P(Ai, ai)), we have by (6.10) that

0
H(t Ai,xi(t) xi(t- Ai) pi(t) / qi(t + Ai)) / hi(t) a.e. t [a b]

From (6.10) (with a 0) and Lemma 6.3, it follows that

0
(6.14) &(t) -pH(t, Ao, x(t),x(t- Ao),p(t) + q(t + Ao)) a.e. t e [a,b].

Since hi(t) - 0 almost everywhere t e [a, b], (H10) implies that for almost all t
[a, b], the right-hand side of (6.13) approaches that in (6.14). Therefore &i(t)
almost everywhere t [a, b] as c. Now we note that the assumptions of Lemma
4.8 are satisfied for the data gi i, g , i(t) i(t + Ao), (t) 0(t + Ao),
hi Ai Ao. The conclusion of Lemma 4.8 again implies that (6.9) holds.

End of proof. Recall the lower bound in Lemma 4.3 (b). Let us set

#i "= E(Ai, xi, wi(b),

We have shown that there exists x(.) e (Ao) (see Lemma 6.2) and (w,p,q)
h:/(x, P(Ao)) (Lemma 6.3) such that #i # (Lemma 6.4), where

# :=/(Ao, x, w(b), q).

Now the sequence { (Ai, ai)}l was chosen arbitrarily among those in which the lim inf
is taken in Lemma 4.3 (b). Hence we conclude from Lemma 4.3 (b) that

liminf
Y(Ao + h)- Y(Ao) > inf inf /(Ao, x, w(b), q).

h--*o h xE(Ao) (w,p,q)eJ(x,P(Ao))
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This was the assertion of the theorem. l

Remark. Assumptions (H9) and (H10) are stronger than what was required in
the proof. The same conclusion of Theorem 6.1 can be drawn if we assume in place of
(H9) that for fixed A0 E [0, ), (O/Oy)H(t, Ao, x, y, p) exists and is the only element
in the set limit ofOyH(t,A,xi, yi,p{) as (A,x,y,p) (Ao, x,y,p). This must hold
for almost all t e [a, b], and for (x, y,p) 3n. We can make a similar replacement
for (H10).

In many situations, it may be known that the multiplier set associated with
an optimal trajectory consists of only one element. This is true in two examples
considered in 8. We give this property a precise statement. Consider the following.

(Hll) Fix A0 e [0,). For each x e (A0), 2I(x,P(Ao)) contains only one
element.

An immediate corollary to Theorems 3.1 and 6.1 is the following.
COPOLLAPY 6.5. Let Ao [0,) and suppose (HI’), (H2)-(H7), (Hll), and

either (H9) or (H10) holds. Then we have the following:

(a) The right derivative of V at Ao exists, and

lim
V(A + h)- V(A0)

inf ,(Ao,x,w(b),q),
h\O h

where 2/I(x,P(Ao)) {(w,p, q)};

(b) If Ao > O, then the left derivative of V at Ao exists, and

lim
V(Ao + h)- V(Ao)

sup /(A0,x,w(b),q),
h/O h e(o)

where/l/(x, P(Ao))= {(w,p, q)};

(c) In addition, suppose (Ao) consists of a single element x. Let {(w,p, q)}
2t:/(x,P(Ao)). Then if Ao > O, the derivative of Y at Ao exists and

q).

Remark. If (Hll) is satisfied and v E (Ao), then M(v,P(Ao)) also consists of
only one element, say M(v,P(Ao)) {(p,q)}. Let w(.) be defined as in (6.2). We
have that ll(xv,o,p(Ao)) ((w,p,q)}. Note then that the conclusion of Corollary
6.5 is identical with that of Theorem 5.1 (c), (d), since in this case the values of E
and/ coincide.

7. Endpoint constraints. The previous theory is developed in this section
to incorporate an endpoint constraint. The basic data is augmented by a closed,
nonempty subset C of Rn. It is convenient at this point to not allow to depend
explicitly on A. In a concluding remark, it is noted under what assumptions A-
dependence can be treated.
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The basic problem we now consider is

min J(A,x,u) over x(.) e AC[a, b], u(.) e /Y[a, b],

satisfying

&(t) (t,A,x(t),x(t- A),u(t)) a.e. t e [a,b],

(t) e u(t) .. t e [a, ],

(t) (t) or t e [- , ],

The notation of this section will closely resemble that which was previously used.
Problem (7.1) is denoted by Pc(A). The set of optimal solutions, the set of associated
optimal trajectories, and the optimal value of Pc(A) are written as Fc (A), c(A),
and Vc(A), respectively. Perturbations of the dynamics no longer require notation,
but rather endpoint perturbations play a significant role. For E Rn, pc+(A)
(respectively, p{}(A)) denotes problem (7.1) with C replaced by C + respectively,

{}). Similar definitions are made for Ec+(A), ]c+(A), and Vc+(A). If no feasible
solution exists for Pc(A), then the convention Vc(A) +c is adopted. If Vc(A) <
+c, then standard compactness arguments show that Ec(A) # .

Significant alterations occur in defining the multipliers. Recall that the distance
function to a closed set D C_ , is defined by

dD() inf{l-- ’1" ’ e D},

and is globally Lipschitz of order 1. For D, the prenormal cone D() of D at
is given by

/D() := cl U k DdD().
k>0

Hamiltonians for Pc(A) are indexed by a nonnegative real parameter. For A >_ 0,
H’[a,b] [0, A) x Rn Rn x Rn R1 is defined as

H(t,A,x, y,p) "= sup {(p, (t, A, x, y, u)) AL(t,A,x, y, u) u e U(t)}.

Suppose that u(.) 6 Ec(A)and x(.) xu,a(.) 6 Ec(A). The multiplier sets
M(u, Pc(A)) and I(x, Pc(A)) of index A >_ 0 associated with u and x are de-
fined by

M(u, Pc(A)) := { (p, q) 6 AC2n[a, b]"

-() e 8(x()) + c(x()), () O,

-i5(t) (t, A,x(t),x(t- A), u(t))(p(t)+ q(t + A))
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)L(t,A,x(t),x(t- A),u(t)) a.e. t e [a,b],

-(l(t) (t,A,x(t),x(t- A),u(t))(p(t) + q(t + A))
AL(t,A,x(t),x(t- A), u(t)) a.e. t E [a, b],

max {/p(t)+ q(t + A),(t,A,x(t),x(t- A), u)/- AL(t,A,x(t),x(t- A), u)}

over u E U(t) occurs at u- u(t) a.e. t [a,b]

M(x, Pc(A)) := (w,p,q) e AC2+l[a,b]

0, e + o

(-(v(t),-(t),-il(t),ic(t)) e OH(t,A,x(t),x(t A),p(t)+q(t + A))

a.e. t[a,b]/.
In the latter definition, the subgradient OH is taken with respect to the (A,x, y,p)
variables.

Suppose that x(.) E c(A). It is always the case that p 0 (which implies q 0)
is a component of an element of M(x, Pc(A)). The trajectory x(.) is called normal if
//(x, Pc(A)) contains only elements in which the p(.) trajectory is identically equal
to zero. The problem Pc(A) is called normal if each x(.) c(A) is normal.

Note that since we are assuming l is independent of A, assumption (HI’) of 5
reduces to

(HI") l" Rn 1 is local Lipschitz.

The main theorem of this section follows.
THEOREM 7.1. Suppose (HI"), (H2)-(HT) hold, and let Ao [0, A). Assume

that Vc (Ao) is finite and Pc(Ao) is normal. Then

lim sup
Vc(Ao + h) Vc Ao < inf sup E(Ao, xv, Ao v, (p, q

hx0 h v(’)eEc(Ao) (p,q)EMI(v,Pc(Ao))

and if Ao > 0, then

lim inf
Vc(Ao + h)- Vc(Ao) >_ sup inf

h vEc(Ao) (P,q)MI(v,Pc(Ao))
x. (p, q));E(Ao,

lim inf
h\0

(b) In addition to the basic hypotheses, assume that (H8) holds at Ao with
E replaced by Ec. Then

Vc(Ao + h)- Vc(Ao) > inf inf
h v(.)Ec(Ao) (p,q)M(v,Pe(Ao))

and if Ao > O, then

Xv’A V (p, q)),E(Ao,

lim sup
Vc Ao + h) Vc Ao < sup sup

h/O h v(.)Ec(Ao) (p,q)EM(v,Pc(Ao))
E(Ao, xV,o, v, (p, q));
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(c) In addition to the basic hypotheses of (a), assume that (H9) or (H10)
holds. Then

lim inf Vc(Ao + h) Vc(Ao) > inf inf
h\O h Ec(Ao) (w,p,q)elll(,pc(Ao))

E(Ao, x,w(b),q),

and if Ao > O, then

limsup
Vc(A0 + h) Vc(Ao) <_ sup sup /(Ao, x, w(b), q).

h/O h efc(Xo) (w,p,q)el!(x,Pc(Ao))

Proof. The basic idea is to replace Pc(A) by a free endpoint problem that satisfies
the hypotheses of 5, and that has the same set of optimal solutions. The multipliers
will also be related, and this will allow the conclusions of the theorem to be read off
from the assertions of Theorems 5.1 and 6.1. We will only give the details for the
right-hand limits and 0 < Ao < A, the left-hand limits and the case Ao 0 being
similar.

It is convenient, then, to introduce further notation for the "penalized" problems.
For k > 0, let P(A) denote the problem

min l(x(b)) + kdc(x(b)) + L(t,A,x(t),x(t- A), u(t)) at

over u(.) e//Z’[a, b] satisfying u(t) e V(t) a.e. t e [a, b],

where x(.) xu,x (.).
The rest of the notation is carried over to this context by adding a superscript k.

That is, we have E(A), Vck(A), p+(A), etc.

Step 1. As the first step, we use the normality hypothesis at Ao to show that
Pc+e(A) inherits feasibility and normality for all (A, ) near (Ao, 0). We begin with
a controllability result of considerable independent interest.

PROPOSITION 7.2. There exists 5 > 0 and 0 _< A1 < Ao < A2 ( /k so that
Vc+(A) is finite for each I[ - 5 and A e [A1, A2].

Proof. We argue by contradiction. Suppose that there exist sequences {Ai} C_
[0, ), {i} C_ Rn so that Ai Ao, i - 0 as --, c, and Vc+, (Ai) +c for all i.
Define the reachable set R(A) by

R(A) := (x(b) x(.) xu,x(.), u(.) admissible}.
The assumptions Vc(Ao) < c and Vc+(Ai) -t-oc are then equivalent to R(Ao)N
C - and R(Ai) N (C / ) . Let uo(.) E c(Ao), and so xuo,Ao(b) R(Ao)
C. As shown in 8A, the map A xuo,X(b) is continuous at Ao, and therefore
dv+,(xuo,A,(b)) 0 as c. Let (ki} be a sequence such that ki / -+-c and
kidc+, (xu,A (b)) ---, O.

kiNow let ui(.) e c+(Ai) and xi(.) Xu"A’(’). We claim that dc(xi(b)) -- 0
as - c. Indeed, if not, since (Hb) and (H6) imply J(A, x, u) is bounded over all A e
[0, ), admissible u(.), and x(.) xu,(.), it would follow that lim supi_ V.k’c+, (Ai)
/. On the other hand,

lim sup V’kC+ (Ai) <_ lim sup {J(Ai, XU’A("), UO)/ kidc+(xu A(b))}

J(Ao, x’x, u0) VC(Ao).
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This is a contradiction, which verifies the claim. We pass to a subsequence if necessary
so that xi(b) --, r for some r 6 C. Furthermore, we may assume that xi(.) converges
uniformly to some x(.), and (.) converges weakly in L2[a, b] to (.). We next claim
that x(.) e c(Ao). To see this we can show, as in the proof of Lemma 6.2, that there
exists admissible v(.) with x(.) xv,0(.), and such that

J(A0, x, v) _< lim inf J(A, x, u).

Now ui e Zk (A), and so we conclude from (7.2) thatC+

lim sup J(A, xi, ui) < lim sup V.k < Vc(Ao).

Hence J(Ao, x, v) <_ Vc(Ao), and since x(b) 6 C, it follows that x(.) 6 ]c(Ao), and
the claim is proven. We will arrive at a contradiction by showing that x(.) is not
normal.

Let ri 6 C be chosen so that dc+(x(b)) Ix(b)- - r I. Since x(.) 6

c+ (A), it follows readily that x(.) is also an optimal trajectory for the problem

p+=}(A). The necessary conditions guarantee the existence of arcs (w,pi,q)

( pk (A)), which means thatcontained in M x, {+}

(7.3) w(a) O, -p(b) 6 i(x(b)) + kd{+}(x(b)), q(b) 0

and

(7.4) (-bi(t),-1hi(t),-Oi(t),i(t)) e OHl(t, Ai,xi(t),xi(t Ai),pi(t) + qi(t + Ai))

a.e. t e In, b].
Since x(b)- r for all i, := (x(b)-- satisfies I 1-
and {} d{+r}(x(b)). Now elements of l(x(b)) are contained in a bounded
set independent of i, and since k , it follows from (7.3) that p(b)l +. Set
A p(b)l- and define ((t),(t),(t))= A(w(t),p(t),q(t)). We have

(7.5) i(a) O, -i(b) Ail(xi(b)) + kiAii, i(b) O.

Also by [C1, Prop. 3.2.4 (e)] and (7.4), we have

(-@(t),-(t),-(t),2(t)) OH(t,A,x(t),x(t- A),(t)+ (t +
a.e. t In, b].

Again we pass to a subsequence of (i, i, i), and obtain (w, p, q) so that (@i, i, i) -*
In, b] and (i, i, i) - (w p, q) uniformly on In, b]. Obviously,(b, i5, c)) weakly in L2n+I

Ip(b)l 1, and -p(b) lim-oo . Now 6 dc(r) and r x(b), hence
-p(b) 6 dc(x(b)) by (HI"). Also (7.5) has w(a)= 0 and q(b)= 0. Furthermore, as
we have used many times previously, (7.6) is preserved in the limit. That is,

(7.7) (-(v(t),-(t),-O(t),ic(t)) e OH(t, Ao,x(t),x(t- Ao),p(t)+ q(t + Ao))

a.e. t [a, b].
We conclude that (w,p,q) M(x, Pc(Ao)) with p : O, and this contradicts the
normality of x(.). rl
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LEMMA 7.3. There exists 5 > 0 and 0 _< A1 < A0 < A2 < A so that Pc+(A)
is normal for each I1 < 5 and A e [A1, A2].

Proof. For the proof, assume otherwise. There exist sequences {Ai}, {i} (with
Ai A0,i ---* 0 as --. oc) such that for each i, there exist nonnormal arcs

xi(.) E f3c+i(Ai) and (wi,pi, qi) lf/I(xi,Pc+i(Ai)) with pi 0. We may as-
sume p(b)] 1. Once again, without relabeling, we pass to the convergence of
subsequences, and obtain (w, p, q, x) for which (i,i,Oi,&i) (,,,)weakly in

L+[a, b] and (wi, pi, qi, xi) (w, p, q, x) uniformly on [a, b]. Previous arguments
show that x(.) Ec(A0) and (w,p,q,x) satisfies the Hamiltonian inclusion (7.7). To
obtain the contradiction (w,p,q) M(x, Pc(Ao)), p O, it is only left to show that

e
Since-pi(b) cl k>o k dc+ (xi(b)), there exists ki > 0 and i e dc+, (xi(b))

so that ]-p(b)- k 0 as . Without loss of generality, we may take

i 1 for all i, which implies ki 1. Note that dc+ (xi(b)) dc(xi(b)- i) and

xi(b) i x(b). Therefore, the upper semicontinuity of dc gives that -p(b)
lim i e dc(x(b)). This finishes the proof that x(.) is not normal, a contradiction
at which the proof of Lemma 7.3 is complete.

Henceforth, we fix 5 > 0 and 0 A < A0 < A2 ( A so that Proposition 7.2
and Lemma 7.3 are valid.

Step 2. In this step, we will obtain bounds on a Lipschitz constant that will be
uniform in A. It is convenient to alter our notation in this step only, and write V(
for Vc+(A). We recall the following sensitivity estimate from [CW].

PROPOSITION 7.4 ([CW, Thm. 4]). Suppose that V(A, ) is finite and Pc+(A)
is normal. Then V(A, ) is Lipschitz near with

0V(A,) cl co { + p(b)’x(.) e c+(A), l(x(b)),

(w,p,q) (x, Pc+(A))}.
We next show that 0V(A,) is bounded independent of A e [A,A2] and ]] 5.
Again, normality is the key.ingredient.

LEMMA 7.5. Define
:= sup

Then ko < +.
Proof. By Step 1 and Proposition 7.4, we have for each fixed A lAx, A2]

and I] G 6 that sup{z[ z e 0fY(A,)} < . So if ko , then by Proposi-
tion 7.4 there exist A e [Ax,A2], Il G 6, x(.) e c+f,(A), e i(x(b)) and
(w,p,q) e X(x,Pc+,(A)) such that 1 + p(b) as . It is imme-
diate from (Hh) that {x(b)} is bounded, whence from (Hl") {} is also bounded.
It must therefore be the case that A := Ip(b)l- O. The argument proceeds
along now familiar lines" we may assume A A* e lAx, A2] and * with
[*l G 6. Set (,,) A(w,p,q). Passing to an appropriate subsequence,
we obtain (w,p,q,x) for which (@,,,,,,’) (@,f, 0,2) weakly in n{n+[a,b and
(,,,x) (w,p, q,x) uniformly on [a, b]. We can argue as earlier (see the proof
of Proposition 7.2) that x(.) e c+.(A*) and (w,p,q) e (x, Pc+f.(A*)) with
p(b)l 1. This contradicts the normality of Pc+f.(A*) that was shown to hold in
Lemma 7.3.
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Step 3. We are now ready to begin replacing Pc (A) by a free endpoint problem.
The relevance of Steps 1 and 2 is that the penalization parameter can be chosen
independently of A E [A1, A2] and I[-< /2.

LEMMA 7.6. There exists kl > 0 so that for all A e [A, A2], [1 <- /2, and
klu(.) e Ec+(A), we have dc+(xu,/X(b)) <_ /2.

Proof. As noted earlier, (H5) and (HC) imply that there exists -y > 0 so that
IJ(A,x, u)l _< q’ for all A e [0,), admissible u(.), and x(.) xu,/x(.). Consequently,
since Vc+(A) is finite by Proposition 7.2, we have

sup Yc+ (A)
A[A1,A2]

Let k > (4-/). Now suppose [[ <_ b/2, A e [A,A2], u(.) e zkc(A), and
x(.) xu,A(.). If dc+(x(b)) > 5/2, then

kl u) + kdc+Vc+(A J(A, x, (x(b))

> +
>

For any k > 0, however, it is always the case that

(7.9) Vc+(A)
_
Yc+(A).

Since (7.8) and (7.9) cannot both be valid, we conclude that dc+(x(b)) <_ /2.
LEMMA 7.7. For k > max{ko, k}, we have E+(A) Ec+(A) for all

/2 and A [A,A2].
Proof. Fix k > max{k0, k}, A e [A, A2], and ] 5/2. It suffices to show that

if u e E+e(A), then xu,a(b) e C + .
Let u e E+(A) and x(.) xu,(.). We have

+ k

(z.10)
<_ J(A, x, u)+ k dc+(x(b))

<_ Vc+{(A) (by (7.9)).
Let r e C + such that Ir-x(b)l dc+(x(b)). By Lemma 7.6, we have Ir- x(b)l <_
5/2. Also, a consequence of Lemma 7.5 is that Vc+, (A) is Lipschitz of order ko
on ’] 5. Hence

Vc+(A) Vc++(b)-(A) + ko[x(b)
(7.11)

V{x(b)}(A)+ kodc+(x(b)),
the last inequality valid since x(b) e C + + x(b) . Combining (7.10) and (7.11)
gives k dc+(x(b)) kodc+(x(b)), which can only be valid if x(b) C + .

Fix k > 0 so that Lemma 7.7 holds. The following corollary is immediate from
Lemma 7.7 and the definitions.

COROLLARY 7.8. For all A [A,A2] and [[ 5/2, we have V+(A)
Vc+(A) and +(A) c+(A).

Step 4. It remains only to compare multipliers and to apply previous results.
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LEMMA 7.9. Fix A e [A1, A2] and II < /2. Let u(.) e E+(A) and x(.)
xu,A(.). Then we have

(7.12) M(u, P+(A)) C_ Ml(u, Pc+(A))
and

(7.13) /l:/(x, P+(A)) (x, Pc+(A)).

Proof. The only difference between the multipliers of the free endpoint problem
P+(A) and the constrained problem Pc+(A) occurs in the transversality condition
on p(.). The former has

-p(b) e 8t(x(b)) + k dc+(x(b)).
However, since l(x(b)) + k dc+(x(b)) l(x(b)) + c+(x(b)), it follows that the
transversality condition defining M(x, Pc+(A)) is also satisfied. Hence (7.12) holds.
The same reasoning shows that (7.13) is valid as well.

End of proof. To verify the assertions of the theorem, we now need only to
apply previous results to the problem P(A). Since the value functions and optimal
solutions of P(A) and Pc(A) coincide for all A near A0 (Lemma 7.7, Corollary
7.8), and the multiplier set of Pc(A0) is larger than that of P(A0) (Lemma 7.9), the
bounds in Theorem 7.1(a) follow immediately from Theorem 5.1(a). Assumption (H8)
on Pc(Ao) carries over to the same assumption on P(Ao) by Lemma 7.7, hence (b)
follows from Theorem 5.1(b). Finally, (H9) and (H10) are only assumptions on the
Hamiltonian and are not affected by the endpoint constraints. Thus (c) follows from
Theorem 6.1.

Remarks. (i) The proof of Theorem 7.1 shows that the multipliers for Pc(A)
can be replaced by multiplier sets of the form (for k sufficiently large)

Pc()) { (, q)" -() e 8(()) + k

q(b) O, (p, q) satisfy the adjoint

equations and the maximum condition.
Similarly for (x, Pc(A)). This gives potentially finer estimates.

(ii) The statement of Theorem 7.1 does not allow for l to depend explicitly on
A. The reason is that to apply Theorem 5.1, we must have the subgradient of the
endpoint cost function with respect to the state variable to be upper semicontinuous.
That is, (A, ) (l(A, )+dc()) must have a closed graph. This is not necessarily
true if / only satisfies (Hl’). It is true, however, if I satisfies (H1) (see [C1, p. 39]).
Hence Theorem 7.1 could be given alternatively under (H1) rather than (Hl’). In
fact, (nl) could be weakened further to (Sl’) plus "regularity" (see [C1]).

The relevant analogue of (Hll) to endpoint constrained problems is that
M(x, Pc(Ao)) consists of a single element. We will encoumer in 8C an example
where this is so. The following corollary is the endpoint constrained version of Corol-
lary 6.5.

COROLLARY 7.10. Fix A0 e [0, A). In addition to the basic hypotheses of Theo-
rem 7.1, suppose that (Hll) and either (H9) or (H10) hold. Then



THE SENSITIVITY OF OPTIMAL CONTROL 1211

(b)

(c)

lim
V(A + h)- V(Ao)

h\O h
where MI(v, Pc(Ao))= {(p,q)};

inf
vEc(Ao)

E(Ao, xv,Ao, V, (p, q) ),

If Ao > 0, then

lim
V(Ao + h)- V(Ao)

sup
h/O h vec(/xo)

E v, (p, q)),

where M(v, Pc(Ao)) {(p, q)};

Suppose, in addition, that Ev(Ao) consists of a single element v. Let
M(v,P(Ao)) {(p,q)}. Then if Ao > 0, the derivative of V at Ao
exists and equals E(Ao, XV,Ao, V, (p, q)).

Proof. Note that (Hll) implies that for v E Ec(Ao), M(v, Pc(Ao)) also consists
of a single element, and is the (p, q) coordinate of 2t:/ (xv,Ao Pc(Ao)). (See the remark
at the end of 6.) Moreover, in this case, the E and/ functionals give the same value,
hence the corollary is an immediate consequence of Theorem 7.1(a) and (c).

8. Three examples.
A. Endpoint dependence of a differential-difference equation. Consider

the (uncontrolled) differential-difference equation

(8.1)
2(t) (t,x(t),x(t- A)) a.e. t e [a, bl,
x(t) c(t) for t [a- A, a].

Assume that satisfies (H1)-(H6), except that now it is independent of u m and
A [0, A). The existence theory for (8.1) proclaims that a unique solution XA(.)
exists, but as mentioned in the Introduction, little seems to be known concerning the
dependence of x/x(.) on the delay A. We show as an application of the results of 3
that A -- x/x(b) is differentiable on (0, A), and present the precise formula for its right
derivative at A 0. This result appears to be new.

PaOPOSITION 8.1. Define f [0,) by f(A) xA(b). Then ]or each
A (0,’), d/dAf(A) exists. Moreover, the right derivative at 0 is given by

(8.2)
d+ bd-f(O) 2(t, xO(t),xO(t))*(Q(t))ico(t)dt,

where Q(.) is the solution of the n n matrix differential equation

-((t) (l(t,x(t),x(t)) + (t,x(t),x(t)))Q(t) a.e. t e [a,b],

-Q(b) I (= identity matrix).

Proof. Fix j {1,2,..., n}. Write f(J)(A) for the jth component of f(A). We
show f(J)(A) is differentiable at each A (0, A0).

In the problem formulation P(A), define l" [0,) n by l(A, ) (J),
where () denotes the jth component of , and set L 0. Then V(A) f(J)(A),
and it is immediate from Corollary 3.3 that V(A) is differentiable for A (0,).
(Equation (HS) is satisfied trivially.) Hence f is differentiable at each A (0, A).

Of course, the above argument is also applicable when A 0. Now if (p, q) is
the multiplier for P(0) with this data, then -p(b) ej (= the column vector with
1 in the jth coordinate and zeros elsewhere) and q(b) O, and -(iS(t)+ O(t))
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(l(t,x(t),x(t))/ (t,x(t),x(t)))(p(t)+q(t)) almost everywhere t e [a,b]. There-
fore p(t) + q(t) is the jth column of Q(t). Now by Theorem 3.2(a),

d+
V(0) (-0(t), &(t)) at.

dA

Also, we have -(l(t) (t,x(t), x(t))(p(t)/q(t)). Hence lim0(f(J)(A) f(J)(0)/A)
exists and equals the jth column of (8.2). This is true for each j, so the proof is com-
plete.

B. The linear problem of Mayer. We now study the case in which (t, A, x, y, u)
has the form Ax + By + Cu, where A and B are given n n matrices and C a given
n m matrix. We suppose, in addition, that L is identically zero, U is a compact con-
vex subset of Rm, and l satisfies (H1). Consider the (free endpoint) problem P(Ao)
of 6. It is easy to confirm that (H1)-(H7) are satisfied, as well as (Hll) (in the
present setting, there is a one-to-one correspondence between Hamiltonian multipliers
and Pontryagin multipliers).

The Hamiltonian H is given by

H(t, A, x, y, p) maxue(p, Ax + By + Cu)

(p, Ax + By) + max(p, Cu).
uU

It is clear from this expression that (H9) is satisfied. With the preceding, we can
derive from Corollary 6.5 a rather explicit formula for (d+/dA)V(O).

PROPOSITION 8.2. V is differentiable on (O,A). Moreover, the right derivative
(d+/dA)Y(O) is given by

d/
d-V(O) inf g(A, x(b)) + (-((t), it(t)) dt

ve:(o)

where

and

x(t) e(A+)(t-a)c(a) + e(A+S)(t-s)Cv(s) ds

q(t)

If AB BA, the formula for (d+/dA)V(O) further simplifies to

inf
0 ab

ve(o)-ffi(O,x(b)) + (,D(a)c(a) + D(s)Cv(s) ds),

where x(.) is as above, -Vxl(0, x(b)), and D is the map from [a, b] into the n n
matrices given by

D(s) (b- S)e(A+’)(b-s)B.

C. An example in renewable resource modeling. Our final example treats
a more specific problem involving one of the better-known models in resource theory
[C]. It involves a population biomass x(t) evolving according to the dynamic equation

(8.3) &(t) g(x(t)) u(t)x(t), x(O) xo,

where g, the natural growth function, is C1 and concave, xo is given, and the last
term on the right in the dynamics reflects the effect on the population of applying
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a harvesting effort u (assumed to be constrained to a given interval [0, U/nax] ). The
discounted net revenue resulting from a choice of effort profile u(t) is given by

T

/e-’{rx(t) c)u(t)dt,(8.4)
o

where T is the planning horizon, 5 the discount rate, r the resource price, and c the
effort cost. We will impose the constraint x(T) XT (given). The issue is to identify
the control u(.) that maximizes revenue, subject to the constraints.

The nondelay problem described above is well understood. Under standard as-
sumptions that we omit, the unique solution is of "turnpike" type; we briefly describe
it now. A certain target population level x* is identified by an algebraic equation in-
volving all the data except the endpoint values. The optimal solution employs either
no harvesting effort (u 0) or maximal effort (u Umx) to guide x(t) to x* at the
start (depending on whether xo is less than or greater than x*). In the intermediate
(singular or turnpike) stage, precisely the effort required to stay at x* is applied. At
the end, to honour the endpoint constraint, there is an interval in which u is constant:
either 0 (if XT > x*) or Umx (if XT < X*). The two switching times will be denoted
T1 and ’2.

Determining x*, T1, and T2 precisely is done by means of the (nondelay) maximum
principle. The adjoint variable r(t) is unique and positive throughout, and satisfies
the adjoint equation

+
and the condition

u(t) maximizes u - {e-at(rx(t)- c)- r(t)x(t)}u over u e [0, ’//,max].
Suppose now that we wish to consider the possible effect of a small delay in the natural
growth law, a biologically realistic possibility. Then (8.3) might become, for example,

with x(t)specified on I-A, 0].
The resulting time delay optimal control problem is no longer amenable to ana-

lytical solution; in fact, the solution is not known. We will apply the results of 7 to
calculate the marginal effect of a small delay. (Hypotheses (H1)-(H7) are all satisfied
under the usual assumptions.)

The Hamiltonian ’ for the new problem (8.5) is given by

(t, A, x, y, u, p) pg(y) pux + e-t{x c}u,
so that (H9) holds. Now any element (w,p,q) of M(x, Pc(O)) is such that w =_ 0 and
(p, q) satisfies

-(t) -(p(t) + q(t))u(t) + e-tru(t),
-l(t) (p(t) + q(t) )g’ (x(t) ), q(T) 0,

together with the maximum condition

u(t) maximizes u 2(t,A,x(t),x(t),u,p(t)+ q(t)) over u e [0, Umx].
We deduce from this that p(t)+ q(t) satisfies the (nondelay) maximum principle,

whence p + q and r coincide. Thus p(T) r(T) (known), and it follows that there is
a single element (O,p,q) in M(x, Pc(O)); i.e., (Hll) is satisfied at A 0.
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We are now in a position to apply Corollary 7.10, which gives a formula for
(d+/dA)V(O). Note that } is 0 along the intermediate stage of the solution, while

-(t) r(t)g’(x(t)) throughout. We may therefore summarize as follows.

PROPOSITION 8.3. The following condition holds:

1 T

d-V(O) r(t)’(x(t)),(t)dt + r(t)’((t))(t)dt.
0 r

The two integrals figuring in this formula may be positive or negative in general.
For example, in the typical situation in which we have g’(x*) > 0, with x0 < X*,XT <
x*, it is easy to see that the first integral is positive and the second negative.

In consequence, by setting either x0 or XT sufficiently near x*, we can arrange
to make (d+/dA)V(O) either positive or negative, which shows that its sign cannot
generally be determined by qualitative arguments.
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A MONTE CARLO METHOD FOR SENSITIVITY ANALYSIS AND
PARAMETRIC OPTIMIZATION OF NONLINEAR STOCHASTIC

SYSTEMS*

JICHUAN YANG? AND HAROLD J. KUSHNER$

Abstract. For high-dimensional or nonlinear problems there are serious limitations on the power
of available computational methods for the optimization or parametric optimization of stochastic sys-
tems. The paper develops an effective Monte Carlo method for obtaining good estimators of systems
sensitivities with respect to system parameters under quite general conditions on the systems and
cost functions. The value of the method is borne out by numerical experiments, and the compu-
tational requirements are favorable with respect to competing methods when the dimension is high
or the nonlinearities "severe." The method is a type of "derivative of likelihood ratio" method.
Jump-diffusion, functional diffusion, and reflected diffusion models of broad types are covered by
the basic technique (e.g., the type of limit model that arises in the analysis of queueing systems
under heavy traffic, where the boundary reflection conditions are discontinuous). For a wide class
of problems, the cost function or dynamics need not be smooth in the state variables; for example,
where the cost is the probability of an event or "sign" functions appear in the dynamics. Under
appropriate conditions, it is shown that the cost functions are differentiable with respect to the
parameters. Since the basic diffusion (or other) model cannot be simulated exactly, two types of
readily simulatable approximations are discussed in detail, and estimators of the derivatives of the
cost functions for these approximations are obtained and analyzed. It is shown that these estimators
and their expectations converge to those for the original problem. Thus, a robustness result for the
sensitivity estimators, namely that the derivatives of the cost functions (and their estimators) for the
simulatable approximations converge to those for the approximated process is proven. Such results
are essential, in any case, if a simulation-based method is to be used with confidence.

Key words. Monte Carlo method for diffusions, parametric optimization of stochastic sys-
tems, sensitivity analysis, optimization of stochastic systems, nonlinear stochastic systems, high-
dimensional stochastic systems, parametric optimization of jump-diffusion processes, likelihood ratio
method for sensitivity analysis

AMS(MOS) subject classifications. 62E25, 93E20, 93E25

1. Introduction. The field of numerical optimization (or even the design of
good controls) for stochastic systems is still in its infancy. For problems where the
dimension of the state is greater than 3, the methods available for computing feedback
controls are too time consuming to be of use, except for some very special cases. Also,
for many applications, we do not want a feedback control (a control that depends on
the current value of the full state), but rather a control that depends on the observed
data (say, the position, or "error" over some time interval) and is easily constructable.
For such reasons, it has been common to parametrize the control in some way, then
to use some "rough" analysis to get an initial value for the parameter, and finally to
use some type of Monte Carlo or stochastic approximation type method and either
simulation or actual operating data to improve or optimize the parameters. In this
paper, we will present a novel, very interesting, and successful method for doing this
on a wide variety of problems. For a large class of problems, the method has significant
advantages over currently available competing methods.
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The basic results of the paper will be developed for systems that are fundamentally
of the It5 equation type:

(1.1) dx b(x, a)dt + a(x)dw, x e Rr, Euclidean r space,

where a is the control parameter of concern. Jump-diffusion and various reflected
diffusion models will also be dealt with. In practice, we must often work with a
stochastic functional differential equation where the b and a depend on the "past"
values as well as the current value of the state. To see why this is so, consider the
controlled problem modeled by the equation dx b(x, u)dt + a(x)dw, where u is the
control. Commonly, we use controls that are functionals of the past observed data,
say, the position x (.). Suppose that we choose the control form

(1.2) u(t) ie-’(t-S)xl(s) ds ui(t),
i=1 i=1

where the ui are defined in the obvious way. Here a (/i,’i,i <_ q}, and the
evolution equation for x(.) is actually a stochastic functional differential equation.
Because of this need, most of the work in the paper uses the "functional" model. The
computation is not usually as hard as it first appears. For example, for the case (1.2),
u(.) is the solution to a linear differential equation driven by xl(.). To better motivate
the problem and to illustrate some points in the following sections, we describe some
simple applications.

A typical application of concern is the case where the purpose of the control
system is for the "position" x(.) to track a stochastic signal z(.), which does not
depend on the control. Let E denote the expectation under parameter value (. For
such an application, typical cost criteria of interest are

where, for example,

(1.4a)

or, alternatively,

(1.45)

V(a) EC(x(.),

Ix(s) z(s)l ds,

C(x(.), ) I{sups<r Ixl(s)-z(s)l>A>0}"

For such problems, the control is often chosen to be a linear functional of the "past"
of the error x(.) z(.) e.g., for some parametrized kernel g(.), the control takes the
form

g(t s, a)(x(s) z(s)) ds.

Another interesting example that is easily included in our framework comes from
[1] and [2], which are concerned with the active control of a shock absorber of an
automobile. The two-dimensional (one shock absorber) case in [1] and [2] is modeled
by

( )(1.6) dx
-ux2 x -/ sign x2 dr+ a w
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where 0 < u < u < < and

f0 lu(s)x2(s) + 13xl(s) + " signx2(s)l 2 ds,

for positive constants fl, 7. As a consequence of the analysis in [1], it was suggested
there that suboptimal parametrized feedback controls of the "truncated" form

It(X, O) --[O/1 --a2xl sign x2]

would work well.
The general Monte Carlo method for systems optimization involves getting a

sequence of (hopefully improving) values {a(n)} of the parameter. Given the current
parameter value a(n), we try to get a "reasonably" unbiased estimate of the gradient
Va(a(n)) and change a(n) according to some "stochastic gradient descent" method.
One of the key questions in using Monte Carlo methods concerns how the gradient is
to be estimated. Several methods are in current use, and we discuss them in 2. This
paper is devoted to the development of a particularly useful and efficient "indirect"
method that is based on a "derivative of a likelihood ratio," somewhat similar in
spirit to [3]. The required computation scales linearly with the dimension of the state
vector, plus a small additional computation that is linear in the dimension of the
control. Numerical work suggests that the method is superior to the alternatives for
many complex, nonlinear, or high-dimensional systems, in terms of both the variances
of the estimates and the required computation time.

The general method will be defined in 3, where an unbiased estimator of Va (a) is
given, assuming that the trajectory x(.) is available. In simulation work, we only have
samples of approximations of paths of x(.), and not x(.) itself. Thus, it is important
to analyze the quality of the estimates obtained by various approximations. A simple
method, based on a discrete-time approximation, is given in 4. Sections 5-7 deal
with a numerical method that uses a finite state Markov chain approximation. Each
method has its own advantages.

In 8, we extend the result to a class of systems where the variance term also
depends on the control. The general idea is applicable to any system whose "control
terms" can be defined by a "Girsanov transformation." This is further illustrated in 9
by the reflected diffusion model and by a special form of the reflected diffusion which
arises as a limit in the heavy-traffic modeling of a queueing system. The simulation
of the physical model is usually quite hard and it is often advantageous to use the
"simulatable" simple approximations to the simpler "heavy traffic" limit. In 10, we
discuss the case where the noise vanishes. The basic calculations required to get the
derivatives Va (a) for the purely deterministic problem are harder than those that our
method requires for the stochastic problem. Because of this, it might be convenient to
add small "artificial" noise and use the stochastic estimator. It is shown that, when a
certain computable "zero mean" term is subtracted, the "vanishing noise" limit exists
and is an unbiased estimator of the gradient for the deterministic problem.

The method of estimating the gradient Va(a) is a key component of a stochastic
approximation method for optimizing the system. Such a stochastic approximation
method and a detailed numerical study and comparison with alternatives will be given
in a subsequent paper. Some numerical data appears in 11.
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2. Some current methods for estimating Va(s). The discussion in this sec-
tion will be somewhat loose, since we are only concerned with the relative advantages
and limitations of different approaches, and it is supposed that the mathematical op-
erations are justified. Unless otherwise mentioned, let s be real valued. The vector
valued s case involves repeating the expressions for each component of s and will be
commented on as necessary. Unless otherwise mentioned, we use the notation x(., s)
for the solution of (1.1), under parameter s.

2.1. The mean square derivative method. Suppose that C(.) takes the form

T

C(x(., s), s) k(x(s, s), s) ds + g(x(T, s)),

and let xa(., So) denote the mean square derivative (assuming that it exists) of x(., s)
with respect to s at so. This requires that x(., s) be defined with respect to the same
Wiener process for s in a neighborhood of s0. The process xa(., So) satisfies

a-01im El
x(t’ so + S)s x(t, so)

xa (t, so)l 2 0,

for each t. For purposes of discussion, first let the model be the ordinary (not func-
tional) It5 equation

dx(t, s) b(x(t, s), s)dt + a(x(t, s))dw.

Under differentiability conditions on the b and a, xa(., so) satisfies [17, Chap. 8]

(2.3) dx(t, So) [ba(x(t, so), so) + b(x(t, So), so)" x(t, So)]dt + dW(t),

where W (W,..., Wr), and

k

and bx (bl,x,’.., br,) is the Jacobian matrix. Then the quantity

T

Q(so) [ka(x(s, s0), s0) + k(x(s, so), so)xa(s, s0)] ds

+g(x(T, so))xa(T, So)

is an unbiased estimator of V(co).
Where applicable, (2.4) is often used. For high-dimensional problems, the com-

putational burden renders the method undesirable, since (2.2) and (2.3) must be
solved. Typically, s is a vector. If s has K components, then K systems of the type
(2.3) must be solved to estimate Va(s0). Additionally, both the cost functional and
b(.),a(.) must be x-differentiable, which eliminates cost functionals such as (1.4a),
(1.4b), or systems such as (1.6). The requirement that system (2.2) must be defined
with respect to the same Wiener process for s in a neighborhood of so eliminates
systems that are defined via the Girsanov transformation method. Also, it is difficult
to extend the method to the reflected diffusion model.

If the control is of the form (1.2) or if system (2.2) is replaced by a stochastic
functional differential equation, then (2.3) is replaced by a much more complicated
equation, and the computational burden becomes even greater. These cited problems
are not nearly as serious for the method defined in 3.
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2.2. A finite difference method. Here, the estimator

+ + Q( o,

is used, for small ha. If a is a vector with K components, then either K + 1 (the
"forward difference" method (2.5) used) or 2K (a "central difference" method used)
simulations must be taken to get an estimator of the gradient Va(ao). Thus the
complexity of the computation is of the order of r. K.

Unless special precautions are taken, the variance of the estimator goes to infinity
as 5a - O. In certain cases, the variance can be kept bounded by reusing the same
driving noises for all K+ 1 or 2K simulations, although the computational burden (for
the vector-valued a case) can remain large. Suppose that for a in a neighborhood of
co, the systems are all defined with respect to the same Wiener process. Sometimes,
x(., a) and C(x(., a), a) are almost everywhere continuous functions of the driving
Wiener process path, and the sample values C(x(., a), a) are actually differentiable
functions of a at a0. Then, we would use the same sample path of the Wiener process
or an approximation to it in all the (K + 1) or 2K simulations. In practice, this
approach can work quite well for small K. If the cost is of the "nonsmooth" form
(1.4a), (1.4b) or if the system is highly nonlinear, then the properties deteriorate, and
can be much worse than for the method developed in 3, from the points of view of
the quality of the estimate and the computational requirements. This is borne out by
numerical experiments.

The infinitesimal perturbation analysis (IPA) methods (of the type [4], [5]) do
not seem to be applicable. In the next section, we develop the basic "likelihood
ratio method," which has a reasonable computational requirement, yields estimators
of "good quality" under broad conditions and avoids many of the difficulties cited
above.

3. A likelihood ratio method. We will work with a class of systems for which
the control terms can be defined in terms of a Girsanov measure transformation [6,
Chap. IV.4]. Partition the state variable x as x (xl,x2), where xi E Rr Euclidean
ri-space, and rl + r2 r. Let a0 be interior to A0, a compact parameter set, and let
x(.) satisfy (3.1) under the conditions below:

(3.1) dx dx2 b2(x(.), t, a0) dt +
a2 (x( ), t)dw2

a0 will be the parameter value at which the derivative is taken. It is most convenient
to do the basic work for real-valued a and then to state the trivial extensions to the
vector case. Thus, unless mentioned otherwise, we suppose that a is real valued.

A remark on (3.1). Equation (3.1) looks complicated owing to the "functional"
dependence of b and a. Generally, unless the original system has a functional de-
pendence due to, say, a delay, the dependence arises because the current value of the
control might depend on past values of the state. Suppose, for example, that the
model is

dx b(x, u)dt + a(x)dw,

where the control u depends on a and on the "past"; e.g., for (1.2), we have
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andthe values of b(.) can be readily calculated or approximated by using (3.1").
Let T < and let Cr[0, T] denote the space of Rr-valued continuous functions

on [0,T], with the sup norm topology. We will need the following assumptions.
(A3.1) For each a E A0, hi(., .,a) and ai(., .) are measurable (vector- and matrix-

valued) functions on Cr[0, T] [0, T] and are nonanticipative in the sense that
the values at time t depend only on {x(s),s <_ t}. Also, al(x(.),t) exists
and is uniformly bounded. (We sometimes write b- (bl, b2), a (a, a2).)

(A3.2) The wi(.),i 1,2, are standard vector-valued and mutually independent
Wiener processes.

(A3.3) Equation (3.1) has a unique weak sense solution on [0, T].
(A3.4) There is a bounded measurable function b2,a(’, ", co), which is the derivative

of b2 with respect to a at ao in the sense that

((.), ,-o +) (x(.), , o)
is bounded and converges to zero for almost all (w, t), t _< T, as 5s 0.

(A3.5) For each s E Ao, C(.,s) is a measurable function on Cr[0, T]. There is a
measurable function Ca(., s) such that

C(x(.), o + -) C(x(.),,o) c((.),o)

and for some constant K and a in a neighborhood of a0,

EaoC2(x(.),s) <_ K, E,oC2(x(.),s) <_ K.
In cases such as (1.4a), (1.4b) where C does not depend explicitly on s, (A3.5) can
be dropped.

Let a2 a2a. The solutions to the stochastic differential equation (3.1) for
parameter values other than so are defined via a Girsanov transformation [6, Chap.
IV.4], as follows. For So / is s Ao, define

() [(x(.), ,o +) ((.), , o)].

Let Pao denote the measure induced on Cr[0, T] by x(.) under the parameter So
and define the measure Pao+a by the Radon-Nikodym derivative

dPo+e/dP exp [a-(x(.), t)Sb.(t)]’ dw(t)

lfo:r ]- [a;(x(.),t)eb.(t)l u dt

Under Pao+a, the processes wl (.) and w2(t, so /Ss) _= w2(t)-f a; (x(.), s)Sb2(s) ds
are mutually independent Wiener processes. Also, rewriting (3.1) yields

(3.1a) dx b2(x(.), t, so + 5s) dt / a2(x(.), t)dw2(t, so / 5s)

Thus x(.), under Pao+, is the solution process corresponding to parameter value
so + 5s. Also, (3.1a) has a weak sense unique solution, since (3.1) does by (A3.3) [6,
Chap. 4].
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Define Z(., ao) by

Z(t, ao) [a-i (x(.), s)b2,a(x(.), s, ao)]’dw2(s)

THEOREM 3.1. Assume that the model (3.1) and (A3.1)-(A3.5) hold. Then V(.)
is dififerentiable at ao and the quantity Q(ao) defined by

Q(ao) Z(T, ao)C(x(.), o) + Ca(x(.), o)

is an unbiased estimator of Va(ao); i.e., EaoQ(o V(ao).
Remark. Suppose that C(x(.), ) takes the form

T

C(x(.), a) k(x(., ), s, a) ds,

where k is nonanticipative and is bounded in the mean square sense. Then, since
Eaok(x(. ), s, ao)[Z(T, ao) Z(s, ao)] 0 for s < T, the quantity

(3.5)
T

((ao) [k(x(.), s, ao)Z(s, ao) + ka(x(.), s, ao)] ds

is also an unbiased estimator of Va(ao), and has a smaller variance than has Q(o).
Numerical experiments indicate a variance reduction of a factor of .

Suppose that an unbiased estimator k(s) of k(x(.),s, ao) with small variance is
available. Then

/oT[ ]O(ao) [k(x(.), s, ao) -(s)lZ(s, ao) + ka(x(.), s, ao) ds

will have smaller variance than ((ao). It is much easier to get excellent estimators for
the k(x(.), a, s) than for the derivatives and commonly the variances are negligible.
The use of (3.5’) commonly reduces the variance by 20-50 percent.

Proof. Write

[V( o +
[Eao+aC(x(’), ao + 6a) Ea C(x(.),
E [C(x(.), ao + a)dPao+/dPo C(x(.), ao)]/a
EaoC(x(.),ao)(dPao+/dPao 1)/a

dPo+
a dP

Since lim Eaol(dPao+a)/dPa 112 0 (A3.5) implies that the second right-hand
8c---*0

term converges in mean to EoC(x(.), ao). Also, it is readily shown that

dP’+’ )-1 /SaZ(T,
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in mean square as ha - O. The existence of Va(ao) and representation (3.3) follow
from these calculations.

THE COMPUTATIONAL PROBLEM. Suppose that a is a vector with K components
(al,..., ag). Let a0 (a0,1,’.., cO,K). To get an estimator of the gradient Va(ao),
we need to approximate the solution of (3.1) only once, and then compute the analogue
of (3.2) for b2,a replaced by b2,a for each i. This computation is generally easier than
getting a good approximation to either (3.1) or (2.3). The difference is particularly
strong when (3.1) is a functional differential equation. Since C(., a) or b(., a) need not
be x-differentiable here, cost functionals of the type (1.4b) and (1.7) can be included
and so can systems of the type (1.6). Furthermore, we do not require that (3.1) have
strong sense solutions, so that systems with discontinuous terms and that are defined
by the Girsanov measure transformation method (such as (1.6)) can be used.

The idea of using stochastic methods for deterministic problems is sometimes
attractive. To do this, we can simulate the deterministic system with a small amount
of white noise added, and use (3.3). More will be said about this idea in 10. A similar
procedure can be used if the stochastic system is not of the partitioned form (3.1).
Simply add edw3(.) to the "dx2 system," where w3(.) is an Rr2-valued Wiener process
that is independent of w (.), w2(.), and e is small, and use "corrections" analogous to
that of 10.

Example (1.6)-(1.7). Here, a (a,a2), and b2(x, a) -u(x, a)x2 x
signx2, where u(.) is defined by (1.8). For each x, u(x, a) is piecewise continuously
differentiable in the components of a. For each a and t > 0, the probability is zero
that x2(t) 0 and that the a-derivatives of u(x(t), a) and hence of b2(x(t), a) do not
exist. All the conditions of the theorem hold.

The jump-diffusion case. The method of Theorem 3.1 can be readily extended
to the case where (3.1) is a jump-diffusion model. Let Dr[0, T] denote the space
of Rr-valued functions that are right continuous and have left-hand limits, and are
continuous at T. The Skorokhod topology [7], [9] will be used on Dr[0, T]. Let N(.) be
a Poisson measure [6, p. 42] with jump rate A < c, and jump distribution II(.) with
compact support A. Let q(.) be a bounded measurable function on Dr [0, T] [0, T] A
with the property that limsTt q((’), s, ’) q((.), t-, ,) exists for all (.) E Dr[0, T].
Let q(.) be nonanticipative in the sense used in (A3.1). Consider system (3.1) with
the jump term fA q(x(’), t-, /)N(d/dt) added [6; Chap. IV.9]:

(3.6) dx b(x(.), t, a)dt + a(x(.), t)dw + Ih q(x(.), t-, /)N(d/dt).

Assume (A3.1)-(A3.5) with Cr[0, T] replaced by Dr[0, T]. Then Theorems 3.1 and
3.2 continue to hold and the proof is unchanged.

The second derivative. The procedure of Theorem 3.1 can be repeated so
that unbiased estimators of derivatives (or partial derivatives) of all orders can be
obtained, if b2 and C are smooth enough in a. For simplicity in the development, we
let a be real valued. The general case should be clear.

THEOREM 3.2. Assume (A3.1)-(A3.5) and the assumptions above on the jump
terms. Let C and b2 have second derivatives in the sense implied by (A3.4) and (A3.5),
and let C be bounded. Define

Q2(a0) Z2(T, co) a;(x(.), t)b2,a(x(.), t, co) C(x(.), co)

+Za(T, ao)C(x(.), co) + 2Z(T, co)Ca(x(.), co) + Ca(x(’), co).
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Then

(.8) V(ao)=E,oQ2(ao).

Proof. The proof is similar to that of Theorem 3.1, and only a few remarks will
be made. For simplicity, suppose that C does not depend explicitly on a, and that
we work with the diffusion case. For arbitrary a ao + ha, the process Z(.,a)
depends on x(.) and w2(., a) and it is convenient to write this dependence explicitly
by rewriting Z(t, ) in the form

z(, 0 +,(.,0 + ), x(.))

[a-l(x(.), s)b2,(x(.), s, 0 + 6)]’[dw2(s) a;l(x(.), s)6b2(s)ds],

where 5b2(s) is defined above Theorem 3.1.
Thus,

(a.)
E,o+6Z(T, o + , w2(., o + 6), x(.))C(x(.)) Eao+eZ(T, o + 6a, w2(.), x(.))

C(x(.)) Eo+ea [a;l(x(.),s)b2,,(x(.),s, ao + 6a)]’a;l(x(.),s)6b2(s)ds C(x(.)).

Dividing the second term on the right side of (3.9) by 6a and taking 6a --, 0
yields

T
-E, Irl(x(.), s)b2,(x(.), s, a0)l 2 ds C(x(.)).

This is the second part of the first term of (3.7). The derivation of the other terms
follows the lines of Theorem 3.1 and is omitted. []

4. A discrete-time approximation. Since we cannot obtain the paths x(.) or
w2(.) or the values of (3.3) exactly, some sort of approximation needs to be used.
From a conceptual perspective, perhaps the simplest method is to use the following
discrete-time form (with time-discretization parameter A):

(4.1) x.+ . + b((.), x, o)X + ((.), x)5(x),

where 6w(nA) w(nA + A)- w(nA). Let xA(.) be the piecewise constant interpo-
lation of {xn}, defined by x/x(t) xn on [nA, nA + A). Let (xn/x,1 xn,2)A denote the
splitting of the components of x analogous to that in (3.1).

Define ZA( ., a0) to be the piecewise constant function with values
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-xz Let T be the integral multiple of A,on [nA, nA + A), where 5x/,2 x1,2 ,2.
and let the interpolations be left-continuous at T. By Theorem 4.1, the quantity

QA(ao) Z/(T, ao)C(xA(’), a0) / C(xA(’), CO)

approximates (3.3). The analogue of (3.5) is

T/A--1

i=0

i/x, +

To prove the convergence of EaoQA(ao) to Va(a0), we need to use the theory of weak
convergence [7]-[9]. We will use the path space DP[O, T] with the Skorokhod topology,
for appropriate p. The conditions used below are more restrictive than necessary, but
they allow us to get to the main point easily. Assume the following.
(A4.1) C(., ao), Ca(., ao), a (., .), a2(., .), b(., ., a), b,(.,.,ao), and a(., .) are con-

tinuous functions on Dr[0, T] [0, T], almost everywhere with respect to Po,
the measure induced by x(., a0) x(.).

(A4.2) C(., a0) and Ca(.,ao) are bounded uniformly in Ao, b(.,., a) and a(., .) are
bounded on bounded sets in Dr[0, T] and uniformly in a E Ao.

(A4.3) Assumptions (A3.4) and (A3.5) hold with XA(.) replacing x(.), for each A > 0.
Some preparatory calulations. The following representations are needed to

state Theorem 4.1. Let P denote the measure induced by xZX(.) on Dr[0, T]. Define
a co", a2 o’2a. Define

Then

(4.5)

Thus under (A4.3),

(4.6) ( aP- 0
1

--, ZA(T, ao)-l’a
in mean square as 5a O. Let E denote the expectation under parameter a and
define vA(a) EC(xh(’),a). By the next theorem, EoQh(ao) V(ao). Let

= denote weak convergence in the Skorokhod topology.
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THEOREM 4.1. Assume (A3.1)-(A3.5) and (A4.1)-(A4.2). Then

(Z(", 0), C((’), 0), C((’), 0), x(’))

Also,

(4.7) EoQ(ao)--+ V,(co).

Under the additional condition (A4.3),
zx Q(4.s)

Remark on tightness. Let T

_
T denote a stopping time. Then a sufficient

condition for tightness of (x/X(.), A > 0} is Theorem 2.7b of [9]"

(4.9) lim li-- sup EIX(T / ) XX(T)I 2 0.
60 A

If b(.,.,c0) and a(.,.) were bounded, then (4.9) holds. Otherwise, we exploit the
uniqueness in (A3.3) and the almost everywhere continuity in (A4.1), and use a trun-
cation procedure. The proof is standard and is omitted.

Extensions. Higher-order schemes. Methods for solving (3.1) of "higher
order" than the simple "Euler" scheme (4.1), (4.2), can be used [16]. It is not neces-
sarily advantageous to use such methods, however. In applications, many samples of
the estimates are taken, and any extra time spent computing a single estimate will be
at the expense of the number of samples taken. While higher-order methods might
have smaller bias, it is the number of samples taken that determines the variance of
the estimators, and both the bias and variance are important. Usually, in the early
part of a Monte Carlo optimization method, smaller variance is more important than
smaller bias.

5. A Markov chain approximation. The form (4.1) is a "discrete time" ap-
proximation to (3.1). In this and the next two sections, we develop another com-
putational approximation for (3.1), (3.2), which is a "discrete space" model. The
method is based on an interpolated Markov chain approximation to x(.), and is a
form of a method that has been very useful for solving the Bellman equation for op-
timal stochastic control problems [9], [10]. The idea can be used on a wide variety of
problems. Experiments show that the numerical properties are roughly comparable to
those of the method of 4, but are sometimes preferable in the sense of having smaller
biases or variances. The method can also be extended to the controlled variance case
(8). When the underlying system (3.1) is unstable, it often yields better results
than the method in 2.1 owing to the ease of controlling the "state increments." The
method will be discussed first for the case of a "pure diffusion," and later for the jump
diffusion. The basic technique will be defined in this section and a simple analogue of
Theorem 4.1 proved. The next section concerns the convergence of the derivative of
the cost for the chain to that for the diffusion, a fact that is not obvious. This result
implies a "robustness" of the derivative estimates to the model. Section 7 concerns
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the convergence of the analogue of Z(.,a0) for the chain, and sheds some light on
preferable constructions of the chain.

Definition of the approximating chain. We first describe the approximation
when b and a depend only on the current value of the state. We use h to denote
the approximation parameter. For simplicity, we let it be scalar valued. For any
parameter value a, let (nh, n < } be a Markov chain that is locally consistent with
x(.), under a, in the following sense. Let Eh,n denote expectation given (, _< n)
and set 5nh +- The parameter value a will be either stated, implied by Eh

or else be ao by default. Suppose that there is a function Ata(.) (an interpolation
interval) such that for x,

h b(x, a)Ath(x) + o(h2)
h 5 E + o(h

(5.1) 5 O(h),
c0h2 Ath(x) Clh2, ci ) O.

We also suppose that the derivatives with respect to a of the o(h2) terms are o(h2).
Define At Ath() and define t n-i=0 Ate. Define the continuous parameter
interpolation h(.) by u(t) on ItS, t+). Under the uniqueness condition (A3.3)
and the continuity of b and a,h(.) x(.) for each a [9], [10]. The chain is easily
simulated and provides a useful approximation to (3.1), (3.2). Let ph(y]x,a) denote
the one-step transition probabilities.

The stochastic functional differential equation case. In (3.1), the b and a
were allowed to depend on the "past" of the state process, and this can be readily
carried over to the chain model, although we do lose the Markov property. Let Ath( ., .)
be a real-valued nonanticipative function (in the sense of (A3.1)) on Dr[0, T] x [0,T]
satisfying

coh2 Ath((’),t) ch2,

where (.)is the canonical point of Dr[0, T]. Define At Ath(h(.), t), and replace
the right-hand sides of the first two lines of (5.1) by

+
(5.2)

a(h( ", a), t)At + o(h).

Here, we write the transition probability at time n as ph(y], n, a).
Construction of the chain. A one-sided difference model. There are many

methods for simulating chains with properties (5.1) or (5.2). Some general methods
are in [9, Chap. 6] or [10, 5], where approximations based on both finite-difference
and finite-element approximations to the differential operator of x(.) are given. The
references deal with the pure Markov case, but the idea is trivially altered to suit the
"functional" case, and we do that here. We next describe a basic scheme that is a
functional form of a model in [9, Chap. 6], [10, 5], and then discuss variations and
alternatives. The construction is only one suggestion but it illustrates the basic idea.

Let R be an h-grid on Rr (the set of points h units apart in each coordinate
direction), and let e be the unit vector in the ith coordinate direction. Set f+
max(0, ),- max(0,-f). Define ca’ a {ai }. Suppose that the current state
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h X. Then we let x communicate to x +/- ei h, x +/- eih +/- ejh, x +/- eih = ejh, and
construct the transition probability as follows.

For (.)e Dr[0, T], define

(5.3)
qh((’), t, a) E aii((’), t) E la,s((’),*)l/2 + h Ib,((’),*, )1,

i,j

and suppose that

(5.4) aii((.),t) E laiJ((’)’t)l >- 0, for. all t,(.),i.
j:ji

Of course, (.) represents the canonical path of h (.) for any a. Set

(5.5) Ath((.), t) h21[E aii((’), t) E la,((’), t)l/2].

The Ath in [9] and [10] differs by O(h3) from that used here. Define

(5.6)
ph( + ,h + hl2, k < ,, , )

ph( ,h hl, a < ,, x, )
a(h(.), thn)/2qh(h(’), thn, a),

ph(x + e,h ehl, < n, h x, ) pn(x eih + ejh[, < n, hn x, a)
ai3(h(’), thn)/2qh(h(’), thn, a).

The process constructed from (5.6) satisfies (5.2) with Ath being given by (5.5) [9],
[10]. Despite the formidable appearance of (5.6), it requires no more CPU time to
simulate {h} than the {x} defined in 4 does.

A central difference model. For rl + 1,..., r replace the hb in the first
equation of (5.6) by

(.7) +/- hbi(h(.), thn, a)/2,

and assume that h is small enough so that the numerators are nonnegative. Redefine
qh by dropping the bi, > rl. (The bi, _< r, do not depend on a.)

Discussion. State spaces such as R (or subsets of it) were used in [9], [10], since
these references were concerned with a numerical solution to the Bellman equation
for an optimal cost, and some "regularity" properties of the grid were essential for
the programming. In the present problem, we are simply doing a simulation, and
the scheme that is used can actually be changed at each step if we wish. There
is considerably more flexibility, as long as (5.1) or (5.2) hold, as appropriate. For
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example, the stepsize can depend on the current value of x. To do this, we use ci and
an ho(’) such that c3h <_ ho(x) <_ c4h, and use ho(x) in lieu of h. In fact, it is often
necessary to do such a "scaling" to get good numerical properties when the values
of the dynamical terms vary considerably with x, particularly if the system is not
stable. In addition, we need not use a grid that is aligned with the coordinate axes.
The "local orientation" of the state transitions can depend on the current state. By
aligning them with the "principle directions" of the matrix (aj }, the condition (5.4)
can be eliminated.

The transition probabilities in (5.6) are no harder to calculate than are the coef-
ficients in the discrete-time form (4.1), even for the functional dependence case. For
a typical "functional" example, refer to the case discussed in 3, where the system
is (3.1’), (3.1"). Then Athn Ath(hn), a(h(.), thn) a(Un), and b(h(.), thn, oo)
b(nh, uhn) where uhn uhn,i is the actual control action at step n. Let ao (i, i).
Then letting h,1 denote the "position" component of h, we have

n-1

k-0

th e--’)qzth h h,1
n+l,i Un, T ZiOn Ath(hn)

Notation. Define

and let h(., Co) be the piecewise constant process that takes the values on Irah, thn-t-l)
n--1

(.), , ,:

i--O

For t in this interval, we can also write it in the form

b h2,a(h(’), t/h, ao)a (h(.), ti )[5’2 b2(h(.), tao)At] + 5h(t),
i:t_t

where 5h(t) O(ht). Note that Ehao,nSwhn ’2 0 and Ehao,nSWUn’2(SWUn’2)’ AtunI.
Hence 5W,2 behaves "locally" like an increment to a Wiener process. Clearly,
2h( ., co) is an approximation to Z(., co), at least formally. Define

2(ao) 2(T, ao)C((.), co) + C,((.), co).

The next theorem justifies the use of (h(ao) as an asymptotically unbiased estimator
of V(ao).

THEOPEM 5.1. Assume (A3.1)-(A3.5), (A4.1)-(A4.2) and let the chains satisfy
the consistency conditions (5.1) or (5.2). Then, as h - O,

", (’). co). (’).-o).
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= (Z(’ ao), C(x(’) ao) Ca(x(’) ao),x(’)).
Also, as h --. 0

Ehao (h(ao) --* Va(ao).

For a E Ao,h(.) x(.) and the convergence is uniform in the sense that vh(a) -V(a) uniformly in Ao.
Remark. The relationship between Ehaoh(ao) and vah(ao) will be made clear in

the next section. The proof of the theorem is similar to that of Theorem 7.1, although
Theorem 7.1 has some additional complications. In order not to duplicate the details,
we omit the proof here, and refer the reader to 7. If the cost function has the form
(3.4), then the obvious analogue of (3.5) is preferable.

6. Further properties of the chain approximation. In this section, we ob-
tain an unbiased estimator of the derivative of the cost function for the chain {nh}
at a0 (Theorem 6.1) and show that its mean value converges to Va(ao) as h - 0
(Theorem 6.2). We will need the following assumptions. In fact, (A6.1) is a "typi-
cal" situation. In particular, it holds for the specific chains constructed in 5 if b2 is
a-differentiable.
(A6.1) There is K0 > 0 such that for any (n, y,h, _< n) either ph(yl, <_ n,a)

is zero for all a E A0 or else it is >_ K0 for all a A0. There is a bounded
a-derivative pha at a0 in that

h h"(ul. <_ ,..o + 5) "(u[. _< .. o) + 5.(ul. _< ,..o) + o(5).

where o(ba) is uniform in y, {h }, n.
(A6.2) Assumption (A3.5) holds for h(.) replacing x(’). The C(., .) and Ca(., ") are

bounded.
Define

(/l.J <_ ..o)/(/l.J < .o)

and define the piecewise constant process zh(’, Co) by zh(t, so) Ei-On--1V on

[thn, the+l). Define

vh(s)=Ehac(h(.),s),
Qh(so) Zh(T, so)C(h(.), so) + Ca(h(.), So),

Nh min{n" tnh _> T}.

Note the Nh depends on the path, but not on the value of s directly. The asymptotic
properties of zh( ., So) will be developed in the next section.

THEOREM 6.1. Assume (A6.1) and (A6.2). Then

vh so Eho Qh so

Proof. Let Pah denote the measure induced by the {h(s),i g Nh}. Then, by
(A6.1), the Pah are mutually absolutely continuous and on any path {, <_ Nh},

dphao
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By (A6.1), we have

Nhdphao+ II (1 + vhha + o(ha)).dphao

As in the proof of Theorem 3.1, we have

+

Eh0 c(h(’), a0) dp:
where el(ha) --* 0 as 5a --, 0. By the above calculations,

)/dpha
1 ea (T,

in the mean square sense as 5a 0, and the proof is concluded. D
In the next theorem we show that Qh(ao) is a good estimator for Va(a0) for small

enough h. We will require the following definition and condition. Define

(A6.3) v.h,(ao, ha) O(hah), where O(.) is uniform in all other variables.
Remark on A6.3. Condition (A6.3) seems to be a "typical" case in applications.

See, for example, the model (5.6) or (5.7), where if b(x(.), t, a) is Lipschitz continuous
in a, uniformly in the other variables, then (A6.3) holds. It follows from (A6.3) and
(A6.1) that ph(yl.h,, <_ n, ao) O(h) uniformly in all the variables. Note that (A6.3)
implies that v O(h).

THEOaEM 6.2. Assume (A3.1)-(A3.5), (A4.1)-(A4.2), and (A6.1), (A6.3). Let
{nh} satisfy the consistency condition (5.1) or (5.2), for each a. Then

EhoQh(ao) V(ao).

Proof. For simplicity, we will suppose that C(x(.), a) does not depend on a. We
will first show that

+a/dPao 1)

is approximated in an appropriate sense by Zh(T,oo), uniformly in h. Since
y ph(yl.h, < n, ao + ha) =-- 1, we have

(6.1)

Thus, i=o vi (o, g)/ is a martingale sequence (under and he variance
is nO(h), by (A6.a). By a similar calculation, we geg ha Eo,v 0. Thus,
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(i%o v/h) is a martingale sequence with respect to the measure Pah By (A6.3), it
has variance O(h2)n. Since on the interval of interest, we have n g Nh O(T/h2)
by (5.1) or (5.2), the variances are bounded. Note also that Ehao,r,V(ao,5O)V 0
for i,j > n and j.

For an integer M, define the set B(M,
Then, using the above estimates, we can show that

Eho i=I-I (1 + v/h(a0, 5c))- 1 c- E V IB(M,5o0 0
i=O

as M -+ oc, uniformly in h and 5c. Thus

+

Eho c({h(’), Co) [ g-li=O (I + vhi(aO, 8a)) I] (i IB(

modulo an error that goes to zero uniformly in h and 5a as M -, c.
For the path not in B(M, 5a), we can use the "exponential" approximation to

the product and the bound O(h) on v/h and v(ao, 5a)/Sa to get

Nh
H
i--O

Nh --1

(1 + vhi (ao, 5a)) exp E [vh(a0’ 5a) + 02(hSa)]
i--0

Nh
1 + _, vhiSa + o(Sa),

i--O

where o(Sa) depends on M, but is uniform in h and w. Using the above estimates
and letting M -+ oc yields

v (ao + v (ao) EhaoQh(ao)+ e(Sa, h),

where e(Sa, h) - 0 as 5a ---, 0 and h - 0.
By Theorem 5.1, Va(ao + 5a)V(ao + 5a) for any ao + 5a E Ao, and the rate of

convergence is uniform in 5a. The sequence (Qh(ao)} is tight. Let h, index a weakly
convergent subsequence of {Qh(ao)} and of {h(.)} under both parameters ao + 5a
and ao, with the limit of {Qh’(ao)} denoted by Q. By the weak convergence,

V( o + V( o)
=EQ+ei(Sa),

where ei(Sa) limh-+O e(Sa, h) 0 as 5a -+ 0. By Theorem 3.1, V,(ao) exists.
Thus EQ Va(ao). Hence EaoQ does not depend on the chosen subsequence, and
EoQh(ao V(ao).

7. The limits of Zh for the chain approximation. Theorem 6.2 proved that
Zh(T, ao) can be used to get an asymptoptically consistent estimator of Va(a0). It
is of interest to know whether Zh(T, ao) = Z(T,oo) as h 0. We will see in
Theorem 7.1 that this is not always the case, and the proof will yield insight into
the preferable numerical methods. Essentially, when the convergence is not the case,
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then the limit of Zh(T, a0) equals Z(T, a0) plus an "error," where the error increases
the variance of the estimator, but does not affect the mean. The "error" can be
eliminated by an appropriate choice of the chain. Next, we present an example.
Define mh(t) max{/" th _< t}.

Example. Let a and b depend only on the current state (i.e., no functional depen-
dence) and suppose that aij(x) 0 for : j and aii(x) > 0 all x and all i. The same
result will hold if aii(x) > 0 for only some of the and each x. We use the "central
difference" method (5.7) on the grid R. The "one-sided difference" method of (5.6)
yields the same results. Let a(x)- hb(x, ao) O, all x and i. We have

We must have 5 hei, for some i. Given that value i, we have the following
representation:

,,(, o)/[,,() ,(, 0)]Vn

h(,.o)hb’a(’a) [l ] +(h2)"

We can rewrite the principal part of the above expression as

(.) [(, 0)a-()][5 y:] + o(),
where 5Y is a vector with jth component

(,o)=/().
om the transition probability above, we can calculate the probability, given the
past, that he. Using this, the conditional expectation of the jth component,
given the "past," is calculated to be

/ ()b(, o)+ ).Eo,eg:’ (,o)/ ()+o() t o( O(
k

It can be readily shown that

n--1 2

E ( Eo,,e) nO().
i=0

Thus, we can rewrite the sum of the terms (7.1) over [0, mh(t)) as

(t)
[b;(, 0)-()](e b(, o)t)

(.)
+(term that goes to zero as h 0).

It can be shown that the sum in (7.2) converges weakly to Z(., ao) as h 0, under the
conditions of Theorem 6.2. Thus, for this case, the conclusions of Theorem 5.1 hold
for zh( ., ao) replacing 2h(., a0). (That is, the two are asymptotically equivalent.)
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If a(.) is not diagonal and a transition function such as (5.6) (or with the modi-
fication (5.7)) used, then it follows from the proof of Theorem 7.1 that zh( ., Co)
Z(., co)+Z(.), where 2(.) is not necessarily identically zero and EC(x(.), ao)2(T)
0. Then Z(.) contributes nothing to the mean value of the estimate, but causes an
increase in the variance of the estimator. The problem can be readily avoided by
"rotating" the local coordinates such that the local transitions are essentially along
the principle directions of a(nh).

THEOREM 7.1. Assume the conditions of Theorem 6.2. Then E[Zh(T, ao)C(h(.),
Co) + Ca(h(’),ao)] V(ao). Let h index a weakly convergent subsequence of
{Zh (., co)}. Then Zh(., co) = Z(.: a0) + 2(.), where Z(., co) and 2(.) are orthog-
onal martingales and EC(x(.), ao)Z(T) O.

Proof. As in Theorem 4.1, we need only work with the "truncated" b and a.
For this reason, as well as to simplify the development, we suppose that b and a are
bounded. Also, for simplicity, we drop the Ca term. To get the weak convergence,
we use the martingale method (see, e.g., [8], [10, Whm. 4.5]), but the proof here will
be self contained. First, tightness will be proved. Let Eho,t denote the expectation
conditioned on the data up to interpolated time t or, equivalently, up to discrete
time mh(t). For any real-valued 5 > 0 and T being any stopping time (taking values
the, <_ Nh), (5.1)or (5.2)imply that

Also,

(7.4) Ehao]Zh(r + 6, Co)- Zh(T, ao)] 2 Eho
mh (’r+6)

h

n=m,(r)+
0() + O(h).

Then tightness of {zh(.,aO),h(.),h > 0} follows from (7.3), (7.4), and the criterion
(4.9). Since the discontinuities in h(.) and zh( ., Co) are O(h), the limit of any weakly
convergent subsequence must have continuous paths with probability one.

We next obtain a local expansion of a test function that will be used to characterize
the differential operator of the limits of the weakly convergent subsequences. Let
f(.) be a smooth real-valued function on Rr+l with compact support and define

Znh --n- h
2.i=0 vi. Then, using the fact that [5nhl + Ivnh[ O(h), we can write

Ehao,nf(hn+, zhn+)- f(hn, Zhn) Ehao,n[f(hn, zhn)5hn + fz(hn, zhn)vhn]
(7.5) + Ehao,n[1/2 h, h(6,n) f(’n, Zn)6,n

+ +
+
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Note that by the consistency condition (5.1) or (5.2),

(.6)

Define the bounded (uniformly in h,n <_ Nh, since Ath(t) >_ coh2 and vhn O(h))
sequence hn by

ph (ylh, < n, ao)2(v)o, E, < ----,o)y

t((.), t).

Define the piecewise constant function h( by -h(t) Ei=o "5h Ath(h(’),thn)on
[th,th+). The sequence {h(.),h > 0} is easily shown to be tight and all the weak
limits are continuous. In fact, the weak limits must be Lipschitz continuous, hence
almost everywhere differentiable.

The martingale problem. For any integer q and any t, s > 0, let ti _< t <_
t+s, i <_ q. Let h(.) be a real-valued bounded and continuous function of its arguments.
For square matrices F {Fij} and G {Gj}, recall the relationship
trace F. G. By (7.5)-(7.7) and a truncated Taylor expansion, we can write

(.8)

Abusing notation, let h also index a weakly convergent subsequence of {h(.),
zh( ., aO),-h(.), h > 0} with limit denoted by {(x(.), Z(.),(.)}. Define (.) by (t)
f "5(s)ds. Then using the weak convergence and the continuity conditions (A4.1), we
have

(7.9) Eh(x(ti),Z(ti),-(ti),i <_ q)[f(x(t + s),Z(t + s))- f(x(t),Z(t))

du f;(x(u), Z(u))b(x(.), u, ao)
Jt
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1+ trace f(x(u), Z(u)) a(x(.), u)

+fzz(x(u), Z(u))(u) + b(x(.), u, co)

The arbitariness of q, h(.), f(.), t, , {ti} in (7.9) implies that ((.), Z(.)) solves he
martingale problem for the operaor A(o) ha is defined by the bracketed expression
in (7.9), and wih respec o the filtration Bt B((), Z(), (), t). The form
of the operaor implies hat the process Z(.) is a Bt-maringale (since there is no first-
order term f), and ha (.) satisfies (a.1) for some mutually independen Bt-Wiener
processes w(.), w(.). (If (.) is degenerate, ghen we migh have o augment he
probability space by adding an "independenC Wiener process.)

We wish to show next ha Z(.) can be represented as

(7.0) z(t) z(t, o) + 2(t)

[;((.), u)b,((.), u, o)]’ aw () + 2(t),

where 2(.) and Z(., 0) are orhogonal sochasic integrals. Define X(t) f ((.), u)
dw(u), he martingale part of (.). The mutual quadratic variation process (written
as a row vector) is

(7.11) X(.), Z(.) (t) b,a(x(.),u, a0) du X(.), Z(.,ao) (t).

The first equality of (7.11) follows from the form of the operator A(ao) or (equiva-
lently) the representation (7.9), and the second follows from the definition of Z(., co).
Also < Z(.) > (t) f (s) ds. With the definition 5(t) b,a(x(.), t, ao)a(x(.), t)
b2, (x (.), t, a0), we have

(7.12) Z(.,a0) (t) 5(s) ds Z(.,a0), Z(.) (t).

The first equality follows from the definition of Z(., a0), while the second follows from
that definition and (7.11), if we note that Z(.,ao) can be defined as a stochastic
integral with respect to the martingale X(.).

The equalities in (7.12) imply [12] the decomposition (7.10), where
< 2(.), Z(.,ao) > (t) 0. Finally, by Theorem 6.2,

EZh(T, ao)C(h(.), co) Va(ao) EaoZ(T, ao)C(x(.), Co).

Hence Eo2(T)C(x(.), Co) O. 0
Remark. Note that < Z > (t) =< Z(ao) > (t)+ < 2 > (t). Hence, 2(t)

f[(s)- 5(s)]ds. With the transition probabilities given, it is often possible to
compute and 5, hence to evaluate the increase in variance of the estimator.

The jump-diffusion case. The discrete-time approximation of 4, and the
Markov chain approximation of 5 can be readily extended to the jump-diffusion case
(3.6) when neither the jump rate nor the jump distribution depend on a. We comment
only on the Markov chain case. A Markov chain approximation to a jump diffusion
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was developed in [11]. The reference [11] was concerned with solving the Bellman
or related equations for mean values of functionals of the process and this required
that the state space for the Markov chain approximation be "nice," i.e., the jumps
can take the state to only a finite set of points in the state space. Since we are not
interested in solving for functionals of the chain explicitly, we have considerably more
flexibility here than in [11].

Let 3’ denote the canonical "jump" of the Poisson measure N(.), and let the
random variable ’h be an approximation to ")’ with only a finite number of values and
such that

sup Iq((’), t, ")’h) q((’), t, 9’)1 h O,
(.),t

where (.) is the canonical variable of Dr[0, T]. Let {nh} denote the approximating
chain under the parameter value a. Let nh x and th, t. To be consistent with (3.6),
the probability of no jump at step n can be either 1 ;Ath(h(.), t) (or e-Ath(h(’),t),
if we wish). In that case, let nh+l x O(h) and satisfy (5.1) or (5.2), according to

the case. The probability of a jump is ;Ath(h(.), t) or 1 --e-Ath((’)’t). Then with
this probability, we choose nh+l to satisfy

where h has the distribution of ’)’h and is independent of h, g n.
All the previous theorems of 5-7 continue to hold, and the proofs do not change.

We note, in particular, that if there is a "jump" at stage n, then ph(hn+ ylih, <_
n/a) does not depend on a. Hence vnh 0 for those values of n at which there is a
jump.

8. Variance depending on the control parameter. Up to this point, the
variance was not allowed to depend on the control parameter a. The basic reason
was that the measures Pa would not then be mutually absolutely continuous, so that
the basic ideas of Theorem 3.1 could not be performed. For example, let Pa denote
the measure induced on D[0,T] by aw(.), a O, where w(.) is a standard Wiener
process. Then the P are not mutually absolutely continuous. Despite the lack of
mutual absolute continuity, there is one interesting class for which the Markov chain
method of 5 can be used to show that Va(ao) exists and also to yield an estimator
of it whose bias goes to zero as h --, 0. The direct discrete-time approximation of 4
does not work for this case.

The method is related to the time change argument that is used to construct a
solution to a one-dimensional diffusion. It seems to work only when the state process
is real valued. We will work with the process

(8.1)

and cost

dx b(x, a)dt + a(x, a)dw,

fo k(x(s), a)ds + g(x(T),

The results of Theorem 8.1 below also hold if b, a, and k are nonanticipative func-
tionals of the state. However, in view of an already complicated notation, we let
them be functions of only the present value of the state. We will need the following
assumption.
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(A8.1) a(x, .) is continuously differentiable in a in Ao in that there is a bounded
continuous function an(’, ") such that

+ 5.)- a) 0

as 5a 0, uniformly in R x A0, and similarly for b(., .), k(., .), and g(., .).
Also, k(., .), b(., .), a(., .), a-(.,.), and g(.,.) are bounded and continuous,
and the first two derivatives of g(., a) are bounded and continuous.

The Markov chain approximation. Theorem 8.1 below uses either the "cen-
tral difference" or the "one-sided difference" schemes discussed in 5. The details will
be worked out for the first case only for simplicity. Before stating the theorem, we
will do some preliminary calculations that will be needed below. We have a if2 and
the transition probabilities

pU(x hlx, co) [a(x, co) hb(x, ao)]/2a(x, o)

1
hb(x, ao)/(2a(x, Co)),

where we assume that infx,a[a(x, a)- h]b(x, a)] > 0. This can always be guaranteed
if we let h depend on x. Also, Ath(x, a) h2/a(x, a). Then to get the v, which are
used to define zh( ., Co), we need to evaluate the expression

(8.3)
p(x h]x, Co) [hba(x, ao)/a(x, co) hb(x, co)ca(x, ao)/a2(x, ao)]

hba(x, ao)/a(x, 0) hb(x, ao)aa(x, ao)/a2(x, 0)
h2b(x, ao)ba(x, ao)/a2(x, co)

+ h2b2(x, co)ca(x, ao)/a3(x, co) + O(h3).
The first and third terms on the right side of (8.3) also occurred in the example given
at the beginning of 7. The second and fourth terms are new here. In the sums
below, Nh is the number of steps required for the interpolated time to reach (modulo
O(h2)) the value T, when the interpolation intervals are {Ath(, co)}. Thus, for any
parameter value,

Nh
Ath(, CO) T + O(h2).

i=O

Nh depends on the path, but not otherwise on a. In the previous sections, Ath did
not depend on a. Using (8.3), we can write

ba(,(8.4)
i=0 i=0

( ,ao)a(i ,co)

.Ath(,ao)+O(h).
There is a similar expression for the "one-sided difference" case, where we use the
transition probabilities

a(x, a)/2 + hb(x,ph(x hlx, a) a(x, a) + hlb(x, a)I
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DEFINITIONS. To state the next theorem, we need the following definitions. Let
A(a) denote the differential operator of the x(.) defined by (8.1). Define

Nh
-h T’ a) E vh

i-O

(8.5)

N-I aa(/h aO)
i--O

T a((x(s), ao)5T ao "((s a--o ) ds

(8.6)

fr ,(x(), o)(8.7) Q(ao) Z(T, ao)C(x(.), ao) + Ca(x(.), ao)
Jo

k(x(s), ao) a(x(s), ds

+ k(x(T), ao)bT(ao) + A(ao)g(x(T), ao)bT(ao).

THEOREM 8.1. Assume (A8.1) and that (8.1) has a (weak sense) unique solution
for each a Ao. Use the central difference formula (8.2). Then V(.) is dif]erentiable
and

((’),(o)) (x(.),(o)),

and Q(ao) is an unbiased estimator of Va(ao), ao E Ao. (There is a similar result for
the "one-sided difference" case.)

Remark on the proof. The procedure of 5 and 6 can be followed, except for two
details. The first is that we do not have an a priori formula for an estimator of Va (ao)
analogous to (3.3). Second, the interpolation time interval Ath(x,a) h2/a(x,a)
depends on a here. Hence the number of discrete timesteps that are needed for the
interpolated time to reach the value T depends on a. To see the point more clearly,
consider the special case where a does not depend on x, and write Ath(x,a)
Ath(a), a(x, a) a(a). Then

zxt(o +) -/t(o) =/t(o) + o()
xt(o)[(o)] + o().
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Note that Nh T/Ath(ao) here. Let a(ao) > 0. The interpolated time reached in

Nh discrete steps is short of reaching T by the amount T[aa(ao)/a(ao)]Sa + o(Sa).
The terms in (8.6) and (8.7) that have not appeared in Qh(ao) and Q(ao) are due to
the "compensation" necessitated by this "shortfall."

Proof. By the weak convergence argument in Theorem 7.1, vh(ao) V(ao)
and h(.) x(’), satisfying (8.1). (The weak convergence assertions below are all
provided by arguments similar to that of Theorem 7.1.) Let Nh(Sa) denote the
number of discrete timesteps required for the interpolated time for the chain {}

Nh(5a)-i Ath( aO + 5a) Tunder parameter ao + 5a to reach time T; i.e., =o
(rood O(h2)). To simplify the proof, we let k and g not depend on a. The additional
details that would be required are minor. We can write

Eo+ac(h(.)) Eoc(h(’))

i=0

Eo ())t(), o)+ (})
i=O

Let P denote the measure induced by the first Nh steps of {} under parameter a.
The P, a Ao, are mutually absolutely continuous, and the right side of (8.8) can
be rewritten as

s()+ ()+Eo(5)+o+ Eo+ Eo+(5),(8.9)
where

s() ()t"(.0)+ (,) "Po/,.
o dph

-1

Nh (5c)--1

iNh

s(5.) [(.(.)) (.)].
(Of course, we omitted the terms that would occur if k and g depended on a.) We
use the summation conventions -ba E if a > b- 1, and --1 0.

Using the convergence [dpho+sa/dpah 1]/5a to EN0-1 vh as 5a - O, we see
that sh(sa)/Sa converges to the first term on the right of (8.6), as 5a - O. Note
that (A6.1) holds here. Then letting h --, 0 and using representation (8.4) and the
results of Theorem 6.1, a weak convergence proof similar to that of Theorem 7.1 yields
(parameter a0)

(h(.),-h(T ao)C(h(.), Co)) (x(.), (T, ao)C(x(’), co)).
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Note that

(,o +) (x, 0) (x,o) + o()
_h(A, o)e + o()(,o)

(,o)-(x, o) i:-) + o().

Using (8.10), we get that sh2(sa)/Sa converges to the third term of (8.6) as 5a 0.
Then another weak convergence argument yields that the third term of (8.6) converges
weakly to the third term of (8.7) as h --o 0. We can write (modulo O(h2))

k(h(s))ds,

where Th(Sa) is the amount of interpolated time that passes in the first Nh steps for
{nh }, under parameter ao+Sa: i.e., where the interpolation intervals are {Ath(nh, ao+
5a)}. It equals

Nh
T + E Atua(h’ ao)Sa + O(h2) + O(Sa)

i=0

a(, o)T {h:-T). Ath(h, ao)ea + O(h2) + o(Sa).
i--o

Using (8.11), we have that SU3(Sa)/Sa converges to the fourth term of h(ao)
as 5a 0. Also, that fourth term converges weakly to the fourth term of Q(ao) as
h 0. A similar analysis shows that the sh4(sa)/Sa converges (modulo O(h)) to the

last term of "h(ao) as 5a 0, and that this limit converges weakly to the last term
of Q(ao) as h O.

By the limits obtained above when 5a 0 (but not h 0), we have proved that

h(8.12) vah(ao) Ehao (ao) + O(h).

In the proof, ao was fixed, but (8.12) holds for any ao E Ao. This implies that if
[ao, a] E Ao, then

vh(al) vh(ao) E-h() d[3 + O(h).

We also have

h--hE,Q () E(Z)
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uniformly on [ao, all, and the right-hand side is continuous in . The convergence
follows from the weak convergence and the assertions above. The proof of the uni-
formity and continuity assertion is by contradiction. Suppose, for example, that the
uniform convergence is false. Then there are/, hn O, n , and 0 > 0 such
that

IE:h (fin) E(/) >_ i0.

However h (/n) = (fl), a contradiction. A similar argument yields the asserted
/%continuity. The facts above and (8.13) imply that

V(al) V(ao) EzQ() d.

This yields the differentiability of V(.) as well as the fact that -h(ao) is an asymp-
totically unbiased estimator of V(ao).

9. Reflected diffusion and heavy-traffic problems. In this section we dis-
cribe, rather loosely, some of the wide variety of models to which the results of 3-8
can be extended.

Controlled reflected diffusions. The basic idea of 3 readily extends to "re-
flected problems," since the Girsanov transformation idea does. In the interest of
saving space, we present a somewhat loose discussion. Consider a reflected diffu-
sion modeled as a solution to the Skorokhod problem [13] in a set G satisfying the
condition.
(A9.1) G is the closure of a bounded open set with a continuously differentiable

boundary. Let n(x) denote the outward normal to the boundary OG at x,
and let (x) denote the reflection direction. Let -’(x)n(x) >_/0 > 0, for all
xOG.

The system is defined by (write x(t)- x(t, a), var= variation)

x(t) x + b(x(s), a)ds + a(x(s)) dw (s) + Y(t),

(9.1) (var Y)(t) IYl(t)=

We le b and a be functions of the presen sae only for notational simplicity. The gen-
eral case of a can also be handled. Let x(.), under parameter a, induce he measure
P. Suppose hat a-(.) is bounded and continuous. (The degenerage case can also
be treated, as in a.) The P are mutually absolutely continuous and dPo+e/dP
is hat given by Theorem a.1, where a, w, and b are replaced by a, w, and b. The
entire proof of Theorem a.1 can be carried over. The only restriction is tha he (.)
no depend on a (for then we lose he mutual absolute continuity). The cos 6’ can be
a function of boh x(.) and Y(.). The discree-ime and Markov chain approximations
of 4-7 also work. Some appropriate Markov chains are discussed in [10].

Heavy rattie models. We now describe a model tha has been widely used in
the analysis of queueing systems under heavy rac in ha the appropriately scaled
and normalized queue length processes converge weakly to it, as he raffic intensity
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converges to unity (i.e., as the relative idle time converges to zero) [14], [15]. There
are K connected processors, and pij is the probability that an output from processor
goes to processor j. The matrix P (pij} has a spectral radius less than unity.

Thus, all customers eventually leave the system. The parameter s can correspond
to "marginal" service or arrival rates, or to other control parameters. Let B < oc
be the scaled buffer size and restrain xi(t), the ith component of the state, to be in

The system is

(9.2) x(t) x -t- b(x(s), s)ds q- a(x(s)) dw (s) / (I- P’)Y(t) U(t),

where Yi(.)(respectively, Ui(.)) are nondecreasing and can increase only at the t at
which xi(t) 0 (respectively, xi(t) Bi). All the comments in the above section
on controlled reflected diffusions apply here. Also, the cost C can be a function of
x(.), Y(.) and V(.).

These examples illustrate the power and range of applicability of the basic idea.
Note also that the "mean square derivative" method described in 2 cannot be used
for either of the cases of this section.

Generally, it is nearly impossible to obtain unbiased estimators of the derivatives
with respect to s for the original physical queueing system whose heavy traffic limit
is (9.2). For this reason, we might want to approximate the physical queue process
by (9.2), and then compute or estimate the "sensitivities" for (9.2).

10. The small noise problem. For deterministic systems, the "deterministic
form" of the mean square derivative method of 2 is often used, and it is of interest to
know whether the estimates (3.3) or (3.5) converge to the "deterministic" derivative,
as a 0. This will be shown to be the case under appropriate conditions. This
result is of more than theoretical interest, since it is often useful to add "small noise"
and do the stochastic computation if less computation time is required to get a good
estimate. More will be said about this below.

The following assumption will be used.
(A10.1) b(.), k(.), and g(.) are bounded and continuous and have bounded and con-

tinuous (x, s)-derivatives of first order and x-derivatives of second order. The
ai are constant matrices, a-1 exists, and the w(.) are mutually independent
Wiener processes.

The bi, k, and g could be nonanticipative functionals as in 3. Then, however,
the "variational" or linearization equation (10.2) would be much more complicated.
The results to be presented hold under any conditions that allow a linearization anal-
ogous to (10.2), (10.7).

The deterministic calculation. The deterministic problem is (parameter s)

(10.1) 1 b(x), 2 b2(x,s), x E Rr,

fo
r
k(x(s), s) ds + g(x(T),

Set Xao(t -Ox(t)/Os, with s s0. Then (parameter

+



1244 J. YANG AND H. J. KUSHNER

T

Va(ao) [ka(x(t), so) / k(x(t), ao)xa (t)] dt

/ [g,(x(T), so) / g(x(T), ao)xa (T)].

Let (s,t),s <_ t, be the fundamental solution of the ODE bz(x(t),ao)y.
Until the end, we drop the g(.) for simplicity. We have

Va(ao) dt ka(x(t), so) + k(x(t), so)[ (u, t)b(x(u), ao)du]

The evaluation of (10.3) can be quite cumbersome, particularly for high-dimensional
systems, and where a is a vector. We will show that Va(ao) can be approximated by
a slight variation of the stochastic formula (3.5) for small .

The small noise stochastic system will be (parameter a)

dt+edx
b2 (x, ) a2 dw2
y() EC((.), ),

C(x(.), a) k(x(t), ) dt + g(x’(T), ).

A stochastic calculation. From Theorem 3.1, we have

(10.5) ]o
T

V2(ao) k(x(t), ao)Z(t, so) dt + ka(xe(t), so) dr,

where Z(., s0) is just the Z(.,a0) of Theorem 3.1, with variance scale parameter e
used. The second right-hand integral in (10.5) converges in the mean to the corre-
sponding term of (10.3) and will be omitted henceforth. We next set up the problem
so that the appropriate estimator can be defined, and then the theorem will be stated.

Write x(t) x(t)+Sc(t), where x(.) solves (10.1). Then supt<T El(t)l O(e2).
Using the definition of Z(., s0), the first term on the right side of (-10.5) can be written
as

dtk(x(t) + &(t), so) [alb2,a(x(s) + &e(s), ao)]’dw2(s).

Expand k(x(t) +&(t), so) k(x(t), so)+k (x(t), ao)&(t)+O(l(t)l) and write
(10.6) as

T + m + o(),

where ElO(e)l- o(eu) and

dtk(x(t), so) [aib2,a(x(s), ao)l’dw2(s) dt k(x(t), ao)Z(t, so),

T 1_ T

dtk(x(t), ao)Sc(t) [ab2,a(x(s) + c(s),ao)]’dw2(s).
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Note that ET 0, since x(.) is deterministic. Thus, we need not include T in the
estimator (also, its variance is O(1/e2), in general). We can write 2e(.) as

(10.Ta) d& b(x(t), ao) 5cdt + eadw + O(l&e] 2) dr, (0) O,

or, equivalently,

(10.7b) 5c(t) e (u, t)a dw (u) + (t),

where sup<T Elhe(t)l O(e2).
Next, expand the b2,a in T and substitute (10.7b) into it to yield

T dtk;(x(t), co) (u, t)a dw (u)
(10.S) ,

]0 [alb2’a(x(s)’ ao)]’ dw2 (s) + O(e),

where E]O(e)[ O(e). The mean value of the primary term in (10.8) is

which is just (10.a) (with the k term dropped there).
Reintroducing the k term, and doing a similar expansion for the 9 component

of the cost, the above discussion can be summarized by the following theorem.
THEOREM 10.1. Assume (A10.1). Then V(so) - Va(so) as e - O. Define

Q(so) k(x(t), so)Ze(t, so) dt k(x(t), so)Ze(t, so)dr

(10.9) + k(x(t), so) dt + ga(x(T), So)

+ [g(x(T),so)-g(x(T),so)]Ze(T, so).

Then EO, e(so) - Va(so) as e - O. The variance of each term is bounded uniformly
in e.

The primary computational advantage in using (10.9) as a "surrogate" estimate
of Va(so) is that we need not calculate (I)(., .), an onerous task, nor evaluate the
integrals in (10.3), separately for each component if s is a vector. The integrals in
(10.9) are usually much easier to calculate than those in (10.3), and they require
only a single simulation with no noise and one with small noise. If the variance of
(10.9) is not too large, then it might be computationally advantageous to simulate
the stochastic system several times and average the results, rather than work with
(10.3). The preferable method depends on the case, however; see the next section.

11. Some numerical comparisons. Numerical comparisons of the methods of
4 and 5 with the methods of 2 have been made on a number of problems, linear and
nonlinear, and for both high and low dimension. Definitive comparisons are difficult,
since each method allows different possibilities for variance reduction and realization.



1246 J. YANG AND H. J. KUSHNER

Thus the results below are taken as only tentative. The runs for the finite-difference
method were taken using common random numbers for all the runs needed to get
a single finite-difference estimate of the gradient or derivative. This does provide
some reduction in the variance of the estimators. For the methods of 4 and 5, two
approaches were used. The first used "independent" random variables for each sample
run. The second (called AV for antithetic variable) took the sample runs in pairs,
the random variables being "independent" from pair to pair, with those used in one
member of the pair being the negative of those used in the other member of the pair.
This did yield a substantial reduction in the variance of the estimators, as can be seen
from the tabulated data below. For all cases 5,000 samples were taken.

Linear systems. If the system is linear and the cost function smooth, then the
classical methods of 2 seem to have the advantage over the methods of 4 and 5,
at least for the systems simulated. The reasons are not clear (although, due to the
linearity, we were able to simplify some of the calculations for the former methods),
but all the methods should be treated as serious competitors until data indicates
otherwise. The former methods used more computation time, as expected, but the
variance of the estimates was sufficiently smaller, so as to give those methods the
advantage (sometimes a clear advantage, other times only a slight advantage). The
values of the finite-difference intervals were not too important (within reason), for the
particular simulation method and problem class used. Also, the finite difference and
the "mean square derivative" methods performed about the same, in terms of both
CPU time and the quality of the estimates. The addition of noise to more than one
state or using more complex dynamics shifts the preference.

Nonlinear systems. The numerical comparisons were more informative for
nonlinear systems with "nonsmooth" cost functions. The data in Tables 1-5 was
taken for the system

(11.1) 51 &(1 ax2) x .5 (white noise)

with x(0) 1, (0) 1, a 0.5, and the cost function

(11.2) P{ sup Ix(t)[ >_ 3.8}.
2>t>O

Here the parameter is scalar valued and, for the finite-difference method, the dif-
ference interval is denoted by 5a, and the system is simulated by a discrete-time
approximation of the type used in 4 with a time-difference interval of .01. Simula-
tions indicate that the true value of the derivative is between -4.8 and -5.1 with a
very high probability. We see from Table 1 that the value chosen for ia is important,
and a substantial bias results if the value is too big. If the time interval is increased
to .05, then the CPU time for the finite-difference case would be reduced to about 4
with essentially the same biases and variances. Comparing Tables 1 and 4, the advan-
tage of the method of 4 over the finite difference method is apparent, particularly if
bias is a concern. Note also the advantage provided by the antithetic variable (AV)
method, by comparing Tables 2 and 3. We would expect that the differences would
be more pronounced for higher-dimensional nonlinear problems. Similarly, compar-
ing Tables 1 and 5 (with the cited adjustment for the time-difference interval to .05)
shows the advantage of the method of 5 to the finite-difference method. The mean
square derivative method is not applicable here, since the cost function C(x(.)) used
in (11.2) is not differentiable. Tables 3(a) and 5(a) use both antithetic variables and
the centering (3.5). The given CPU times are for 5,000 estimates of the derivatives.
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These results should be used with caution, since all methods can undoubtably be
improved. Much depends on the difficulty of approximating the differential equation,
and we can find meaningful problems where any given method performs best.

In an application to stochastic approximation, we might be less concerned with
the biases in the first few iterates than in the later iterates, and the particular method
that is used might vary, according to need.

TABLE 1.
The finite difference method.

.05 c .01

mean variance mean variance
derivative -2.704 46.8 -4.82 458.8
cost .148 .126 .148 .126

CPU time 20.68

TABLE 2.
The method of 4.

A .01 A .05

derivative
cost

CPU time

mean variance mean
-5.03 207 -5.05
.148 .126 .151

slightly more than in Table 3

variance
210
.128

TABLE 3.
The method of 4 (AV).

A .01 A .05

derivative
cost

mean
-4.87
.145

variance
91
.051

mean
-4.96
.149

variance
93
.05

CPU time 12.73 2.54
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TABLE 3a.
The method of 4 (AV and centering).

A 0.01 A =0.05

derivative
cost

CPU time

mean variance
-4.83 81.58
0.143 0.051

12.47

mean
-4.82
0.149

2.48

variance
78.32
0.05

TABLE 4.
The method of 5.

h= .1 h .05 h .02

derivative
cost

CPU time

mean
-3.7
.227

variance
76.4
.175

4.21

mean variance
-3.72 104
.165 .138

13.86

mean
-4.5
.163

variance
152
.055

77.5

TABLE 5.
The method of 5 (AV).

h--.1 h .05

derivative
cost

CPU time

mean variance mean
-3.75 42 -3.77
.220 .08 .163

variance
46
.055

13.19

TABLE 5a.
The method o/5 (AV and centering).

h= .1 h .05

derivative
cost

mean variance mean
-3.31 25.49 -3.78
.183 0.06 0.163

variance
39.42
0.055

CPU time 4.06 13.19
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BALANCED PARAMETRIZATION OF CLASSES OF LINEAR SYSTEMS*

RAIMUND OBER?

Abstract. Canonical forms and parametrizations are presented for several sets of minimal systems of
given dimension: asymptotically stable systems, allpass systems, bounded real systems, positive real systems,
minimum-phase systems, and the class of all minimal systems. The approach is based on balancing techniques
for these classes of systems. Applications of these results to Hankel operators and model reduction are
discussed.

Key words, canonical form, parametrization, balanced realization, model reduction
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1. Introduction and notation. Canonical forms for linear systems are of importance
since they provide a unique state-space representation of linear systems. They therefore
play a major role in system identification where a unique parametrization ofthe systems
in the model set is essential. From a more theoretical point of view, canonical forms
permit the study of topological and geometric properties of sets of linear systems 13],
[15], [24]. For a survey of results and applications of canonical forms, see [15].

A definition of a canonical form is as follows.
DEFINITION 1.1. Let M be a set of minimal state-space systems. Then a map

F:M--M

is called a canonical form if
(1) (,/, ,/) := F((A, B, C, D)) is system equivalent to (A, B, C, D), i.e., there

exists T 9 n,, invertible such that

TAT-1 ; TB, =CT-1, /=D.

(2) If (A1, B1, C1, D1) and (A2, B2, C2, 02) are system equivalent, then

1-’((A1, B1, C1, D))= F((A2, B2, C2, D2)).

Various types of canonical forms for linear systems have been introduced and
studied (see, e.g., [30], [12], [15]). Most of these canonical forms for multivariable
systems are generalizations of the observer or controller canonical form for single-input
single-output systems. The canonical forms presented here are based on balanced
representations of linear systems. Balanced realizations for asymptotically stable sys-
tems were introduced in [19]. Other balancing techniques were then investigated in
[7] for stochastic realizations, in [16] for the class of all minimal systems, and in [28]
for bounded real systems. The motivation of those authors was to obtain a simple
method for the approximation of a system by a lower-dimensional system in the same
class.

It is shown in this paper that the balancing technique leads to canonical forms
with desirable properties. In 2 we consider balanced realizations as they were defined
in [19] for asymptotically stable systems. The canonical form established for this class
of systems is a modification of a similar canonical form presented in [22]. This canonical
form has a structure that shows that allpass systems, which are considered in 3, are

*Received by the editors November 16, 1988, accepted for publication (in revised form)
September 10, 1990.
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Kingdom. Present address, Center for Engineering Mathematics, The University of Texas at Dallas,
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in some sense building blocks of this canonical form. These results are the basis for
the derivation of canonical forms of other classes of systems as presented in later
sections of the paper. In [27] the canonical form in [22] was used to derive a canonical
form for the class of minimal systems in terms of Riccati-balanced coordinates as
introduced by [16]. This canonical form is rewritten in 4 using the canonical form
of 2. Relating the class of bounded real systems to a subclass of multivariable
asymptotically stable systems, it is possible to derive a canonical form for bounded
real systems as presented in 5. Via a Moebius-type transformation, the class of
bounded real systems is mapped to the class of positive real systems. Since positive
real systems are closely related to minimum-phase systems through spectral factoriz-
ation, the canonical form derived for positive real systems in 6 can be used in 7 to
derive a canonical form for minimum-phase systems. Section 8 deals with the relation-
ship of the previous results to discrete-time systems. The question of model reduction
of systems given in the canonical forms is considered in 9. Examining the canonical
forms, it appears that they have many common structural properties, which are
discussed in 10.

The objective of the paper is to show that for many classes of systems it is possible
to derive canonical forms using the idea ofbalancing. The general principle ofbalancing
is to associate with a particular class of systems a set of Riccati equations that are
intrinsically related with the properties of the particular class of systems. The class of
asymptotically stable systems is, for example, associated with a set of Lyapunov
equations, whereas the set of positive real Systems is associated with the positive real
Riccati equations. It is then possible to define what a balanced realization means for
such a class of systems. A system is called balanced if the solutions to the two associated
equations are identical and diagonal. Having defined the notion of a balanced
realization, it can be seen that such a realization of a particular system is not unique.
One of the aims of this paper is to show that by imposing further constraints
on the realization, it is indeed possible to obtain a unique realization, i.e., a canonical
form.

The usefulness of canonical forms very much depends on their properties. One
of the standard canonical forms, the controller canonical form, is of particular sig-
nificance since the parameters of the canonical form have an immediate interpretation
as the coefficients of the transfer function. There are, however, drawbacks of the
controller canonical form especially concerning the resulting parametrization of linear
systems. The set of parameters in the controller canonical form that lead to a minimal
system is very complicated. This makes it difficult to use this canonical form in cases
where it is necessary to have a geometrically well-behaved parameter space, e.g., in
some optimization tasks. One of the main advantages of the canonical forms derived
here is that it can be shown that the parameter spaces associated with a canonical
form have--especially in the case of single-input single-output systems--desirable
geometric properties. This is at the expense of having to partition the set of parametrized
systems into suitable subsets. This means that even in the case of single-input single-
output systems structural parameters must be introduced.

There would be several ways to derive the results presented here. One of them
would be to treat each of the classes of systems separately and construct the canonical
form from first principles. This approach would be very tedious, especially because of
the complexity of the canonical forms in the case of multivariable systems. Instead,
we are going to relate the various classes of systems to one another. This allows us to
carry the canonical form over from one class of systems to another without having to
repeat the basic construction.
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Analyzing these canonical forms, it becomes apparent that all share certain
structural properties. It is interesting to see that such widely differing classes of transfer
functions, such as, for example, minimum-phase systems and bounded real systems,
admit a parametrization that has very similar properties. Having a common structure
has the advantage of allowing us to deal with the various classes of systems in a unified
way. It was possible to exploit this common structure in the study of the connectivity
properties of the various classes of systems [26].

For the presentation of our results we will use the common structure of the
canonical forms. We will introduce the following notation, which allows us to simplify
the statement of the canonical forms especially in the case of multivariable systems.
Most of these definitions are, however, not important for the case of single-input
single-output systems.

A matrix B (bi,j)l<=i<k is called positive upper triangular if there exist indices
l<--jl

l=<tl<...<tj< <tk<--l

such that

bi,ti>O for 1-<_ i_-< k,

b i,j 0 for 1 <-_j < and 1 =< -<_ k,

b E otherwise,

0 0 b,,, bl,t,+l
0 0 0 0 0 b2,t2 b2,t2+l

o o o o o o o b k, tk

A matrix A is said to be in r-balanced form, 1 <-r <= n, if for

All A12A
\A21 A22/,

A11 E D rr,

we have
(1) AI is skew symmetric.
(2) A12 and A22 are given by the set of indices

1 =h < <hi<hi+l < <hqn-r,

1 gq < < gi+l < gi < < gl r

in the following way:

(a) for A2 (ast) l<=sNr we have
l<=t<=n--r

b k, tk+

a gi,hi > 0

agi, 0

as,t=O

for 1_-< i_-< q,

for > hi where 1 -< _-< q,

for >-- hi and s > gi where 1 -<_ _-< q,
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agl-l,h

ag ,h

0

ag-l,h+l
0

0

0

ag2-1,h2-1

ag2,h2-1

ag+l,h2-1

agl--l,h2--1

0

0

0

ag-l,h2
a g2,h2

0

0

0

0

0

(b) A2: is given by

0 og2

ol

O[n_

where for 2 _-< _-< n r

=0 if hs for some 1 <= s <- q,
otherwise

(3) A21 -AT"12

Let A (a0)l__<i__< then we denote by

ag2-1,h2+l

0

0

0

0

0

0

0

(1) [A]l--(lij)l<=i<=n the lower triangular part of A, i.e.,
ljn

{0 forj=> i,
a= a o forj<i.

(2) [A]d (ij) 1__<__<, the diagonal part of A, i.e.,

a= forj= i.

Let (A,B, C,D) E)]nxn}]nxm)]Pn)]pm and na,...,nj,...,ng, nE,
n=n. Then (A,B, C,D) is said to be partitioned according to
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The following notation and abbreviations will be used throughout the paper.
Classes of transfer functions:
--TLP,’’= {p x rn transfer functions of McMillan degree n}.
--TCP,’’= {G(s) TLP,’mlG(s) has all its poles in the open left halfplane}.
--TA={G(s) TC’’"lG(s)G(-s)r=o’2I, for some tr>0, for all s
--TP’2 {G(s) TC"fl’mlG(oe)+ G(-eo) r > 0, G(iw)+ 6(-iw) r > 0

for all w 8t}.
--TB,"m {G(s) TCP,’mlG(-oe) rG(oe) < I, I- a(-iw) rG(iw) > O

for all w }.
--TM" {G(s) e TcT’mIG(s) -1 TC’2’m}.
--The corresponding sets of discrete-time systems are defined in 8.
Classes of state-space systems:
--The sets of minimal state-space realizations of the transfer functions in TLP#",

pm pm pmTCn’ TAn, TPn, TBP# and TMm are denoted by L# C#
B,p’m and Mm

raThe corresponding sets of discrete time systems are defined in 8.
Symbols:
mdiag (A1,"" ", Ak) is a block diagonal matrix with A1,’’’, Ak as its block

iagonal entries.
--/, := diag (+1,-1, +1,-1,..., (-1)n+l)
mA; denotes the set of natural numbers, c denotes the set of complex numbers,

and the set of real numbers.

2. Asymptotically stable systems. In this section we will review some of the results
on the balanced parametrization of asymptotically stable systems as given in [22]. The
particular canonical form presented here for multivariable systems is, however, a
simplified version of the one introduced in [22]. First, we will define a balanced
realization of a minimal and asymptotically stable continuous-time system as introduced
by Moore [19].

DEFINITION 2.1. The set of minimal and asymptotically stable systems
(A, B, C, D) t X t X p X }) p is denoted by C P’m. A system (A, B, C, D)
CP" is called balanced if there exists a diagonal matrix E diag (O-l, , o), , rn)
such that

(1) AE+EAr=-BBr, ArE+EA=-CrC.

The matrix E is called the gramian of the system (A, B, C, D) and its diagonal entries

are said to be the singular values of the system.
Moore [19] has shown that each system in C,p’’ has an equivalent system

that is balanced. Such a realization, however, is not unique. If E=
diag (ohln(1), , o’jln(j), O’kin(k)), O"1 > > O’j > > O"k > 0, is the gramian of
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a balanced system (A, B, C, D), then all equivalent balanced systems with singular
values ordered according to multiplicities are given by (QAQ, QB, CQ, D), where
Q=diag(Q,,..., Qj,. ., Qk), Qj, QQ=Inj, for l<=j<=k (see, e.g., [19],
[10]). Thus ifZ has distinct diagonal entries, (A, B, C, D) is unique up to a state-space
transformation by a sign matrix, i.e., a diagonal matrix whose diagonal entries are + 1.
Hence for this case a canonical form can be obtained by constraining the first nonzero
entry of each row of the B-matrix to be positive [17], [20], [22]. The following theorem
gives a canonical form for all systems in C P# in terms of balanced realizations. It
thereby shows how to impose further constraints to obtain a unique balanced realization
in the general case.

THEOREM 2.1. The following two statements are equivalent:
(1) G(s) TCP#m.
(2) G(s) has a realization (A, B, C, D) nn X.m X P" X P" given by the

parameters:

0"1> >O’j>

in the following way.

(i)

(ii)

(iii)

(iv)

n 6 /’, zk__ n=n;
rjW, l<--rj<--min(n,m,p);
Uj G ?J p’), Uf Vj Irj
B positive upper triangular;

A ’’ in t)-balancedform
Dpm.

If (A, B, C, D) is partitioned according to n1," ", nj, ., nk, then

B (), l<=j<-k,

C2=(U2Aj,0) where Aj=(jf) ’/2, l<-_j<=k,

[diag (A), 0)]d, 1 _--<j _--< k,_1 [diag (A, 0)]1-2tr
1

A0 2 2 diag ((5/i/f-criAiUr A), 0),
o’i --o’j

(V) DGpm.

Moreover, (A, B, C, D) as defined in (2) is balanced with gramian

Z diag (rIn,,"’, cr2In,’", rklnk).

l<-i,j<-_k, ij,

The map F, which assigns to each system in C Pn’m the realization given in (2), is a canonical

form.
Proof The derivation of the results is similar to the derivation of the canonical

form for systems in C,P’m as given in [22].
(1) (2) Let (A, B, C, D) Cp’’ be a balanced system with gramian Z trln.

Then it follows from the Lyapunov equations (1) that

A+AT__ __1 BBT __1 cTc.

Since the realization (A, B, C, D) is unique up to a state-space transformation with a
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unitary matrix, we can assume without loss of generality that

0),
where t} ,t r,, r rank (B), is in positive upper triangular form. Note that this is a
unique representation of B.

Since BBr= CrC there exists a unique U P, UrU L, such that

C U(T) 1/2, 0).

If we write

All A12A=
A21 A22]

we have

All + AI 1 /}/}T

Thus the diagonal elements of All are given by

Since

All is completely parametrized by the entries of/} and those of the upper triangular
part of All. The other blocks of A, i.e., AI, A21, and A22 are derived as in [22]. This
completes the proof for the case of identical singular values. The general case follows
as in [22].

(2) (1) This is a straightforward modification of Theorem 7.1 of [22]. [3

The canonical form presented in the previous theorem is determined both by
discrete and continuous parameters. Of the discrete parameters, nl,’", nk are of
particular importance. They indicate the multiplicities of the singular values o1, , o’k
and determine the partitioning ofthe state-space systems into blocks of sizes nl, , n.
To each such block corresponds the nj-dimensional subsystem (Ajj, B., C, D), 1 =<j =< k.
Such a subsystem is a system with identical singular values o’. An interesting aspect
of the canonical form is that the off-diagonal blocks Aij, #j, of the A matrix, which
interconnect the various subsystems, are completely determined by the parameters of
the diagonal subsystems. It therefore becomes clear that each system is made up of
building blocks that are systems with identical singular values. The derivation of a
canonical form, therefore, essentially reduces to the derivation of a canonical form
for systems with identical singular values. The complexity ofthe canonical form depends
crucially on min (m, p), the minimum of the dimensions of the input and output spaces.
As a consequence, the canonical form, if specialized to single-input single-output
systems, is considerably simplified.

The following corollary states the canonical form for single-input single-output
systems.
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COROLLARY 2.1 The following two statements are equivalent:
(1) g(s) TC 1"1

(2) g(s) has a realization (A, b, c, d) 9 9] X xl given by the
parameters

0"1> O’j > > O’k > O
nl, ns, nk, ns 6 dV"
$1,’’" Sj," ", Sk, ss-+l

bl, a(1),,"’’, a(1)s,’’’, e(1)nl_,, bl>O

hi, o( i)1, o(i)j,’’’, o( i)ni_, hi>O,

bk, a(k)l,’’’, a(k)j,. a(k)nk-, bk> O,
d, d;

in the following way"

(i)

(ii)

(iii)

k
-[j=l nj n;
lj<=k;

a(1)j > 0, lj=<nl-1;

a( i)j > O, l=<jn-l;

a(k)j > 0, l <--j <: nk--1;

b=(b,, 0,..., 0,..., bs, 0,...,0,..., bk, 0,..., O) ,
nj

C (Slbl, O, 0," ", sjbj, 0," 0," Skbk, 0," 0),
tlj

For A =: (Aij) <:i,j<=k, AO n,, <= i, j <-- k, we have
(a) block diagonal entries Ajj, 1 <-_j <-k:

ass a (j
-ce(j)l 0 a(j)2

Ass=
ce j 2 0

0 O"
--o(j) nj-1

with ajj b/2trj.
(b) off-diagonal blocks Ao, 1 <-_ i,j <-_ k, j"

0

ce(j) ns-1
0

0 0
Ao= with ao=

0 0
SiSjO" + %’

(iv) d 92.

Moreover, A, b, c, d) as defined in (2) is balanced with gramian

E diag (o" In,," , %1n," ", trklnk).

The map F, which assigns to each system in cl’ln the realization given in (2), is a canonical
form.

Remark 2.1. The canonical form of Theorem 2.1 is closely related to the canonical
form derived in [22]. The main difference Ibetween the two canonical forms is in the
structure of the B-matrix. In [22] a subblock B corresponding to a set of repeated
singular values is constrained to have orthogonal rows. The implication of this is that



BALANCED PARAMETRIZATION 1259

the corresponding subblock of A has a desirable symmetry property. Here we do not
impose this symmetry on A and hence we can relax the constraints on Bj and obtain
a much simplified parametrization of B. Another advantage of this canonical form is
that the parameters enter freely and are not constrained by the orthogonality assumption
on the rows of Bj. Note, however, that there are no differences between the two
canonical forms for the case of SISO systems and for multivariable systems if the
singular values are distinct.

As pointed out above, the canonical form is essentially determined by the diagonal
subsystems that are determined by the block partitioning of the system corresponding
to the multiplicities ofthe singular values. It is therefore not surprising that the canonical
form reduces considerably in complexity, especially in the multivariable case, if the
system has distinct singular values.

The significance of the previous theorem and corollary lies in the fact that not
only is it shown that each asymptotically stable system has a unique representation
and a canonical form having a certain structure, but possibly of greater importance,
it is shown that the converse is also true. If we have given an arbitrary set of parameters
that satisfy the stated constraints and if a system is formed from these parameters,
then the theorem guarantees that this system is automatically minimal and asymptoti-
cally stable. We therefore have a parametrization of the set of asymptotically stable
systems of fixed dimension. Equivalently, we can interpret the theorem as providing
a parametrization of the set of transfer functions of fixed McMillan degree whose
poles are in the left halfplane.

Note that especially in the single-input single-output case the parameter space has
a nice geometric structure, since the continuous parameters are only determined by
simple inequality constraints.

An important feature of a balanced realization Of a linear system is its close
relationship to the Hankel operator corresponding to the system. We define an integral
Hankel operator with kernel H(t) t pm, t-> 0, given by

Y(" L.-([O, c[)-> L.t,([O, [),

u(t)->((u))(s)= fo H( + s)u( t) dt.

We assume that W is well defined and a finite rank operator. The singular values
(trj)l<__j_<_n of W are defined to be the nonzero eigenvalues of (W’W)1/2 ordered with
respect to their magnitude and taking into account their multiplicities. Under these
conditions there exist families of orthonormal vectors (Schmidt vectors) (Vj)l<__jn and
(W))l<__j<__n in L.m([0, oo[) and L.v([0, oo[), respectively, such that

The significance of Hankel operators in a system-theoretic context is that for a
system (A, B, C, D) CP’m the Hankel operator W with kernel H(t):= CetAB can be
interpreted as an operator mapping past inputs to future outputs. If (A, B, C, D) is
balanced, it can easily be verified that the singular values of the Hankel operator W
equal the singular values of the system (A,B, C,D) [10]. Moreover, vj(t)=
BTetATej/x/-jj and wj(t)= CetAej/x/j, l <--_j<=n. Since vj(O)= BTej/vj and wj(0)=
Cej/Vj, 1 <-_j <-n, the starting points of the Schmidt vectors are fully determined by
the B and C matrices and the singular values. This gives an interpretation of some of
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the parameters of a system in canonical form in terms of analytical properties of the
corresponding Hankel operator.

By standard realization theory we know that there is a one-to-one correspondence
between Hankel operators of rank n and asymptotically systems of McMillan degree
n. The discussion in the previous paragraph implies that finding a canonical form for
linear systems in terms of balanced realizations is equivalent to defining a unique basis
for the eigenspaces of the nonzero eigenvalues of the operator *. This observation
gives another interpretation of the complexity of the canonical form in the case of
repeated singular values.

If we now consider the Hankel operator corresponding to a scalar transfer
function in TC TM the eigenvectors and Schmidt vectors of coincide (up to a sign)
since is self-adjoint. If moreover, (A, b, c, d) is in the canonical form of the previous
corollary, the eigenvectors, respectively, Schmidt vectors, are given by v(t)=
bretATej/x/-jj-- wj(t)--(/xj)cetAej, 1j n, where we have used that A= SArS
and c r Sb for S diag (g,. , ,. , g.) := diag (s.,,. , sI.,. , Sk.).

The eigenvalue corresponding to v is therefore calculated to be , since

1 (t+s)A TesAr(u)(t) (t+s)u(s) ds= ce bb eds

ce

This observation allows us to use the canonical form for scalar systems to investi-
gate the dimensions of the eigenspaces of a finite rank Hankel operator.
ToM 2.2. Let h( t) , 0, be the kernel of a finite rank Hankel operator

acting on L([0, [). If is a nonzero eigenvalue of, then

dim (ker (II- ))-dim (ker (-II ))1N 1.

Proo By standard realization theory, h(t), 0, has a realization (A, b, c, d)
C’, where n rank (), i.e., h (t) ceb, O. We can assume that (A, b, c, d) is in
the canonical form of Corollary 2.1. All nonzero eigenvalue of are given by the
diagonal entries of S diag (s,,..., s,..., s,I,). We know that

Sool for some 1N ion k, and therefore

Idim (ker (II- ))-dim (ker (-II- ))1 trace

As a simple corollary to this theorem we have that Hankel operators with positive
eigenvalues cannot have repeated singular values.
COOA 2.2. If as defined in the theorem has only nonnegative eigenvalues,

then the multiplicity of each of the singular values is one.
Note that single-input single-output systems whose corresponding Hankel

operators have only positive nonzero eigenvalues can be characterized as relaxation
systems [25].

Remark 2.2. Using a canonical form for symmetric multivariable systems, a similar
result was obtained in [23] for self-adjoint Hankel operators acting on vector-valued
spaces. More precisely, if is a finite rank, self-adjoint Hankel operator acting on
the space L,([0, m[), then

[dim (ker (II ))-dim (ker (-I- )) N p,

where h is a nonzero eigenvalue of .
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The following remark gives further interpretations of the parameters of the canoni-
cal form and relates them to important analytical properties of the system.

Remark 2.3. If (A, b, c, d) Cln’1 is in balanced canonical form with g(s)=
c(sI-A)-lb and h(t)=cetab, t>-O, then we have the following properties:

2(i) []h(t)]]2:=Io h(t)2 dt= 10-b,
(ii) ]lg(s)llo:= SUpwc:, [g(iw)I=<=2 -1 0-,
(iii) g(0)=o h( t) dt 2

_
Note that if (A, b, c, d) has distinct singular values and s 1 or s -1, for all =<j =< n,
then (ii) and (iii) imply that the bound in (ii) is attained, i.e.,

Ilg(s)l] =2 o).
j=l

References to these results, which were slightly adapted here to our particular canonical
form, can be found in [18] for (i) and (iii), [33] for (iii), and [10] for (ii).

3. Allpass systems. In the previous section we have seen that one of the main

structural elements of the canonical form for asymptotically stable systems are systems
with identical singular values. In this section we give an interpretation of such systems.

It was shown in 10] that each strictly proper system with identical singular values
is the strictly proper part of an allpass system. Conversely, each allpass system has
identical singular values. We can therefore say that the "building blocks" of the general
canonical form are the strictly proper parts of allpass systems.

DEFINITION 3.1. A system (A, B, C, D)e C’m is called allpass if for G(s)=
C(sI-A)-IB+D we have

G(s)G(-s) T 0.21, S e C,

for some 0. > 0. We denote by A’ the subset of C,m’’ containing all allpass systems.
The set of transfer functions of systems in A, is denoted by TA.

Remark 3.1. The usual definition of an allpass system is generalized here to the
case where 0. is not necessarily equal to one. Note that in the mathematical literature
the transfer functions of allpass systems are referred to as inner functions in the case
of 0-= 1.

Allpass systems or inner functions play an important role in many aspects of
control theory, circuit theory, and mathematics. It is therefore of interest to have a

canonical form and a parametrization of these systems. To obtain such a canonical
form and parametrization of allpass systems from the results for systems with identical
singular values, it is necessary to impose a relation between the parameters U,/, D,
and 0..

A canonical form for allpass systems is given in the following theorem.
THEOREM 3.1. The following two statements are equivalent:
(1) G(s) TA.
(2) G(s) has a realization (A, B, C, D) ,nxn X ?jnxm X mxn X mxm given by

the parameters" 0. > 0; r W, 1 <- r <- n; ,rxm is positive upper triangular;
is in r-balancedform; D )mxm is such that DDr 0-2i; U -DTA-l(v/-) -1

with A (/}/T)l/2., in the following way"

(ii) C=(UA, 0) where A=(zT)/2;
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(iii)
1

A A-lo- [diag (A2, 0)]-- [diag (A2, 0)]d

(iv) D 9 is such that DDr o.2L

Moreover, A, B, C, D) as defined in (2) is balanced with gramian E o.I,. The map
F which assigns to each system in Am, the realization given in (2), is a canonical form.

Proof The proof is an application of Theorem 5.1 of [10] and Theorem 2.1. [3

It follows from the previous theorem that a parametrization of systems with
identical singular values immediately leads to a parametrization of allpass systems and
vice versa. For SISO systems this canonical form has a particularly simple structure.

COROLLARY 3.1. The following two statements are equivalent:
(1) g(s)6 ral,,.
(2) g(s) has a realization (A, b, c, d) 9t "" x 9l "1 x 911" x 11 given by the

parameters

o.>0, b>0, aj>O, l<-j<-n-1, Sl=+l;

in the following way"

(i) b--(b, 0,.. ",0)T"

(ii) c--(slb, 0,’’’,0);

mo 0 o2

--Ce2 0 0 _b2

(iii) A= ... ... ... witha=-2o’,
0 0 a-i

On_ 0

(iv) d -Slo’.

Moreover, (A, b, c, d) as defined in (2) is balanced with gramian o’I,. The map F
which assigns to each system in A the realization given in (2), is a canonicalform. [3

Remark 3.2. The A-matrix in the canonical form for SISO allpass transfer func-
tions is closely related to the so-called Schwarz form for matrices, which has been
studied in connection with stability tests for matrices (see, e.g., [4]). The recursive
structure of the tridiagonal matrix permits us to give explicit realization algorithms
for allpass systems [21]. It also follows easily from this recursive structure that each
allpass transfer function g(s) can be written as a continued fraction as follows:

g(s) -so+ Sl b2
b2

s++
2o

s+

2o

2
O 2

where sl, b, o., al," ", On-- are the same parameters as in the canonical form of the
corollary.

4. Minimal systems. To apply the balancing technique in 2, a system must be
asymptotically stable. For minimal systems that are not necessarily asymptotically
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stable, Jonckheere and Silverman [16] have introduced a method that is not based on
balancing solutions to Lyapunov equations but is instead based on balancing solutions
to Riccati equations. Their definition of a Riccati-balanced system was extended in
[27] to include a feed-through term.

DEFINITION 4.1. The class of systems (A, B, C, D) 9] X ) X pin X ) pxm,
which are minimal, is denoted by L,p’’. A system (A, B, C, D) L’’ is called Riccati
balanced if there exists a positive diagonal matrix E1 diag (q,. , qj,. ., %) such
that

(2)
(A BS-/DTC) TZ; + Z;(A- BSTDTC) ,BS-/aBTE; + C TRT1 C O,

(A- BSTaDTC)E, +,(A- BSTIDTC) T _,CTR-/a CE, + BS71BT O,

where Sr I + DTD and Rr I + DD. l is called the Riccati gramian of the system.
The following canonical form for systems in L,p’" is a modification of a canonical

form derived in [27]. The canonical form presented here differs in two ways from the
canonical form in [27]. The parametrization of the B-matrix has been changed
analogously to the changes for the canonical form for asymptotically stable systems.
Whereas in the present paper the B-matrix is chosen as a parameter of the system, in
[27] the C-matrix serves as a parameter. As in the case of the present canonical form,
such a change of parameter can be performed for all the canonical forms presented
in this paper. The calculations involved are tedious but not difficult if it is noted that
forDpxm we have that DT(I+DDT)I/2=(I+DTD)I/2Dr.

THEOREM 4.1. The following two statements are equivalent:
(1) G(s) TLPd’.
(2) G(s) has a realization (A, B, C, D) ,qt x ,qt x ,t pn X ,t em given by the

parameters

ql > > qj> > qk>O,

n nj, nk, nj 6 ,3/’, 2jk= n n;

rW, l<-<-_min(n,m,p);

Uj ,s x, UT Uj

9 positive upper triangular

Aj 1t5 in r-balancedform;
Opxm.

in the following way:
If (A, B, C, D) is partitioned according to n1,. ., nj,. ., nk, then

(i) B --j;r where &= i + DrD, l <_j <_ k;

(ii) C (Rlr/- UA, O) where R I + DDr, A (/j/f)1/2,
2

(iii) A A
1 q. 1 q

[diag (Zk} 0)]d--------J [diag (A, 0)]/-
q 2q

+ diag (DTUA, 0), 1 <--j <-- k;

l<=j<-_k;
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(iv)
1

2 diag ((q2(1 + q2),f-q,(1 + q)AiUUjAj) O)Aij- q2i qj

+diag (iDTUjAj, 0), 1 <-- i, j k, j;

(V) D pm.

Moreover, (A, B, C, D) as defined in (2), is Riccati balanced with gramian

Z/= diag (qlI,,, ", qjI,, qkI,k).

The map F, which assigns to each system in Ln"m the realization given in (2), is a canonical

form.
This canonical form reduces as follows to scalar systems.
COROLLARY 4.1. The following two statements are equivalent:
() g(s) TL’;’.
(2) g(s) has a realization (A, b, e, d) ,"" " " TMa given by the

parameters

q> >qj> >qk>O,
k

n, ", nj, nk, n W, Ej=I n n

S Sj, Sk, S + I, l <-j k;
b,,,a(1),’’’,a(1)j,’’’,a(1),,_,, hi>O, a(1)j>O,

bi, a(i)l ," ", a(i)j,. ., a(i)ni_l, bi > O, o(i)j > O,

bk, a(k),, a(k)j, a(k),k_,, bk > O, a(k) > O,
d, d;

l<j--<nl-1;

l<--j<-ni-1;

1 <=j <= nk- 1;

in the following way"

(i) b-(b,,O,...,0,...,b,0,...,0,.. ,bk, O, ",0) T,
nj

(ii) c (sb, O, 0,. , sjb, 0, , 0,. , skbk, 0, 0),

lj

(iii) For A=: (Aij)l<=i,j<=k we have
(a) block diagonal entries A, 1 <=j <= k:

ajj a (j
-a(j), 0

-a(j)

0

o(j)2
0 0

o(j)n-I
0
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(b) off-diagonal blocks Aij, 1 <- i, j <-_ k, j:

Ao with a o

0 0

(iv) d .
-bbi (1- ssqq_ sd)1 + d2

sisqi + q

Moreover, (A, b, c, d) as defined in (2) is Riccati balanced with Riccati gramian

E/= diag (qlI,,, qjI,, qklnk).

The map Fl, which assigns to each system in Ld the realization given in (2), is a canonical
form.

Proof. The corollary follows immediately from the theorem and a straightforward
reparametrization of the entries of the b-vector [3

It is instructive to note that this canonical form for minimal systems and the
corresponding parametrization has essentially the same structure as the canonical form
for asymptotically stable minimal systems. In fact, the only difference is the way in
which the parameters enter those entries of the A-matrix that are functions of the
other parameters. In later sections we will find that the same applies to all classes of
systems considered in this paper. It should be noted, however, that in general it is not
clear how the parameters of an asymptotically stable system that is parametrized using
the above canonical form are related to those parameters with which the system is
parametrized in the canonical form for asymptotically stable systems.

The way the canonical form for minimal systems was derived in [27] was by
relating a minimal system to the state-space realization of its normalized left coprime
factorization. If G(s) is the transfer function of a linear system, then the normalized
left coprime factorization IN(s), M(s)] of G(s) is defined such that G(s)
M(s)-N(s), where N(s), M(s) are asymptotically stable with M(s) proper and satisfy
NN* + MM* L Such coprime factorizations play an important role in modern control
theory [31]. If a state-space realization of G(s) is available, a state-space realization
of N(s), M(s)] can be calculated by solving the Riccati equations corresponding to
the state-space realization of G(s). The canonical form for minimal systems can then
be derived by calculating the canonical form for asymptotically stable systems of the
asymptotically stable coprime factors. Exploiting the state-space formulae that relate
a state-space realization of a system to the state-space realization of its coprime factors,
it was possible to derive the canonical form and the parametrization result for minimal
systems.

In the following sections we will use the same approach to the derivation of
canonical forms for other classes of systems. Rather than deriving a canonical form
separately for each class of systems, explicit maps will be constructed to relate the
state-space realizations of the class of systems to an appropriate subclass of the set of
asymptotically stable systems. Thereby the canonical form for asymptotically stable
systems can be exploited to derive a canonical form for other classes of systems.

5. Bounded real systems. An important subclass of asymptotically stable systems
is that with transfer functions bounded by one on the imaginary axis. This class of
so-called bounded real systems is used to parametrize all stabilizing controllers of a

plant such that the closed-loop system satisfies an H constraint (see, e.g., [11]). In
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fact, transfer functions of bounded real systems are the real rational functions in the
open unit ball of H.

DEFINITION 5.1. Let (A, B, C, D) C "" be such that I-DrD>O; then
(A, B, C, D) is called bounded real if for G(s)= C(sI-A)-B+D we have

I G(-iw) TG( iw) > O,

We denote by B Pn’m the subset of C’’ containing all bounded real systems. TBP,
denotes the set of transfer functions of systems in B

Remark 5.1. Other authors call an asymptotically stable system bounded real if

I G(-iw) 7"G(iw) >- O, w .
In this section we will derive a canonical form for bounded real systems. To do

this we first must define what we mean by balancing of bounded real systems. With
the classes of systems that we considered in the previous sections, we associated certain
Lyapunov and Riccati equations. A system was called balanced if the solutions to the
corresponding equations were balanced, i.e., equal and diagonal. Bounded real systems
can be shown to satisfy the so-called bounded real Riccati equation. We proceed
analogously to define a balanced realization for bounded real systems. The following
proposition states several well-known results relating bounded real systems to this
Riccati equation (see, e.g., [5], [32]).

PROPOSITION 5.1. Let (A, B, C, D)6 CP,’’’ such that S: I-DTD>O and G(s)=
C(sI-A)-B+D; then

(1) I-G(-iw)TG(iw)>=O, w,, if and only if there exists P=PT>0 such that

(3) AT"P+PA+CT"C+(PB+CT"D)S-I(pB+CTD)Tr=O.

We call this Riccati equation the bounded real Riccati equation (BRRE).
(2) If either of the conditions in (1) is satisfied, then P P > 0 for any solution to

(3). There exist solutions Pmin and Pmax tO (3) such that for any solution P P
we have

O<PminPPmax.

(3) If (A,B, C, D) is bounded real, i.e., I-G(-iw)7"G(iw)>O, w, then

0 < Pmin < Pmax
and Pmin is the unique solution to (3) such that A+BS-(BTP+DC) is

asymptotically stable.
(4) (A, B, C, D) is bounded real if there exists a solution P P> 0 to (3) such

that A + BS- B’P + D C is asymptotically stable. Moreover, Pmi, is the unique
such solution.

(5) A system (A,B, C,D) is bounded real if and only if its dual system
(A, C, B, D") is bounded real. If (A, B, C, D) is bounded real ith Pmin
and Pmax the minimal, respectively, maximal solution to (3), then -1Pmin is the
maximal and -1Pmax the minimal solution to the BRRE corresponding to

A problem with the bounded real Riccati equation is that there is no unique
positive-definite solution. Opdenacker and Jonckheere [28] introduced a balancing
technique for bounded real systems by balancing the minimal solution with the inverse
of the maximal solution to the BRRE. We will follow their definition since it is possible
to derive the desired canonical form and realization result using this particular choice
of solution. Note that balancing the minimal solution of the BRRE with the inverse



BALANCED PARAMETRIZATION 1267

of its maximal solution is the same as balancing the minimal solution with the minimal
solution of the dual equation.

DEFINITION 5.2. A system (A, B, C, D) B,p’m is called bounded real balanced if

-1Pmax diag (pl, , P, , Pn) =: Zb,

where Pmin, Pmax are the minimal, respectively, maximal solution to the BRRE. Zb is
called the bounded real gramian of (A, B, C, D).

Remark 5.2. Note that since Pmax Pmin for systems in B,P’" we have that 0 < Eb I.
Before we can derive a canonical form for bounded real systems we need several

lemmas. The first of these states standard identities that we will frequently need.
LEMMA 5.1. IfD p is such that S := I DrD > 0 and R := I DD 7- > O, then

S and R have the following properties:
(i) DR- S-Dr,
(ii) DR/2= S/2Dr.
The canonical form for bounded real systems will be derived by mapping bounded

real systems to a certain class of asymptotically stable systems. The significance of this
map is that it maps bounded real balanced systems to asymptotically stable systems
that are balanced with respect to the corresponding Lyapunov equations. A canonical
form for bounded real systems can therefore be derived by bringing the associated
asymptotically stable systems to the canonical form of Theorem 2.1. Reversing the
map, we can obtain the desired canonical form for bounded real systems.

The following lemma establishes the map between bounded real systems and a

subclass of asymptotically stable systems.
LEMMA 5.2. Let (A, B, C, D) Bp,,m. If Pmin is the minimal and Pmax the maximal

solution to the BRRE, then with S I- DrD and R I- DDr we have that

(Ac, BcCcD):=(A+BS-1DT"C,[BS-1/2,-lrR-1/2[ R-1/2C]),PmaxC ], s_l/2BrpminJ
D

Cp+m,p+m

and

(4)

(5)

--1 --1 TAcPmax+PmaA ---BcB,
A Pmin + PminAc -C C

Proof First note that/3 =/3T> 0 solves the bounded real Riccati equation

AP+ PA+ CrC + (PB + CT"D)S-I(pB + CrD) r =0

if and only if/3-1 solves the dual equation

AP+ PA + BBr + (PC + BDr)R-I(pcr + BDr) r O.

It is now easy to verify that these two Riccati equations can be rewritten as the Lyapunov
Pmax 0 and Pmin 0Pmax and Pmin as their solutions. Since -1

equations (4), (5) with -1

we have that (Ac, Be, C, D) is minimal if and only if A is asymptotically stable.
Since (A, Be, D, Co) satisfies the Lyapunov equations (4), (5) we know that the
eigenvalues of A are in the closed left halfplane. To show that they are in fact in the

open left halfplane, assume there exists w 9 and x (On such that

Acx iwx.

By applying x to the right and x* to the left of (5), i.e.,

x*aTc Pminx d- x*Pminacx 0 -x*C TCcx,
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we obtain that Cx 0 and thus

Acx (A + BS-1DrC)x Ax iwx.

Hence by the PBH test we have that (A, B, C, D) is not observable, which is a
contradiction to the assumption. This implies the asymptotic stability of Ac and the
minimality of (Ac, Be, Co, De).

In the following lemma the inverse of the map of the previous lemma will be
investigated.

LEMMA 5.3. Let (A, B, C, D) E ,jlnxn x ,gnxm X pxn x )] pxm be such that S:=
I DrD > 0, R := I DDr, and P Pr > O, such that P-1 > p. If

(Ac, Bc, Cc, Dc) := A+BS-1DTC,[BS-’/2, pCTR-’/2], [S_I/2BTp ,D

with

(6)

C p+m,p+m

(7)

AcP + PA BcB
ATp+PAc=-CfCc

then (A,B, C,D) GCPn’m. Under the same conditions the eigenvalues of A+
BS-I(BTp+ DrC) are in the open left halfplane.

Proof First note that the Lyapunov equation (6) can be rewritten as

0= (A + BS-1DTC + BS-BrP)P+ P(A + BS-1DTC + BS-1BTp)T
(8)

+(I p2) BS-1B T(I p2) P2BS-1BTp2 + PCTR-’ CP,
which is equivalent to

O= (A + BS-1DTC + BS-BTp)Tp-1 + P-(A+ BS-1DTC + BS-IBTp)
(9)

+(p-l_ P)BS-1BT(p-, p) PBS-BTp+ CTR- C.

Similarly, (7) can be rewritten as

O= (A + BS-XDTC + BS-BTp)Tp + P(A + BS-IDTC + BS-1BTp)
(10)

-PBS-BTp+ CTR-.
Subtracting (10) from (9) we obtain

0= (a + BS-IDTC + BS-’BTp) T(p-l_ p)
(11)

+ (P- P)(A + BS-1DrC + BS-Brp) + (p-1 p)BS-1B r(p-1 p).

Since p-i_ p> Owe can pre- and post-multiply this equation by (p-i_ p)-l, and hence

O= (A + BS-1DTC + BS-1BTp)(P-1- p)-l
(12)

+(p-1- p)-l(A + BS-1DTC + BS-,BTp)T "t- BS-1B T.

Since (P-1-p)-I>0 this Lyapunov equation implies that A+BS-1DTC+
BS-BTp is asymptotically stable if and only if (A + BS-DTC + BS-1BTp, BS-/2) is
controllable. If we assume that this is not the case, then there exist A e and x "such that

x*(A + BS-1DTC + BS-1BTp) Ax*, x,BS-t/2--O.
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Pre- and post-multiplying (12) by x* and x, respectively, we obtain that Re (A)_-<0.
Now assume that A iw, w ,qt; then,

x*(A+ BS-1DTC)= iwx*,

which is a contradiction to the asymptotic stability of A+ BS-1DTC. Hence we have
the controllability of

(A + BS-DTC + BS-1BTp, BS-/)

and the asymptotic stability of A+ BS-1DTC + BS-1BTp. An application of the PBH
test now implies the controllability of (A, B).

We can show similarly that

(A+ BS-1DTC + pCTR-1C, R-I/C)
is observable and hence that (A, C) is observable. Having shown the minimality of
(A, B, C, D) it remains to show that A is asymptotically stable.

Note that the Lyapunov equation (7) can be rewritten as

ATp h- PA + cTc + (BTp + DTc)TS-I(BTp d- DTc) O.

Thus A is asymptotically stable if and only if

C

is observable. But if this system is not observable we have that (A, C) is not observable,
which is a contradiction to the minimality of (A, B, C, D).

We are now in a position to prove the main theorem of this section, which
establishes a canonical form for bounded real systems. Note that the main problem
in the proof of the theorem will be to show the "parametrization part" of the result,
i.e., that a system with a particular structure is indeed bounded real. Due to the
particular parametrization of the systems, a solution of the bounded real Riccati
equation can be written immediately. To show that the system is bounded real, it is,
however, necessary to show that this solution is the minimal solution. In the previous
lemma we have already gone some way toward showing this.

THEOREM 5.1. The following two statements are equivalent:
(1) B(s) TBP,"’.
(2) B s has a realization A, B, C, D) x .n, X 9] p X p given by the

parameters:

1 >p>...>pj>...
n nj, nk,

rl," ", rj," ", rk,

U1, Uj, Uk,
B1," ", ," ",Bk,
l,’’’,Aj, "’’,k,
D,

rj e X, l <- rj <= min n), m, p

U U =Ir ,
Bj m positive upper triangular;
,j ’’ in rj-balancedform
Deep’’, I DTD > O;

in the following way:
If (A, B, C, D) is partitioned according to n1," ", n, ., rig, then

(i) B= where S= I- DrD, l <-j <- k;
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1
2 (p(1-p/) diag (//f, O)-p(1-p) diag (AUA, 0))(iv) Ao-p_p

-diag (BiDrUrAl, 0), 1 <-- i, j <-- k, j.

(V) Oc,9 pxm, I-DTD>O.
Moreover, (A, B, C, D) as defined in (2) is bounded real balanced with bounded real
gramian

Eb diag (plI,,, pI,,j, pkI, ).

The map Fb, which assigns to each system in B P# the realization given in (2), is a
canonical form.

Proof. (1) =:> (2) Let (A, B, C, D)e Bp’" and let (Ac, Be, Cc, Dc)e CP+m’p+’ be
the uniquely defined system in Lemma 5.2. If (.,/, (,/) is another system in Bp’"

and (c,/}c, c,/c)e CP+m’p+m is given as in Lemma 5.2, then (A,B, C, D) and
(,/, (,/) are system equivalent if and only if (Ac, Bc, Co, Dc) and (-c,/c, (c,/c)
are system equivalent. Since (Ac, Bc, Co, De) satisfies the Lyapunov equations (4) and
(5) this shows that (A, B, C, D) is bounded real balanced with bounded real gramian
Eb if and only if (Ac, Be, Cc, Dc) is balanced with gramian E=Eb=
diag (plInl, pjInj," ", pklnk) < 1. We can therefore assume that (Ac, Bc, Cc, De) is
in the canonical form of Theorem 2.1.

Partitioning the systems in the usual way and using the notation of Theorem 2.1,
we obtain

(13) Bc,j- (BjS-1/2, pjCjT. R-I/2) (’J)
with/c,j ,qt rp+" positive upper triangular and

( R-’/2Cj(14) Cc, \pS_/ZBf UcdAc,j, 0),

Twhere UceN(P+’), UcdUc Ir and Acd (" -r 1/2BcjBcd) Since (Ac, Bc, Cc, Dc) is
balanced, BcBT r

c, C Cc and therefore we have thatc,j

BcBT B;S-’ 2CfR-’ +pyBjS-Ic,j B? -}- pj Cj C7R-Icj B
and hence B.iS-1B CR-1C;, which implies that

(15) BcjB rc,j (1 nt-p BjS-1B.

Therefore r rank (Bcd) rank (/c,) rank (BjS-/2), which implies together with (13)
that

with/} positive upper triangular. This shows (i).
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The fact that

immediately implies

diag (/j/f, 0)= BjS-1B C R-1Cj

R-’/C UA;, 0), X ()
for a unique 8t vr such that UU =L and hence (ii).

Since by Lemma 5.2

1 1nc,jj A,j Bc,jB,j],T Bc,jBc, njj + BjS-’DT,

we have using (13), (14), (15)(i), and (15)(ii), and Lemma 5.1,
2

Az=,_1+p [diag (A, 0)]/
1 +p

[diag (A, 0)]d -diag (DA, 0).
pj 2pj

Hence we obtain (iii) by setting := ,y.
The parametrization of Ay in (iv) follows immediately from the parametrization

of A,y in Theorem 2.1 as well as from the expressions for A,, B,j, and C, in Lemma
5.2.

(2) (1) Let (A, B, C, D) be parametrized as in (2). To show (A, B, C, D) C’we construct

(Ac, B, Cc, Dc): A+BS-DrC,[BS-’/,PCR-/], S_,/Brpj,D
where P diag pI, , pI ,pI), S I DrD, and R I DD

We must show that (A, B., C, D) is in balanced canonical form of Theorem
2.1. To do this we paition the systems in the standard way. Then

0

which is positive upper triangular. For Cc, we have

Setting

and

we have that

{uc,=\p o).
Ac,:=, O)c,j diag (( 1 +p)Aj,

Ucy x/l +py PTA-f

Cc, Uc,/c,, o)

with Uc, Uc, It).
That Ac,jj and A, ij are of the required form follows similarly to the derivations

in the first part of the proof. Thus (A, B, C, De) is parametrized in the balanced
canonical form of Theorem 2.1 with gramian P and hence it is in C+m’p+m. Since
p-l> p Lemma 5.3 implies that (A, B, C, D) C P,’m.
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To show that (A, B, C, D) is bounded real balanced we must show that P is the
minimal and that p-1 is the maximal solution to the BRRE. That (A, B, C, D) is
bounded real and P is the minimal solution to the BRRE follows since, by construction,
P solves the BRRE corresponding to (A, B, C, D) and because of Lemma 5.3 and
Proposition 5.1. Repeating the above arguments for the dual system shows that P is
also the minimal solution to the dual bounded real Riccati equation. Proposition 5.1
then implies that P-1 is the maximal solution to the BRRE. [3

Specializing this theorem to the SISO case we obtain the following corollary
COROLLARY 5.1. The following two statements are equivalent:
(1) b(s) TBTM

(2) b(s) has a realization (A, b, c, d) X nl X ln X 11 given by the
parameters

l>p> >pj> >pk>O,
n1, nj, nk,

S Sj, Sk,

bl, a(1),,..., a(1),..., a(1),,_,,

bi, a(i),,..., a(i)j,..., a(i),,_,,

bk, a(k),,. a(k)j,. ., o(k)nk-,,
d,

in the following way"

(i)

(ii)

(iii)

nj 6 YV, Ejk= nj n

sj +1, l<-j<=k;
bl>O, a(1)j > O, l<-j--<n-l;

b,>O, a(i)j>0, l_-<j=<n-l;

bk>O, a(k)j > O,
d6,

1 _--<j =< n- 1;

b=(b,, 0,..., 0,..., bj, 0,..., 0,..., b, 0,..., O) T,
nj

c= slb, O, O, , sjbj, O, , 0," sb, O, , 0),

nj

For A=: (Aj)__<,j__<, we have
(a) block diagonal entries Ajj, 1 <-j <-_ k"

ajj a(j),
-o(j)l 0

-a(j)2
a(j)2
0

-b (l+p.+sjd);with ajj
1 d 2 2pj

(b) off-diagonal blocks Aj, 1 <- i,j <- k, #j"

0

Aq=

0 0

-bibj (l+sisjPipj+sjd);with a ij i Z --2 SiSjPi _+_ pj

(iv) dt, ldl<l.
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Moreover, A, b, c, d as defined in (2) is bounded real balanced with bounded real gramian

Eb diag (plln,, ", pjlnj, , pkl,k).

The map Fb, which assigns to each system in B TMn the realization given in (2), is a canonical

form.
Proof The corollary follows immediately from the theorem and a straightforward

reparametrization of the entries of the b-vector.
If we analyze the canonical form we have just derived, we can see that it again

has the same structure as the canonical forms of the previous sections. The only
difference between this canonical form and the previous ones is in the way the
parameters enter the A-matrix and that the parameters p, , Pk are bounded by one.

6. Positive real systems. Positive real systems play an important role in many parts
of deterministic and stochastic control and system theory. Balanced realizations of
positive real systems were introduced in [7] because of their importance in stochastic
systems theory (see, e.g., [8], [6]). In this section we will study the question of the
parametrization of positive real systems. The approach we take is analogous to the
one we have taken in previous sections. We associate a certain type of Riccati equation
with positive real systems, the so-called positive real Riccati equations. Balanced
realizations for positive real systems are then defined by balancing the minimal solutions
of these equations. We could now derive a canonical form for positive real systems in
an analogous way to the way the canonical form was derived for asymptotically stable
systems in Theorem 2.1. Instead, we use a Moebius transformation to map positive
real systems to bounded real systems. In this way we can easily carry to canonical
form for bounded real systems over to provide a canonical form and parametrization
for positive real systems.

DEFINITION 6.1. A system (A,B, C,D) c Cn’m such that D+DT>0 is called
positive real if

G(iw) + G(-iw) T > O, W

We denote by p,m the subset of C"" containing all positive real systems. TP7 denotes
the set of transfer functions of systems in PT.

The derivation of a canonical form for systems in p,m will be based on the
relationship between positive real and bounded real systems obtained by applying a
Moebius transformation to the set TB’’ which maps TB7’" to TP7 (see, e.g., [5])"

m TB’’ TP’
B(s) e(s) := (- B(s))-’( + B(s)).

M is a bijection with inverse

TP’ ---> TB’"’
P(s) -> B(s) := (P(s) I)(P(s) + I)-’.

The corresponding state-space formulae are given in the following proposition.
PROPOSITION 6.1. The map

SBp
(A, B, C, D)--- (A+ B(I-D)-’C, B(I-D)-’,

,,/(I- D)-’C, (I- D)-’(I + D))
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is a bijection with inverse

S" P-- B"’
(A,B, C,D)-(A-B(I+D)-IC,/ B(I+D) -1,

(I + D)-IC, (D- I)(D+ 1)--1),
such that

SBe preserves system equivalence.
P= pT>o is a solution to the BRRE for (A, B, C, D)6 B’’ if and only if
p pT> 0 is a solution to the positive real Riccati equation (PRRE)

p+M+ kp) (5 + b)-l( p) O

for (,,/, ,/) :- SBp((A, B, C, D)).

This proposition implies that we can define a balanced positive real system
analogously to the bounded real case by balancing the minimal solution to the PRRE
with the inverse of its maximal solution. Note that this amounts to balancing the
minimal solution of the PRRE with the minimal solution of its dual equation.

DEFINITION 6.2. A system (A, B, C, D)P is called positive real balanced if

Pmax--diag (Pl," ",Pj," ", P,) =: Zp,-1

where Pmin, Pma is the minimal, respectively, maximal solution to the PRRE. ;p is
called the positive real gramian of (A, B, C, D).

As an immediate consequence of the previous proposition, we have that balancing
is preserved by the map SBp.

COROLLARY 6.1. A system (A, B, C, D)B"m is bounded real balanced with
bounded real gramian Eb if and only if SBp((A, B, C, D)) is positive real balanced with
positive real gramian Zp Zb.

Proposition 6.1 together with the canonical form for bounded real systems in
Theorem 5.1 allows us to immediately derive a canonical form for systems in pm.

THEOREM 6.1. The following two statements are equivalent:
(l) P(s)6 Tpm.
(2) P(s) has a realization (A, B, C, D) ,nxn X ,g)nxm X )rnn X )mm given by the

following parameters:

1 >pl>. .>pj>. ">Pk
k

n, , n, , n, n , Y__ n n;

rl, rj, rk, rj2g’, l <=rj<--min (nj, m)
Ul Uj, Uk, Vj trnx, u? vj I, Bj, Bk, j rjxm positive upper triangular;
A1, , Aj, Ak, Aj 5"J in -balancedform;
Db, Db m,, I-- D[Db > 0

in the following way:
If (A, B, C, D) is partitioned as n1,’", nj, nk, then,

(i) B (v/ S1/2(I- Db)-)0
where S I- D[Db, 1 <=j <-_ k;

(ii) C ((I- Db)-IR’/2UjAj, O) ,where R I- DbD[, Aj (j) 1/z,
l<-j<=k;
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~ 1 + p:
O)]d(iii) A::= _1+P--[diag (A, 0)]1- [diag (A:,

pj 2pj

/Oiag(jS-1/E(I-D)(I-Db)-IR1/2UAj, O), l<__j<-k;

(iv) Aij-
1

2 2 (pj(1-p) diag (/,/T, 0) p, (1--p) diag (AiuT UAj, 0))
Pi -Pj

+ diag (S-1/2(I D)(I Db)-lg 1/- UAj, 0),

l<-_i,j<-k, i#j.

(v) D (I- Db)-l(I + Db).
Moreover, A, B, C, D) as defined (2) is positive real balanced with positive real gramian

Ep diag (plIn,, , pjI,j, , pkInk).

The map Fp, which assigns to each system in P the realization given in (2), is a canonical

form.
COROLLARY 6.2. The following two statements are equivalent:
(1) p(s) Tpln.
(2) p (s) has a realization (A, b, c, d) 92 x 9 X X ) given by the

parameters:

1 >pl>... >pj>... >pk>O
n, nj, nk, nj dV,
SI,’’" ,Sj,’’’,Sk, sj +1,

bl, re(1)l,"" ", re(1)j,"" ", re(1)n-l, bl>0,

bi, re(i)l, re(i)j, re(i),_l, bi:>O,

bk, re(k)l,’’’, re(k)j, re(k),k_l, bk>O,
d, d,

in the following way"

(i)

(ii)

k
Ej=I nj-- n;
l<-j<-k;

re(1)j > O,

b=(b,,O,...,O,...,bj, O,...,0,...,b,O,...,0) T,
nj

C (S bl, 0," O, sjbj, 0," 0," Skbk, O, 0),

rlj

(iii) For A-: (Ao)<=id<=k we have
(a) block diagonal entries Ajj, 1 <-j <- k:

ajj a (j
-re(j)l 0

-re(j)2 0

0 0

2

sjpj )2with ajj (1-

l<-j=<nl-1;

1 =<j =< ni- 1;

l<=j<=nk--1;

0

0
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(b) off-diagonal blocks Ao, 1 <- i, j <- k, j:

a o 0 0

Ao
0 0 0

0 0 0

(iv) d6,d>O.

-bibj
(1 siPi)( 1 sp);with a o 2d ssjp + pj

Moreover, A, b, c, d) as defined in (2) is positive real balanced with positive real gramian

Zp diag (Pl I,, ,. , pjln;, , pklnk).

The map Fp, which assigns to each system in pl, the realization given in (2), is a canonical

form.
Note that in the derivation of the corollary from the theorem we have used an

obvious reparametrization of the b-vector to obtain the usual statement of the result.
The previous theorem and corollary show the by-now-expected structure of the canoni-
cal form.

7. Minimum-phase systems. The last class of systems for which we would like to
derive a canonical form is the class of minimum-phase systems. A minimum-phase
system is an asymptotically stable system whose inverse system is also asymptotically
stable. Minimum-phase systems, therefore, are precisely those systems whose transfer
functions are real rational functions in H, which are units, i.e., invertible in H.
These systems are of importance in many different areas. In this section, however, we
are mainly interested in results concerning minimum-phase systems that are motivated
by problems in stochastic system theory, since those results allow us to use the canonical
form derived for positive real systems to obtain a canonical form for minimum-phase
systems.

DEFINITION 7.1. A system (A, B, C, D) C’’ such that D is invertible is called
minimum phase if A- BD-1C has its eigenvalues in the open left halfplane. We denote
by M the subset of cm,’m containing all minimum-phase systems. TM denotes the
set of transfer functions of systems in M.

The role minimum-phase systems play in the spectral factorization problem is
indicated in the following proposition, which summarizes some standard results (see,
e.g., [8], [32]).

PROPOSITION 7.1.
(1) Let (A, B, C, D) C’’’ such that D + Dr> 0 and assume that there exists a

solution P P> 0 to the corresponding PRRE. Then the following statements
are equivalent:
(i) (a, B, C, D)6
(ii) The minimal solution Pmin and the maximal solution Pmax to the PRRE are

such that 0 < Pmin < Pma.
(iii) There exists a solution Po to the PRRE such that the eigenvalues of

A- B(D+ DT)-’(C- BTpo)

are in the open left halfplane.
If iii is satisfied, then P0 Pmin.

(2) Let P(s) TP with realization (A, B, C, D) P. Then

P(iw)+ P(-iw)T= M(-iw)TM(iw),
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for some M(s) TM. A minimal realization of M(s) is given by

(A, B, C, DnT(C-BTpmin) Din),

where Pmin is the minimal solution to the PRRE corresponding to (A, B, C, D)
and Dm is such that DTmDm D + DT.

This proposition suggests how we can relate positive real systems to minimum-
phase systems. The precise relationship is given in the following proposition where
for a minimum-phase system with a given D-matrix we uniquely define an associated
positive real system.

PROPOSITION 7.2. For D ?)mxrn, invertible, let

M..D {(/,/}, ,/) MT b D},

Pn,D= {(, , ) p.

with TMD and TPD the sets of corresponding transfer functions.
The map

SpM,D Pn,o --’> Mn,O

(Ap Bp, Cp, Dp) --> (Am Bm C,. Dm) := (Ap, Bp D T( Cp y
_Bppmin),D)

where Pmin is the minimal solution to the PRRE corresponding to (Ap, Bp, Cp, Dp), is a
bijection. Its inverse is given by

--1SPM,D Mn,O "--> Pn,O

(A., Bin, Cm, Din) > (Ap, Bp, Cp, Dp) := (Am, B,., DTCm + BTp, }DTD),

where P is the solution to the Lyapunov equation

(16) ATmp+ PA,, =-C T C

Moreover, SpM,D preserves system equivalence.
Proof By Proposition 7.1 the map SpM,D is well defined. To show that S-PM,D is

well defined we first must show that for (Am, B,,, C,,,Dm)M,,D the system
(Ap, Bp, Cp Dp)= -1SpM,D((Ap, Bp, Cp, Dp)) is in C’

First note that P solves the PRRE corresponding to (Ap, Bp, Cp, Dp). Let P(s)=
Cp(sI-Ap)-XBp + Dp and M(s) C(sI-A)-aB +Dm then standard algebraic
manipulations show that

P(iw)+P(-iw)T=M(-iw)TM(iw), w.
Since by assumption M(s) has McMillan degree n this implies that P(s) also has
McMillan degree n. This shows that (Ap, Bp, Cp, Dp) C".

(Ap, Bp, Cp, Dp) P follows from Proposition 7.1 as

:= Ap Bp(Dp + Dy)-’( Cp BP) A.,

has all its eigenvalues in the open left halfplane. It is now straightforward to verify
that SpM,D is in fact a bijection and preserves system equivalence.

We now define a minimum-phase system to be minimum-phase balanced if its
corresponding positive real system is positive real balanced.

DEFINITION 7.2. A system (A, B, C, D)M is called minimum-phase balanced
if the system S,4.D((A, B, C, D)) is positive real balanced. The minimum-phase gramian

SpM,D((A, B, C, D)),E,, of (A, B, C, D) is defined to be the positive real gramian Ep of -1

i.e., ;,, Ep.
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A canonical form for minimum-phase systems can now be derived using Proposi-
tion 7.2 to carry the canonical form for positive real systems over to the class of
minimum-phase systems.

THEOREM 7.1. The following two statements are equivalent:
(1) M(s) TM.
(2) M(s) has a realization (A, B, C, D) x"xm. X )tnm given by

the parameters:
l>pl>.. ">pj>.
n nj, nk,

rl,. ., rj," ", rk,

UI, Uj, Uk,
B1,""", B,""" ,B,
A1,..., A,""" ,Ak,

D,
in the following way:

k
nj ,J, j=l nj n;

rW, 1 -< r =< min (nj, m);

t:f =
Bj ,’ positive upper triangular;. , njnj in r;balancedform;
D mm, D invertible

If (A, B, C, D) is partitioned according to n1,’", n, nk, then,

(i)

(ii)

(iii)

(iv)

(v)

Bj ((DTD)I/2) l<j<k

C D-r(DTD)/2( UA -p/f O) where A (//f)1/2, 1 =<j _--< k;
2

ajj
l+p2 l+pj______z [diag (Aj2. 0)]1- [diag (Aj2., 0)]d
p 2p

+ diag (BjUA, 0), l<-j<-k;

1
2 (p(1-p/) diag (/i/, 0)-pi(1 _pj2.) diag (AiUUA, 0))Ao -p_p

+ diag (BUA, 0), 1 --<_ i, j --<_ k, j.

D m, invertible.

The map Fro, which assigns to each system in M the realization given in (2), is a

canonical form
COROLLARY 7.1. The following two statements are equivalent:
(1) m(s)6 TM
(2) m (s) has a realization (A, b, c, d) t tt 1 1 given by the

parameters:

1 >pl>...>pj,...
nl, nj, nk,

Sl,’" ",Sj,’’’,Sk, s +1,
bl, a(1)l,’’’, a(1)j,..., (1)nl_l, bl>O,

"i (i)n,-1,bi, a(i)l a( )j, a bi>O,

bk, a(k)l,’’’, a(k),..., a(k)nk-1, bk> O,
d, dt,

k=1 n n;
l<=j<=k;

a(1)j > O, lj<=nl-1;

a(i)j > 0, l <=j <= n, -1;

a(k) > O, l<=j<=nk--1;
d#0

Moreover, A, B, C, D) as defined in (2) is minimum-phase balanced with minimum-phase
gramian

"-’m diag (p In,," "’, pIn, pkI,k).
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in the following way"

(i) b=(b,, O, O, bj, O, O, bk, O, O) T,
nj

1
(ii) c=-((O,...,O,...,(s-p)b,O,...,O,...,

nj

(Sk--pk)bk, O, 0),

nk

(iii) For A=: (Aij)l<=i,j<=k we have
(a) block diagonal entries Ajj, 1 <-_j <-k"

aj

-a(j)l 0 a(j)2
-a(j)2 0 0

0 0 a (j),,_
-a(j),_, 0

with c 2d2p (1 sjpj)2;

(b) @diagonal blocks Ai, 1 <= i,j <- k, j"

0 0.

0 0 -bibAij with ai)-- d2(sisjp +pj)
0 0

(1-- siPi)(1-- sjp);

(iv) d 6,9t, d #0.

Moreover, (A, b, c, d) as defined in (2) is minimum-phase balanced with minimum-phase
gramian

E,, diag (plln,, , pIn, , pklnk).

The map F,, which assigns to each system in M I, the realization given in (2), is a
canonical form.

While the canonical form we have just derived has a structure that is very similar
to the canonical forms derived for the other classes of systems, there is a certain loss
of symmetry in this canonical form. This is most apparent in the case of single-input
single-output systems. In the previously derived canonical forms, the entries of the
b-vector and c-vector had the same modulus. Moreover, the canonical forms were
sign-symmetric (see 10 for a precise definition). The sign-symmetry is lost in the
above canonical form for single-input single-output minimum-phase systems. By stan-
dard arguments it can be shown that all single-input single-output minimum-phase
systems have a sign-symmetric realization; the canonical form for single-input single-
output asymptotically stable systems of Corollary 2.1 restricted to minimum-phase
systems is such an example. It is, however, not clear whether it is possible to find a
"balancing scheme" for minimum-phase systems such that the corresponding canonical
form is sign-symmetric for single-input single-output systems and at the same time
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leads to a parametrization whose parameter space has the desirable geometric structure
of the canonical form presented here.

8. Discrete-time systems. The canonical forms derived in the previous sections
dealt with continuous-time systems. In this section we will show that the standard
technique of bilinearly transforming continuous-time systems to discrete-time systems
can be applied to derive canonical forms for various classes of discrete-time systems.
We first define the classes of systems that will be considered.

DEFINITION 8.1. Let (A, B, C, D) )nXn X }nxm x } pXn x } pxm and G(z)=
C(zI-A)-B+D.

(1) If all eigenvalues of A are in the open unit disk, then (A, B, C, D) is called
discrete-time asymptotically stable. The set of discrete-time asymptotically stable
systems in LPd is denoted by Dp’" with TDP# the corresponding set of
transfer functions.

(2) A system (A, B, C, D)Dp’’ is called discrete-time bounded real if

I-G(e-i)TG(ei)>O, 0 [0, 27r].

The set of discrete-time bounded real systems in D.m’m is denoted by DBP.’’
with TDBP.’’ the corresponding set of transfer functions.

(3) A system (A, B, C, D)D’m is called discrete-time positive real if

G(e-)r +G(e)>O, 0 e [0, 27r].

The set of discrete-time positive real systems in DP,’" is denoted by DP7 with
TDP7 the corresponding set of transfer functions.

(4) A system (A, B, C, D) DT’’ is called discrete-time minimum phase if

((z) := G(z)-’ TD7".

The set of discrete-time minimum-phase systems in D’’ is denoted by DM
with TDM the corresponding set of transfer functions.

(5) A system (A, B, C, D)6D’’ is called discrete-time allpass if for some cr > 0,

O(e’)G(e-’)T=tr2I, 0 [0, 2r].

The set of discrete-time allpass systems in D.’’’’ is denoted by DAm. with
TDA the corresponding set of transfer functions.

The following proposition summarizes some basic results on the bilinear transfor-
mation.

PROPOSITION 8.1. The transformation

TUP,"" TC"--- TD",

G(s) - Gd(Z) := G
+1

is a bijection with inverse

(TU..m) -’. TD.’-, TC.",

(l+sGd(Z) - a(s) := ad \_ s/

which induces a bijection between TBPn"m and TDBP#’’. Ifp m then TU"" induces a

bijection between TA and TDA, TP’ and TDpm,, as well as TM and TDM.
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This mapping also has a formulation in terms of state-space systems, which is

given in the next proposition [3], [10], [22].
PROPOSITION 8.2. The transformation

SUPn’m" C p,m .__> Dp,

(A. B. C. Dc) -> (Aa. Ba. Ca. Da).

(Aa. Ba. Ca. Da):=((I-A)-(I+A).x/(I-A)-B..,/ C(I-Ac)-’.
D+C(I-A)-’B)

which induces a bijection between B Pn’m and DBPn’m. If p--m, then SUn’m induces a

bijection between An and DA, P and DP’n, as well as M and DM. The map
SUP’’ preserves system equivalence as well as sign-symmetry of state-space realizations

if p= m; i.e., for (Ac, Bc, C, D)=(SU’n)-I((Ad, Bd, Ca, Dd)), (Ad, Bd, Ca, Dd)
D’" we have

A SAfS. B SC

if and only if
Aa SAS, Ba SC,

for some S diag (+ 1,. , + 1)
The previous proposition llows us to carry over the canonical forms for con-

tinuous-time asymptotically stable systems to the discrete-time case.
THEOREM 8.1. If F, Fa, Fb, Fp, and F,, are the canonical forms for the sets C P# ’n,

p, p,An, Bp#m, Pn andM as defined in the previous sections, then DF := SUn F(SUn m)-l,
DF := SU’’mFa(SU’") -1, DF. := SUP,’mFo(SUP#m) -1 DFp := Su’mFp(SU’m) -1

and DFm := SUn" Fm(SUn’m) -1 are canonical forms for the sets DP#m, DA, DBPn’m,
DP, and DM.

Remark 8.1. Analogously to the continuous-time case we can introduce balancing
techniques for the various classes of discrete-time systems by balancing solutions to
the corresponding discrete-time Lyapunov and Riccati equations. Since the map SUP#
leaves such solutions invariant (see, e.g., [3], [10], [22]), SUP2m, in fact, preserves
balancing. Hence the canonical forms for discrete-time systems introduced in Theorem
8.1 are therefore in terms of balanced representations.

9. Model reduction. One of the main advantages of balanced representations is
that they can be used for a very straightforward method of model reduction. Moore
[19] has, in fact, introduced balanced realizations for stable linear systems to have an
efficient way of performing model reduction. His scheme was based on the following
state-space projection method. Consider an n-dimensional balanced system
(A, B, C, D) and partition it conformally as

A All A12 B C (C1, C2)
A21 A22] B

such that for 1 <- N < n, All )] NxN, B1 f, Nm, and C1 pN, The principal subsys-
tem (All, B1, C1, D) is then considered to be an approximant of (A, B, C, D).

is a bijection with inverse

(SUPn,m) -1. DPn,m ._..> Cp,

(Aa. B,. C,. Da) (A. Bc. Cc. D).

(A, B, Cc, Dc) :- ((I + Ad)-I(Ad I), v/(I + Ad)-IBd, v/ Cd(I + Ad) -1,

Da-C(I+Aa)-IBa).
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Pernebo and Silverman [29] were the first to show that the approximant of a
balanced system in CP’m is again balanced, minimal, and asymptotically stable. Their
result, however, assumes that truncation does not occur between states corresponding
to repeated singular values. Otherwise the approximant may no longer be asymptotically
stable and minimal. Analogous results with the same restriction were shown in [7] for
positive real systems, in [16] for Riccati balanced systems, and in [28] for bounded
real systems.

We now suggest a model reduction technique that is more suitable to our particular
setup than the method discussed above. Rather than working with the state-space
systems directly, we perform the model reduction by reducing the parameters corre-
sponding to a certain system.

We have seen that associated with each system is a set of parameters as follows:

r :V, 1 -< r _-<min (ny, m, p);
Uj G )] P, ujT. uj Irj
By rj,, positive upper triangular;
Ay 5 in r-balanced form;
O G ,pm

A reduced-order system of degree N can now easily be defined by retaining of these
parameters only those that correspond to the first N states; i.e., if jN is such that

nl +" + ny < N_-< nl +" + nyn + hyN+l, then take the following parameters:

0"1,. O’jN, O’jN+I

hi, njN, PnyN+
Vl ,’’’, UjN PU+ PU,+

A1, AjN, PAy,+ 1, PAj,+ 1,

PnjN+ := N-(nl +" +
the first min (FjN+I PnjN+l
columns of U+I.
PBj+ the first min (r+, Pnj,+l)
rows of JN+1

the principal submatrix of

Ay+l of size PnyN+l.

By the parametrization results of the previous sections these parameters define a unique
reduced-order system that is in the same class of the systems as the original system.
We can call this scheme a parameter projection method.

We can summarize this method in the following theorem.
THEOREM 9.1. If (A, B, C, D) is a continuous-time system in cp#m(A", LPn"m, BPn’m,

P, M) given in the canonicalform ofTheorem 2.1 (3.1, 4.1, 5.1, 6.1, 7.1) withparameters

0"1> >O’j> > O’k>O
nl, ny, nk, nj g’, 2=1 nj= n;

rl, , ry, , rk, r e N, 1 <_-- r _--< min (ny, m, p);

UI Vj, Uk, Vj G } px, U Uj Irj
1, ", Bj, , Bk, ,t 9 positive upper triangular;

1 ," ", Aj, o, Ak, Aj ’5’5 in )-balancedform;
D, D ,t’"
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then each N-dimensional system, 1 <-_ N < n, obtained by the balanced parameter space
model reduction scheme, i.e., each system given by the parameters

O’l," ", (TiN (FiN+l,

n nj Pnj /

UI, Uj, PUj+I,

A1, ", N, PAj+I,
D,

PnjN+I:=N-(nl +.. + njN);
PUj,+I thefirst min (rjN+l PnjN+l
columns of U,+I
Ptj+I thefirst min (rj,+l, PnjN+,)

ofrOWS jN+

P’N+ the principal submatrix of
AN+ ofsize Pn/

and parametrized as in Theorem 2.1 (3.1, 4.1, 5.1, 6.1, 7.1) is again in canonical form
and therefore in the same class ofsystems, i.e., in cP’mN Ares, Lf4’, Bp’mn PN,

From this result we can easily obtain a result concerning model reduction using
the state-space projection method.

COROLLARY 9.1. If (A, B, C, D) is a continuous-time system in CP# (A, LP#",
BP#’, P, M) given in the canonicalform of Theorem 2.1 (3.1, 4.1, 5.1, 6.1, 7.1) then
each N-dimensional principal subsystem of (A, B, C, D) is again in canonical form and
therefore in the same class of systems, i.e., in Cf4’(A, L’, BP#m, P, M) iffor
some 0 <-iN <-- k- 1,

n, + + njN + rjN+l N <= n + + njN n njN+l

where we set no O.
Proofs. The result follows by inspection since the reduced-order system is para-

metrized by a set of parameters as in Theorem 9.1. [5]

Because of the particular nature of the nonuniqueness of balanced realizations
Corollary 9.1 is, in fact, more general than the results in [29], [7], [16], and [28], where
it is assumed that truncation occurs at a point of nonrepeated singular values. We can
recover these results immediately in the following corollary.

prn prnCOROLLARY 9.2. If (A, B, C, D) is a continuous-time system given tn C,’ (L2
BP#m, P"fl, Mm,) that is Lyapunov balanced (Riccati balanced, bounded real balanced,
positive real balanced, minimum-phase balanced) with gramian Z
diag (or In1, ", irking), then the N-dimensional principal subsystem is in the same class

of systems, i.e., C P’’ P" p,m for some joN (LN Bn PN, MN), ifN=n, +n:z+.’.+njo
1,...,k.

We obtain a very general model reduction result if either the input or the output
dimension of the system is one. Then we have that the r parameters are also one, and
hence the condition Corollary 9.1 is always satisfied.

COROLLARY 9.3. Assume that min (p, m) 1. If (A, B, C, D) is a continuous-time

system in CP# (A, LPdm, Bp’m, P, M) given in the canonical form of Theorem 2.1
(3.1, 4.1, 5.1, 6.1, 7.1), then each N-dimensional principal subsystem of (A, B, C, D) is

again in canonical form and therefore in the same class of systems, i.e., in C f4 (A,
Lp BP. Pr, M).

Remark 9.1. Note that for the particular type of canonical forms presented in this
paper we cannot, in general, expect to have a model reduction result based on the
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state-space projection method by which truncation can occur at an arbitrary place.
This is due to the fact that we use (/}j/}f)1/2 as a parameter in the C-matrix and that
(/j/}f) 1/2 has no specific structure. In the case of the canonical forms presented in
[22] and [27], (/}/}r)1/2 was constrained to be diagonal and we have the general model
reduction property.

In [1] and [22] a model reduction technique was suggested for balanced discrete-
time systems in D,p’m by carrying a discrete-time system over to a continuous-time
system using the map SUP,"" This corresponding continuous-time system is reduced
to a lower-order system which is then mapped back to a discrete-time system using
the inverse mapping. Thereby we obtain a lower-order approximant to the discrete-time
system. The following corollary shows how it is possible to obtain in this way a
discrete-time version of Corollary 9.1.

COROLLARY 9.4. Let (Ad, Be, Ca, Od) be in one of the following classes ofdiscrete-
time asymptotically stable systems" D p’m" DAm, DB p’m" DP, and DM. As,sume, that
(Ad, Bd, Cd, Dd) is given in the corresponding canonical form. Let (A, B, C, D)
be the N-dimensional principal subsystem of Ac, Bc, C, D

prrl(SUP’m)-I((Ad, Bd, Cd, Dd)), then (,d, d, d, d) := SU," ((ac, Bc, e, De)) is in the
corresponding subclass of N-dimensional systems, if

n1+ +rljN+rju+l<=N<=nl+ +njN+njN+l.

Clearly, all the other continuous-time results in this section can be carried over
to discrete-time systems in the same way.

10. Final remarks. The paper dealt with canonical forms and parametrizations
for the following classes of linear systems of fixed dimensions" asymptotically stable
systems, allpass systems, the general class of minimal systems, positive real systems,
bounded real systems, and minimum-phase systems. All the canonical forms are given
in terms of balanced realizations for the particular class of systems. Several aspects of
these parametrizations were discussed including model reduction.

It was pointed out that all the canonical forms have a similar structure. Only the
way the parameters enter the entries of the system matrices determines whether or not
a system belongs to a certain class of systems. We are going to make a few further
remarks concerning common properties of the various canonical forms.

Sign-symmetry and Cauchy index. With the exception of minimum-phase systems
all scalar systems that are given in one of the previously derived canonical forms have
the so-called sign-symmetry property, i.e.,

Ar= SAS, b Sc r,
where S is a diagonal matrix whose diagonal terms are +1. In particular, if

nl, nj, n k, Sl, sj, sk

are the usual ,structural parameters of a scalar system given in one of the canonical
forms of Corollaries 2.1, 3.1, 4.1, 5.1, 6.2, 7.1, then the sign-symmetry matrix S is

S diag (SlI,,," ", sI,,. ., SkI,),
where ], =diag (+1,-1, +1,..., (-1)+1) e. Note that by Proposition 8.2 the
canonical form of a discrete-time system is sign symmetric if its corresponding con-
tinuous-time system is sign symmetric. An important property of the sign-symmetry
matrix of a system is that it can be related to the Cauchy index of its transfer function.
The Cauchy index of a rational function is defined as follows.
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DEFINITION 10.1. Let p(x) and q(x) be relatively prime polynomials with real
coefficients. The Cauchy index Cind(g(x)) of g(x) p(x)/q(x) is defined as the number
of jumps from -oe to +oe minus the number of jumps from +oo to -ee of g(x) as x
varies from -ee to +oe.

A consequence of a result in [2] is that if a system is sign symmetric with respect
to a sign-symmetry matrix S, the Cauchy index of its transfer function g(s) is given by

Cind(g(s)) trace (S).

In [25] it was shown that systems in C 121 with Cauchy index n characterize the so-called
relaxation systems. These are systems whose impulse response is a completely
monotonic function.

Geometric aspects of the parameter space. Another important aspect of the canoni-
cal forms presented in this paper is the comparatively simple structure of the parameter
space. In many other canonical forms for minimal systems the parameter set at which
the systems lose minimality is described by complicated sets of algebraic equations.
Here minimality is preserved provided certain parameters are strictly positive. A
disadvantage, however, is that even in the case of SISO systems several distinct
structures are necessary to parametrize any of the classes of systems considered here.

Let Sn denote any of the following classes of single-input single-output systems"
CI,1 1,1 1,1L B or P. We have shown that each system in Sn has associated with it a
unique set of discrete parameters"

k
nl, nj, nk, nj 6,3/’, :i n= n,

s,’’’,s,’’’,sk, sj :t:1, 1 =<j_--< k.

If we denote by S,(n, n2,’’’, rig’,S1, $2,’’’, Sk) the set of systems in S, with the
discrete parameters (hi, n2, , nk S1, S2, Sk), then we can clearly write the set
S, as the disjoint union of the sets S,(nl, n2, , rig’, S1, S2," ", Sk), i.e.,

S,, (._.J S,,(n, n2, nk" S1, $2,’’" Sk).
lk_n

nld-n2d-...+nk
Sl=+/- l,s2+/- l,’",Sk

It follows easily from the structure of the continuous parameters that for each choice
of discrete parameters /11, n2," ", nk s1, $2," ", Sk the parameter set of
Sn(nl, n:, ,,rig’, S1, $2," Sk) is, in fact, diiteomorphic to n+k x,R. Therefore we
have a decomposition of the set S, into disjoint "cells," each ofwhich are diffeomorphic
to a Euclidean space. The term "cell" is used here in a loose sense and not in its strict
topological meaning. We will not go any further into a topological investigation of
this decomposition. We refer to [9] and [14] where a different decomposition, which
originates from a continued fraction expansion of scalar transfer functions, is intro-
duced and investigated. It is, however, interesting to consider the number of cells in
our decomposition. The total number of cells of S, is easily seen by induction to be
2 x 3 n-1. The number of cells of dimension n + k is equal to the number of different
choices of k blocks of singular values times the possible choices of signs, which is 2k

and therefore gives

k 1

Note that we neglect the parameter that corresponds to the d-term, which is not relevant
to the present discussion. Another number of interest is the number of cells of fixed
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dimension corresponding to a certain Cauchy index. These numbers are not so easily
determined and we will just give a small table that contains these numbers for small
dimensions.

Number of cells of given dimension and Cauchy index.

Order dim

n+k

Cauchy index

-4 -3 -2 -1 0 2 3 4

2
2

4 4
3 3

2
2 8 2
6 12 6
4 6 4

It is surprising to see that the different numbers we have obtained coincide with
the numbers found in [9] for the cell decomposition of Lln’1, which was derived from
continued fractions of the transfer functions. Simple examples show, however, that
this decomposition is not identical with the decomposition derived here. We have not
considered minimum-phase systems here. Similar results, however, also hold for these
systems.

The geometry of the parameter space was used in [26] to study connectivity
properties of the various classes of systems. See [24] for the case of asymptotically
stable systems.
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STOCHASTIC REGULATOR THEORY FOR A CLASS OF
ABSTRACT WAVE EQUATIONS*

A. V. BALAKRISHNAN?

Abstract. A class of steady-state stochastic regulator problems for abstract wave equations in a Hilbert

space--of relevance to the problem of feedback control of large space structures using co-located con-
trois/sensors--is studied. Both the control operator, as well as the observation operator, are finite-
dimensional. As a result, the usual condition of exponential stabilizability invoked for existence of solutions
to the steady-state Riccati equations is not valid. Fortunately, for the problems considered it turns out that
strong stabilizability suffices. In particular, a closed form expression is obtained for the minimal (asymptotic)
performance criterion as the control effort is allowed to grow without bound.

Key words, stochastic regulator, abstract wave equation, steady-state Riccati equation

1. Introduction. In this paper we consider a class of steady-state stochastic regu-
lator problems arising in active stabilization of large space structures using co-located
sensors and controllers [1]-[4]. We deal only with the abstract formulation of such
problems as a wave equation in a Hilbert space (reference may be made to [2] to [3]
for specific examples). In this formulation both the control operator and the observation
operator are finite-dimensional. As a result, the theory is actually more difficult because
the exponential stabilizability condition usually invoked for the existence of solutions
of steady-state Riccati equations (e.g., in [4]) is not valid. The latter result--the lack
of exponential stabilizabilitymfollows from [7]. On the other hand, the noise model--
the driving or "input" noisemis finite-dimensionalmso that the complications of the
infinite-dimensional Wiener process (see [5]) are avoided--even though, of course, it
induces infinite-dimensional noise in the state variables. In particular, it turns out that
steady-state covariance operators need not be nuclear, so that white noise theory [6]
is more convenient (even if not essential, since the systems considered are linear!).
Some background in this context is provided in [6]. Also we make extensive use of
the notions and results of stochastic control theory developed in [6].

We begin in 2 with the basic system description and problem formulation. The
properties of the system essential in the sequel are outlined. In particular, the result
of Benchimol [9] on strong stability plays a crucial role throughout. In fact, all
"closed-loop" system semigroups are strongly stable and turn out to be adequate for
asymptotic stationarity of the processes generated.

Section 3 presents the main results of proofs. A useful corollary provides an
expression for the minimal attainable performance as control effort is increased without
boundin particular, in the application context it yields the minimal attainable mean
square pointing error using co-located rate and attitude sensors.

2. System description and problem formulation. We begin with the state equation,
which is a wave equation in a Hilbert space with random noise input:

(2.1) MY(t) + Ax( t) + Bu( t) + BNa( t) O.

* Received by the editors February 7, 1990; accepted for publication (in revised form) November 30,
1990. This research was supported in part by National Aeronautics and Space Administration task assignment
49" NAS1-18585.

? Electrical Engineering Department, University of California, 6731 Boelter Hall, 159410, Los Angeles,
California 90024.
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With denoting the (separable) Hilbert space, M is a linear bounded self-adjoint
operator on into which is nonnegative definite with a bounded inverse (zero is
in the resolvent of M). In what follows we may, and will, assume M is the identity,
without loss of generality in the theory. The operator A is unbounded, closed, with
domain dense in and is self-adjoint nonnegative definite, and has a compact resolvent
with zero in the resolvent set. The operator B is finite-dimensional mapping into
R n. The random noise is white Gaussian with spectral density matrix Da. The control
input u(. is to be physically realizable so that u(t) at time is to be based only on
observed data up to time t. The observations v(. is given by

where

v(t)
Vp(t)
Vr(t)

(2.2)
vv(t) B’x(t) + Np( t),

v( t) B*:( t) + N( t),

where Np(. ), Nr(" are independent white noises (independent also of the state noise

Na (.)) with nonsingular spectral density matrices Dp and Dr, respectively. The optimiz-
ation problem is a "stochastic regulator" problem" Minimize

(2.3) lim l[Ior Ior ]_- IIn*(t)ll 2 dt+A Ilu(t)ll = dt

for fixed h > 0. We are also interested in what happens as h- 0.
We begin by recasting (2.1) in the usual way with a slight difference in that a

special inner product is introduced, which in fact is crucial in what follows.
Thus let z denote the energy-inner product space

with inner product defined by

[Y, Z]E [,- y,, Zl] + [Y2, z2],

where

Y= Y Z=
Y2

Defining, in the usual fashion (see [2], [6]),

we being with (2.1) in the form

Z1

@() @(A) x ,
mapping R" into E,

(2.4) (t) Y(t) + u( t) + Na( t),

where we note that (the adjoint * in (in the energy-inner product!)):

+*=0, ()=(*)
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and generates a strongly continuous isometric semigroup (actually a group). Also
the observation v(.) goes over as

v( t) CY( t) + No(t),

where

CY= No(t)
Np(t)
Nr(t)

where C maps Y( into R R n.
Next we make the crucial assumption that ---3 is controllable. A sufficient

condition in terms of A and B is this" let be any eigenvector A"

Then

B* =0

only if 4 0. The proof exploits the fact that the eigenvectors of A are complete in. The controllability condition yields the Benchimol [9] result, which plays a central
role in our theory that

is strongly stable. Furthermore, with $1(.) denoting the semigroup generated by
(-NN*) we have that for Y @(),

1 d 1
,)

2 dt
IIs,(t) Nil- {( 33")S,(t) Y, S,(t) Y)E + (Sl(t) Y, ( 3 S,(t) Y) }

---I[*S,(t)YIl,
and hence

Yll - IlSl(t) Yll :Sl(O-) Yll = do’.

The domain of being dense in Ye, this holds for every Y in . Hence taking limits
as oo we obtain

(2.6) *Sl()ll do-.

Replacing M by M* and equivalently Sl(" by S(. )*, we also have that

(2.6a) *s,(,)* Yll 2 do-.

Finally, (2.3) becomes" Minimize

( fo }(2.7) lim II* Y(t)l[ dt/-- ]lu(t)ll dt
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(where * is the adjoint of in the energy-inner product!) We note here, for future
reference, that

A-1Bvp
ifY B*yl,(2.8) *Vp

0

(2.9) *Y= -B*y2,

A-1Bvp
(2.10) C*v

Bl)r

(where C* is the adjoint of C in YgE (in the energy-inner products),

A-1BD-IB*yl(2.11) C*DICy=
BD-/ B.y2

where Do is the spectral density matrix of the process No(" )).
The stochastic regulator problem is then embodied in (2.4), (2.5), and (2.7).

3. Main results.
THEOREM 3.1. The stochastic regulator problem (2.4), (2.5), (2.7) has the optimal

solution given by

-*Pc(t)
(3.1) Uo(t)-

A

where Pc is the unique self-adjoint solution of
*PcY, *PcY]

(3.2) 0 [PcY, Y] + [Y, PcY] + [* Y, *Y]

and Y(. is defined by the "Kalman filter" equation

(3.3) Y(t)=(-PyC*DIC) "(t) Y3*--- Per(t)+ PyC*Dlv(t),

where Pf is the unique self-adjoint solution of
(3.4) O=[PyY, s* Y]+[s* Y, PyY]+[IDa*Y, Y]

-[PfC*DICpfY, Y], Y (g*).

The corresponding (minimal) cost functional is

Tr *Pfl* + Tr x/D CPfPcPfC*x/D1.(3.5)

Also

lim
1 Iory-, - * Y(t), * Y(t)] at

Tr N*PyN
goes (decreases) to

(3.6)

as h->0.

Y @(M),

We begin with some preliminary lemmas.
LEMMA 1. -C*D-Ic generates a strongly stable semigroup So(" such that for

every Y in

(3.7) IIx/D CSo(cr)
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Proof Since s generates an isometric group it is enough to show that

sd.-. C*x/D
is controllable. Let S(. denote the semigroup generated by s. Suppose

(3.8) //D- CS( t)* Y-- O O.

We need to show that Y must then be zero. Now letting

S( t)* Y=
y’(t)
yz(t)

we have that (since Do is nonsingular)

B*yl(t)
=0, t=>0.(3.9) CS(t)* Y=

B*y2(t)

However,

B*y2(t) -*S(t)*Y

and, in particular, (3.9) implies that

N*S(t)*Y=O,

which because of our assumption that

Y--0.

is controllable, implies that

0<= t,

satisfies

Let

and

( t) sCY( t) + No( t),

(t)= "(t)+ TC*D’C( Y(t)- (t))+ TC*D’No,

Z( t) Y(t) ( t)

2( t) sg yC*D-d1C)Z(t) + yC*DlNo+N(t).

(t) E[Z(t)Z(t)*].
Then R(t) converges strongly to R(oo) and

(3.10) [R() Y, Y] + IIx/Do *S(s)*YII2 dtr,

Then we have

Hence (s---C*x/D1) is controllable and (sd-C*DglC) is strongly stable. Hence
also (3.7) follows from (2.6) taking 3 C*x/D therein. Also using s* in place of
s, we may replace S0(tr) by So(tr)*.

As a consequence of this lemma we can state Lemma 2.
LEMMA 2. Let the control u(t)=-0, and define the process Y(.) by

Y(t)=(g-yC*D’C)+yC*Dlv, T>O.
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where Sv(. is the semigroup generated by ,,cd-TC*DIC, and the second term

<= Da Doll.]Ix fJ*Sv(o" YII 2 dtr Yll 2
23’

Proof. The proof is fairly immediate from

JR(t) Y, Y]=[ASv(t)*Y Sv(t)*Y]

-’t" 312C *D-1C + @D,I* * *)Sv(tr) Y, Sv(tr) Y] dtr,

where

A E[( Y(0)- (0))( Y(0)- (0))*].
See also [6] if necessary for a similar argument. Also

*s*() Yll 2 &r <

follows from

I1 s(r) Yll = dcr__< CSv*(tr YII 2 do’ IIDoll [I,/D-’ CS*()Yll dtr

Doll YII
2T

THEOREM 3.2. There exist admissible ("feedback") controlsfor which (2.7) is finite.
Proof. We ignore Vp(. and devise controls using only Vr(" and the results in [7].

Note that

G( t) -d* Y( t) q- Nr( t).

If D daI and Do doI, we could use the results in [7] verbatim. For the more general
case considered here we will now show that the choice

(3.11) u(t)= -* (t),
where

(3.12)
Y(t) /(t) (Vr(t) + Yd* l(t)) Yd* Y(t),

P(o) =o
yields an admissible control which makes (2.7) finite. We may think of Y(.) defined
by (3.12) as a "suboptimal" estimate, and, of course, (3.11) is a suboptimal control--in
other words, this is merely a technique to show that admissible controls exist for which
(2.7) is finite.

LEMMA 3. The operator

(3.13) ,5/2
sg* aya* aya*

NN* a*-2*

with domain (()x(d)) in HE X HE generates a strongly continuous semigroup
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Sz(" ), which is strongly stable. Moreover, using the notation

Sz( t)Z ( t)
Z

we have further that

(3.14) II* Y(t)ll dt+ II* (t)ll dt<oo

for each Z.
Proof. The semigroup generation property is immediate; only the strong stability

property and (3.14) require additional proof.
Let Z @(SCz). Then if

we have

Hence

Sz(t)Z-- Y(t)
Y(t)

(t)+ (t)=(*-*)(Y(t)+ (t)).

(3.15) Y(t)+ (t)= Sl(t)( Y+ ), >=O,

where $1(" is the semigroup generated by (M*-Y3*), and (3.15) continues to hold
for all Z in xY. Similarly, from

(t)= M*Y(t)+ Y3Y3*(t)= (g*- Y3*) Y(t)+ Y3Y3*( Y(t)+ (t)),
we have

(3.16) Y(t)--Sl(t)Y+ Sl(t-O.)3*Sl()(Y+ ) d

(3.18)

Now $1(.) being strongly stable and

Io II*S(tr)XII 2 < for any X indo.

it follows readily that (3.18) goes to zero as . Similarly, so does (t), q] using
(3.17). Hence the semigroup Sz(" is weakly stable, and since it has a compact resolvent
it follows that it is actually strongly stable (see [6] if necessary). Next

(3.19) N* Y(t)= N*SI(t) Y+ N*S(t- o.)N*Sl(o.)( Y+ ) do"

Y(t), ] [S,(t) Y, 0]+ [*Sl(o")(Y+ l)), *S,(t-o")O] do".

and also, similarly,

(3.17) (t)=Sl(t)+ Sl(t-o")3,fl3*Sl(o")(Y+ ) do"

for all Y, Y in Y. For any q in , let us show now that

[Y(t), O]-0 as t-.

We have
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since

*s,(t) Yll 2 dt < oo

and the second term is a convolution of functions in L2[0, oo],

[1* Y(t)[[ 2 dt <oo.

By a similar argument, using (3.17),

I1* (t)ll 2 dt<oo

and hence we have proved (3.14).
We can now proceed to prove Theorem 3.2. We consider the coupled equations

(3.20)
Ik(t) 5g/Y(t) *I’(t) + N(t),
1)(t) (5 2*)(t) + J* Y(t) (JNr( t).

Writing

z(t)
Y(t) Y

we obtain

2(t):AzZ(t)+ 3N(t)
(-Nr(t))

Let

E[Z( t)Z( t)*] t( t), (0) A,

where, of course, (t), => 0 is a linear bounded operator mapping YgE x E into itself,
and A is self-adjoint, nonnegative definite and so is (t) for each t. Then

[t(t)Z,Z]=[ASz(t)Z, Sz(t)Z]+fo[ Da’ * 0

0 3Dr3*
S(o-)Z, s(,)z] do-,

where Sz(" is the adjoint of the semigroup generated by

M-* -*
* M-2*

By Lemma 3, Sz(" is strongly stable and the second term in

io Io[DaJ*g(o-), Y(tr)] dG+ [Dr* (o-), ))(cr)] dG

Y(o-)(where we use the notation Sz(o-)Z ,;-(,.))

<- IIDoll I1* g(o-)ll do+ IIDoll I1* f’(o-)ll dcr
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by (3.14). Hence

(t) converges strongly to (oe),

[(oe)Z, Z] < oe for every Z in e x He,

and (oe) is linear bounded, self-adjoint, and nonnegative definite. Hence the process
Z(-) defined (3.20) has a steady state, with steady-state covariance

lim E[Z(T)Z(T+ t)*]= Sz(t)(oe).

In particular, the finite-dimensional process

l* Y( t)

is Gaussian and asymptotically stationary. Therefore

(3.21 lim --1 fo
1

r-, T
IIl*Y(t)lJ2 dt=Trl*llN<e

and, similarly,

(3.22) lim 110r 1 forT-o( - {lu(t)ll 2 dt= T-oolim --T IIN* l(t)[I 2 dt=TrN*22B<c,

where we have used the representation for

11 12(o)
21 22

ij being linear bounded operators mapping 2(e into Yge, thus proving Theorem 3.2.
We are now ready to prove our main results in Theorem 3.1.
We follow in the main the arguments in [6, p. 351 et seq.], except that now we

do not invoke exponential stabilitynreplacing it, in fact, by the strong stability property.
Thus let Pf(t), => 0 be the solution of (the Riccati equation):

d
(3.23) --t PY( Y, Y]=[ Y, Pz( Y] + Pf Y, M* Y] + 3D,3* Y, Y]

PfC*D1CPfY, Y]

for every Y in @(s*)(--@(s)), with

Pf(0) =0.

See [6] for the existence and uniqueness of solution. Pf(t), t_->O, is a self-adjoint,
nonnegative definite mapping 2e into e. Similarly, let Pc(t) be the solution of

d
(3.24) - [Pc(t) Y, Y]=[Pc(t) Y, sY] + [Y, Pc(t) Y] + [* Y, *Y]

[*Pc(t) Y, J*Pc(t) Y]

for Y in @ (s), and

Then both

Pc(O) =0.

[Pf(t) Y, Y] and [Pc(t) Y, Y]
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are monotone nondecreasing, and our first step is to show that the limit is finite in
each case. For this purpose let us use the control defined in Theorem 3.2. Then

(3.25)
T

E[3*Y(t) *Y(t)] dr+ 1-- T

E(llu(t)ll 2) at
T

llor>--- Tr 3*P(t)3* dt
T

+ Tr]D CP()P(T-t)P(t)C*]D

Now by Lemma 2, we see that

[P(t) r, Y] < [R() Y, Y]<

in the notation of (3.10). Hence Py(t) converges strongly to Py, say. Then the right side
of (3.23) converges to the right side of (3.4), while the left side of (3.23) since it
converges must converge to zero. Hence Py satisfies (3.4), and is, in fact, the unique
self-adjoint linear bounded operator solution of (3.4). Next let us consider (3.24). Now
we know that

[Pc(r) g] I1* g()ll d+ Ilu()ll

where

"( t) MY+ 3u,

for any u(. in L2[0, T]. Take now

u(t) -*Y(t).

(3.27)

(3.28) I?(t) MY(t)- (t)+ BNa(t)

( t) (M PfC*D-’ C) ( t) x/ Y(t)+ PfC*Dlv(t),

system

Then

io[Pc(T)Y, Y]<= II*s(t)gll dt+h II*s(t)gll dt

Io<- *s( + *s(1 <.
Hence [P(t)Y, Y] increases to a finite limit, or P() (self-adjoint linear bounded)
which then, of course, satisfies (3.2). In fact, it is immediate that

(3. ec e( L

Hence the right side of (3.25) converges to

Tr N*PN + TrDg CPPcPzC*Dg,
which is (3.5). Moreover, the choice (3.1) yields the cost functional (3.5). In fact, the
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is asymptotically stationary, and

(3.29) lim E[(r(t) (t)) Y(t)*] 0.

It is more convenient to replace (3.27), (3.28) by the system

(3.30)
"(t) M- g*/A PTC*D-IC ’(t)

+
Z(t) 0 ag PfC*D’C Z(t)

where

(3.31)

PfC*x/D-dl No
tNo( t) q- PfC*x/D No(t)

Z( t) Y( t) ( t).

We can verify directly that the semigroup generated by--*/A PfC*DIC
0 M-PfC*DIC

is strongly stable and, furthermore, that system (3.30) is asymptotically stationary. Let

11 J12= 21 22
denote the steady-state covariance. Then we have, of course,

= PC, = 0

/
Y, /11 r +[PfC*D’CPfY, Y]=0,

Ye @(M*).

and lis defined by

(3.32) 1Y’ M* NN*A
An important property of ?11 that follows from (3.32) is that 11 goes to zero

strongly as A- 0. In particular, we have that

(3.33) lim[lim 110r-0

As a result we have the following useful corollary.
COROLLARY. Consider the stochastic regulator problem for the system (2.4), (2.5)

with the cost functional

(3.34) rolim ]Y(t) 12 dt+ Ilu(t)ll 2 dt

(replacing * in (2.7) by ).
Let q(a) denote the infimum of (3.34). en

(3.35) lim q (a) Tr Py*.
T0

In particular,

(3.36) lim IImY(t) [2 dt >- Tr Pf*.
A0

Remark. The novelty in this result is that we do not need to exhibit the optimal
control that minimizes (3.34) for each Z; and indeed we need not thus discuss whether
an optimal control exists! Of course, can be replaced by any finite-dimensional
operator on We.
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Proof For each h > 0, the control u(. defined by (3.1) which is optimal for (2.7),
is certainly an admissible control since the corresponding value for (3.34) is

(3.37)

Hence

Tr Py*+Tr 11*+ Tr * 11"
lim q(A) _--< Tr pyw*.

On the other hand, for any admissible control u(.

lim E[Y(t) Y( t)**] Tr Py*+ Tr /*,

where

where

Hence

/ lim E[ I(t) I( t)*],

""( t) E[ Y( t) v(s), s <= t].

q (A) --> Tr Pf*
and hence the result follows. Note, in particular, that

Ps* Tr B*P11A- B,

where

P11 P22
P21 P22
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FEEDBACK EQUIVALENCE FOR NONLINEAR SYSTEMS AND
THE TIME OPTIMAL CONTROL PROBLEM*

B. BONNARDt

Abstract. This article relates the classification of affine control systems under the action of the feedback
group, with a differential classification of a set of constrained Hamiltonian vector fields, arising from
Pontryagin’s Maximum Principle, for the time minimal control problem. They represent the singularities of
the input-state mapping. This relation provides a method to compute feedback invariants.

Key words, nonlinear control systems, feedback classification, time optimal control, invariant theory

1. Introduction. Let X, Y1, ", Ym be analytic vector fields of n. We are dealing
with control systems of the form

(1)
dx(t)

X(x(t))+ Y(x(t))u(t),
dt

where x ,n, u ,9i’, Y Y1, ", Ym). They are called affine systems.
Let (X, Y) and (X’, Y’) be two affine control systems. They are called feedback

equivalent if there exists a C ditteomorphism ff of " and a feedback u=
a(x)+ (x)u’, where a (,m), fl (,GL (m, )) such that

(i) X’=@,X+@, Y.a,
(ii) Y’=@, Y. fl,

where @. is defined by the following. Let Z be a vector field; then

,z- (zoo)
Ox

(. Z is called the image of Z). This action defines a group structure on the set of
triplets (, a, ). This group is denoted by Gy.

The classification of linear controllable systems under the action of the Lie
subgroup of Gy of triplets (, a, ), where if, a are linear mappings and is a constant
mapping, is now well understood (see [8]). A complete set of (arithmetic) invariants
is the set of controllability indices. Canonical forms, called Brunovsky’s forms, have
been exhibited.

The (local) feedback equivalence problem of system (1) with a linear system was
solved around 1980. A chain of distributions is introduced and Brunovsky’s canonical
forms are recovered by integration of these distributions (see [19] and [18]).

In this aicle, we study the feedback classification for generic nonlinear systems.
Our approach is coming from the philosophy of singularity theory and is justified by
the following two remarks.

First, consider (ii). Let v (respectively, v,) be the map x the linear span of
{ Ya(x), , Y(x)} (respectively, { Y(x), , Y(x)}. Then, (ii) means that the two
distributions v and v, are diffeomorphic. Therefore, a first step in the feedback
classification of affine control systems is the classification of distributions. The classical
results in this area are well known (see [15] for an exposition). They are Frobenius’

* Received by the editors December 7, 1988; accepted for publication (in revised form) July 19, 1990.
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National Polytechnique de Grenoble, Domaine Universitaire, B.P. 46, 38402 Saint-Martin-d’Hres, France.
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theorem for an involutive distribution and Darboux’s classification for a generic
distribution of codimension one. For recent developments in this theory see 12], but,
in any case, all the results are local and mainly concern distributions with constant rank.
Now, when Y 0, (i) shows that the feedback classification is reduced to the analytic

classification of vector fields. Near a point Xo such that X(xo) O, this problem is
solved by the theorem of existence of solutions (X is equivalent to O/Oxl). Near a
singular point x0, i.e., X(xo)=0, this classification is a difficult problem. It was first
studied by Lyapunov, Poincar6, and Dulac (see 1]) and is still the object of investiga-
tions (see [24] and [26]). If we introduce the distribution xX(x), it can be
interpreted as a classification problem for distributions of dimension one and with
singularities.
The main contribution of this article is to show that with certain (reasonable)

assumptions, the feedback classification of pairs (X, Y) is equivalent to the
classification of the distribution Ay and a vector field Z, which will be defined later.
These objects will be encoded in a constrained vector field.

Let us make this assertion precise. A system can be viewed as a map, called the
input-state mapping, which assigns to an input u(.), the response of (1) denoted by
x(., Xo, u), where x(0) Xo is fixed. If we endow the set of inputs with the L-norm,
this map is differentiable and has singularities, which are called the singular trajectories
in the time optimal control problem [5]. They can be parametrized by Pontryagin’s
Maximum Principle (PMP) (see [22]). If we introduce the Hamiltonian H, defined by

/-/(x, p, u) (p, X(x) + g(x)u),

where p tn\{0} and (,) denotes the standard inner product, the singular trajectories
are the projections on the x-space of the constrained Hamiltonian equation

OH OH
i -, (x, p) ,

Op Ox

where E; is the surface {(x, p); (p, Y(x)) 0}.
This equation defines two objects: a surface 2, and the solutions (x(t),p(t)) of

the Hamiltonian equation that stays in Z. We will show that they are the solutions of
a vector field Z/ defined on E; if m is even or on a proper subset of Z if m is odd.

We prove that a singularity of the input-state mapping is feedback invariant.
Therefore, we can define the action of the feedback group on this set of constrained
Hamiltonian equation as follows: (, a, fl) Gs acts on (E;,Z/) as a symplectic
diffeomorphism of ,t2", given by x= q(y), p q(OO-I/Oy) (p, q must be written as
row vectors). According to Klein, the pair ({E;, Z}, Gs) defines a geometry.

Now we can formulate the main results of this article. If two systems are feedback
equivalent, then their associated Hamiltonian equations are Gj.-equivalent. Moreover, if
we restrict our classification to the set of pairs (X, Y) such that (i) A y is of constant
rank, and (ii) m < n 1 when n is even or m < n -2 when n is odd, then, in general, the
feedback classification problem is equivalent to the classification of our set of constrained
Hamiltonian equations.

"In general" means that our result is valid if we substract to the set of systems a
bad set. This set is, roughly, the family of systems where the set of singular trajectories
is too small to be a complete covariant, i.e., to separate all the orbits for the Gz-action
on pairs (X, Y). It is worth pointing out that the linear systems are in this bad set,
because the input-state mapping of a linear controllable system has no singularity.

The interest of our approach is the following. Understanding a geometry (E, G)
consists mainly in describing the algebra of functions I:E - , which are constant on
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each orbit. They are called the invariants., Now, the invariants of the geometry
({E, Z/}, G/) are feedback invariants. They can be more easily computed than the
invariants of the geometry ({X, Y}, G/), because the feedback acts trivially.
Computing invariants is, in general, a dreadful problem. The second part of this

article will indicate how to compute feedback invariants by using two nontrivial
examples. The first example concerns the feedback invariants arising from the time
optimality problem. Indeed, the singular trajectories are the solutions ofPMP associated
with the time minimal or time maximal control problem. Their optimality status is a
feedback invariant. This problem will be studied when n 2 or 3. (When n > 3, see [6].)
The second example concerns the classification of the vector field Za when we study

the feedback classification of a class of homogeneous control systems. We connect this
problem with the linear classification of tensors (vectors, forms, etc.). All the machinery
of this theory can be used, in particular, to compute polynomial invariants (see [16]
for a good description of this machinery). These computations are outlined for systems
in 3 and some feedback invariants are connected to the behaviours of the integral
curves of Z/. This example is instructive. It shows that the vector field Z/ alone can
be very rich and encode informations concerning the optimality problem and the distribu-
tion A y.

In the conclusion, we indicate how to deal with the feedback classification problem
for nonaffine control systems. Again, the basic tool is Pontryagin’s Maximum Principle.

2. Preliminaries.
2.1. Notation and definitions. Let M and N be two analytic manifolds. We denote

by 7/"‘ (M) the set of analytic vector fields of M. If M t", a vector field is identified
with a map from 8t" into 8t n. We denote by (M, N) the set of analytic maps from
M into N. Let Gd be the group of C-diffeomorphisms of . The coordinates of
2 ,9t x 8t are denoted by (x, p). Let x (Xl, , x,), p (Pl, ",P) and endow
.9t2 with its canonical symplectic structure defined by f i--1 dxi ^ dp. Let Z be a
vector field of ,9t , and let g be the map from ,9t2 into ,9t defined by (x, p)--> (p, Z(x)).
The Hamiltonian vector field with Hamilton function g is denoted by Z and is called
the Hamiltonian lift of Z.

2.2. Constrained differential equation.
DEFINITION 2.2.1. Let Zc V(9t"), g (to()n,)), C (to()n,q) and set Z=

Z/g. The pair (Z, {c =0}) is called a constrained meromorphic differential equation. The
set {c 0} is called the constraints set. Let W be the subset of 9

{ rxc }{c=O}c .z=o

and let us assume that g is not identically zero on W. Let S Wm {g 0}. On W\S
there exists an analytic vector field whose solutions are the analytic curves t--> x(t)
that are almost everywhere solutions of Z, which stay in {c 0}.

DEFINITION 2.2.2. Now, we define a geometry on the set of meromorphic con-
strained differential equation. Let G be a subgroup of Gd. With the notation of
Definition 2.2.1., two constrained differential equations (Z, { c 0}) and (Z’, { c’ 0})
are said to be G-equivalent if there exists 0 G such that

(i) {c =0}= q,({c’=O}),
(ii) S O(S’),

--I(iii) 21
Observe that since W is the union of S and integral curves of lw\s, then

W= O( W’).
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CONVENTION 2.2.3. The previous geometry will be denoted .by ({E, Z[w\s}, G).
By solution of a constrained meromorphic differential equation (Z, {c 0}), we mean
an integral curve of Z[w\s.

2.3. Definitions. Let E and F be two -vector spaces, and let G be a group acting
linearly on E and F. A homomorphism x:G- \{0} is called a character. Let X be a
character. A semi-invariant of weight X is a map A:E such that for all g G, for
all x6 E, h(g. x)=x(g)h(x). It is an invariant if X 1. A map A:E- F is a semi-
covariant, of weight X, if for all g G, for all x E, h(g. x) x(g)g" h(x). It is called
a covariant if X 1.

2.4. Singular trajectories.
DEFINITION 2.4.1. Consider a system of ,qt

(2)
dx( t)

f(x( t), u( t)),
dt

where u(t) is a bounded measurable map from an interval [0, T] into " and f is a
C map from ,9i" x" into

Let u be a control defined on [0, T] and take Xo R". The response of system (2)
to u, initiating from Xo, is an absolutely continuous map t- x(t, Xo, u) defined on a
subinterval [0, T’] of [0, T], solution of (2) for almost every [0, T’] and such that
x(0) Xo. Consider a control Uo defined on [0, T] such that the response - x(t, Uo, Xo)
is defined on the whole interval [0, T]. Endow the set of controls defined on [0, T]
with the L-norm, i.e., [lull supte[0,T] lu(t)]. Let Xo, T be fixed. We denote by Exo’r
the input-state mapping, which is given by u- x(T, Xo, u), and is defined in an open
set denoted by Uo + V, where V is a neighborhood of 0. The control Uo is called singular
on [0, T] if the Fr6chet derivative of Eo’r, denoted by dEo’T, is not of full rank at

Uo. The corresponding response - x(t, Xo, Uo) is called a singular trajectory (on [0, T]).
LEMMA 2.4.2. Let v V and let A( t) (Of/Ox) (x( t, Xo, Uo), Uo( t)), B(t)=

(of/Ou)(x( t, Xo, Uo), Uo(t)), then

dEX’( fo
r

uo v)= M(T) M-’(t)B(t)v(t) dt,

where M( t) is the n x n matrix solution of
l(,l(t) a(t)M(t), M(O)=identity.

Proof This result is well known (see, for instance, [14]).
PROPOSITION 2.4.3. Consider, as before, a system of

(t) =f(x(t), u(t)).

Then the pair Uo and x(t, Xo, Uo) is singular on [0, T] if and only if there exists a (row)
ector p( t) "\{0} solution for almost eery [0, T] of the adjoint equation

(3) p(t) -p(t)A(t),

and satisfying for almost eery [0, T]

(4) (p(t),B(t))=O.

Proof. By definition, Uo is singular on [0, T] if and only if the dimension of the
linear span of

M(T)M-l(t)B(t)v(t) dt; v V
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is less than n. Since V is a neighborhood of 0, there exists a (row) vector/5 "\{0}
such that

M(T)M-I(t)B(t)=O for almost every t[0, T].

Let p(t)=/SM(T)M-(t); then p(t) is a solution of (3), satisfying (4) for almost
every [0, T].

DEFINiTiON 2.4.4. A pair (x(t), p(t)) satisfying (2), (3), and (4) is called a singular
extremal (corresponding to Uo). Let us denote by 51 the set

(x, p, u) , x 9t x ,t subject to p,
Ou

Let be the map from ,t’ x ,tx, into , defined by

I(x, p, u)= {p,f(x, u)}.

The set of equations (2), (3), and (4) can be written as

OH OH OH
2=,(2); /i=-,(3); =0,(4).

Op Ox Ou

According to (2.1), (2) and (3) represent the Hamiltonian lift of system x->f(x,. ).
COROLLARY 2.4.5. The set of singular extremals contains the solutions of PMP for

the time minimal and time maximal control problem of system (2).

3. Singular trajectories.
3.1. Computations of singular controls. From now on, we will consider C affine

control, systems

:( t) X(x( t)) + r(x( t))u( t),

where x,tn, u’, and Y=(Y,’", Ym). The surface 51 defined by
{(x, p, u); (p, Y(x)) 0} is now interpreted as a subset of ,qt x n. Consider the con-
straints (4) written as

(5) (p(t), Y/(x(t)))=0 i=l,...,m.

By Proposition 2.4.3, a singular extremal (x(t), p(t)) must satisfy relation (5) for
almost every t [0, T]. Since t--> (x(t), p(t)) is continuous, (5) must be true for every
t6[0, T].

For generic pairs (X, Y) (in Whitney’s topology), the singular controls will be
computed up to a negligible set of singularities as a (dynamic) feedback (x, p)- if(x, p).
Its role is to make a maximal subset of 51 invariant for the solutions of (2) and (3).
Let us carry out the computations.

Differentiating, with respect to t, the relations

(p(t), Y/(x(t)))=O Vi=l,...,m

and since x(t), p(t) are solutions of (2) and (3), with f= X+ Yu, we get the equation

(6) L(x( t), p( t)) + O(x( t), p( t))u( t) O,

where O(x, p) is the m m matrix (Oij) with 00 (p, , Y/](x)), L(x, p) is the m 1
matrix (Li) with Li (p, IX, Y](x)) and where the Lie brackets are computed with the
convention

[Zl /2](x) O12 (X)ll(X)o- o--2 (x)Z(x).
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Let s be the maximal rank of O(x, p). By the antisymmetry property of the Lie
bracket, O is an antisymmetric matrix. Let 51 be the set of pairs (X, Y) such that
when m is even, s m, or when m is odd, s m- 1. To compute the singular controls,
we must distinguish two cases.

Case 1. The number of inputs is even. Let (X, Y) be in S and let t be defined
on an open dense subset of nx 91 by

(7) a(x, p)= -o-l(x, p)L(x, p).

Now, choose (X, Y) such that det O is not identically zero on Z. Define the singular
control almost everywhere in 2: by u(t)= (x(t), p(t)).

Case 2. The number of inputs is odd. The computation is similar to the previous
one, the only complication being the existence of a kernel for O. Let (X, Y) be in 51;
then the dimension of ker O(x, p) is one for almost every (x, p). Let ro= (Xo, Po) be
such a point. Then (6) implies L(ro)=0 when u ker O(ro).

This relation defines an additional constraint, which must be satisfied for a singular
extremal. This is made precise by the following computation.

Near ro (all our computations are local), there exists a matrix P(r) O(r), with
r (x, p), such that

P-’(r)O(r)P(r)=(O,, 0),

where O1(r) is an antisymmetric m m 1 matrix. Moreover, P(r) can be chosen
analytic in the coefficients of O(r), since the eigendirection corresponding to the zero
eigenvalue of O depends analytically on the coefficients of O.

P-1L can be written as (1,//,2) where/7,1 is an (m- 1) column vector, and//,2 is
a scalar. Letus write t P-u as tl + t2, where 1 e m-, t2e . Then (6) is equivalent
to

(6a) L(r)+ O(r)l =0,

(6b) Lz(r) =0.

Let t be the map defined almost everywhere on 2n by

(7a) t(r) 0-1(r) (r).

To compute the component of the singular control in the kernel of O, we derive
(6b) along a solution of (2) and (3). Observe that L2(r) is near ro, analytic in the
coefficients of O(r) and L(r). They are of the form (p, Z(x)), where Z belongs to the
Lie algebra generated by {X, Y, , Ym}. Therefore, differentiating relation (6b) with
respect to along a solution r(t) of (2), (3), we get a relation of the form

(6c) f(r(t)) + gl(r(t))l(t)+ t2(t)g2(r(t)) O.

Let (X, Y) be chosen such that g2 is not identically zero and let t2 be the map
defined almost everywhere on ,qt 2" by

(7b) t2(r) -(f r) g, r),(r))g;’(r).

A control u(t)= P(t) defined by the analytic restriction of (l(r(t)), (r(t)) to
2: c {L2(r) 0] is a singular control.

3.2. Notation. Let M be the variety defined by (i) when m is even, E M, and
(ii) when m is odd M 2: c {L 0}. Observe that in each case the number of equations
defining M is even.
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Let 5eg (g means "good") be the set of pairs (X, Y) in ’-1 given by (i) when m
is even, det O is not identically 0 on E, and (ii) when m is odd, O is almost everywhere
on M of rank m- 1 and g2 is almost everywhere invertible on M.

Take (X, Y) g. Let be the map almost everywhere defined from n n into
R (by (i) when m is even, is given by (7), and (ii) when m is odd, P is given
by (7a) and (7b)). Let S be the of points of M such that is not analytic.

From 3.1, on M\S, the singular control is uniquely defined by the analytic map. In particular, in M\S, every singular extremal corresponds to a unique singular
control, whose role is to make M\S invariant for the solutions of (2) and (3). Such a
singular extremal is said to be of minimal order. Let us denote by rthe function
defined almost everywhere on 2n by

I2I(x, p)=(p, X(x)+ Y(x)(x, p))

and let , be the associated meromorphic Hamiltonian vector field. Let us denote Zq
its restriction to M\S.

PROPOSITION 3.3. Let (X, Y) be a system of Yg. Then the singular extremals of
minimal order are the solutions of the constrained Hamiltonian differential equation

oi:I oi:I
(8) (x, p) z.

Op Ox

Proof By using the constraints (p, Y(x))= 0, we get

01210p X + Y + (p’ Y O

p/=X+ Y
and

+ + p,
Ox

P’ Ox Ox -x /
OX+OY )P’oS -o7 a

Remarks 3.4. On M\S, a singular control can be interpreted as an unique static
feedback such that E is made invariant for the solutions of the lifted system X+Yu.

The singular controls have been computed for a generic system. In the nongeneric
case, the computation is similar. For instance, if the distribution A v is involutive, then
O is identically zero on E, since, in this case, (p, Y(x)) 0 for all implies (p, Y, Y]-
(x)) 0. Thus, the equation L(x(t), p(t)) 0 must be satisfied and can be differentiated
with respect to to compute the singular controls (see 6 for more details).

Only the singular extremals of minimal order have been computed. Computations
outlined in [4] indicate that for generic pairs (X, Y), they are the only singular
extremals. Moreover, if they exist they are contained in S, and [2] shows heuristically
that they can be analyzed as solutions of the meromorphic differential equations
associated to Z restricted to M.

4. Feedback classification and singular trajectories
DEFINITION 4.1. Let h be the map that associates to a system (X, Y) of 5g the

constrained differential equation (8); i.e., A is the map (X, Y)- (, Z/).
Let (0, a,/3) Gr and we lift $ into a symplectic diffeomorphism 0 of"n

defined by

0-1

x 0(y), p=q,
Oy
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where p and q are row vectors. The action of (q, a,/3) on A(X, Y) is by definition
reduced to the action of 0 on (Z, ZO) as given in Definition 2.2.2.

In other words, the feedback acts trivially and q acts as the symplectic change of
coordinates on (E, Z). The corresponding geometry is denoted by ({E, Z}, Gs).

THEOREM 4.2. The following diagram is commutative:

In other words, A is a covariant.

Proof Every g Gs can be written as gz’gl with gl (q, 0, id), gz=(id, a,/3).
Take (X, Y) oWg and set (X’, Y’) g. (X, Y), (X", Y") g. (X’, Y’). Let H (respec-
tively, ’, "), Z (respectively, Z’, Z"), M (respectively, M’, M"), (respectively, ’"), Z (respectively, Z,, Z,,), and S (respectively, S’, S") be the elements defined
in 3.2 and associated to system (X, Y) (respectively, (X’, Y’), (X", Y")).

First, let us study the action of g, i.e., the action of the symplectic diffeomorphism
defined by

0-x O(y), p=q,
Oy

on those objects. Observe that.the constraints (p, Y(x))=0 are written in the (y, q)
coordinates as (q(OO-/Oy), Y((y)))=0. Since q is a row vector, this is equivalent
to (q, (O-/Oy) Y(O(y))= 0, i.e., (q, Y(y))= 0. Hence maps Z’ into Z. Similarly,
from 3.1, we have that maps M’ onto M, S’ onto S, and ’= almost everywhere
on 2,. Thus we have

H(x,p)={p,X(x)+ Y(x)(x,p)}= q
Oy

,X(O(y))+ Y(O(y))(O(y, q))

{q, (0 * X)(y)+ (0 * Y)(y)a’(y, q)} ’(y, q).

Therefore the symplectic transformation maps the solutions of the Hamiltonian
equation of defined by onto those defined by ’. In paicular, Z Z,.

Now let us study the action of the feedback u’= (y)+(y)u". Since (y) is
inveible, this transformation induces a bijection on the set of inputs and maps
biunivoquely the singular controls associated to (X’, Y’) onto those associated to
(X", Y"). Moreover, (y(t), q(t)) is a singular extremal associated to u’ if and only if
it is singular extremal associated to u". This is geometrically obvious and can be proved
as follows.

First, observe that ’=" because the constraints {q, Y’(y)} 0 and {q, Y’)(y)}
0 are equivalent, since (y) GL(m, N). Now, by using (2), (3), and (4), observe that
if (y(t), q(t)) is a singular extremal corresponding to u’(t) for (X’, Y’), then it is a
singular extremal corresponding to u"(t) for (X", Y") and reciprocally.

In paicular, M’= M" almost everywhere since they are almost everywhere the
union of singular extremals, and by continuity M’= M". Moreover, by definition,
u’( t) a(y( t)) + fl(yt))u"( t), then ’(y, q) a(y) + fl(y)a"(y, q) on M’. Hence S’=
S". Therefore H’(y, q) (q, X’(y) + Y’(y)’(y, q)) (q, X"(y) + Y"(y)"(y, q))
H"(y, q), on M’S’. Then Z,= Z,,. (The results can be obtained by direct computa-
tions.)
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For further studies, it is interesting to point out more geometry connected with
the singular problem.

Remark 4.3. To generalize our theory to the C case, we remark that we may
deal with a differential equation defined on the whole set M. This follows by taking
into account the invariant meaning of the set S. For simplicitly, let us make this
assertion more precise in the single input case. The variety M is then defined by H1 0,
H2=0, where HI=(p, Y(x)) and Hz=(p, IX, Y](x)). The set S is then defined by
H1 H2 {H1, H2} 0, where {, } is the Poisson bracket. The singular control is given
on M\S by

(p, [X, [X, Y]](x))
(x,p)

(p, Y, [X, Y]](x))"

Let us introduce the maps fx,Y. (x, p) - (p, [X, [X, Y]](x)) and f2x’v" (x, p) -(p, Y, IX, Y]](x)). Now we analyze the action induced by Gs on the f’s.
Let q, be a C-diffeomorphism: x q(y) and let defined as usual by: x b(y),

p q(Oq,-1/Oy). Set X’= X, Y’= q, Y.
Then we have

[X, [X, Y]](q(y))flX’Y(x, p) (p, [X, [X, Y]](x))= q
Oy

(q, O [X, [X, Y]](y)) < q, [0 * X, [0 * X, [0 * Y]](Y))

fx’,.Y’(,-l(x, p))
and, similarly, f2x’Y =f2x’’wo q-l.

Now let u be the feedback a(x)+fl(x)u’ and let X’=(id, a, fl).X, Y’=
(id, a,/3). Y. Then, on M we have

flX’,r, (fx,r + aff, r), ff’,Y’= 2fzX, r"
Therefore, if we replace (8) by the analytic differential equation

(8’) dx_f2 012I, dp
f2 012I, (x, p) e ,,

dr Op dr Ox

and making Gs acting on f2 and (8’) by change of coordinates only, the previous
results tell us that the maps

(i) (X, y)_+ff, r restricted to M,
(ii) (X, Y)e OWg-+f2. Zt? restricted to m (Z is defined in (3.2))

are semieovariants.
This has the following geometric interpretation. S is {f2 0} c M, and the solutions

(x(r),p(r)) of (8’) in M\S are the singular extremals (x( t), p( t)) of minimal order,
reparametrized by the transformation f2 dt dr. With this trick, we get an analytic
vector field, defined on the whole M.

Remark 4.4. Now we will show that Zt? can be interpreted as an Hamiltonian
vector field defined almost everywhere on M. for simplicity, let us investigate the single
input case.

The variety M is then given by (p, Y(x))= (p, [X, Y](x)) 0, and S is the set of
points (x, p) of M defined by (p, Y, [X, Y]](x)) 0. Let K be the set of points of {R"

such that Y and [X, Y] are colinear. Observe that K is feedback invariant and thus
has an invariant meaning for the Gy action on pairs (X, Y). Assume that (X, Y) is
chosen in g such that K is a proper subset of ", and let W be M c ("\K x [R").
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Thus, W is a regular submanifold of ’x ’, with even dimension. Let 12’ be the
restriction of the symplectic form f dx ^ dp to W\S.

Let us assume that Y O/(Oxl).
We claim that (W\S, 1)’) is a symplectic manifold. This can be (naively) proved

as follows. Recall that xi and Pi denote the coordinates of x and p, and let us write x
and p as (xl,)) and (pl,/5). X can be written as XI(O/(Ox1))-lt--X(O/(O)). Since
Y=O/(Oxl), (p, Y(x))=0 is equivalent to pl=0 and then (p,[X, Y](x))=0 is
equivalent to (/7, O/(OXl))=O. Moreover, if (/5, (02)/(0x2)) O, then by the implicit
function theorem, the previous equation can be locally solved as xl =f(2,/5). Now
observe that on W, the condition (p, (02)/(0x21)) 0is equivalent (p, Y, [X, Y]](x))
0. Moreover, l)’= dXl ^ dpl + d ^ dp df(, p) ^ dpl + dY. ^ dp dY, ^ dp.

Since Z is tangent to M\S, the restriction ofZ to W\S is a Hamiltonian vector

field for (W\S, 12’) whose Hamiltonian is the restriction ofH to W\S. This vector field
is analytic since (p, [Y, [X, Y]](x)) 0 on W\S.

Now we study when the feedback classification is equivalent to the Gs- classification
of the constrained Hamiltonian equation (8). The first step is to reduce the feedback
classification of pairs (X, Y) to the classification of distributions A y and the
"orthogonal complement of X with respect to A y." This is a useful reduction to
compute normal forms for the G-action on pairs (X, Y) (see [3] for such computa-
tions).

DEFINITION 4.5. We denote by G" the subgroup of analytic diffeomorphisms of
,qt’, leaving invariant the distribution A y, i.e.,

G’= {0 s.t. q * Y/ Ay, ’qi 1,- , m}.

Two vector fields X, X’ are called equivalent modulo Ay if there exists
such that 0* X=X’ (mod Ay), i.e., for all x", (0" X-X’)(x)Ay(x).

LEMMA 4.6. The following assertions are equivalent"
(i) (X, Y) and (X’, Y’) are feedback equivalent;
(ii) (a) There exists a C’-diffeomorphism 01 such that ql * A v A ,,

(b) O1 * X and X’ are equivalent modulo Av,.
Proof The proof is straightforward. Assume that (X, Y) and (X’, Y’) are feedback

equivalent. Then there exists (61, 0, /31) Gs such that (01,0,/31)" (X, Y) (X, Y’),
where X--ql * X. In other words, ql * A y A y,.

Now the crucial fact is that we may restrict our analysis to the feedback
classification problem, where Av, is fixed, i.e., for the subgroup action {(6, a,/3),
Gr’}. Indeed, since (, Y’) is feedback equivalent to (X’, Y’), then there exists
(2, a2, ]2)E Gf such that

(q2, c2,/32) X X’ and 2 * Ay,= Ay,.

Hence q2 E G’.
Now since 02 G", (02, a2,/32) X can be written as 02 * J(mod Ay,)+ 0, where

0 Ay,. Hence (i)(ii) and, similarly, (ii)(i).
Assumptions 4.7. Let 5r be the set of pairs (X, Y) such that
(i) (X, Y)
(ii) The rank of the matrix Y(x) is m, for all x ,’,
(iii) 7r(M\S) contains a (nonempty) open subset of’, where r is the projection

(x, p)- x.
THEOREM 4.8. Let (X, Y) and (X’, Y’) be systems of r. Then the following

assertions are equivalent:
(i) (X, Y) and (X’, Y’) are feedback equivalent,
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(ii) The constrained Hamiltonian vector fields A(X, Y) and A(X’, Y’) are Gy-
equivalent.

Proof. First, we need the following result.
LEMMA. Let , and ,’ denote the constraints sets of (X, Y) and (X’, Y’). en

and ’ are Gy-diffeomorphic if and only if A r and A y, are diffeomorphic.
Proo Let us assume the existence of a symplectic diffeomorphism 0 defined by

x (y), p q(O-/Oy), which maps ’ onto E. Then we have

(y, q)Z’(q, r’(y))=O(x,p)

{p, Y(x)}=0 q
Oy

Y(O(Y)) =0

(q, g(yl 0.

Now fix y N and observe that {q, Y’(y)} 0 coincides with {q, Y(y))= 0 if
and only if there exists a unique (y) GL (m, ) such that Y’(Y)(Y)=(O * Y)(Y),
since the rank of Y and Y’ is m. Moreover, as y Y(y), Y’(y) are analytic, then
y (y) is analytic.

We proved that maps ’ onto if and only if ,=., i.e., , and are
0-diffeomorphic.

Now we proceed to the proof of Theorem 4.8. From Theorem 4.2, (i)(ii), and
it remains to prove (ii)(i).
Assume that the constrained vector field A (X, Y) and A (X’, Y’) are G-equivalent.

Thus the varieties Z and ’ are G-diffeomorphic and then we may assume ’. By
the previous lemma, it means A y A y,.

Now since A(X, Y) and A(X’, Y’) are G-equivalent and E’, then there exists a
diffeomorphism of " such that 0 preserves Z’ and satisfies

6 . Z= Z, on M’S’.

Therefore G and we have on M’S’ the following"

* Z O * (O x

O px

O*X+O* Y’u#oy

Oy

In paicular, on M’kS’ we have

O* X+O* Y" o#=X’+ Y’.

Now since O G, we have +.v=v v, and the previous equation implies that

O * X X’(mod v) on (M’kS’).

Now, by assumption, this equation holds on a nonempty open subset of ". By
analycity, it is true everywhere. Thus, by Lemma 4.6, (ii)(i) and Theorem 4.8 is
proved.

COROLLARY 4.9. Let us assume that n is even, m n- 1 or n is odd, m n-2.
en for an open dense set of pairs (X, Y) or itney’s topology) the feedback
classification is equivalent to the G-classification.
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Proof M is defined by m equations in the even case or m + 1 equations in the
odd case. They are linear in p, and to eliminate p, we generically need at least n- 1
equations. Hence, r(M) is (generically) a proper subset of n if n is even, m > n- 1,
or n is odd, m > n-2. This proves the result.

5. Optimality and feedback classification. By using two examples, we will show
the connection between the feedback classification and the time optimality status of
the singular trajectories.

5.1. Systems in 9z. Consider the following system of

(9) ( X( v) + uY( v),

where v (x, y) 2. Then, by using the equations (p, Y(v)) (p, IX, Y](v)) 0, where
p 2\{0}, we see that the singular trajectories are contained in L {v 2 subject to
det (Y(v), [X, Y](v))} 0.

Hence, for an open dense set of systems, Assumption 4.7 (iii) is not satisfied and
Theorem 4.8 cannot be applied to reduce the feedback classification of systems (X, Y)
to the Gs-classification of pairs (E, Z). This can be illustrated by the following
example. Consider the two systems"

(A) :=x2-y, y=u (B) =x2+y,
By a straightforward computation, we get that for both systems, L is the line y 0

on which the singular trajectories are the solutions of x. Moreover, the constraints
set E are the same. Nevertheless, (A) and (B) are not feedback equivalent since, clearly,
the singular trajectory on {x> 0} is time minimal for (A) and time maximal for (B).
Hence, Theorem 4.8, without Assumption 4.7(iii), is not valid. Since the optimality
status of a singular trajectory is not encoded in (, Z), an additional covariant has to
be used to separate the orbits ofGs acting on systems (X, Y). To construct this covariant
we can proceed as follows.

Let y be a singular trajectory defined on [0, T] and let us assume that X and Y
are never colinear on y. Following [17], to evaluate the optimality status of y, we
introduce the form a r dv defined in a neighborhood of y by (r, X)= 1, (r, Y)= 0.

This form has the following nice properties:
(i) if yl is a solution of (9) defined on [0, tl], then , a- dt t,,
(ii) dc 0 on the singular trajectory y.
Hence, let Yl be a solution of (9) starting at =0 from y(0) and with endpoint

yl(tl) 3’(T). Then we have

Y Y yLI --Y

(Stoke’s theorem)

=T-t1.
Hence, the optimality status of y can be characterized. For instance, for system

(A), we have da < 0 if y > 0 and dc > 0 if y < 0. This shows that the singular trajectory
3’ on {x > 0} is time minimal with respect to every solution of (A), in a C-neighborhood
of y.

5.2. Systems in 3. Consider the following system:

(10) ( X(v)+ uY(v),

where v (x, y, z) s. Let

Dc’v det Y, [X, Y], Y, [X, Y]]), D"v det Y, [X, Y], [X, [X, Y]]),
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and D3X’V=det(Y,[X, Y],X). (They will be denoted by Di when no confusion is
possible.)

Convention 5.2.1. For the remainder of this section, we consider only systems
(X, Y) such that DX’v is not identically zero. By singular trajectory of (X, Y), We
mean a singular trajectory contained in ?3\{D1X’Y-- 0}.

LEMMA 5.2.2. The singular trajectories of (X, Y) are the solutions of
D2(v)

(11) t-- X(v)- Y(v)
D,(v)

in 3\{D, 0}.
Proof Since p 0, the relations

<p, Y> <p, [X, Y]> <p, [X, [X, Y]]> + u<p, Y, [X, Y]]> 0

defining the singular control (see 3.1) imply D2-+-uD1 =0. Thus, on .q]3\{D --0}, the
singular control is defined by a feedback a(v) D2(v)/ Dl(V).

DEFINIWION 5.2.3. Let Xv be the vector field on .s)]:3\{D --0} associated with (11),
and let h be the map (X, Y)- Xv. Observe that Xy is the restriction of zr * Z to
.3\{D --0} and h 7r h, where 7r designs the map (x, p)-> x.

The action of Gs on Z induces the following action on Xv:

and from Theorems 4.2 and 4.8 we have the following proposition.
PROPOSITION 5.2.4. The map h= is a covariant. Moreover, thefeedback classification

ofpairs (X, Y) is equivalent to the Gf-classification ofpairs .A v, Xv).
In particular, the time optimality status of singular trajectories is encoded in

(Av, Xv). We will briefly describe how this occurs.
LEMMA 5.2.5. Let q, a, fl Gs, then
(i) V’*x’+*V(v)=det (Ot-I/Ov)DiX’V(q(v)), for all i= 1, 2, 3;
(ii) V+ Ya, Vfl i4vlX, V;

’(iii) D+Y’v --/33(D2x’v+ aD Y);
(iv) D+v’v 2O.,v"
Proof These relations can be obtained by straightforward computations. For

instance,

D*X’+*V(v)--det (q * Y(v), [0 * X, 4’ * Y](v), [O * Y, [q * X, [4 * Y]]](v))

=det (q Y(v), q [X, Y](v), 0 * [Y, [X, Y]](v))

det(Oo-1) det Y, [X, Y], Y, [X, Y]])(O(v)), etc.
Ov

COROLLARY 5.2.6. Let f: ,g3_ ,9 and define the action of (4’, a, ) Gf on f as

follows: (, a, fl) f=f d/. then, we have the following semicovariants:
(i) AI’(X, r) DX "r

(ii) A3" (X, Y)- D3x’v’.
PROPOSITION 5.2.7. The sets defined by D3=0 D1D3>0, and DID <0, are

invariant sets for the solutions of f)= Xw(v).
Proof On ,qla\{Dl=0}, Y and [X, Y] are independent and D3=0 is the set of

points where X belongs to the linear span of {X, [X, Y]}. Thus (p, Y) (p, IX, Y]) 0

implies (p, X) 0 on D3 0. Moreover, if 3/is a singular trajectory, with adjoint vector

p, then the derivative of t-(p(t),X(T(t))) is (p(t),[X, Y](y(t))) and is equal to 0.
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Thus X(y(t)) belongs to the linear span of Y(y(t)) and [X, Y](y(t)). (A shorter proof
is to remark that D3 0 corresponds to singular trajectories with Hamiltonian H 0.)
Now D1D3 > 0 and DID3 < 0 are invariant, since along a singular trajectory, the Lie
bracket Y, [X, Y]] cannot cross the linear span of Y and [X, Y] (by Convention
5.2.1, a singular trajectory is contained in 3\{D =0}).

DEFINITION 5.2.8. A singular trajectory y is called
(i) exceptional if y belongs to D3 0,
(ii) hyperbolic if y belongs to DD3 > O,
(iii) elliptic if y belongs to DD3 < O.
PROPOSITION 5.2.9. Let y be a singular trajectory. Then there exists a C-neighbor

hood of y such that y is time minimal if y is exceptional or hyperbolic and time maximal

if y is elliptic, with respect to all solutions of (10) contained in the neighborhood of y if
there exists no conjugate point along y.

The concept of conjugate point and the proof of this result are given in [6].
Remark 5.2.10. The optimality status of a singular trajectory is related to the two

semicovariants A1 and A3. This status is encoded in Xy, since D3 =0, D1D3> 0 are
invariant sets for the solutions of ( Xy(v).

The proof of Proposition 5.2.9 of [6] is interesting because we compute a normal
form in C-neighborhood of a singular trajectory y for the action of Gs on pairs (X, Y).

6. Quadratic control systems. Classical invariant theory studies the actions of
GL(n, ) on the spaces of tensors: vectors, forms, etc. Computing the invariants for
such actions is the main problem in analyzing the associated geometries. Thus,
numerous algorithms have been described to achieve this task (see, for instance, [16]).
We found it interesting to connect this theory with the feedback classification problem
by using a specific class of polynomial systems.

DEFINITION 6.1. Consider the set R of control systems of n, of the form

(12) :(t) Q(x(t))+ Bu(t),

where Q (Q,..., Q,), each Qi being a quadratic form, and B is a constant n m
matrix whose columns are denoted by bl,..., bin. They are called quadratic control
systems.

Consider the subgroup Gc Gs of triplets(P, c,/3), where P GL (n, ), c

(c1,"" ", a,), each ai being a quadratic form and/3 is constant. G) is a (Lie group)
and acts on a system (Q, B) by the action induced by Gy. The family is stable for
this action. Let G be the subgroup of elements of the form (P, 0, id) identified with
GL (n, R), and let GB be the subgroup of GL (n, R), leaving invariant the flat
distribution generated by {b,..., bm}, identified to span {bl,"" ",

By using an algorithm similar to the one developed in 3.1, we can compute
(generically) the singular extremals.

6.2. Notation. (They are not compatible with 3.2, but no confusion is possible.)
Let be the surface {(x, p) ,2, subject to (p, B) 0}, and let M be the set {(x, p) 2,
subject to (p, B)= (p, [Q, B](x))= 0}. Denote by L(x,p) the m 1 matrix (Li), where
Li=(p,[Q,[Q, bi]](x)) and let O(p) be the m xm symmetric matrix (Oil) where
00 (p, b, Q, bi]]). Let S be the set M cn {p ,, det O(p) 0}. We denote by
g the set of pairs (Q, B) such that S is a proper subset of M. Take (Q, B) g and
let (x, p)be the solution, almost everywhere defined on 2,, of L(x, p)+ O(x, p)u O.

Let H be the function almost everywhere defined on 2n by (p, Q(x)+ B(x, p)),
and let Z/ the associated Hamiltonian vector field. The restriction of Z to M\S is
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denoted by Z/. A singular extremal of M\S is called of order 2m (since M is defined
by 2m equations).

PROPOSITION 6.3. Let Q, B) Rg then the singular extremals of order 2m are the
solutions of the homogeneous equation

(13)
Op Ox

Proof Compute as in 3. Observe that the constraints Z are homogeneous, and
since L is quadratic in x and O is constant in x, (x, p) is quadratic in x. Hence Z
is homogeneous.

DEFINITION 6.4. Let r be the set of pairs of Rg such that the rank of B is m.

Take (Q, B) 2r, then from 6.2 and Proposition 6.3, the singular extremals in M\S
are the solutions of an analytic vector field Z. Let A be the map that associates to
(Q, B) Rg (13). In other words, A maps (Q, B) onto (E, Z/).

The group G} acts on pairs (E, Z) by the action induces by Gs. Now observe
that the number of equations defining M is 2m. Hence, by arguments similar to those
used in 4, we have the following.

PROPOSITION 6.5. The map A is a covariant for the actions of G’ on and A(Rg).
PROPOSITION 6.6. Let us assume that 2m < n- 1. Then for an open dense subset of

r ( being identified with ,ql(("2("+l)/Z+m"), the G)-classification of pairs (Q, B) is

equivalent to the G}.-elassification ofpairs (E, Zr).
Remark 6.7. The only invariant for the Gy-classification of the surfaces Z is the

rank of B, which is equal to m if (Q, B) 2g and this classification problem is trivial.

7. Quadratic control systems in 91.
7.1. Preliminaries. Consider a single input quadratic control system of

(14) (t) Q(v(t))+ u(t)b,

where v=(x,y,z). As in 5.2, we set D=det (b, [Q, b], [b, [Q, b]]), D2
det (b, [Q, b], [Q, [Q, b]]), and D3 det (b, [Q, b], Q), and we adopt Convention 5.2.1.
We consider only pairs (Q, b) such that D is not identically zero on 3, and by
singular trajectory we mean a singular trajectory contained in ,gI3\{D 0}.

From Lemma 5.2.2, the singular trajectories are the solutions of

D2(v)
(15) 6=Q(v)-b

in 3\{D, 0}.
Let Z be a vector field of 3 and let f be a map from 3 into . The action of

G) on Z and f is defined by

If(P, a,/3) G, then P, a, fl Z= P* Z and P, a, fl f f P.

By Proposition 5.2.4 and 6, the G)-classification of pairs (Q, b) is equivalent to
the G)-classification of pairs (b, Qb), where Qb designs the vector field on 813\{D1 =0}
defined by (15).

The aim of this section is to investigate the linear classification of vector fields
{Qb}, to solve the G)-classification of pairs Q, b). All the computations (which are
lengthy) are omitted since they are detailed in [2] and [5], and we only present the
geometric interpretations of the various semicovariants.



FEEDBACK EQUIVALENCE AND TIME OPTIMAL CONTROL 1315

7.2. Notation. The map v--[Q, b](v) is linear and the associated matrix is
denoted by A. Let ad A be the adjoint matrix corresponding to A (if A-1 exists, then
adA=detA. A-l). Let w=ad A(b), and observe that [Q, b](w) is colinear to b. Set
L b and L2 =,w, and let (b be the analytic vector field of ,3 given by (b
DQ-D2b.

From Lemma 5.2.5, we have the following results.
LEMMA 7.3. For the G’f-actions, we have the following semicovariants:
(i) A’(Q, b)- Q,
(ii) AI’(Q, b)- D,,
(iii) A2"(Q, b)- D2 restricted to DI-O,
(iv) A3"(Q, b)D3.
Remark 7.4. The maps A, A2, and h are semicovariants, not covariants. Thus,

only the sets D1 0, D 0, and D1 0f D2--0 have an invariant meaning. This is
due to the following property. Since Q is homogeneous, with degree 2, then the map
v - ev, e \{0}, transforms Q into eQb. Thus, in our classification, we must identify
Q with eQb, and we are dealing, in fact, with projective geometry, in which we have
no nonconstant polynomial invariants. In particular, the h i’s cannot be covariants.

7.5. Geometric interpretation of Qb. Q is a time reparametrization of the vector
field Q, similar to the one performed in Remark 4.3. Thus, the solutions of t5 Q(v)
in \{D1 =0}, are, up to a reparametrization, singular trajectories. Observe that (
is a homogeneous cubic vector field in .

7.6. Geometric interpretation of D =0. D --0 is the plane generated by L1 ,b
and L2 w (computations). In particular, ( DQ- D2b -D2b, in D 0. Since b
is tangent to D--0, the plane D 0 is then an invariant set for the solutions of
( Qb(v). This set is the union of two types of singularities. First, the set of points
where b and [Q, b] are collinear, which are the projections on 3 of the singularities
of the surface M, defined by (p, b)= (p, [Q, b])= 0. Secondly, they are the projections
onto )3 of the set S given by (p, b, Q, b]])= 0 (3 M.

7.7. Geometric interpretation of D3 =0. From Definition 5.2.8, D3 0 is formed
with the exceptional trajectories and according to Proposition 5.2.9, is connected to

the time optimality problem. In particular, D3 0 is an invariant set for the solution
of t 0b (V). NOW observe that D3 is a cubic form. Linear classification of cubic forms
(on ) is well known. In particular, they have a nontrivial rational invariant, called
the modulus. This invariant is very important in our classification problem (see Example
7.10).

7.8. Geometric interpretation of D =0 D2 =0. First, observe that the map v->

D(v) restricted to D1 0 is a cubic form in two variables. By computing, we get that
the solutions of D 0 71 D2 0 are the line L2 w and, if a discriminant 6 is >0 (6
is given in [5] and is a semi-invariant), two lines denoted by L and L4. We have the
following nice properties.

Property 7.8.1. In control theory, the system (Q, b) is said to be weakly controllable
if for all v, {Q, b}A.e.(v) is of rank 3, where {Q, b}A.e, designs the Lie algebra
generated by the two vector fields { Q, b}. This property is clearly feedback invariant and
we have that {Q, b} is weakly controllable if and only if D: is identically zero on
D --0, i.e., the semicovariant A maps the set on nonweakly controllable pair (Q, b) onto
zero.

Property 7.8.2. Here, we restricted our study to systems (Q, b) such that: span
{b, [[ Q, b], b], [[ Q, b], [[ Q, b], b]]} ,93. By convention, a singular trajectory is a
solution of (15), which is defined for v3\{(D=0}. We may ask the following
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question: when does a system (Q, b) admit singular trajectories (0) that are not
contained in )3\(O --0)? An associated extremal has to satisfy the relation

(p, b-(p, [Q, b]-(p, [b, [Q, b]]--(p, [Q, [Q, b]]- 0,

and is then contained in D1- 00 D2-0. Further computations show the following.
There exists a nontrivial trajectory in D1- 0 if and only if L --L4 (L3 and L4 are the
two lines previously defined), i.e., t- 0. Moreover, such a trajectory is supported by the
line L L4. This was predictable, since D1 0 D2--0 is then L2 3 L

7.9. More semicovariants. Since the equation Qb (v) is homogeneous, the distri-
bution v- )Qb(V) is invariant with respect to the transformations v- ev, e 0 and
can be projected onto the sphere S2. More precisely, if we set r-(x2/y2/ z2) /2,
-v/r, and r2 dt- dtr, then the equation dv/dt- tb(V) is equivalent to

(16)
do-

d
(17) do- Qb()-(O, (b(O) > .

.Equation (17) is defined on S2 and is called the projected equation associated with
Qb (v). This equation encodes most of behaviors ofsingular trajectories and has to be

carefully studied.
An outline of this analysis is now given. Let Vo 8t3\{0}. One line 8]Vo such that

Q.b(V.o) eVo, e R is called a ray. If e 0, the ray is a set of singular points for
v Qb (v) and if e 0, the ray is an asymptotic direction for solutions of this equation.
Clearly, a ray corresponds bijectively to a singular point for theflrojected equation.

Now observe that Oh(V) can be written as 0(v)+ 1/5 div (Qb(V))’v, where (,
is a cubic vector field preserving the standard volume form of 8 (i.e., div 0--0).
Both tb and (, have the same projected equation on S2 and this decomposition of
(b corresponds to the splitting of t= tb(V) into (16) and (17). Moreover, we have
the following lemma.

LEMMA. The following maps are semicovariants" A4" (Q, b) -> div Oh, and
As’(Q, b)- Qb.

Using the projected equation, the behavior of singular trajectories near D 0 has
been classified in [5], in the generic and codimension-one cases. The generic
classification is the following. The lines Li correspond to the only singular points
contained in D --0, for the projected equation. They are" nodes for L b and
L2 --)] w, and saddles for L3 and L4.

Moreover, L2, L3, and L4 are sets of singular points for Qb(V), and L is an
asymptotic direction. Thus, we have the following important result.

PROPOSITION. For generic pairs (Q, b) the distribution Rb is encoded in the vector

field Qb (as a ray of Qb). In this case, the Gr-ctassification ofpairs Q, b) is equivalent
to the G’y-classification of Qb, only.

Example 7.10. Consider the following system:

alyz / Ubl, f; a2xz + ub2, , aaxy / ub3,

where al, a3 > 0, a2 < 0, b (b, b2, b3) E ,qj]3. These equations describe the evolution
of the angular velocity in the attitude control problem, when the rigid body is controlled
by one torque, whose orientation is given by b, the parameters ai describing the shape
of the satellite. The vector b and in some extent the ai’s can be chosen by the system
designer, and we may want to study the feedback classification problem, for this class
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of systems when b and the parameters ai vary. We have the following results (see [5]
for the details).

By computing, we get

DI(V) 2albb3(a3b- ab)x + 2a2blb3(alb a3b21)y

+ 2a3blb2(a2b alb2)z,
D(v) ab b(bly + b2x)(ax aly)

+ a12b2b3(b2z + b3y)(a3y a2z2)
+ ablb3(blz + b3x)(alz2- Z3X2),

Da(V) a2aablX2(b2z- bay)+ alaab2y2(b3x- blZ)

/ ala2baz2(bly- b2x).

The system is weakly controllable if and only if (i) bibj 0 for at least one pair
(i,j), ij, or (ii) aab2-alb 0. Conditions (i) and (ii) have the following interpreta-
tion. If (i) is not satisfied, then D1 =0 is equal to 9i and (15) is not defined. If (i) is
satisfied, but not (ii), then D1 is a factor of D2; this is conformed to Property 7.8.1.

From now on, we assume that (Q, b) is weakly controllable. We can suppose the
following:

(1) al, a3 1, a -1 (change of coordinates),
(2) b S2, i.e., bl + b2 + b 1,
(3) bl, b2, b3 > 0 and bl- b3 > 0 (symmetries).
With these normalities, we have that

bib3 b2b blb and the lines L3 and L4 exist and are distinct if6 is given by 2 2_

and only if 6 > 0, and L --L4 if and only if 6 0.

The cubic form D is reducible if and only if b2 0 or b --0. More precisely, we
have that

if b --0, then 0 --0 is the union of the plane z 0 and the line x =y 0,
if b2 0, then O is the union of y 0 and the two planes x +z.

We represent below four phase portraits for he projected equation, defined on
S2. They are obtained by direct computations ((i) and (iv)) and bifurcation analysis
((ii) and (iii)). The plane D1 0, generated by L1 and L, is identified with the equator,
and we draw only the phase portrait in the northern hemisphere (the phase portrait
in the southern hemisphere can be deduced by symmetry).

Cases (i) and (ii) (Fig. 1). Comments. Case (i) represents the situations b
(bl, 0, b3), and case (ii) b (bl, e, b3), e # 0 and small. For both cases, L3 and L4 exist
and are distinct. A separatrix cycle O’LaL4 in (i) is transformed in (ii) into a limit
cycle corresponding to one loop of the cubic 0 --0 projected on S2.

Cases (iii) and (iv) (Fig. 2). Comments. Case (iv) represents the situations
b (bl, b2, 0), and (iii) b- (bl, b, e), e # 0 and small. In both cases, the two lines
L and L4 do not exist. The transition (iii)- (iv) corresponds to the vanishing of a
small limit cycle by Hopfbifurcation. This cycle is still a loop of0 0projected on S2.

The intermediary cases between (ii) and (iii) are described in [5].
Conclusion. Systems (Q, b) corresponding to cases (i)-(iv) are not feedback

equivalent: the phase portraits of Qb are not even C-equivalent.
Now consider a quadratic system of 923, with two inputs:

(18) t3(t) Q(v(t))+ Bu(t).
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Assume that rank B =2, and let bl and b2 be the columns of B. Let L=
("1i=1,2 {v ,t3; det (b, bz,[Q, bi](v))=O}. From 6, the singular trajectories are con-
tained in the vector space L, and we have the following canonical forms for the

G)- classification.
PROPOSITION 7.11. Q, B) is G’f-equivalent to

o o o
QI(V)XX-I-fIy -I-u2-’OZ

where Q has one of the following forms in Table 1.
The proof follows from straightforward computations. The remarkable property

is the following. For orbits (a) and (b), the line L supporting the singular trajectories
is precisely the one to choose to complete the linear span of {b, b} to get the basis
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TABLE

Normal forms Geometric interpretation

(a) Generic orbits

(a) Q1 x2 qt_ y2 + Z2
(a2) Q=x2_ y2_ z

(a3) Q3 x2 + y2_ z

(bl) Q1 y2 + z2

(b2) Q1 y2_ z2

(C) Q1 XZ + y2

(dl) Q1 X2 ql..y2
(d2) Q1 x2-y

(d3) Q y2

(e) (Q, b) not weakly controllable
(el) Q=O
(e2) Q1-- x2
(e3) Q xy

dimL=l, ,q3=L+SpanB

Singular flow (on L):
Optimality status of the singular trajectoires (#0)
(a) fast, (a2) slow, (a3) locally controllable

dim L 1, ,3t L + Span B

Singular flow:
for (b2) each singular trajectory is locally controllable, contrarily to

(b,)

dimL=l, LcSpanB

dimL=2, dim(Lf-lSpanB)=l
t3 L+ span B
Singular flow: 2 ex2, :i-- u

Orbits separated by nature of the singular flow and optimality status

L ,t3. Singular flow: 2 0, )) u, =/,/2

L !)3. Singular flow: 2 x2, --//1, u2
L span B

for our canonical form. This classification for generic orbits, i.e., with maximal
dimensions, is generalized to n, when rn n- 1, in [3].

7.12. Gf-feedback equivalence with quadratic control systems. For simplicity, con-
sider a single input system in 3 denoted by (X, Y). We may ask the question, when
is this system Gs.-equivalent to a quadratic control system (Q, b)? (This problem can
also be locally studied.) For such an equivalence, the distribution ,qtY has to be
equivalent to a flat distribution. Moreover, from Proposition 5.2.4, the vector field
denoted by Xv, whose solutions are the singular trajectories of (X, Y) contained in
.93\{DX’Y=0}, must be, up to a change of time parameter, diffeomorphic to the
homogeneous cubic vector field (b introduced in 7.2.

Thus, our problem is tightly connected with the C-equivalence of a differential
equation with a polynomial one. The local version of this problem is a standard
question, extensively studied. Near a regular point, any vector field is diffeomorphic
to O/Ox. Near a singular point, this problem is very difficult. Relevant contributions
were made by Lyapunov, Poincar6, and Dulac (see [1]), and this problem is still the
object of contemporary studies (see [24] and [26], etc).

The G-equivalence of (x, Y) with a quadratic control system (Q, b) can also be
solved using the G-canonical forms computed in [3].

8. Conclusion. In this conclusion, we briefly indicate how to complete the results
obtained in this article. First, note that our theory is global, in the sense that the
singular flow is, up to a singular set, globally defined. On the other hand, with the
trick introduced in Remark 4.3, we can delete this singular set. This is useful in studying
the C case.

There is a gap in our aim to identify the feedback classification with the
classification of pairs (E, Z). We must assume that the singular trajectories are not
contained in a proper subvariety of n. However, the analysis done in 5.1 and 7.1
indicates how to avoid this assumption. The position of this subvariety with respect to
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the distribution Ay and the optimality status of the singular trajectories allow us to
carry out the classification. This position is encoded in pairs (5;, Z), but not the
optimality status. The time optimality status is an invariant of the time minimal control
problem. Therefore, we conjecture that for generic systems (X, Y) when the feedback
classification is not trivial, i.e., when m < n, then the feedback classification is equivalent
to the classification of the time minimal control problem. Under generic assumptions,
the optimality status can be deduced from the so-called Legendre-Clebsch condition
arising from the high-order maximal principle [21]. This can be applied to analyze the
case m=n-1, n odd.

Now a nontrivial extension of this article would be the analysis of the feedback
equivalence problem, for general systems given by (t)=f(x(t), u(t)), where x
u ", and f is smooth. The group action being extended to transformations of the
form x q(y), u’= (x, u), where the maps y (y) and u - (., u) are diffeomorph-
isms. Now observe that even in this case, the singularities of the input-state mapping
are well defined. From 2, it is clear that the maximum principle is still the key tool
to investigate the feedback equivalence problem. Let us illustrate this assertion by an
example.

Recall that the Hamiltonian H is defined by H(x, p, u)- (p,f(x, u)).
Now observe that the surface 5; defined by OH/Ou 0 still has an invariant meaning

for our classification problem. Consider the restriction of the Hessian matrix
(02IYt)/(OuiOu) to the surface 5;. This matrix is the intrinsic derivative and its rank is
an invariant of the feedback classification problem. It has the following interpretation.

Let us assume the rank maximal, i.e., equal to m. Then the singular control can
be (locally) computed as a map (x, p) - ’, by using the implicit function theorem
to solve the equation OI/Ou =0. Conversely, if the restriction of the Hessian matrix
to 5; is identically zero, a straightforward analysis shows that, with regularity assump-
tions on the map u f(x, u), then the system is feedback equivalent to an affine system.
The vanishing of the Hessian matrix 5; being equivalent to say that the image of m
by the map u -f(x, u) is a flat submanifold of m. In other words, the only difference
between the affine and nonaffine case is when solving the equation OH/Ou O.

To summarize, the key to providing a general theory of the feedback classification
is Pontryagin’s Maximum Principle.
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SOME CHARACTERIZATIONS OF OPTIMAL TRAJECTORIES IN
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Abstract. Several characterizations of optimal trajectories for the classical Mayer problem in optimal
control are provided. For this purpose the regularity of directional derivatives of the value function is
studied: for instance, it is shown that for smooth control systems the value function V is continuously
differentiable along an optimal trajectory x:[to, 1]- R provided V is differentiable at the initial point
(to, x(to)).

Then the upper semicontinuity of the optimal feedback map is deduced. The problem of optimal design
is addressed, obtaining sufficient conditions for optimality. Finally, it is shown that the optimal control
problem may be reduced to a viability one.

Key words. Hamilton-Jacobi equation, optimal synthesis, semiconcave function, viability theory, vis-
cosity solutions, set-valued derivatives, sufficient conditions for optimality
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1. Introduction. Consider the optimal control problem

minimize g(x(1))

over all solutions of the control system

(1) x’=f(t, x, u(t)), u(t) U

satisfying the initial condition

(2) x(0) sCo.
We recall that by a simple change of variables the classical Bolza problem in control
theory

minimize q(x(1))+ L(t, x(t), u(t)) dt

over the trajectory control pairs (x, u) of (1), (2) may be reduced to the one under
consideration.

The goal of the optimal control theory is to find necessary and sufficient conditions
for optimality and to construct optimal trajectories. Several results establishing
necessary conditions are available in the form of the maximum principle. In this paper,
we show that additional information (including sufficient conditions for optimality,
optimal design, and optimal synthesis) may be obtained from some properties of the
value function, which is defined by

V(to, Xo) inf {g(x(1))l x is a solution of (1) on to, 1 ], X(to) Xo}.

In general, even in very regular situations, the value function is not differentiable.
Nevertheless, we prove in this paper that the differentiability of V is preserved along
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optimal trajectories. More precisely, we show that if V is differentiable at some point
(to, Xo) and g denotes any optimal solution starting from Xo at time to, then V is
differentiable at (t, g(t)) for every [to, 1] (see Corollary 5.3). Actually, the derivative
-V’(t, g(t)) is equal to the co-state of the Pontriagin maximum principle, which we
recall in 4. In the same section, we also derive some inclusions connecting the co-state
with the superdifferential of the value function. Among these results, Theorem 4.2 is
related to [25] and Proposition 4.4 to [26, Prop. 3.1].

When the Hamiltonian H is smooth enough and the value function is differentiable
at (0, :o), then the following necessary and sufficient condition for optimality holds
true. Let x(. ), p(. solve the Hamiltonian system

(3)

OH
x’(t) =--p (t, x(t), p(t)),

p’( t)
OH
xO (t, x(t), p(t)), tE[O, 1].

Then x is optimal if and only if x(0) (o, p(0) V’(0, o) (see Theorem 4.6 for more
general statements.)

Even when the Hamiltonian is not smooth, the value function may still be used
to construct the optimal feedback map

(4) G(t,x)= v6f(t,x, U)
0(1, v)(t’x)=0

In fact, the following property holds true: a trajectory : of (1) is optimal for our
optimization problem if and only if it is a solution of the differential inclusion

(5) x’G(t,x), x(0) o.
We refer to [17], [6] for some developments in this direction.

To investigate regularity properties ofthe set-valued map G, we prove the existence
of the directional derivatives of V. For this aim we show that, under very general
assumptions on the control system, the value function is semiconcave (see Theorem 5.1).

As a consequence of the semiconcavity of V, we obtain that the feedback map G
is upper semicontinuous and has’ nonempty compact images (see Theorem 6.1).

In particular, whenever the feedback map G is single-valued, it is continuous.
From the above it follows that in this special case, optimal trajectories are continuously
differentiable.

Moreover, if the data are convex, then G has convex values and the inclusion (5)
fits the well-investigated framework of upper semicontinuous convex-valued maps.
When the map G does not have convex images, the above characterization of optimal
trajectories is not easy to apply. To overcome this difficulty, we provide an alternative
approach based on viability theory. More precisely, we observe that solving the optimal
control problem is equivalent to solving a control system with state constraints"

(i) t’=l,
(ii) x’ =f(t, x, u), u U,
(iii) z’=0,
(iv) (t, x(t), z(t)) e Graph (V),
(v) t(0)=0, x(0)=o, z(0)=V(0,o).

The last system is a viability problem and may be approached using many results of
viability theory (see [20], [2], [1], and references contained therein). We underline
that in this case dynamics (i)-(iii) remain regular, but we have to keep trajectories in
the set Graph (V) according to the relation (iv) (see [18]).
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Finally, we treat the case involving the endpoint constraints (x(1) K1) via penaliz-
ation techniques. We prove that the value function of such a problem may be approxi-
mated by the value function of problems with free endpoints (see Theorem 8.1). A
similar result holds true for optimal trajectories.

Some of the results of the present paper were announced in [7]. Moreover, this
approach may be extended to infinite-dimensional control problems, as we show in [8].

The plan of the paper is as follows. Section 2 contains basic material on the value
function. In 3 we recall some definitions of set-valued gradients and investigate
properties of semiconcave functions. Necessary and sufficient conditions for optimality
are described in 4, while 5 is devoted to the semiconcavity of the value function.
The optimal feedback map is studied in 6 and viability theory is applied to optimal
trajectories in 7. In 8 we address the problem with endpoint constraints.

2. Value function in optimal control. Consider a complete separable metric space
U and a continuous function

f:[0, 1]xR" x U-> R".

We associate with it the control system

(6) x’(t)=f(t,x(t), u(t)), u(t) U a.e.

An absolutely continuous function x:[to, tl]- R" is called a trajectory of (6) if there
exists a measurable function u:[to, t]- U such that x’(t)-f(t, x(t), u(t)) almost
everywhere in [to,

Let g :R"- R and sCo R" be given. We investigate the minimization problem

(7) minimize{g(x(1))lx is a solution of (6) on [0, 1], x(0) sCo}.

The dynamic programming approach associates with this problem the value
function defined by

(8) V(to, Xo)=inf{g(x(1))l x is a solution of (6) on [to, 1], X( to) Xo}.

Throughout the whole paper we impose the following assumptions:
(i) f is continuous in [0, 1] x Rnx U,
(ii) EIk LI(0, 1; R/), V(t, u) [0, 1] U, f(t,., u) is k(t)-Lipschitz,

(9)
(iii) EIT>O such that V(t, u)[O, 1]x U, [If(t,x, u)ll< T(llxll+ l),
(iv) g is locally Lipschitz.

Our assumptions allow us to apply the relaxation theorem from [2] to show that V is
actually equal to the value function of the relaxed problem in which (6) is replaced
by the differential inclusion

(10) x’(t)-C-6 f(t, x(t), U) a.e.

We recall that an absolutely continuous function x:[to, tl]--R is called a trajectory
of (10) if for almost every t[to, tl], x’( t) -6-6 f( t, x( t), U). Hence we will study the
following minimization problem:

(11) minimize{g(x(1))[x is a solution of (10) on [0, 1], x(O) o}.

The corresponding value function is given by

VC(to, Xo)=inf{g(x(1))lx is a solution of (10) on [to, 1], X( to) Xo}.

THEOREM 2.1. Assume (9). Then, for all (to, Xo) [0, 1] x R" we have

V(to, Xo) VC(to, Xo)=min {g(x(1))lx is a solution of (10) on [to, 1],X(to)=Xo}.
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Proof From the relaxation and the parametrization theorems (see [2]), we know
that the closure in the metric of uniform convergence of trajectories of (6) defined on
the time interval [to, 1] and starting at Xo, which is compact in cO([to, 1]; Rn), is equal
to the set of trajectories of (10) starting at Xo and defined on [to, 1]. This ends the
proof." [3

It is well known that the value function is nondecreasing along trajectories of (6)
and therefore a trajectory x:[to, liaR satisfies V(to, X(to))=g(x(1)) if and only if
V(t, x( t)) =- g(x(1)). This leads to a verification technique in optimal control:

A trajectory x’[0, 1] R of the control system (6) is optimal for the
problem (7) if and only if x(0)=o and V( t, x( t)) const (in this case
V(t, x(t))=- g(x(1))).

Hence, instead of looking for an optimal trajectory for the problem (7), we can
search for a trajectory of (6) satisfying the initial condition and such that the value
function is constant along it.

We recall that the directional derivative of a function q" R" - R at Xo X in the
direction 19 X (when it exists) is defined by

0q q(Xo + h19) q (Xo)
;-g (x)  ll om+ h

PROPOSITION 2.2. Assume (9). Then the value function V is locally Lipschitz. Fur-
thermore, for every trajectory x of (6) on [0, 1 andfor almost every e [0, 1 ], there exists
the directional derivative

OV
(t,x(t)).

O(1, x’(t))

Proof The local Lipschitz continuity of V is well known. It can be checked by
arguments similar to [16, Thm. 4.2, p. 85] (see also [17]).

Fix a trajectory x(. ). Then the function t- q(t):= V(t, x(t)) is absolutely con-
tinuous. Fix such that q and x are ditterentiable at t. Then

V(t+h,x(t)+hx’(t))- V(t,x(t)) V(t+h,x(t+h))- V(t,x(t))
lim lim
h-O+ h h-O+ h

and the proof follows. [3

When the value function is directionally differentiable, it has many properties
related to the dynamics of the system.

PROPOSITION 2.3. Assume (9). If for some (to, Xo) [0, 1[ xR" and v
cof(to, Xo, U), V has the directional derivative at (to, Xo) in the direction (1, v), then
this directional derivative is nonnegative.

Proof Consider a solution x(. of the differential inclusion (10) satisfying X(to)
Xo, x’(to)= v (by [2] such solution does exist). Since V is locally Lipschitz at (to, Xo)
and nondecreasing along trajectories of (10) (thanks to Theorem 2.1), we obtain

lim
V(to+h, xo+hv)- V(to, Xo)_ lim

V(to+h,x(to+h))- V(to, Xo)>_O. [3
ho+ h h-O+ h

To characterize optimal trajectories, we introduce two following feedback maps
G" [0, 1 x R" R" and G" [0, 1 x R R" defined, respectively, by

G(t,x)= vef(t,x, U)
0(1, v)(t’x)=0
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and

Gc(t,x) v6-c-6f(t,x, U)
0(1, v)(t’x)=0

(note that the sets G(t, x) and G(t, x) may be empty).
Then we have the following characterizations of optimal trajectories.
TIaEORZM 2.4. Assume (9). Then the following two statements are equivalent:
(i) x is a trajectory of the differential inclusion

(12) x’6G(t,x)

defined on the time interval to, 1 ].
(ii) x is a trajectory of the control system (6) defined on the time interval [to, 1]

and, for every [to, 1], V(t, x(t))= g(x(1)).
For the relaxed system (10) the following two statements are equivalent:
(iii) x is a trajectory of the differential inclusion

(13) x’GC(t,x)

defined on the time interval to, 1 ].
(iv) x is a trajectory of the differential inclusion (10) defined on the time interval

[to, 1] and, for every t[to, 1], V(t,x(t))=g(x(1)).
Proof Fix a trajectory x of (12) defined on time interval [to, 1] and set q(t)

V(t, x(t)) for every t[to, 1]. Since V is locally Lipschitz (recall Proposition 2.2),
is absolutely continuous. Thus, by Proposition 2.2, for almost all [to, 1],

OV
qg’(t) (t,X(t)).

O(1, x’(t))

By Filippov’s lemma x(. is a solution to (6) (see [2]). Thus o’(t) 0 almost everywhere
in [to, 1]. Consequently, o is constant and is equal to V(1, x(1))=g(x(1)). Assume
next that (ii) holds true. Then differentiating the map - o(t), we obtain that for every
6 ]to, 1[, q’(t) 0. Thus

OV
(t,x(t))=O

O(1, x’(t))

almost everywhere and therefore for almost all t[to, 1], x’(t) G(t, x(t)). The proof
of the second statement is analogous and is omitted.

COROLLARY 2.5. Assume (9). Then a trajectory x [0, 1 R is an optimal solution

ofproblem (7) ifand only if it is a solution of the differential inclusion (12) and x(O) o.
An analogous statement holds true for the relaxed problem (11) and the differential
inclusion (13).

Proof Since V is nondecreasing along trajectories of the control system (6), we
deduce that (.) is optimal for the control problem (7) if and only if V is constant
along . Theorem 2.4 ends the proof.

THEOREM 2.6. Assume (9). Then for every toe[0, 1], xo6Rn, inclusion (13) has at
least one solution satisfying X( to)= Xo.

Proof Consider the optimal control problem

minimize g(x 1 ))

over the solutions of the differential inclusion

x’(t)-U6f(t,x(t), U) a.e. in [to,1],X(to)-Xo.
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By Theorem 2.1, it has at least one optimal solution :. Furthermore, V( t, )(t)) g()(1 )).
Theorem 2.4 ends the proof. [3

3. Some preliminaries on nonsmooth functions. We denote by B the closed unit
ball in R and by Br(xo) the closed ball in R with radius r and center at Xo. Consider
an open set 1) c R" and a function q :1)- R. When q is not differentiable, it is possible
to define its gradient taking weaker limits of differential quotients.

DEFINITION 3.1. Let Xo . The superdifferential of q at Xo is the closed convex
set defined as follows:

D+q(Xo) {pc R" lim sup
q(x)- q(Xo)-(p, x-x(R))_<0}

where (.,.) denotes the scalar product.
The subdifferential is defined in a similar way:

p R" lim inf
q(x)- q(Xo)-(p, x Xo)> 0D-q(Xo) J

It is not difficult to show that q is Fr6chet differentiable at x(R) if and only if both the
super- and the subdifferential of q are not empty at Xo. In this case

D+q(Xo) D-q(Xo)= {q’(Xo)},

where q’(Xo) denotes the gradient of q at Xo. We always have D+q(Xo) -D-(-q)(Xo).
The super- and subdifferential may also be characterized using the Dini directional

derivatives, which are defined in the following definition.
DEFINITION 3.2. The lower Dini derivative of q at x(R) in the direction (R) is given

by

(Xo+hO’)-(Xo)
O-q(Xo)((R)) liminf

h0+,o’o h

and the upper Dini derivative of q at x(R) in the direction (R) is defined by

(14) 0+q(Xo)((R)) limsup q(xo+h(R)’)-q(Xo).
h-0+,o’-,o h

Clearly,

( s) 0- (Xo) -0+(-)(Xo).

When q is Lipschitz at Xo, then the definition may be simplified as follows:

(xo+hO)-(Xo)
O-q(Xo)((R)) lim inf

hO+ h

and

q(xo+ h(R))- q(Xo)0+q(Xo)((R)) lim sup
h--,o+ h

From [17, Lemma 2.7] (see also [3, Chap. 6]) we know that

D-q(Xo) {p R" V(R) Rn, O-q(Xo)((R)) >= (p, 0)}

and

(16) D+q(Xo)={p6R]V(R)R",O+q(Xo)((R))<=(p, (R))}.
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DEFINITION 3.3. Assume that q is Lipschitz at Xof. The regularized lower
derivative of at x(R) in the direction (R) R is defined by

p(x + h(R)) q(x)
q O_(xo, (R)) lim inf

h O+,x-" Xo h

This notion is a "lower version" of Clarke’s definition of directional derivative.
Indeed, it can be easily checked that

(17) q(Xo, (R))=-q(Xo,-(R)) =-(-q)(Xo, 0),

where q(Xo, (R)) denotes the directional derivative from [11].
PROPOSITON 3.4. Let q :RnoR be Lipschitz at Xo Rn. Then the function 0

q Xo 0) is concave.
This result may be deduced from [11, Prop. 2.1.1].
We investigate next the closedness of the level sets of the regularized lower

derivative.
PROPOSITION 3.5. Let q :RnR be a locally Lipschitz function and define the

set-valued map Q:R R by

Q(x) {0 e R" m(x, O) _-< 0}.

Then Q has nonempty dosed images and the graph of the map Q is closed.

Proof Clearly, for every x, O e Q(x). It remains to show that for every sequence
(x,, (R),)e R"x R" converging to some (x, 0) and satisfying (R), e Q(x,), we have (R)e

Q(x). Fix such a sequence and let e, - 0. By the definition of q(x,, (R),), there exist
h,- 0+, x, x be such that for every n

q(x’ + h,(R),) q(x’)
h,

Consequently,

q(x’ + h,O,) q(x’)
(x, 0) < lim inf < O.

ht
DEFINITION 3.6. Assume that q is Lipschitz at Xo 1). The generalized gradient

of q at x(R) is defined by

(18) Oq(Xo) {p e R" IV(R) e R", q(Xo, 0)<-(p, 05}.

We denote by D*q (Xo) the set of all cluster points of gradients q’(x,), when x, converge
to x(R) and q is ditterentiable at x,.

We note that

D*q (Xo) Lim sup {q’(x)},

where Lim supx-xo denotes the upper limit when x- x(R) (see [3, p. 41]).
In view of (17), the above definition of the generalized gradient is equivalent to

the one given by Clarke. Comparing Definitions 3.1 and 3.6, we can easily realize that

(19) D+q(Xo) c Oq(Xo).

Moreover, it is clear that D*q(Xo) is compact. From [11, Thm. 2.5.1], it follows that

(20) 0q(Xo) co (D*q (Xo)),

where co denotes the convex hull.
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DEFINITION 3.7. Consider a convex subset K ofRn. A function q K - R is called
semiconcave if there exists a function to’R+ R+- R+ such that

Vr<-R, t<- T, to(r, t)<-_to(R, T), and
(21)

’q’R>0, lim to(R, t)-0
tO+

and for every R > O, A [0, 1 and any points x, y K RB,

,9(x)+(1-A)9(y)<--(Ax+(1-A)y)+,(1-,)llx-Yllto(R, ]]x-y]]).
We say that 9 is semiconcave at Xo if there exists a neighborhood of Xo such that the
restriction of 9 to it is semiconcave. We call the above function to a modulus of
semiconcavity of

Usually in the definition of semiconcavity to(r, t) ct for a nonnegative constant
c (see [21], [22]), or w(r, t)= ct for e0 and c ]0, 1] [9]. We observe that every
concave function :K R is semiconcave (with equal to zero). Fuhermore, it is
not dicult to check the following proposition.

PROPOSITION 3.8. Let K be a convex subset of R and :R" R be continuously
differentiable on a neighborhood of K. en is semiconcave.

Example 1. Consider a subset K of R" and let dist (x, K) denote the distance
from a point x R" to K. Define the function :R" R+ by (x) dist (x, K)2. Then,
by a standard computation, is easily seen to be semiconcave.

In general, a Lipschitz function does not have directional derivatives. Our next
aim is to show that for a semiconcave function, the directional derivatives exist and
coincide with the regularized lower derivatives. This result was proved in [9], [10].
We provide a different proof of this fact for the sake of completeness.

THEOREM 3.9. Let Xo R and R R be Lipschitz and semiconcave at Xo. en
for every OR", the directional derivative (O/O0)(Xo) exists and is equal to the
regularized lower derivative Xo 0):

O(22) VO R", (Xo) (Xo, O).

In particular, D+(Xo) and

(23) D+(Xo) 0(Xo) =co (D*(Xo)).

Consequently, the set-valued map x D+(x) is upper semieontinuous at Xo.
Proof It is enough to consider the case 11011 1. Let 6>0 be such that is

semiconcave on B2(Xo) with semiconcavity modulus w(. ):= w(26,. ). Fix x B(Xo),
O B, and observe that for all 0 < h h2 we have

p(x+hO)-p(x)=p (x+hzO)+ 1- x -p(x)

e h p(x + h20) + p(x) p(x)

h h
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Consequently, for all 0 < hi =< he--< 6,

q(X + hlO) qo(x)
>
q(x + h20) cp(x) ( h_)h, h2

1- co(h211(R)ll)

and we proved that for every x e B(xo)

VO< h’__< h__<6,

(24) q(x + h’(R)) q(x)
>
q(x + hO)- q(x)

-o-,(hllOII).
h’ h

Thus for every 0 < h _-< 6,

inf
((Xo+ h’(R))- q(Xo)

>
rp(Xo+ h(R))- rp(Xo)

lim
h’h’0+ h

Taking lim SUpho+ in the right-hand side of the above inequality yields that the
directional derivative (Oq/O(R))(Xo) does exist. Clearly, (Oq/O(R))(Xo)>=q(Xo, 6)). To
prove the opposite, fix e > 0 and 0< A < 6. From the continuity of q it follows that
there exists 0< a < 6 such that for all x B(xo),

(x0+ ;to)- (Xo)
<_
(x+;to)- (x)

Thus, using (24), we obtain that

(Xo+o)- (Xo) (x + hO)- (x)
inf +w(A[[(R)[[) + e.

1 Bo(Xo),h ]O,A h

Letting e, a, and h converge to zero, we end the proof of the first statement. The
second one results from (22) recalling (16), (18), and (20).

PROPOSITION 3.10. Let q" R R be Lipschitz and semiconcave at Xo. If D+q(Xo)
is a singleton, then q is differentiable at Xo and

D*q(Xo) {q’(Xo)}.

In particular, ifD+q(x) is a singletonfor all x near Xo, then q is continuously differentiable
at Xo.

The proof follows by exactly the same arguments as the ones in [9, Cor. 4.11 and
4.12].

DEFINITION 3.11. Let K R be convex and q:K- R be given. Then q is said
to be semiconvex (respectively, semiconvex at Xo) whenever -q is semiconcave (respec-
tively, semiconcave at Xo).

PROPOSITION 3.12. Let q R - R, Xo R. Ifq is Lipschitz at Xo and both semiconvex
and semiconcave at Xo, then q is continuously differentiable on a neighborhood of Xo.

Proof Since q and -# are semiconcave at Xo by Theorem 3.9, there exists a
neighborhood W of Xo such that for all x 6 W,

D+q(x) 0q(x), D+(-q)(x) 0(-q)(x).

Furthermore,

D-q(x) -D+(-q)(x) -O(-q )(x) Oq(x),

the last equality being a straightforward consequence of (20). Hence both D+q(x)
and D-q(x) are nonempty and therefore q is differentiable on W. The conclusion
follows from Proposition 3.10.
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4. Necessary and sufficient conditions for optimality. We begin this section with a
sufficient condition for optimality which involves the superdifferential of the value
function.

We associate with the control system (6) the Hamiltonian H’[0, 1] Rn R -> R
defined by

H(t,x,p)=sup < p,f(t,x, u)).
uEU

Under assumption (9), the function H is continuous, locally Lipschitz with respect to
(x, p), and convex with respect to the third variable.

THEOREM 4.1. Assume that (9) holds true and let ’[0, 1]-R be a solution of
the control system (6), :(0)= :o and f be a corresponding control. Iffor almost every

[0, 1 ], there exists p (t) R such that

(25)
(p(t), :’(t)) H(t, :f(t), p(t)),

(H(t,(t),p(t)),-p(t)) O+V(t,(t)),
then is optimal for the problem (7).

Proof. Consider the absolutely continuous function (t)= V(t, (t)) and let
[0, 1] be such that the derivatives ’(t) and ’(t) do exist and (25) holds true.

We first observe that (25) and (16) imply that

O=(((p(t),’(t)),-p(t)), (1, Y,’(t)))>-_O+V(t,Y,(t))(1,’(t))

V(t+h,(t)+h’(t))- V(t,(t))
lim sup
h-O+ h

(26)
V(t+h,X(t+h))- V(t,X(t))

lim sup
a-,o+ h

,’(t).

This yields that , is nonincreasing. Since the value function is also nondecreasing
along trajectories of the control system (6), we deduce that the map t--> V(t, (t)) is
constant. So is optimal. 71

The above map p may be constructed using the co-state variable of the maximum
principle stated below.

THEOREM 4.2. Assume that (9) holds true, thatf is differentiable with respect to x,
and g is differentiable. A trajectory control pair (, ) of the control system (6) with
(0) o is optimal for the problem (7) if and only if the solution p [0, 1 -> R of the
adjoint equation

(27) -p’(t)= C--(t,:(t), (t)) p(t),p(1)=-g’((1))

satisfies the maximum principle

(28) (p(t),f(t,g(t), (t)))=max(p(t),f(t,g(t), u)) a.e. in [0, 1]
uEU

and the generalized transversality conditions

(29) (H(t,(t),p(t)),-p(t))D+V(t,Y(t)) a.e. in [0,1],

(30) -p( t) D+ V( t, Y,( t)) Vt [0, 1],

where D+ V(t, (t)) denotes the superdifferential of V(t, at (t).
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Furthermore, if V is semiconcave, then (29) holds true everywhere in [0, 1].
We call such a function p(. a co-state corresponding to the optimal trajectory (. ).
Remark. The above theorem is a joint form of the maximum principle and the

co-state inclusions (29), (30). In 5 we provide a sufficient condition for V to be
semiconcave.

Remark. The necessity of these conditions was proved in [17] under somewhat
different assumptions. An inclusion on co-state p similar to (30) in the nonsmooth
case was derived in [12]. An analogous statement is proved in [25] by a different
method under stronger regularity assumptions. Necessary conditions in the form of
generalized transversality conditions were proved in [26] as well. In this last paper, it
is also shown that the subditterentials of V and of V(t,. along an optimal trajectory
are at most singletons and are contained in the left-hand sides of (29) and (30),
respectively. Another easy way to derive this fact is to use the remark following
Definition 3.1.

Proof of Theorem 4.2. Sufficiency is a straightforward consequence of Theorem
4.1 and (28), (29). The fact that (27) and (28) are necessary is the well-known
Pontryagin’s maximum principle.

To prove the necessity of (29), fix t [0, 1[ such that ’(t)--f(t, (t), (t)) and
the equality (28) holds true, and let (R) Rn. Consider the solution w(. of the linearized
along (, tT) system

w’(s)= Of (s,(s), (s))w(s), s6[t, 1]
(31) Ox

w( t) =6).

For every h > 0, let xh be the solution to the differential equation

x’(s) =f(s, x(s), a(s)), s It, 1],
(32)

x( t) ( t) + h).

From the variational equation we know that the quotients

Xh
h

converge uniformly to w. Fix a R. Hence from (27) and (28), using that V is locally
Lipschitz, nondecreasing along trajectories of (6), and constant along ), we deduce that

O+ V( t, :(t))(ce,

lim sup (V(t + ah, (t)+ h(ce’(t)+ w(t)))- V(t, (t)))/h
h O+

lim sup V(t + ch, X(t + ah)+ hw(t + th))- V(t, X(t)))/h
hO+

=limsup (V(t+ch, xa(t+ah))- V(t,(t)))/h
h O+

<_-lim sup (g(Xh (1)) g(ff(1)))/h
hO+

(g’(:(1)), w(1))=(-p(t), w(t))

(-p(t),-a’(t))+(-p(t),

ceH(t, (t), p(t))+(-p(t), ce’(t)+O).
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Hence we deduce that for every a R and (R)1 Rn,
O+V(t,(t))(a, O,)<-H(t,(t),p(t))-t-(-p(t), O1)

and the proof of (29) follows from (16). To prove (30), observe that for every
[0, 1], (R) Rn, and the solution w of (31),

(-p(t), O) (g’(X(1)), w(1))

=> lim sup V( t, ( t) + h(R)) V( t, ( t)))/ h o+ V( t, ( t))((R)).
h O+

This and (16) imply (30). When V is semiconcave, then the last statement follows from
(29), (23), the continuity of H(. ), p(. ), (. ), and Theorem 3.9.

Remark. It can be shown that the conclusion of Theorem 4.2 remains true even
when g is not differentiable, but D+g((1) 0. In this case we can take for p(1) any
element of D+g(ff(1)). The same observation applies to Theorem 4.5 below.

Remark. For systems governed by an autonomous state equationmthat is, with f
independent of tmwe can easily show that the Hamiltonian is constant along any
optimal trajectory/co-state pair (,p). Indeed, recalling (28), (27), for almost all
t, s [0, 1 ], we obtain

H(Y(t), p(t)) H(X(s), p(s)) >= (p(t),f(Y,(t), fi(s)) -f(X(s),

+(p(t)-p(s),f(X(s), tT(s))) o(It-sl).
Since the above argument is symmetric,

IH(X(t), p( t)) H(Y,(s), p(s))l <- o(It sl).
Since t- H(( t), p( t)) is absolutely continuous, the above inequality implies that
H((t), p(t)) is constant.

When the Hamiltonian H is differentiable with respect to (x, p) at (X(t), p(t)) for
all [0, 1], then and the co-state p satisfy the Hamiltonian system

OH
X’( t) =-y-- t, ( t), p( t)),

Op

p’( t)
OH
0-- (t, X(t), p(t)).

More generally arguments similar to [19, Remark 4.10] imply the following
proposition.

PROPOSITION 4.3. Let t, , ) [0, 1] R" x R" and U be such that

(p, f( t, , iT))= H( t, , ).

(i) IfH t,., ) is differentiabte at , then

OH (Of )*O- t, X, p --x t, ., (t)

(ii) IfH t, X," is differentiable at , then

OH
(t, X, ff) f(t, X,

Op

It is well known that for every (t, x) [0, 1] R" at which V is differentiable, we
have

(33)
OV
Ot ( ov )---(t,x)+H t,x,-(t,x)=0.

Ox
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When V is not differentiable at (t, x), the above equation has to be understood in the
viscosity sense (see [13], [14]).

Since the Hamiltonian is continuous, we immediately deduce from (33) that

(34) V( t, x) [0,1] x R", V(p,,px)D*V(t,x),-pt+H(t,x,-px)=O.

Moreover, since H(t, x,. is convex, (20) yields that

(35) v(t, x) ]0, [ x R", V(p,, p) o V( t, x), -p, + H( t, x, -Px) <= O.

In particular, as D+ V(t, x) 0 V(t, x), the inequality in (35) holds for all (pt, p,)
D+V(t,x) (in fact, by [14], [15], this inequality is the definition of viscosity sub-
solution).

The following is an adaptation of [26, Prop. 3.1].
PROPOSITION 4.4. Assume (9) and let Y be an optimal solution ofproblem (8). Then

for every to, 1

(36) V(pt, Px) D+V(t, X(t)), -Pt + H(t, X(t), -Px)=0.

Consequently, iffor every ]to, 1[, H(t, (t), is strictly convex, then D+V(t, (t)) is
at most a singleton for every ]to, 1[.

Proof Let fi be an optimal control corresponding to and let ]to, 1[. Consider

(37) v 6 co f(t, :(t), U)

such that for some h,-->0+, lim,_((t-h,)-(t))/h,=-v. Then for all (Pt, P)
D+V(t,(t)),

V(s, (s))-- V(t, (t))--pt(s-- t)--(px, (s)--(t))
0 => lim,_sup Is t] / x(s)- x( t)]]

Since V(., (. )) is constant, the above estimate yields

-p,(-h,) -(p, (t- h,) ( t))
0-> lim =Pt--(P,--v).

h hn
So we derived that

0 <- -Pt + (-Px, v) <-_ -Pt + H(t, x, -p,)

1/2(p + p2t 1/2(H( t, X( t), -P x) + H( t, X(t), -p2x)

l+pt2<-H(t,X(t),-1/2(p+p2)):1/2(Pt

If t, P) (Pt, P), then in the above we will get a strict inequality, which would
lead to a contradiction. Therefore (pit, p)=

We show next that, whenever p(0)=-V’(0, o), we have the equality in the
inclusion (30).

THEOREM 4.5. Assume that (9) holds true, that f is differentiable with respect to x
and g is differentiable. Suppose, furthermore, that the derivative V’( to, Xo) exists and let
be an optimal solution for the problem (8). Consider the co-state p’[to, 1]--> R" corre-

sponding to and given by Theorem 4.2, where the interval [0, 1 is replaced by to, 1
and o by Xo. Then

{-p( t)} D+x V( t, X( t)) ’q’t 6 [to, 1].

From this last inequality and (35), we obtain (36). If H(t, if(t), .) is strictly convex,
then for all (pit, pi) D+ V(t, (t)), 1, 2,
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In the next section, we show that under some additional regularity assumptions
on f, p(t) is equal to the derivative of the value function V’x(t, g(t)) for all t, provided
V’(t0, Xo) exists.

Proof We already know from Theorem 4.2 that

-p( t) 6 D+ V( t, g( t)) Vt [to, 1].

Thus p(to) V’x( to, Xo).
Let be an optimal control corresponding to )L Fix tO and let w, Xh have the same

meaning as in the proof of Theorem 4.2 with replaced by to. Then, since V is
nondecreasing along trajectories of the control system (6) and constant along ), for
all t[to,1],

(p(to), tO) (- V’x(to, Xo), tO) lim
h-O+

V to, Xo + h tO) V to, Xo)

-> -lim sup
hO+ h

v(t, x(t))- v(t, g(t))

--lim sup
h-*O+ h

V(t,g(t)+hw(t))- V(t,,(t)) -O+xV(t, X(t))(w(t)),

where O+V(t,(t))(w(t)) denotes the upper Dini derivative of V(t, .) at if(t) in the
direction w(t).

Using (16) we deduce that for every qD+V(t,(t)), we have

(p(to), tO>-->-- (-q, w(t))=(-q,X(t)tO)=(-X(t)*q, tO>,

where X denotes the fundamental solution of

X’(t)= (t,(t) (t))X(t) tE[to,1],
Ox

X(to) Id.

Since tO e R is arbitrary, we have p(to) -X(t)* q. On the other hand, p(. being
a solution of (27), we know that p(to) X(t)*p(t). Since for every e [to, 1], the matrix
X(t) is nonsingular, we have proved that -p(t)= q. This yields that D+V(t, 2(t)) is
single-valued and ends the proof. U

Whenever H happens to be more regular, we can prove the following theorem
concerning optimal design. For every (to, Xo), define

(38) D* V( to, Xo) D* W(xo),

where W is given by W(x)= V(to, x).
THEOREM 4.6. Assume that (9) holds true, that f is differentiable with respect to x,

g is differentiable, and that H(t, .,. is differentiable on Rnx (Rn\{0}) for almost every
[0, 1]. Furthermore, assume that the sets f(t, x, U) are convex and compact and for

every R > 1 there exists a nonnegative integrable function In Ll(0, 1; R+) such that for
all x, y RB and p, q RB\ 1 / R)B

(39) O--(t’x’P)-o-- (t’ y’ q) + --p (t,x,p)---p (t, y, q)

l(t)(llx -yll + lip qll).
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Let (to, Xo) [0, 1 R and Po 0 be such that

(40) -Po D* V(to, Xo).

Then the Hamiltonian system

OH
x’(t) =-p (t, X(t), p(t)),

(41)
p’(t)=

OH
0- (t, X(t), p(t)),

p(t)O, t[to, 1]

X( to) Xo,

p(to) =Po,

has a unique solution (:(.),p(.)) defined on [to, 1]. Moreover, X(.) is an optimal
solution ofproblem (8).

Furthermore, if g’(. is continuous at (1), then fi(. is the co-state corresponding
to Y,(’).

Remark. The above theorem extends a result of [10], which concerned a problem
in calculus of variations. For such problems, condition (39) is natural. It is much more
restrictive for nonlinear control systems. It is well known that H(t, x, is not differenti-
able at zero when f(t, x, U) is not a singleton. This is why we eliminate/9 0 in our
assumptions.

We observe that (39) is satisfied whenever the variables x and u are "separated":

f(t, x, u)- q(t, x)+ (t, u),

where q(t,. has kR(t) Lipschitz gradient on RB for some kR LI(o, 1; R+) and the
boundary of q(t, U) is sufficiently smooth.

Proof By the very definition of D* V(to, Xo), it follows that there exists a sequence
x converging to Xo such that V(to,. is differentiable at Xk and

-Po lim 0V to, Xk).
k- OX

Let (k, Uk) be an optimal trajectory control pair for problem (8) with Xo replaced by
xk. By Theorem 4.2 (applied with the interval [0, 1] replaced by [to, 1] and o by Xk)
there exists an absolutely continuous function/k:[ to, 1] R" such that

-/,(t)= -v(t,,k(t), ak(t)) k(t) a.e. in [to, 1],

(42)

-/3 (to) =OV
Ox

t’ xg).

Therefore, p(t) 0 for all e [to, 1] for sufficiently large k. By Proposition 4.3, for
almost every to, 1],

OH
X(t)=-p(t, xt,(t),fik(t)), k(to) Xk,

OH
(43) fi’(t) --x (t, (t), p(t)),

p(to)
0v

--0- (to, Xk).
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Recalling assumption (9) (iii), we conclude that )k, k 1," are equicontinuous and
equibounded. Furthermore, from (9)(ii) and (42) it follows that/Sk are also equicon-
tinuous and equibounded and the maps t(Of/Ox)(t,Y.k(t), uk(t)) are integrably
bounded on to, 1]. So, taking a subsequence and keeping the same notation, we may
assume that ()k,/Sk) converge uniformly to some (if,/5) and (Of/Ox)(., k(" ), Uk(" ))
converge weakly in Ll(to, 1) to some A(.). In particular/5(to) =Po 0 and/5 solves
the linear equation

-/’(t) A(t)*/(t) a.e. in to, 1].

Thus/5(t) 0 for all E to, 1]. Fix R > 1 so that

2 R
VsE[to,1], -----<1

Then, for all sufficiently large k and all s [to, 1], we have 1/R <-_ IIp()ll R. So,
using (39) and taking the limit in (43), we deduce (if,/) is a solution of the Hamiltonian
system (41 ).

Since/ never vanishes, the assumption (39) implies that (if,/) is the only solution
of (41). On the other hand,

V(to, Xo) lim V(to, Ek(to)) lim g(Ek(1))=g(E(1))

and therefore : is optimal for the problem (8).
Assume next that g’ is continuous at 9(1). Then/5(1) =-g’()(1)) 0. Let Pl be a

co-state corresponding to the optimal trajectory 9. Then pl(t) 0 for all [to, 1] and,
by Proposition 4.3, it solves the equation

(44) -p’( t)
OH
O--- t, E( t), p( t)) a.e. in [to, l], p(1)=-g’()(1)).

Since/5 is also a solution of (44), we deduce that Pl =/5 by uniqueness. The proof is
complete. [3

Remark. (i) By minor modifications of the above arguments it is easy to show
that condition (40) may be replaced by the following one:

(45) (H to, Xo, Po), -Po) 6 D* V( to, Xo).

In general, (40) and (45) are not comparable. If V is semiconcave, however, then (40)
is more restrictive than (45). This can be shown using Proposition 5.2 below.

(ii) In calculus of variations, the necessity of (45) was proved in [10].
Other examples of problems for which (40) is necessary are given by optimal

control problems having a unique optimal trajectory for the initial state (to, Xo).
THEOREM 4.7. Assume (9), that g is continuously differentiable, thatf is differenti-

able with respect to x, that f( t, x, U) are convex and compact, and that H is continuously
differentiable with respect to x. Further assume that, for every R > O, there exists a

nonnegative integrable function 1R G L1 (0, 1 R+) such that

(46) Vx, y, p RB, --x t, x, P) o-- t, y, P) <= l( t)l[x yll.

If the problem (8) has a unique optimal solution E, then V(t, is differentiable at (t)
for all to, 1 ].
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Proof Observe that for every [to, 1], the problem (8) has a unique optimal
solution for (to, Xo) replaced by (t, :(t)). For this reason we only check that V(to,.
is differentiable at Xo.

By 11, pp. 33, 63] it suffices to show that D* V(to, Xo) is a singleton. Let Pl, P2
D* V(to, Xo) and consider sequences {x} and {x,} converging to Xo, such that

lim 0V to, x ,) pi, 1, 2.
k-->+ OX

Let -ix be an optimal trajectory for problem (8) with Xo replaced by x, i= 1, 2 and
denote by p a corresponding co-state. Then, by Proposition 4.3,

(p)’( t)
OH
0-- (t, g(t), p(t)),

pk(1) --g’(g(1)),

p(to)
OV

--O-(to, X).
By assumption (9)(iii), -i

Xk are bounded and equicontinuous. Since the solution of (8)
-iis unique, we deduce that Xk converge uniformly to g for i= 2. Taking subsequences

and keeping the same notation, we may assume that p, converge uniformly to the
unique solution p of

p’( t)
OH

-O--(t,(t),p(t)), p(1) -g’((1)).

In particular, pl p(to) P2 and so D* V(to, Xo) is a singleton. El
THEOREM 4.8. Under the assumptions ofTheorem 4.6, assume that g is continuously

differentiable. Then V( to,. is differentiable at Xo with derivative different from zero if
and only if there is a unique optimal trajectory for problem (8) and g’(ff(1))# 0.

Proof Assume that (O V/Ox)( to, Xo)0. Let be optimal for problem (8). By
Theorem 4.2, g’(:(1)) 0. By Proposition 4.3, every optimal trajectory/co-state pair
solves the Hamiltonian system (41). This yields the uniqueness of optimal trajectory.

Conversely, assume that (8) has a unique optimal solution : and g’((1))0.
By Theorem 4.7, V(to,’) is differentiable at Xo. Theorem 4.2 implies that
(0 V/Ox)( to, Xo) O. [3

5. Semiconcavity properties of the value function. We provide a sufficient condition
for the semiconcavity of the value function V" [0, 1] R" R introduced in the first
section. Throughout the whole section we assume the following:

(i) f" [0, 1 x R" x U- R" is continuous,
(ii) EIM > 0 such that V(t, x, u) [0,1] x R" x U,

f( t, x, u)]] _-< M([] x + 1),
(iii) EIL>0suchthatVq,t2[0,1],Vx,x:R",VuU,

II/(t, x, u)-f(tz, x, u)ll--< L(ltl- t=l/ IIx,- x211),(47)
(iv) 3w’R+ x R+--> R+ such that (21) holds true and

V [0, 1 ], Vu U, VR > 0, VXo, x RB, [0, 1],
IIAf(t, Xo, u)+(1-A)f(t, Xl, u)-f(t, Axo+(1-A)Xl, u)ll
<-_ A(1- A)llx, xoll o(R, Ilx,-xoll),

(v) g" R" - R is locally Lipschitz and semiconcave.
Remark. (1) Assumption (47)(iv) holds true in particular when f is continuously

differentiable with respect to x uniformly in (t, u). More precisely, (47)(iv) is satisfied
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if we assume that there exists a function o’R+ x R+- R+ satisfying (21) such that

for all u U, [0, 1 ], Xl, x2 RB.
(2) Vice versa, Proposition 3.12 implies that, if f satisfies (47)(iv), then f is

continuously ditterentiable with respect to x.
The main result of this section is the following theorem.
THEOREM 5.1. If (47) holds true, then the value function is semiconcave on

[0, 1] xR
Proofi For every [0, 1] and measurable function u’[t, 1]- U, we denote by

y(.; t, x, u) the solution of the system

y’(s) f(s, y(s), u(s)), y(t) x.

The Gronwall lemma implies that

(48) VxRB, Vs[t, 1], ]Iy(s)}I<-CR:=(R+M)eM.
Moreover, for all [0, 1], s t, 1], Xo, Xl R and all measurable functions u" t, 1] -->

U, we have

(49) I[y(s; t,

Step 1. We claim that there exists wl"R+ x R/- R/ satisfying (21) such that for
all 0 <- <- s <-_ 1, R > 0, xo, xl RB, A e [0, 1], and measurable functions u" t, 1] U,
we have

IIAy(s; t, xa, u)+(1-A)y(s; t, Xo, u)-y(s; t, AXo+(1-A)Xl,

_--< A(1 -A)llXl-Xolltol(e, IlXl-/oil).

Indeed, set x Axo + (1 A)xl and define

y,(-) Ay(-; t, Xl, u)+(1-A)y(’; t, xo, u)-y(-; t,x,, u).

Then

yi(’)= )tf(’, y(’; t, Xl, u), u(’))+(1-A)f(’, y(’; t, Xo, u), u(’))

-f(’, y(’; t, x, u), u(’)),

ya(t)-0.

Thus by assumptions (47)

Ily,()l]_-< A(1-A)[ly(; t,x, u)-y(; t, Xo, )ll

oO(CR, ]lY(; t, Xl, u)--y(; t, Xo, )ll)/ Llly()ll,

where CR is defined in (48). Our claim follows from (49) and the Gronwall lemma.
Step 2. We claim that there exists w2" R+ x R+-> R+ satisfying (21) such that for

all [0, 1], A [0, 1], R > 0, and Xo, Xl RB the following inequality holds true:

A V( t, Xl) + 1 A V( t, Xo) V( t, AXl + 1 A)Xo)
_--< A(1 ,)[]x Xol] w2(g, ]]Xl- Xoll).

Indeed, define x as in Step 1, fix e > 0 and a control u such that

V(t, x) > g(y(1; t, x, u))- e.
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Let wg denote a modulus of semiconcavity of g and Lea Lipschitz constant of g on
the ball of radius Ce. Then from (49) and Step 1, we get

A V( t, xl) + 1 A) V( t, x0) V( t, x)

< Ag(y(1; t, xl, ue))+(1-A)g(y(1; t, Xo, ue))-g(y(1; t,x,
=<A(1-A)Ily(1; t,x, ue)-y(1; t, Xo,

0%(CR, IlY(1; t, x1, ue)-y(1; t, Xo, u)ll)
+Le[lAy(1; t,x, u)+(1-A)y(1; t, Xo, u)-y(1; t,x, u)ll /

_-< LA(1 A)IlXl- xoll
(o%(G, ellx,-xoll)+Ol(R, IlXl-Xoll))+ e

for some L depending only on LR and L. Since e > 0 is arbitrary, our claim follows.
Thus we proved the semiconcavity of V(t,. ).
Step 3. Consider next 0=< t < to =< 1, R > 0, and let Xo, x RB, A [0, 1]. Define

XA X +(1 A)Xo, tz At1 +(1- A)to.

Pick any e > 0 and let ue be such that

V(to,y(to; t,x, ue))< V(t,x)+e.

.(s)=As+(1-A)to, iftl<--s<=to,
(50)

s otherwise.

Since the value function is nondecreasing along trajectories of our control system, we
have

A V(/1, Xl) -i- 1 A) V( to, Xo) V( t,, X,)

(51 <__-- A V( to, y( to tl, Xl, Ue T)) "1- 1 A) V( to, Xo)

V(to, y(to; ta, xa, ue))+ e.

Set y(s)= y(s; t, xl, ue r), y,(s)= y(s; t, x, ue), and let KR denote the Lipschitz
constant of V on [0, 1] CRB. By (51) and Step 2 we obtain

A V( tl, Xl) + 1 A) V( to, Xo) V( t, xx)

(52) _--< A(1 A)[[yl(to) Xo[[ co2( CR, [lYl(to) Xol[)
+ K[]Ay(to)+(1-A)xo-y(to)][.

On the other hand, from assumption (47)(ii) it follows that

(53) Vs[t,to], []y(s)-xoil<=l[xl-xoll+Me(to-t),

where Me M(1 + Ce). Set

z(s) Ay(’-l(s)) + (1 A)Xo- y(s)

and note that z(t) 0, Z(to) Ayl(to) + (1 A)Xo yx (to). Furthermore, using (47)(iii),
we obtain the following estimates:

IIz’(s)ll- []f(-l(s), Yl "/’-1(S), tie(S))--f(s, y;t(S), U(S))II
_-< L(]-(s)- s]+ [[yo -(s)-y(s) ]l)

1-A
<- LIIz(s)ll / L(a ,) Ily r-(s)- Xoll /L(to- s).

Define
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Therefore from the Gronwall inequality and (53) we deduce that

IlZ(to)ll<-L(1-h) [[yoz-l(s)-xol[+ lh (to-s) eL(’o-) ds

()

Inequalities (52), (53), and (54) imply the conclusion. [3

PROPOSITION 5.2. Assume that the valuefunction is semiconeave at a point (to, Xo)
[0, 1] R". If D+ V(to, Xo) is a singleton, then V is differentiable at (to, Xo) and
D* V( to, Xo) { V’( to, Xo)}.

Here at boundary points (toe {0, 1}), the above differentiability, of course, has to
be understood in the one-sided sense.

Proof Let zr :R R" - R" denote the projection on R". Since

zrxD+ V(to, Xo) c D+ V(to, Xo) =: {Po},

by (34) and (23) we conclude that

(Pt, Px) D* V( to, Xo):=px Po, Pt H( to, Xo, -Po).

Hence D+ V(to, x0) is a singleton. The conclusion follows from Proposition 3.10.
COROLLARY 5.3. Assume (47) that g is differentiable, and that the derivative

V’(to, Xo) does exist. Let be an optimal solution ofproblem (8).
Then for all t[to, 1], V is differentiable at (t, (t)) and

D* V( t, ( t)) { V’( t, ff(t))}.

Conversely, assume that x to, 1 R is a solution of (6) and thatfor every to, 1 ],
V is differentiable at (t, x(t)). If the sets f(t, x, U) are convex and compact, and

(55) (O(t, x(t)), x’(t))= H(t, x(t)
OV

,-O--(t,x(t)) a.e. in [to, 1],

then x is optimal for problem (8).
Proof The first statement follows immediately from Proposition 5.2 and Theorem

4.5. To prove the second one, fix to, 1 and let : , 1 - R" be an optimal solution
of problem (8) with (to, Xo) replaced by (, x(-)).

We already know that V is semiconcave. By Theorem 4.2, there exists p() R"
such that

(H(F, x(-), p(-)),-p()) V’(-, :()).

Since [to, 1] is arbitrary, assumption (55) and Theorem 4.1 end the proof.
COROLLARY 5.4. Under all assumptions of Theorem 4.7 assume (47). Ifproblem

(8) has a unique optimal solution 2, then V is differentiable at (t, g(t)) for all 6 [to, 1].
COROLLARY 5.5. Under the hypotheses of Theorem 4.6, assume that (47) holds true

and g is continuously differentiable. Then V( .,. is differentiable at (to, Xo) with the
derivative (OV/Ox)(to, Xo) different from zero if and only if there is a unique optimal
trajectory for problem (8) satisfying g’(g 1 )) O.

Usually, the value function is not everywhere differentiable. However, that is
always the case for "convex" problems, as we prove below (see also [4], [5], [9]).

PROPOSITION 5.6. Assume that (47) holds true, g is convex, and for all [0, 1],

(56) Graph (f(t, ., U)) is closed and convex.
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Then V is continuously differentiable on [0, 1 R and convex with respect to the second
variable.

Proof. By Theorem 2.1, assumption (56) yields that for every (to, Xo) [0, 1]x R
there exists a solution : of the control system

x’ =f(t, x(t), u(t)), u(t) U, X(to) Xo,

satisfying V(to, Xo)= g(g(1)).
Fix to [0, 1], Xo, Xl 6 R", A [0, 1] and consider trajectories x to, 1] - R" and

y :[to, 1] R such that V(to, Xo) g(x(1)), V(to, xl) g(y(1)). Define the trajectory
z:[to, 1]-*R" by z(t)=Ax(t)+(1-A)y(t). Then, using (56), we obtain that z is a
solution of the control system (6) satisfying Z(to)= AXo + (1- A)xl. Thus, by convexity
of g,

V( to, hXo + (1 h )Xl) g(z(1 )) <- h V( to, Xo) + 1 V( tl Xl)

and therefore V(to,. is convex.
Next, as V(t, is both convex and semiconcave for all [0, 1], Proposition 3.12

yields that V(t,.) is continuously differentiable on Rn. The conclusion now follows
from Proposition 5.2.

6. Optimal feedback. One of the major issues of optimal control theory is to find
an "equation" for optimal trajectories. Theorem 2.4 provides an inclusion formulation.
However, in general, the set-valued map G is not regular enough to make us able to
solve the inclusion (12). The situation is comparable to having an ordinary differential
equation with a nonsmooth right-hand side: it may have solutions, but this solution
cannot be obtained as, say, limits of Euler curves.

This is why we have to investigate regularity properties of G. In this section, we
show that under the assumptions of Theorem 5.1, the feedback map G is upper
semicontinuous and that so is G if we assume, in addition, that the sets f(t, x, U) are
closed.

The results of 3 and 5 imply that under assumptions (47) the feedback maps
G [0, 1 R-R and G [0, 1 Rn-R defined in 2 are, respectively, equal to

G(t,x)={vf(t,x, U)lV(t,x)(1, v)=0}

and

GC(t,x)={v-U6f(t,x, U)[V(t,x)(1, v) =0}.

THEOREM 6.1. Let us assume that (47) holds true. Then G has compact, nonempty
images and is upper semicontinuous. The same holds true for the map G is we assume,
in addition, that the sets f(t, x, U) are closed.

Proof From Theorems 5.1 and 3.9 we know that for every (t, x) [0, 1[ x R" and
every (R)R" the directional derivative (OV/O(1, O))(t, x) exists and is equal to the
regularized lower derivative V((t, x), (1, O)). Define the set-valued map

O" [0, 11 R" R"

by

(( t, x) {O E R"[ v( t, x)(1, 6)) 0}.

From Proposition 3.5 we know that the set Graph (() is closed. On the other hand,
Proposition 2.3 implies that for every vV6f(t,x, U), (OV/O(1, v))( t, x) >- O. Thus

G( t, x) O( t, x) f"l f( t, x U), GC( t, x) O( t, x) f"l-E-6 f( t, x, U).
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This fact and the assumptions onf imply that the graphs of the set-valued maps G, G
are closed. Furthermore, G takes its values in a compact set. From [2, p. 42] (see
also [3, Chap. 1]) it follows that G and G are upper semicontinuous.

COROLLARY 6.2. Let us assume that (47) holds true and that the sets f(t, x, U) are
closed. If the map G is single-valued on a subset K c [0, 1]xR", then the function
K t, x) -> G( t, x) is continuous.

A typical example of a nonlinear control system with closed convex images is the
affine system

k

x’=f(x)+ uigi(x), u,[a, b],
i=1

where f and g are continuous functions from R" to itself.
The feedback map G defined above, in general, does not have convex images

because the map of directional derivatives is concave.
For this reason, in general, the feedback inclusion (12) is very difficult to investigate.

When V happens to be differentiable and the sets f(t, x, U) are closed and convex,
then for obvious reasons the map (3 has convex compact images. Proposition 5.6
provides a sufficieot condition for the continuous differentiability of V.

THEOREM 6.3. Assume that (47) and (56) hold true and that g is convex. Then G
has convex compact images and is upper semicontinuous. Furthermore, iffor every t, x)
the set f( t, x, U) is strictly convex, then G is single-valued and continuous.

Proof By Proposition 5.6, we know that V is continuously differentiable. This
and the convexity off(t, x, U) yield that for all (t, x) [0, 1[ x

Gc(t,x)=O(t,x)=f(t,x, U){OR"[V’(t,x)(1, O)=O}

is convex. Theorem 6.1 ends the proof of the first statement. From Proposition 2.3 it
follows that for all (t, x) [0, 1[

v G(t, x)Cvf(t, x, U) and

sup ---(t,x) f(t,x, u) ---(t,x) v
uU Ox Ox

This and strict convexity of f(t, x, U) imply that G is single-valued. Corollary 6.2
completes the proof.

7..Viability approach to optimal control. In this section, we provide an alternative
approach to optimal trajectories based on viability techniques.

We first show the following characterization of optimal trajectories.
THEOREM 7.1. Assume (9). Then a solution of the control system (6) defined on

the time interval [0, 1] is optimal if and only if the function t-->(t,Y(t), V(0, 0)) is a

x’(t) --f( t, x(t), u(t)), u(t) U is measurable,

(57) z’(t) --0,

t, x( t), z( t)) Graph V) Vt[O, 1],

t(o)=o, x(O)=:o, z(O)=V(O,o).

Proof We already observed that if(. is optimal if and only ifthe map V(t, (t))
is constant on the time interval [0, 1]. On the other hand, (t, (t), z(t)) is a solution

solution of the viability problem
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of (57) if and only if z(t)= V(t, y-(t)) const and Y-(-) is a solution of (6) satisfying
x(o) o. E

Inclusion (57) is a viability problem which may be approached using many results
of viability theory. Actually, the viability technique may be applied not only to the
value function V but also to any continuous function W satisfying some inequalities
from [17]. To state results in this direction, we need the following definition.

DEFINITION 7.2. Consider a continuous function W:[0, 1]Rn-*R and let
t, x) [0, 1 Rn. The contingent derivative of W at t, x) in the direction (w, v) R R

is a subset of R defined by

DW(t,x)(w, v)

(58) { (W(t+hw’,x+hv’)-W(t,x))}:-- uR liminf dist u, =0
h-o+,(w’.’)-(w,) h

From [3, Chap. 6] it follows that the set DW(t, x)(w, v) is closed and convex.
THEOREM 7.3. Consider a continuous function W" [0, 1] x R" R and assume (9).

Iffor every t, x)

O{DW(t,x)(1, v)lvf(t,x, u)},

then for all (to, Xo) there exists a solution Y- of the differential inclusion

x’(t)-6-6f(t,x(t), U) a.e. in [to, 1], X(to)=Xo

such that W( t,
Proof It is not restrictive to assume that to 0. We extend W on R+ R by setting

for all > 1, W(t, x)= W(1, x). Define the closed set K graph (W) and the map
Fl( t, x) {1} -6-6f( t, x, U){0}. Set

/3(t, x) { Fl(t, x) if 6 [0, 1[
({0} U F,(1, x.)) if >= 1.

Then for every t, x) R+ x R", the contingent cone T:(t,x, W(t,x)) to K at
(t, x, W(t, x)) is equal to Graph (DW(t, x)) (see [3, Chap. 5]). Hence, by our assump-
tion, for every (t,x)
T(t,x, W(t,x)). Furthermore, for every t->l and x6R", we have Off:(t,x). This
proves that

V(t,x)R+xRn, F(t,x) fq TK(t,x, W(t,x))O.

By the assumptions,/3 is continuous and has closed convex images. Consequently, by
the Haddad viability theorem [20] (see also [1], [2]), the constrained system

y’(t) (t, y(t)) a.e.,

y(t) 6K Vt [to, +[,

y(to) to, Xo, W( to, Xo)

This theorem states that, if an upper semicontinuous set-valued map F from a closed subset K of R
into nonempty convex compact subsets of R has linear growth and satisfies the viability condition

VyK, F(y)fqTK(y)O,

then for every Yo K there exists a solution of the differential inclusion

y’(t)F(y(t)), y(0)--yo, y(t)K

defined on the whole half line R+.
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has a solution 3 (Zo, x, z)’[ to, +c[ - R x R x R. Then, from definition of K and if’,
Zo(t) t, z(t)= W(t,x(t)). On the other hand, z’(t)=0 almost everywhere in [to, 1]
and therefore z const. This ends the proof. [3

THEOREM 7.4. Consider a continuous function W: [0, 1] R R. We assume that
f does not depend on and (9) holds true. If W(1,. )= g(. and

sup inf D(- W)(t, x)(1, v) -< 0
f(x, U)

where D(- W)( t, x)(1, v)c R is defined in (58)), thenfor every solution y( t, x, z)(
of

t’= 1,

x’(t) =f(x(t), u( t)), u( t) g is measurable,

(59) z’(t) =0,

t, x( t), z( t)) Graph W) Vt [0, 1],

t(0)=0, x(0)=o, z(0)=w(0,:o),

defined on the time interval [0, 1], the trajectory x(. is optimal for the problem (7).
Proof From [17] we deduce that W is nondecreasing along trajectories of (6).

On the other hand, if y(. (t, x, z)(. is a solution of (59) defined on the time interval
[0, 1], then W(t, x(t))-= const. [3

8. Problem with endpoint constraints. In this section we investigate the case when
the additional endpoint constraint is present:

X(1) K1,

where K1 is a given closed subset of R. The corresponding value function is defined
by

V(to, Xo)=inf{g(x(1))lx is a solution of (6) on [to, 1], X( to) Xo, X(1) K1}.

We observe that V(to, Xo) +c whenever no trajectory starting at Xo at time to hits K
at time one.

In this more general case, the value function may be discontinuous and we have
either to develop a verification technique for a larger class of functions (some results
in this direction were obtained in [17]) or to try to reduce the problem to a new one,
where the data fits the Lipschitz framework. We will follow this second strategy and
apply a penalization technique.

We provide only a convergence result showing that the problem with endpoint
constraints may be approximated by free endpoint problems. Further developments
are left to future work.

We impose assumptions (9) on the functions f and g, and we consider the family
of penalized problems. With every e > 0, we associate the minimization problem

(P) minimize g(x(1))+-dist (x(1), K1)ZIx( is a solution of (6), x(0)= sCo

Define functions g from R" to R by

1
)2.VxRn, g(x)=g(x)+-dist(x,K

The value function V corresponding to the problem (P) is defined by (8) with g
replaced by g.
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Since g is locally Lipschitz, so does V with the Lipschitz constant depending
on e. Hence the results obtained in the previous sections may be applied to V.

Furthermore, if g is semiconcave, then, using Example 1 from 3, we show that
also the functions g are semiconcave. This fact and Theorem 5.1 yield that, under
assumptions (47), for every e > 0 the value function V is semiconcave on [0, 1] x R
Consequently, results concerning regularity of optimal feedback may be applied to
penalized problems.

The aim of this section is to prove the convergence of V to V.
THEOREM 8.1. Assume (9). If the sets f(t, x, U) are closed and convex, then for

every (t, x) [0, 1 x R" the function R+ e V (t, x) is nonincreasing. Furthermore, for
every e > O, V (t, x) <= V(t, x) and

lim V(t, x)= V(t, x).
O+

Proof The first statement follows from the fact that the map - (x) is nonin-
creasing. The second one follows from the fact that g(x(1))=g(x(1)) whenever
x(1) K1.

Now fix (t, x) e [0, 1 x R" and set W(t, x) lim_.o+ V (t, x). Clearly, W(t, x) _<-

V(t, x). To show the opposite, it is enough to consider the case W(t, x) < +oo. Consider
trajectory control pairs (y, u) of control system (6) satisfying

V(t,x)=g(y(1))

(they exist by Theorem 2.1). Then, by the relaxation and the parametrization theorems
(see [2]), there exists a sequence e, - 0+ and a trajectory y(. of (6) defined on t, 1]
such that y.- y uniformly on t, 1]. On the other hand,

0-< dist (y (1), K1)2 <- e( W(t, x) g(y (1)))

and, therefore, taking the limit in the above inequality, we obtain y(1) K1. Further-
more, from the inequality

v(t,x)>-g(y(1)),

we deduce that W( t, x) >- g(y(1)) >= V(t,x).
COROLLARY 8.2. Under all assumptions ofTheorem 8.1, consider a sequence e, - O+

and let x,(.) be an optimal solution to the problem (P.). If problem (P) has at least
one solution, then every cluster point x(. of {x-( )} in the metric ofuniform convergence
is an optimal solution of (P).

Proof Indeed, since (P) has a solution, by Theorem 8.1, for all n > 0,

g(x"(1))<-_g,,(x%(1)) V.(0, so) -< V(0, so) < +oo

and, taking the limit, we deduce that V(0, so)>_- g(x(1)) >- V(0, o) and x(1)e K. Thus
x is optimal.

REFERENCES

[1] J.-P. AUBIN, Viability Theory, Birkhiuser, Boston, Basel, Berlin, 1991.
[2] J.-P. AUBIN AND A. CELLINA, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[3] J.-P. AUBN AND H. FRANKOWSKA, Set-Valued Analysis, Birkhiuser, Boston, Basel, Berlin, 1990.

[4] V. BARBU AND G. DA PRATO, Hamilton-Jacobi Equations in Hilbert Spaces, Pitman, Boston, 1982.

[5] M. BARD AND C. L. EVANS, On Hopf’sformulafor solutions ofHamilton-Jacobi equations, Nonlinear

Anal., 8 (1984), pp. 1373-1381.
[6] L. BERKOVTZ, Optimal feedback controls, SIAM J. Control Optim., 27 (1989), pp. 991-1006.
[7] P. CANNARSA AND H. FRANKOWSKA, Quelques charaetdrisations des trajectoires optimales en thdorie

de eontr3le, Note de CRAS, S6rie 1, Paris, 310 (1990), pp. 171-182.



CHARACTERIZATIONS OF OPTIMAL TRAJECTORIES 1347

[8] P. CANNARSA AND H. FRANKOWSKA, Value function and optimality conditions for semilinear control
problems. Appl. Math. Optim., to appear.

[9] P. CANNARSA AND H. M. SONER, On the singularities of the viscosity solutions to Hamilton-Jacobi-
Bellman equations, Indiana Univ. Math. J., 46 (1987), pp. 501-524.

[10] , Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications,
Nonlinear Anal., 13 (1989), pp. 305-323.

11] F. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, (1983). Reprinted
by CRM, Universit6 de Montr6al, 1989.

[12] F. H. CLARKE AND R. B. VINTER, The relationship between the maximum principle and dynamic
programming, SIAM J. Control Optim. 25 (1987), pp. 1291-1311.

[13] M. G. CRANDALL AND P. L. LIONS, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer.
Math. Soc., 277 (1983), pp. 1-42.

[14] M. G. CRANDALL, L. C. EVANS, AND P. L. LIONS, Some properties of viscosity solutions ofHamilton-
Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487-502.

[15] M. G. CRANDALL AND P. L. LIONS, On existence and uniqueness of solutions of Hamilton-Jacobi
equations, Nonlinear Anal., 10 (1986), pp. 353-370.

[16] W. H. FLEMING AND W. H. RISHEL, Deterministic and Stochastic Optimal Control, Springer-Verlag,
New York, 1975.

[17] H. FRANKOWSKA, Optimal trajectories associated to a solution ofcontingent Hamilton-Jacobi equations,
Appl. Math. Optim., 19 (1989), pp. 291-311.

[18] , Nonsmooth solutions of Hamilton-Jacobi-Bellman equation, in Modeling and Control of
Systems, A. Blaquiere, ed., Springer-Verlag, Berlin, 1988, pp. 131-147.

[19] , Contingent cones to reachable sets of control systems, SIAM J. Control Optim. 27 (1989),
pp. 170-198.

[20] G. HADDAD, Monotone trajectories of differential inclusions with memory, Israel J. Math. 39 (1981),
pp. 38-100.

[21] H. ISHII, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ.
Math. J., 43 (1984), pp. 721-748.

[22] H. ISHII AND P. L. LIONS, Viscosity solutions offully nonlinear second order elliptic partial differential
equation, CEREMADE, 8820, 1988, preprint.

[23] P. L. LIONS, Generalized Solutions of Hamilton-Jacobi equations, Pitman, London, 1982.
[24] P. L. LIONS AND P. E. SOUGANIDIS, Differential games, optimal control and directional derivatives of

viscosity solutions of Bellman’s and Isaaks’ equations, SIAM J. Control Optim., 23 (1985), pp. 566-
583.

[25] N. N. SUBBOTINA, The maximum principle and the superdifferential of the value function, Problems
Control Inform. Theory, 18 (1989), pp. 151-160.

[26] X. Y. ZHOU, Maximum principle, dynamic programming and their connection in deterministic control,
J. Optim. Theory Appl., 65 (1990), pp. 363-373.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 29, No. 6, pp. 1348-1372, November 1991

(C) 1991 Society for Industrial and Applied Mathematics
OO5

NEW SIZE xCURVATURE CONDITIONS FOR STRICT
QUASICONVEXITY OF SETS*

GUY CHAVENT?

Abstract. Given a closed, not necessarily convex set D of a Hilbert space, the problem of the existence
of a neighborhood 7/ on which the projection on D is uniquely defined and Lipschitz continuous is
considered, and such that the corresponding minimization problem has no local minima. After having
equipped the set D with a family of paths playing for D the role the segments play for a convex set, the
notion of strict quasiconvexity of (D, ) is defined, which will ensure the existence of such a neighborhood
7/. Two constructive sufficient conditions for the strict-quasiconvexity of D are given, the Re-size curvature
condition and the O-size x curvature condition, which both amount to checking for the strict positivity of
quantities defined by simple formulas in terms of arc length, tangent vectors, and radii of curvature along
all paths of . An application to the study of wellposedness and local minima of a nonlinear least squares
problem is given.

Key words, projection theory, approximation theory, nonlinear least squares, inverse problems

AMS(MOS) subject classifications. 49A27, 52A50, 51K05

1. Introduction. Let

(1.1) F a Hilbert space,

(1.2) D c F a (not necessarily convex) subset

be given. This paper is devoted to the study of the Hilbert projection on D. It is known
(cf. [2]) that, when D is closed and bounded, the set of all z F that admit a unique
projection on D contains a dense countable intersection of open sets, called the
Edelstein set, and defined by

s {z FIv > 0, an > 0 s.t. X D, IIx zll-<- d(z, D)+ l,J =0, 1
(1.3)

implies IIXo-XII] _-< e}.
This result is not precise enough for the application to nonlinear least squares problems
we have in mind, first because it gives only a generic result, and second because it
does not give any insight into possible local minima on D of the "distance to z"
function, whose presence or absence is critical when it comes to the actual numerical
determination of the projection using an optimization algorithm.

Hence, it would be very useful to find conditions on D that ensure (i) that the
Edelstein set contains some neighborhood 7/of D, and (ii) that ideally the y--> d (y, z)
function has no local minima on D whenever z 7/. Necessary and sufficient conditions
for point (i), involving the local curvature of D, have been extensively studied (cf.,
for example, [1] and [7]), but point (ii) has not received much attention.
The notion of the curvature of a set D is both delicate to define and difficult to

apply to nonlinear least squares problems. That is why we will be looking only for
sufficient conditions for (i) and (ii), which make it possible to work only with the
elementary notion of the curvature ofa curve, provided that the set D has been equipped
with a collection of paths P which will play for D the role of the segments for a
convex set. This allows for an easy application to nonlinear least squares problems,
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where the paths can be very naturally defined as the image of the segments of the
admissible set by the mapping to be inverted. The notion of quasiconvex sets (D, )
introduced in [6] following this line, together with a constructive sufficient condition
(the y-size x curvature condition) was a first answer to (i) and (ii): closed quasiconvex
sets, which possess a neighborhood 7/" on which the projection exists, is unique, and
Lipschitz continuous, fully satisfy point (i), but not completely point (ii), as they do
not eliminate local minima, which may exist provided their value is "large enough."
Moreover, the y-size x curvature condition introduced in [6] to recognize them does
not seem to be very sharp, as, for example, it is far from recognizing all quasiconvex
arcs of circles (cf. Figs. 3.2 and 3.3 below).

In this paper we remedy the above-mentioned weaknesses.
We first introduce the slightly stronger notion of a strictly quasiconvex set, which

fully eliminates the possibility of local minima, as soon as the point to be projected
is in the associated neighborhood 7/.

Then we introduce the notion of a global radius of curvature Re associated to
the family of paths and show that condition Re > 0 (called the Re-size curvature
condition) implies strict quasiconvexity of the set. This condition is shown to be sharp
(see Figs. 3.2 and 3.3 below) as it recognizes exactly all strictly quasiconvex curves.

Third, we calculate a lower bound to Re in terms of the usual radius of curvature
R, the length A, and the deflection O associated to the family of paths ; this, of
course, leads to another sufficient condition for strict quasiconvexity of the set, called
the O-size curvature condition, which is also sharp because it recognizes exactly all
strictly quasiconvex curves made up of one arc of a circle and one segment.

All geometrical quantities 2’, Re, R, A, and 19 are defined by infimum or supremum,
over the collection of paths , of quantities easily computed on each path from the
velocities and accelerations along the path.

Finally, we give an application to a nonlinear least squares problem in the case
where the derivative of the nonlinear mapping to be inverted has a uniformly bounded
pseudoinverse. A more detailed application to nonlinear least squares problems and
their regularized versions can be found in [5].

2. Equipping the set with paths. The first step of our construction consists of
choosing in the possibly nonconvex set D a collection of paths P that will play for
D the role the segments play for a convex set. We summarize here the corresponding
definitions and notation, following paragraph 2.1 of [6].

DEFINITION 2.1 (Paths). A mapping P:[0, L]-* D is a path if and only if

(2.1) v P(v) is in W2’Cx3([0, L]);

(2.2) I]P’(v)llv 1 for a.e. v [0, L].
Note that this definition is slightly weaker than the one given in [6], where c2

regularity of the v o P(v) mapping was required. In fact, all results of [6] carry over
when this new definition is used. We refer to [6] for a sufficient condition for a mapping
to be reparametrizable in such a way that it is a path.

DEFINITION 2.2 (Attributes of a path). Let a path P be given. Then

(2.3)

(2.4)
(2.5)
(2.6)
(2.7)

v [0, L] is the arc-length along P;

6(P) a___ L is the length of P;

v(v) a___A p,(v) is the unit tangent vector to P at P(v);
a(v) P"(v) is the acceleration vector of P at P(v);
p(v) =a I]a(v)ll- IR+ kl {+} is the radius of curvature of P at P(v).
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Because we will use only the parametrization by the arc length in this paper, we
denote it simply by , (note that in [6] the (reduced) arc length was denoted by , and
all corresponding quantities wore bars, as quoted at the beginning of paragraph 3 of
[6]; hence, a(,,) in this paper corresponds to ti() in reference [6], etc.).

DEFINITION 2.3 (Collection of paths). A set of paths is a collection ofpaths if
and only if

(2.8) is made up ofpaths;

(2.9) iscomplete, i.e.,VX, YD,X Y, EIPe,suchthatP(O)=X,P(6(P))=
Y;

(2.10) is stable with respect to restriction, i.e., VP , V,, [0, 3(P)], <
the path P’v [0, ,"- u’]- P(,’+ u) belongs to .

The set of paths should contain the minimum number of paths that allow (2.9)
to be satisfied (typically, one and only one path of connects two given distinct points
X and Y of D, but we do not put uniqueness in the requirements for a collection of
paths because we do not exclude the possibility of choosing for the minimum length
paths between any two points of D, which may not be unique).

Note that hypothesis (2.1) implies that a path has a bounded curvature (by ]]a]]),
i.e., a strictly positive smallest radius of curvature. Hence we will be able to find paths

satisfying both Definitions 2.1 and 2.3 only if the set D itself is regular enoughm
intuitively if it also has a "bounded curvature."

DEFINITION 2.4 (Maximal paths). A subset M of is said to be a collection of
maximal paths for if and only if

(2.11) = U {P’IP’ is a subpath of P}.
PM

Of course, such a M always exists because M satisfies (2.11) by virtue of
(2.10)! However, a more interesting case will be found when there exists a smallest
collection of maximal paths: this will be the case in most ofthe applications to nonlinear
least squares (see [6] and [5]), where is the image, by a mapping p, of the segments
of a closed convex set C, so that M {([x, y]), x, y,OC} obviously satisfies (2.11).

In the following, we will suppose that a collection of maximal paths M has been
chosen.

3. Qasieonex anti strictly qasieonex sets. Let the set D be equipped with a
collection of paths . To a given point z F, a path P , and an arc length value

[0, (P)], we associate the number

(3.1) k(z, P; ,)=(z-P(v), a(’))F

whose geometrical interpretation is given by (with the notation of Fig. 3.1)

d(v) MH
(3.2) k(z, P; ,)= cos 0-

p(v) MC

We may then associate to z and P the number

(3.3) k(z, P) sup ess k(z, P; ,)
ve[O,6(P)]

and to z and r/> 0 the number

(3.4) k(z, ’q)= sup k(z, P),
P(z,’o)
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p (v) M

v (v)

FIG. 3.1. Notation for the geometrical interpretation of k(z, P; v)=(z-P(v), a(v))F C is the center of
curvature of P at P( v), and H is the orthogonal projection of z on the one-dimensional affine variety parallel
to a(,) and passing through M P(v).

where the subcollection of paths (z, /) is defined by

(3.5) (z, I)= {P IIIP(j)--ZlIF<--d(z, D)+rI, j=O, 5(P)}.

It will be convenient to define k(z, 0) as the limit, when r/ Ot, of k(z, 0).
We can now give the following definition.

DEFINITION 3.1 (Quasiconvexity of sets). A set (D, ) is said to be quasiconvex if
and only if

(i) is a collection of paths;
(ii) There exists a neighborhood 7# of D in F, and a lower semicontinuous (1.s.c)

function e: 7# ]0, +] such that

(3.6)
0< r/< e(z)

Ok(z, q) < 1.

This is a slightly upgraded version of the definition of quasiconvexity given in [6]
(where the z e(z) function was required to be continuous). All the results in [6]
carry over when quasiconvexity is defined using Definition 3.1, and this upgraded
definition allows us to prove the following proposition.

PROPOSITION 3.2. Let (D, ) be quasiconvex. Then there exists a largest open
neighborhood 7# ofD, and a largest 1.s.c. function e: 7# ]0, +o[ satisfying the definition
of quasiconvexity.

Proof Let us denote by 7#/, ei, i 1, all open neighborhoods and 1.s.c. functions
satisfying Definition 3.1. Then

(3.7) 7#= U
icl

is an open subset of F. If we denote by 7i the extension of ei to 7# by zero outside of, then 7i is 1.s.c. as ei is 1.s.c. on 7# and 7# is open. Define then

(3.8) e(z) sup gi(z) Vz V,
icl

which is 1.s.c. as supremum of a family of 1.s.c. functions. Hence 7#, e will satisfy the
definition of quasiconvexity as soon as they satisfy (3.6), which we prove now. Let
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z V and 0 < rt < e(z) be given, and set

a =(e(z)-rl)/2>O.

From definition (3.8) of e(z), there exists io 1 such that

This proves, as gio(Z) > 0, that z Vi0. Hence Vi0 and eio satisfy the hypothesis of (3.6),
so that

k(z, ) <

which proves that and e(z) satisfy (3.6).
PROPOSVnON 3.3. Let (D, ’) be quasiconvex. Then the associated neighborhood

is included in the Edelstein set (1.3), andfor any z , 0 < rl < e (z), and P (z, rl),
(i) , f(,) 11P(’) z 2 is strictly convex;
(ii) , - d (,) - P(’) z is strictly quasiconvex.
Proof For z and P (z, r/) we have

f"(,) >= 2(1 k(z, r/)) > 0 a.e.,

which proves (i) and (ii), and also shows that the ,-*f(,)+ ,(6(P)-,)(1-k(z, r/))
function is convex. Hence

However,

so that

6(P):
4

(1-k(z, r/))=<f(O)+ f(r3(P)).

f >=d(z,D)2, f(j)<=(d(z,D)+rl)2 j=O, 6(P)

6(P)2<-4(1- k(z, rl))-’rl(2d(z, D)+ q).

Let X D, j 0, 1, be two B-projections of z on D"

IlX zll <= d(z, D) + rt.

If we choose for P the path connecting X1 and X2, we see that P @(z, r/); hence,

[IXo-X, Ilv<--_a(P)<--_2(1-k(z, "O))-l/2"rl/2(2d(z, D)-}- )1/2--> 0 when rt- 0,

which proves that z belongs to the Edelstein set.
Proposition 3.3(ii) implies that the distance of any point z of

having its extremities "not too far" from z is strictly quasiconvex.
Using the properties of the Edelstein set or the more precise results of [6], we

can prove that, when (D, ) is quasiconvex, the projection from V onto D is unique
and Lipschitz continuous, and exists when D is closed. However, the "distance to z"
function may still have, when z e , parasitic local minima distinct from the global
minimum. Of course, Proposition 3.3(ii) implies that these local minima are rejected
at a distance of D larger than d(z, D)+ e(z), but they may still exist and hence can
be a source of trouble when we attempt to actually compute the projection using a

gradient optimization algorithm.
We now introduce a new, stronger definition that will keep all the above-mentioned

nice properties of quasiconvex sets with respect to projection, but will be much better
behaved with respect to the problem of local minima.
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DEFINITION 3.4 (Strict quasiconvexity of sets). A set (D, ) is said to be strictly
quasiconvex if and only if

(i) (D, ) is quasiconvex for some neighborhood U and function z-* e(z);

(3.9)

(ii) U and e satisfy, moreover,

zEU
P
d(z, P) < d(z, D)+ e(z)

the "distance to z"
function is strictly

quasiconvex along the path P.

The additional hypothesis (3.19) means (compare with Proposition 3.3(ii)) that the
distance of any point z of U to any path of that is "not too far" from z is strictly
quasiconvex. We easily check that Proposition 3.2 extends to strictly quasiconvex sets.

PROPOSITION 3.5. Let (D, ’) be strictly quasiconvex. Then there exists a largest
open neighborhood T" of D, and a largest l.s.c, function e" U-> ]0, +oo] satisfying the
definition of strict quasiconvexity.

Of course, any neighborhood U associated by Definition 3.4 to a strictly quasicon-
vex set (D, ) is included in the Edelstein set (1.3) by virtue of Proposition 3.3.

The following theorem summarizes the properties of strictly quasiconvex sets.
THEOREM 3.6 (Projection on strictly quasiconvex sets). Suppose that

(3.1 O) D, is strictly quasiconvex,

and let , e(z) be the associated neighborhood and l.s.c, function.
Then

(i) Uniqueness. For any z U, there exists at most one projection f( of z on D.
(ii) Local minima. If z r admits a (necessarily unique) projection X on D, the

"distance to z" function has no parasitic local minimum on D distinct from
(iii) Continuity. If Zo, zl U admit projections f(o, 1 on D, and are close enough

so that there exists d >= 0 satisfying

(3.11) IlZo- zlllv + max d(z, D) <_- d < min {d(z, D)+ e(z)};
=0,1 -=0,1

then, for any path P going from fro to f( we have

(3.12) l12o- 2111<- 6(P) <-_ (1- k)-111zo- z11 ,
where k < 1 is defined by

k=(k(zo, no)+ k(z,, r/l))/2
(3.13)

O<7=d-d(z,D)<e(z), j=0, 1.

(iv) Existence. If we suppose moreover that

(3.14) D is closed in F,

then any z has a (unique) projection X on D, and any minimizing sequence Xn satisfies

(3.15) Ilx.- ll -,0
and

(3.16) (P,)--> 0 where P, is any path of going from X, to X.

Proof Properties (i), (iii), and (iv) result from the fact that strictly quasiconvex
sets are quasiconvex sets, for which they have been proved to hold in [6]. Hence we
are left with the proof of property (ii) on local minima. Let Xo D be one global
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minimum of the "distance to z" function, and suppose that this function admits a
local minimum at X1 Xo. By definition of Xo we have

(3.17) Ilz-Xoll d(z, O).

Then let P g connect Xo to X1. From (3.17) we obtain

(3.18) d(z, P)- IIz-Xoll d(z, D)< d(z, O)/

Then using property (3.9) of strictly quasiconvex sets we find that the "distance to z"
function is strictly quasiconvex along the path P, which is impossible because this
function has a global minimum at , 0 and a local minimum at

We illustrate the notions of quasiconvex and strictly quasiconvex sets by consider-
ing the very simple case of a set D consisting in an arc of a circle of radius R and of
length L. Simple geometric considerations show that

L
(3.19) D is quasiconvex itt--<2r;

R

L
(3.20) D is strictly quasiconvex iff--< r.

R

We have illustrated in Fig. 3.2 for both cases the largest corresponding open neighbor-
hood 72 whose existence is asserted by Propositions 3.2 and 3.5.

D

0<L<R
0<LR

Complementary of dashed area)

D

o

R L 2R R L<2R

FIG. 3.2. Largest open neighborhood Ufor quasiconvex (L < 2rR, left) and strictly quasiconvex (L < rR,
right) arcs of circle.

The first remark is that these neighborhoods are quite large; in particular, they
are "infinite" on the "convex side" of the arc of the circle, and admit the center of
the circle in their closure on the "concave side" of the arc of the circle.

However, if the quasiconvex neighborhood (Fig. 3.2, left) catches all points
admitting a unique projection on D when rR _-< L < 2rR, it misses many such points
when 0< L < rR (namely, all the points of the dashed area that are not on the axis
of symmetry of the figure), whereas the strictly quasiconvex neighborhood (Fig. 3.2,
right) does a much better job, as it catches in all cases exactly all points z admitting
a unique projection on D with no local minima on D of the distance to z.
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However, if it is simple to figure out the shape of these neighborhoods for sets D
as simple as an arc of a circle, it becomes practically impossible for more complicated
sets. Hence we need constructive sufficient conditions to recognize quasiconvexity and
strict quasiconvexity, which will give us smaller cylindrical neighborhoods.

A first sufficient condition for quasiconvexity of sets was given in [6]: it associated,
in a constructive way, a number y to (D, ), whose positiveness implied quasiconvexity
of (D, ) for a cylindrical neighborhood of D of size y. This condition was not very
precise" when applied to an arc of a circle, it read LR < 2x/, and hence was far from
recognizing all quasiconvex arcs of circles (L/R < 27r), and the size y ofthe correspond-
ing cylindrical neighborhood was very small (see Fig. 3.3, left). We refer to this condition
as the y-size curvature condition.

Y">" (I. L2/8R)

2R /2 L<nR

(complementary of dashed represent neighborhoods of Fig. 3.2)

O<L<R

FIG. 3.3. Cylindrical neighborhoods 7# given by the y-size x curvature condition (L < 2x/ R, left) and by
the Re-size x curvature condition (L< zr, right).

We turn now to the formulation of new sufficient conditions for strict quasicon-
vexity of sets, which will turn out to be much more precise that the y-size x curvature
condition: for arcs of circle they will give more (strict quasiconvexity) for less (L/R < 7r

instead of LR < 2x/) together with a larger neighborhood! A preview of these results
can be seen in Fig. 3.3, right.

4. The Rc-size x curvature condition: A new sufficient condition for strict quasicon-
vexity of sets. We first introduce some new concepts associated with paths.

DEFINITION 4.1 (Affine normal subspace). Let a path P be given. Then, for any
v, v’[0, 6(P)], v v’, we define the affine normal subspace N(v, v’) to P at v seen
from u’ by

N(v, v’)={zzFl<z-P(v),Xv(v)>v<-O
(4.1)

e + A [min e, ’), max (, ’)]}.
This affine normal subspace is the dashed area passing through P(v) on

Fig. 4.1.
PROeOSITION 4.2. Let a path P be given. Then, for any v, ’ [0, 8(P)], v’, we

hae

P(v)+ a(v)6 N(v,
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PG(v,v’)=O

G(V,V’)--Sgn(v’-v)<X’-X,v’>

PG(V,V,)= Sgn(v’-v)<X’-X,v’>

FIG. 4.1. Examples of global radii of curvature for a path P.

DEFINITION 4.3 (Global radius of curvature). Let a path P be given. Then, for
any z,, ’ [0, 6(P)], ’, we define the global radius of curvature of P at , seen
from z,’ by

(4.2) pc(’, z,’)= d(P(,), S(,, ,’) S(,’, z,)) [0, +o]

with the natural convention that
Note that pc(’, z,’) Pc(Z", ) in general. This global radius of curvature can be

easily calculated.
PROPOSITION 4.4. Let the path P and ,, ,’ [0, 6(P)], z, z,’, be given, and

denote

X- P(), X’- P(’),

v v(), v’= v(’),
(4.3)

N sgn (,’- u)(X’- X, v’),

D x/1 -<v, v’)2.

Then Pc( ’, ") is given by

(4.4) po(t,, ,’)= if N>0 and (v, v’>_-<0,
N/D if N>0 and (v, v’>_-> 0.

The proof of this formula is elementary, the basic ingredient being the projection
of a point on a hyperplane. We have illustrated in Fig. 4.1 a few situations for the
case of plane curves.

The relation with the usual (local) radius of curvature p(t,) is given by the following
proposition.

PROPOSITION 4.5. Let a path P be given. Then, for any , [0, 6(P)], there exists
an open neighborhood I(,) of in [0, 6(P)] such that, for any ,’ I(,):

(4.5)
x/1-(v,
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(4.6) p( v’, v)
sgn v’- v)(X’- X, v)

/1-(v, Vt)2

and, for almost every v [0, 6 (P) we have

(4.7) p( v, v’) p(v),

(4.8) p( u’, v) - p( v),

when ’ - in I().
Proof For any v, u’ [0, 6(P)] we can always write

(4.9) sgn (u’- u)(X’- X, v’) [dul(Vo, v’),

where

du= u’- u, Vo V( u + Odv) 0 0 1.

Hence, given any u 6 [0, 6(P)], we see that

(4.10)
(v, v’) 1

when du0,
(Vo, v’)o 1

which proves, in light of (4.4), that p(v, v’) is given by (4.5) when dv is small enough.
We could just as well have proved that p(v’, v) is given by (4.6) when dv is small
enough, which ends the proof of the existence of the interval I(v) on which (4.5),
(4.6) hold.

We now turn to the proof of (4.7). Let v be a Lebesgue point for a(v), I(v) the
corresponding interval, and v’ I(v), v’ v. Let us first transform the denominator of
(4.5) then using the theorem of the median for v and v’:

<v, v’)= 1
2’

where

(4.11) 6=llv’-vll.
Hence the denominator of p(u, u’) may be rewritten as

(4. -(v, v’= -and, using (4.9) for the numerator of p we obtain

(4.13) p(, ’)=
(-(/4/’

which, as {Vo, v’} 1 and 0, will prove (4.7) once we have found the limit of /dl.
But we have

-Ila()ll a(u+) de -Ila(")ll

[a(v+e)-a(v)] de

lla(+ e)-a()ll de,-Idol
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which, by definition ofthe Lebesgue points, tends to zero when dv 0 (see, for example,
Theorem 8.8 of [8]). Hence

(4.14) |l’du--Z -> Ila()ll, when du->0.

This shows that (4.7) holds at all Lebesgue points of [0, 6(P)]. Because almost every
point of [0, 6(P)] is a Lebesgue point, we have proved (4.7).

Then (4.8) follows immediately because

(4.15)

with

p(.. ’)-(d)<-_p(.’. )<-p(. ’)+t(d).

I<x’- x, - ’>1 Id,l I<o,, ’>1t(d)
x/1-(v, v’>2 x/1-(v, v’>a

where 0< 0’< 1. Using (4.11) and (4.12) we obtain

(4.16) (du)N
(l +(6/4))/0’ when duO.

This ends the proof of Proposition 4.5.
We are now naturally led to the following definition.
DEFINITION 4.6 (Smallest global radii of curvature of a path). Let a path P be

given. Then we define

R(P) inf p(u) (smallest radius of curvature of P),
e[o,a(P)]

(4.17)
R(P) inf p(u, u’) (smallest global radius of curvature of P).

,’e[o,(P)]

Of course, R(P) is easily related to R(P) using Proposition 4.5.
PROPOSITION 4.7. Let a path P be given. en

(4.18) O R(P) R(P) +.

Remark 4.8. Unlike the number y(P) used in the size xcurvature condition
developed in [4] and [6] and recalled at the end of 3, the number R6(P) depends
only on the shape of the path P, and in no way on its parametrization (that is why in
this paper we use only the parametrization by arc length, which is the most convenient
for the formulas).

The significance ofthe smallest global radius of curvature comes from the following
proposition.

PROPOSITION 4.9. Let a path P and z F be given. If
R(P) > O, d(z, P) < R(P),

then the d(u)= llP(u)-z[lfunction is strictly quasiconvex.
Proof Let f(u)= d(u), and Uoe [0, 6(P)] be the value for which d and f attain

their minimum on [0, (P)]"

f(vo)<--f(v), Vu[O,(P)],

which implies

f’(uo)A=>O, VA6, Uo+A[O, 6(P)];
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<z-P(vo), AV(Vo)> =< 0, VAmR, Vo+A m [0, 6(P)],

which shows that

z N(v0, ’) for any ’ [0, 6(P)], ’# o.
Suppose now that d() is not strictly quasiconvex. Then necessarily d() has

at least one local maximum for some value in the open interval ]0, 6(P)[. Of course,
f() also has a local maximum at the same ]0, 6(P)[, which implies that
f’(v,) O; i.e.,

<z-P(,),u(,)>=O.

However, the preceding equation may be rewritten as

zN(,,’) forany ’[0,6(P)],’,.

Hence we see that z N(o, ,) N(,, o), which shows that

p(.o...) IIP(o)-11 d(z, P),

and, using definition (4.17):

RG(P) PG(o, ,) d(z, n),

which contradicts the hypothesis d(z, P) < RG(P). This proves the strict quasiconvexity
of d.

DEFINITION 4.10 (Smallest radii of curvature of a set). We associate to a set (D,

R(D) inf R(P) (smallest radius of curvature in D),
PM

(4.19)
R(D) inf R(P) (smallest global radius of curvature in D),

which, using (4.18), satisfy

(4.20) O R(D) R(D) +.

This allows us to define a new "size x curvature" condition for the set D.
DEFINITION 4.11 (R-size x curvature condition). The set (D, ) is said to satisfy

a R-size x curvature condition if and only if

(4.21) R(D) > 0.

We give now our first main result.
THEOREM 4.12. Let (D, ) be given. If

(4.22) R(D) > 0 (R-size x curvature condition),

then D is strictly quasiconvex, with a cylindrical neighborhood given by

(4.23) = {z e F[d(z, D)< R(D)},

and an e(z).function defined, for any z , by

(4.24) e(z) Ro(D) d(z, D) > O.

Hence Theorem 3.6 (on the propeies of the projection) applies, the Lipschitz
constant being given by (compare with (3.11)-(3.13))

(4.25)
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as soon as Zo, zl are close enough so that there exists d satisfying

(4.26) Ilzo- z,]] + max d(zj, D) <- d < Re(D).
j=0,1

Proof We check first that V and e defined by (4.23) and (4.24) satisfy Definition
3.1 of quasiconvex sets. Let z, 7, and P be given such that

(4.27) d(z, D) < Re(D) (i.e., z

(4.28) O<q<e(z)=R(D)-d(z,D),

(4.29) ]]P(j)-z]l<-d(z, D)+ n j=0, ((P).

Hence lIP(j)- z]] < Re(D), j=0, (P) which implies that d(z, P) < Re(D) <- Re(P).
Then by Proposition 4.9 we see that the ,- d(v)= liP(v)-z[[: is strictly quasiconvex,
and hence, using (4.29),

d(v)<-_ max [[V(j)-z[]<-d(z,U)+q, Vv[0,(P)].
j=O,6(P)

However, from definitions (4.6) and (4.10) we see that

p(u)>=R(P)>-R(D) for a.e. , in [0, 6(P)].

Plugging the two last bounds into (3.2) yields

d(z,O)+n
k(z, P; ,)<- for a.e. v in [0, 6(P)],

R(D)

which, as this bound is independent of the path P provided it belongs to (z, vt),
proves that (cf. (3.4))

d(z,D)+v
(4.30) k(z, rl) <= < 1,

R(D)

which shows that D is quasiconvex. The strict quasiconvexity of D results then directly
from Proposition 4.9, and the formulas (4.25) and (4.26) follow immediately from
(3.11)-(3.12) and (4.30).

To illustrate this new sufficient condition, we check how well it recognizes strictly
quasiconvex arcs of circles of radius R and length L. A simple calculation yields

(4.31) Re(D)

R

L
R sin-

R

L 7r
0<--<-

R 2’

7r L
-_-<_-<
2 R

which is strictly positive as long as

L
(4.32) 0 <--<

R

(compare with (3.20)).
Hence the Re-size curvature condition recognizes exactly all strictly quasieonvex

ares of circles! We have illustrated in Fig. 3.3, right,-the neighborhoods V generated
by (4.31), which turn out to be the largest cylindrical neighborhoods included in the
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largest strictly quasiconvex neighborhood (depicted as the complement of the dashed
area). As mentioned at the end of 3, comparison with the left part of Fig. 3.3 shows
that the Re-size curvature condition is much more precise than the old y-size
curvature condition.

In the general case, the Re-size curvature condition cannot be expected to be
optimal (i.e., necessary for strict quasiconvexity), as nothing prevents equipping a
convex set with paths having small radii of curvature! However, it is reasonable to
conjecture that the Re-size curvature condition becomes necessary in the case where
the collection of paths is made of minimum length paths of D. This matter will be
discussed in a forthcoming paper.

5. Obtaining lower bounds on the global radius of curvature. Given a path P ,
we will try in this section to obtain lower bounds on its global radius of curvature Rc(P).

In particular, we would like to substantiate the intuitive feeling that "arcs of circles
are the worst paths," i.e., that for any path P we should have Re(P)= R(P) as soon
as 6(P)<-(/2)R(P) and R(P)>0 as soon as 6(P)< rR(P), as suggested by Fig.
3.3 (right) for the case of an arc of a circle. To do that, we need to recall one (very
natural) attribute of the paths.

DEFINITION 5.1 (Deflection). Given a path P , and ,, ,’ [0, 6(P)], the deflec-
tion of P between , and ,’ is

(5.1) 0(,, ,’)= Arg cos (v(,), v(,’)),

and the largest deflection of P is

(5.2) (R)(P) max 0(,, ,’) ,, ,’ [0, (P)].

Of course, 0(,, ,’) satisfies

0(,, ,’) [0, r] V,, u’ [0, 6(P)],

(5.3) 0(,, ,)=0 V, [0, 6(P)],

O(v, ,’)= 0(,’, v) V,, u’[0, 6(P)].

Given v, v’[0, (P)] and any function g:[v, v’] we denote by varg the total
variation (when it exists!) of g over the [v, v’] interval defined by

N

(5.4) var g sup Y Ig(ti)- g(ti-1)l.
N[ i=1

min( ,, ,’) to tl"’" <= tN max( ,, ’)

The regularity of the deflection function and its relation with the radius of curvature
are given by the following lemma.

LEMMA 5.2. Let Pc be given. Then forany ,’ [0, (P)], the , 0(,, ,’) deflec-
tion function is absolutely continuous and has a bounded variation over [0, t(P)]. Hence
00/0,(,, ’) exists almost everywhere on [0, (P)], 00/0,(., ,’) LI([0, 6(P)]), and the
usual formulas hold

(5.6)

o(,,, ’)= f 0o
,),O,(t, dt,

var 0(., ,’)=
0,

(t, ,’) dt.
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Moreover,

1
(5.7)

00
,) <0,(’, ’ =lla(’)l

p(,)
fora.e.,[0,3(P)],

which implies that in fact 00/0,(., ,’) L([0, 6(P)]).
Proof Let P and ,’ [0, 3(P)] be given.
Step 1. There exists A,>0 such that, for any ’1, ,2[0, 3(P)] and satisfying

}’1 ’2} <- A ,, we have

(5,8) 0(/21, 92) 7"g/3

and

(5.9) 10(t,, 9’)- 0( P2, 9’)1 /c; i ’2)-

The existence of A , > 0 such that (5.8) holds results immediately from the uniform
continuity of 0(.,. over [0, (P)] x [0, (P)]. To prove (5.9) we first use the triangular
inequality for the curvilinear triangle on the unit sphere having V(l), v(v) and v(’)
as veices:

(5.10) O(Pl, P’)--O(P2, Pt)l O(P,, P2)"

Using the theorem of the median we obtain, as in Proposition 4.5,

2

On the other hand, a Taylor-MacLaurin development of cos 0 to the order 2 yields

0(, u)
cos 0(u,, u2)= 1- cos (0(u, u2)) 0N N 1.

2

However, from (5.8) we see that

COS (0( Pl, P2) COS 0( Pl, P2) ,
which finishes the proof of (5.9).

Step 2. We prove that 0(., ’) is absolutely continuous and has a bounded variation,
which automatically implies the existence of 00/0 almost everywhere, and hence
proves (5.5) and (5.6) (see, for example, Theorems 8.14 and 8.18 of [8]).

We begin by proving the absolute continuity. Let e > 0 be given, and let (i, )
i= 1, 2,. ., N be disjoint segments of the interval [0, 6(P)] satisfying

-N&u Vi=l,...,N.

Then we see from (5.9) that
N N

2 10(,. ’-o(.i. ’1 2 [l(-v(-ll.
i=1 i=1

However, since P W2’([0, 8(P)] we have

IIv()-v(i)ll Ila(t)ll dtllal[(-i),

so that

N N

2 Io(,, ,’)-o(,, ,,’)1=< Ilalloo Z (,-,)<-
i=1 i=1
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as soon as the ai,/3i satisfy

(fli-ai)<--min Ar,, m

We now prove that O(., p’) has a bounded variation over[O, (P)]. Let t O, 1,. , N
be given such that

O to < t <. < tN 8(P).

We can always add a finite number ofpoints to obtain a new subdivision

(with N’=> N!) such that

ti-l[ < i= 1, 2,. ., N’.

Then, of course, the triangular inequality implies

N N’

E o(ti, t/) o(ti_l, )[ < 2 o(ti, r,’) o(ti_l, r,’)[.
i=1 i----1

However, from (5.9) we find that for all i= 1,..., N’ we have

Io(t’i, ’)-o(t’i_, ’)[ =<,/ ][a[[(t-t’,_),

which shows that

N

i=1

independently of the positions of the points t, 0,..., N, and of their number N.
Step 3. We prove (5.7). Let v[0, 6(P)] be a Lebesgue point for both a(.)

L[0, 6(P)] and O0/Ov(., v’) LI[0, 6(P)] (almost every point of [0, 8(P)] has this
property!). Hence we know (see (4.14) in the proof of Proposition 4.5) that

Ila(r,)[I lim
IIv(+d)-v()ll

ao

and

0o( , I 00

o U (t’ ’) at’

which, using (5.5), may be rewritten as

0__0 (r,, r,,)= lim
O(r,+dr,, r,’)-O(r,, r,’)

0 r, dv--->O dr,

If we choose dr, <= A u of Step 1, we see from (5.9) that

dr,
< Ilv( + a,)- u(v)ll 1

[dr,[ V’cos O(r, + dr,, r,)

which proves (5.7) when dr,O as O(r,+dr,, v)-O. This ends the proof of
Lemma 5.2. rq
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So much for the properties ofthe deflection function. We come now to our purpose,
namely, obtaining a lower bound on RE(P), which reduces to finding a lower bound
on pG(u, u’) independent of v and v’. Looking at (4.4) giving pc(u, u’), we see that
the two pieces entering in this formula are

sgn (v’- v)(X’-X, v’) and V’l-(v, v’)2,

which are related to the deflection 0 by
max( v, v’)

(5.12) sgn (v’- v)(X’-X, v’)= cos O( t, v’) dt
rnin(v,v’)

and

(5.13) 41-(v, v’)2= sin O(v, v’).

We now concentrate on obtaining a lower bound for sgn (v’, v)(X’-X, v’). Our
basic tool for that is the following lemma.

LEMMA 5.3. Let v, v’ [0, 6(P)] be given. Then the following inequalities hold:
max(v,v’) dp

(5.14) var 0(., u’)<_
dmin(v,u’) /9(V)

sgn (v’- u)(X’- X, v’)->_ Iv’- v[ cos if+/ var {sin 0(., v’)- 0(., ’) cos(5.15)

where

(5.16)

(5.17)

R inf ess p(t) v, v’],

0 sup 0(t, v’) v, v’].

Proof Let us consider the case where v-< v’ (the proof is similar if v_-> v’). We
remark first that (5.14) follows immediately from (5.6) and (5.7). Then from (5.12)
and (5.17), we find that

(5.18) (X’-X, v’)= (cos O(t, v’)-cos 0) dt+(v’-v)cos 0.

From Lemma 5.2 we know that

dO
(5.19) p(t) v (t, v’) _-< 1 for almost every of Iv, v’].

Plugging then (5.19) into (5.18) yields, as cos O(t, v’)-cos 0->_0 for all t[v, v’] and
p(t) _-> R for all v, v’]:

0o
,)(X’-X,v’)>-R (cosO(t,v’)-cosO) ov(t,v dt+( -v) cos0

(5.20)
-/v" 0
R J --(sin O(t, v’)-O(t, v’) cos 0) dt+(v’- v) cos 0,

which, using (5.6) for the function g(t)= sin 0(t, v’)- 0(t, v’) cos 0, yields (5.15).
The bounds (5.14) and (5.15) take advantage, through the total variation of the

0(., v’) and sin 0(., v’) + 0(., v’) cos 0 functions, ofmuch ofthe information contained
in the shape of the deflection function 0(., v’).

In particular, the lower bound (5.15) for the numerator of pG(v, v’) increases
when the variation of the deflection increases, which shows that "oscillating paths"
have more chance to have positive global radii of curvature.
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If we retain only from the shape of 0(., v’) its maximum value 0 on [v, v’], we
obtain the following corollary.

COROLLARY 5.4. Let v, v’ [0, 6(P)] be given. Then

(5.23) sgn (v’- v)(X’-X, v’)>=l sin ff+([v’- v[-/, if) cos if,
where R, 0 are defined in (5.16) and (5.17).

Proof Suppose v =< v’, for instance, and define 9 6 v, v’] by

0(9, v’) 0 sup 0(t, v’)

Then (5.22) and (5.23) result immediately from (5.14), (5.15), and (5.4) with N 1,
to 9, t v’. [3

We can put together formula (4.4) giving p(v, u’) and Corollary 5.4 to obtain
the sought lower bound on p(v, v’).

PROPOSITION 5.5. Let P , v, v’ [0, ,5(P)], v v’, be given, and R, 0 be defined
by (5.16) and (5.17).

(i) If
(5.24) 0<_- 0<- 7r/2,

then

(5.25) Pc(V, v’) >= g + (Iv’- v g" if) cotan ff
and the right-hand side of (5.25) is strictly positive as soon as

/>0 (independently of Iv’- vl! ).(5.26)

(ii) If

(5.27) --=< 0=< 7r
2

then

(5.28) pc(v, v’) =>/ sin + (Iv’- v]-/. ) cos

and the right hand side of (5.28) is strictly positive as soon as the size curvature condition

(5.29) Iv’- vl// < -tan

is satisfied (note that, because of (5.22), condition (5.29) can be satisfied only of 0 < r !).
Proof First we prove (i). As 0 _-< 7r/2.we have cos 0 >_- 0, which shows by Corollary

5.4 that

(5.30) sgn v’- v)(X’- X, v’) >- O,

and by definition of 0 we have

(5.31)

which shows that

(5.32)

and

(5.33)

O(v, v’)<= 0 <- 7r/2,

cos o(,..’) (v. v’) ->_ o

0-<_sin 0(v, v’)-<_ sin 0.
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Using (5.30) and (5.32) in formula (4.4) for pc then yields

(5.34)

and, using (5.33),

Pc(v, v’)
sgn (v’- u)(X’- X, v’)

sin 0(v, v’)

(5.35) Pc(v, v’) >
sgn (v’- u)(X’- X, v’)

sin ff

which yields the sought result (5.25) using the lower bound (5.23) for the numerator.
Now we prove (ii). As 7r/2-< 0< 7r, we have no information on the sign of

cos 0(v, v’) (v, v’). However, we see from (4.4) that, whatever the signs ofsgn (u’- v)
(X’-X, v’) and (v, v’) may be, we always have

(5.36) Pc(v, v’) -> sgn (v’- v)(X’- X, v’),

the equality holding when sgn (v’- v)(X’-X, v’)>= 0 and (v, v’)=< 0. Then the sought
lower bound (5.28) results immediately from (5.36) and formula (5.23) of Corollary
5.4, and the size x curvature condition (5.29) results immediately from (5.28) by noting
that cos 0 =< 0. [3

Formula (5.25) also gives us a more precise insight into the way p(v, v’)
approaches p(v) when v’ v" if, for example, p(t) is an increasing function, then

(5.37)
pc(v, v’)>=p(v) when v’-> v,

p(v, v’) => p(v’) when v’ =< v

as soon as v’ and v are close enough so that the maximum deflection between v and
v’ is smaller than r/2.

We now deduce from Proposition 5.5 a lower bound for Re(P)
inf,,ro,e pc(v, v’), which is our second main result.
Tzoz 5.6. Let a path P be given. Then its maximum deflection (R)(P)

(defined in (5.2)) is related to its length 6(P) and its smallest radius of curvature R(P)
y

ff(P) dv (P)
(5.38) (R)(P)-< -<

p(v)-R(P)’

and the following lower bounds for Re(P) defined in (4.17) hold"
(i) Low deflection paths. If

(5.39) 0-<_ (R)(n) <= 7r/2

then

(5.40) R(P)=R(P)

independently of the length 6(P) of the path.
(ii) Large deflection paths. If

(5.41) -/2--< (R)(P) =<

then

(5.42) Re(P) >- R(P) sin (R)(P)+ {6(P)- R(P)(R)(P)} cos @(P),
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which is strictly positive as soon as the length 6 (P) of the path satisfies the size curvature
condition"

(5.43) 6(P)/R(P) < (R)(P) -tan (R)(P),

(once again, this condition can be satisfied only if (R)(P) < r!).
Proof Note first that (5.38) is obtained immediately from (5.22) of Corollary 5.4

by taking v= Vo, v’= v, where Vo, v6 [0, 6(P)] are such that O(vo, v) =(R)(P), and
by noting that

.o p( ) p( )
We now prove the results of (i). If (R)(P)=< /2, we obviously have for any

v, v’ [0, 6(n)],

O<-O<=(R)(P)<- rr/2
so that part (i) of Proposition 5.5 applies. Hence

p(v, v’) >= R,
which implies, as R _-> R(P), that

R(P)>=R(P).
But we know from Proposition 4.7 that

R(P)<=R(P),
which ends the proof of (5.40).

We now prove the results of (ii). As we now know only that r/2 ’(R)(P) -< r, two
cases may happen for given v, v’ 6[0, 6(P)]" either 0=< 0 -< r/2-< (R)(P), and we find,
as above,

(5.44) pc(v, v’)>-_R(P)

or r/2=< 0 _-< O(P)=< r and then we find from part (ii) of Proposition 5.5 that

pc(v, v’) =>/ sin + (Iv’- v]-/. ) cos

However, since cos -<0, this implies, as Iv’-vl<=6(P) and/>- R(P), that

p( v, v’) >= R(P) sin O + (,(P) R(P)O) cos 0.

However, the mapping a - R(P) sin a +(6(P)-R(P)e) cos a is decreasing over the
[0, (R)(P)] interval, as its derivative is the a--sin o(6(P)-R(P)a) function, which
is negative over the [0, O(P)] interval because of (5.38). Hence we obtain, as 0 =< O(P),
(5.45) p(v, v’)>- R(P) sin O(P)+(3(P)-R(P)O(P)) cos O(P).
When taking the minimum over all v, v’[0, 6(P)], we obtain (5.42) because the
right-hand side of (5.45) is smaller than the right-hand side of (5.44).

Finally, (5.43) is obtained immediately by writing that the right-hand side of (5.42)
is strictly positive. [3

We have illustrated Theorem 5.6 in Figs. 5.1 and 5.2. For a path P with given
smallest radius of curvature R(P), Fig. 5.1 shows the domain of deflections (R)(P) and
length 6(P), which are recognized by Theorem 5.6 as associated to a strictly quasiconvex
path P. It is delimited by the following two curves"

c if 0_-< (R)(P)-< 7r/2,
6max(P)

R(P){(R)(P)-tan (R)(P)} if r/2 < (R)(P)_-< r,

min--U(P)O(P).
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rR(P)

8MaxiP)
/

8Min(P)=R(P)O (P)

0 /2

FIG. 5.1. The domain of deflections O(P) and lengths 8(P) that are recognized as strictly quasiconvex
by Theorem 5.6 for a path with a given R(P).

Note that (5.38) implies that the bottom boundary 8rain(P) is a hard one, in the sense
that there do not exist paths whose representative point is below that line. On the
contrary, the upper boundary is soft, as there exist many paths having their representa-
tive points above that boundary, and that may or may not be strictly quasiconvex.

Figure 5.2 represents, for all paths recognized as strictly quasiconvex by Theorem
5.6, the domain of deflections O(P) and lower bounds Re to Re(P) given by Theorem
5.6, namely,

R(P)
Re= R(P) sin O(P)+{a(P)-R(P)O(P)} cos O(P)

if 0=< O(P)-< rr/2,
if r/2 _-< (R)(P) =< r.

Note that here the upper boundary, which corresponds to paths that are arcs of circles,
is not a hard boundary for the actual global radius of curvature Re(P): we may find
paths with a deflection O(P) as close as desired from r but with a Re(P) R(P)
global radius of curvature!

We note also that the bounds given in Theorem 5.6 are sharp; when P is an arc
of a circle, the inequalities in (5.38) and (5.42) become equalities, and the theorem
recognizes exactly all strictly quasiconvex arcs of circles, as the equality in (5.38)
implies that (5.43) is satisfied as soon as 3(P)/R(P)< r. But the upper bound (5.43)
for the admissible length 3(P) of a path with a maximum deflection larger than r/2
is also sharp, as may be seen from Fig. 5.3: given a maximum deflection r/2 -< O(P) < r,
the worst thing to do (up to a change of scale, of course) is

--first go straight ahead with a length ]tan O(P)]
--then turn an angle O(P) using an arc of a circle of radius one.

The resulting path has a length O(P)-tan O(P), and a zero Re(P) as obviously
po(O, 6(P))=O!

Of course, we may use Theorem 5.6 to construct various sufficient conditions for
the strict quasiconvexity of a set, as we check easily from Theorem 4.12 that the only
thing we must do is to find a lower bound for Re(P), P M.
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P)=8Min(e)

%=R(P)sinO(P)

o"x.

FIG. 5.2. The domain of deflections O(P) and lower bounds RG to RG(P) given by Theorem 5.6 forpaths
recognized by this theorem as in Fig. 5.1.

8(P) ]/V

v=0

po (o,8(P))

FIG. 5.3. Illustration of the sharpness of the upper boundfor the length ofpaths with a maximum deflection
larger than 7r/2.

We state here one such condition, which uses the following lower and upper
bounds for the attributes of the set (D, ):

Lower bound R to radii of curvature along paths:

(5.46) R(P)>- R VPM
Upper bound A to path length:

(5.47) a(P) =< A
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Upper bound (R) to path maximal deflection:
(5.48) (R)(P) N(R) VP.
Note that such an upper bound can be obtained by either formula

(P) d, 3(P)
(5.49) (R)= sup or (R)= sup

p p(,) eR(P)
THEOREM 5.7. (O-size x curvature condition). Let (D, ) be given such that

(5.50) R>0.

(i) If
(5.51) 0_-< (R)_-< 7r/2,

then

(5.52) Ro(D)>-R>O,

and (D, ) is strictly quasiconvex for a cylindrical neighborhood of size at least R.
(ii) If

(5.53) 7r/2 -< O < 7r,

then

(5.54) R(D) >-R sin O+(A-RO) cos O,

and (D, ) is strictly quasieonvex, with a cylindrical neighborhood of the size of the
right-hand side of (5.54) at least, as soon as the maximum length ofpaths satisfy

(5.55) A/R < O-tan O.

6. One application to nonlinear least squares. We consider the problem

find x C such that J(x) [Iq(x)- zl[ min over C,

E is a Banach space, F is a Hilbert space,

C c E is a closed convex set,
(6.2)

q C F is a C2-mapping,

z F is a given point (data).

Because q is of class Ca there exists/3 such that

(6.3) ilq,,(x)(y,y)llF<_llyll 2 VxC, VyE,

and we suppose that the derivative ’(x) is uniformly inveible, i.e., that there exist
a and a such that

(6.4) mllyllll’(x)’yllllyll Vx VyE.

We may then apply the results of 5 to the set D p(C) equipped with the paths

(6.5) {([x, y]), x, y C}

for which the subset

(6.6) {([x, y]), x, y OC}

is obviously a subfamily of maximal paths.

(6.1)

where
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We easily check (cf. [6]) that, given a path P--q([x, y]), x, y C, the arc length
v and radius of curvature p satisfy

(6.7) v(t)- Ilq’(xt)(y-x)lldt:Omt[ly-x[l,

where

(6.9) x, (1 t)x + ty V [0, 1].

From (6.7) and (6.8) we find that
() d I II"(xt)(-x, -x)lldt(6.10) --< II-

These formulas give us the following lower and upper bounds for the attributes
of the paths of D (C):

R a/ (lower bound to radii of curvature),

(6.11) A a diam C (upper bound to path length),

(B/am) diam C (upper bound to path deflection).

Using Theorem 5.7 we then obtain the following theorem.
TnOM 6.1. Let (6.2)-(6.4) hold, and let R, , be defined by (6.11), and define

R by

R /f 0_-< (R) =< r/2,
(6.12) Re= R sin O+(aM-a,) diam C cos O if r/2<=(R)<= r.

(6.13) 0
/3

diam C_-<-
am 2

or

(6.14) -_-<19=diamC<Tr and
2

then, for any z such that

(6.15) d(z, q(C)) < Ro,

the nonlinear least squares problem (6.1) has the following properties:

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(a____ 1) (R) < Itan O I,
m

existence of a unique global minimum ,
no local minimum,

any minimizing sequence is a Cauchy sequence in E converging toward

Lipschitz-continuity of the z- mapping:

,,. 21 2211 --< 1 Z Z211’ as soon as

]lzi- zl], /max d(z, (C))d <R.
j=l,2
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Note that, under the same hypothesis, the y-size curvature condition would read

(6.21)
/3

diam C < 2x/
t

and imply (6.16)-(6.19) but not (6.17), and (6.20) would hold only for d < y(D), which
is usually much smaller than

REFERENCES

1] T. ABATZOGLOU, Unique best approximation from a C2-manifold in Hilbert space, Pacific J. Math., 87
(1980), pp. 233-244.

[2] J. P. AUBIN, Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1979.
[3] G. CHAVENT, Local stability of the output least squares parameter estimation techniques, Mat. Apl.

Comput., 2 (1983), pp. 3-22.
[4] , On the uniqueness.of local minima for general abstract non-linear least squares problems, Inverse

Problems, 4 (1988), pp. 417-433.
[5] , A new sufficient condition for the wellposedness of non-linear least-squares problems arising in

identification and control, in Analysis and Optimization of Systems, Lecture Notes in Control and
Inform. Sci., Vol. 144, A. Bensoussan and J. L. Lions, eds., Springer-Verlag, New York, Berlin,
1990, pp. 452-463.

[6] , Quasiconvex sets and the size x curvature condition: Application to non-linear inversion, J. Appl.
Math. Optim., to appear.

[7] J. R. RICE, Nonlinear approximation II. Curvature in Minkowski geometry and local uniqueness, Trans.
Amer. Math. Soc., 128 (1967), pp. 437-459.

[8] W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York, 1987.



SIAM J. CONTROL AND OPTIMIZATION.
Vol. 29, No. 6, pp. 1373-1393, November 1991

() 1991 Society for Industrial and Applied Mathematics
OO6

H CONTROL WITH TRANSIENTS*

PRAMOD P. KHARGONEKARt, KRISHAN M. NAGPAL$, AND KAMESHWAR R.
POOLLA

Abstract. In Ho (or uniformly optimal) control problems, it is usually assumed that the system
initial conditions are zero. In this paper, an Ho-like control problem that incorporates uncertainty
in initial conditions is formulated. This is done by defining a worst-case performance measure.
Both finite and infinite horizon problems are considered. Necessary and sufficient conditions are
derived for the existence of controllers that yield a closed-loop system for which the above-mentioned
performance measure is less than a prespecified value. State-space formulae for the controllers are
also presented.

Key words. Ho control theory, algebraic and differential Riccati equations, optimal control
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1. Introduction. Zames introduced the problem of H optimal control in his
pioneering paper [18]. The essential idea was to design a controller to optimize the
closed-loop system performance for the worst exogenous input. The expository book
by Francis [6] presents a lucid account of the early developments in Ho control theory.

A significant new development inH control theory in the last two years has been
the introduction of state-space methods. This has led to a rather transparent solution
to the standard problem of Ho control theory. See Doyle et al. [5], Khargonelmr [9],
and the references cited there for the state-space approach to H control theory.

The H norm of a system can be defined in many different but equivalent ways.
However, it is always (at least, implicitly) assumed that the initial condition of the
system is zero. Thus, in most of the H control theory literature, it is assumed
that the plant initial conditions are zero. There are a few exceptions. For example,
Nagpal and Khargonekar [12] have considered an H type of estimation problem
with nonzero initial conditions. In this paper, our principal aim is to extend the
basic ideas and the recent results from the state-space approach to H control theory
taking initial conditions into account explicitly. We consider this as the key conceptual
contribution of the present paper. In recent independent parallel work, Didinsky and
Basar [4] consider a minimax design problem for discrete-time systems with nonzero
initial states. However, their problem formulation, as well as the results, bear little
resemblance to our work.

In 2 we formulate an H-type optimal control problem that incorporates initial
conditions. This is done by introducing a new performance measure that is essentially
the worst-case norm of the regulated outputs over all exogenous signals and initial
conditions. We define this performance measure for both finite time and infinite time
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horizons. For finite horizon problems we also allow for a penalty on the terminal state.
This enables us to incorporate trade-offs between the norm of the controlled output
and the size of the terminal state.

In 3 we state the main results of this paper. Here we present necessary and suffi-
cient conditions for the existence of a linear controller such that the above-mentioned
performance measure of the closed-loop system is less than a prespecified number.
These necessary and sufficient conditions are given in terms of existence and proper-
ties of solutions to certain algebraic and differential Riccati equations. In the event
that these necessary conditions are met, we provide explicit formulae for controllers
that yield the prespecified performance. Our results in this paper may be regarded as
the H analogue of the nonstationary linear quadratic Gaussian (LQG) control the-
ory results. The results for infinite time horizon problems are natural generalizations
of the results of Doyle et al. [5] for the situation of nonzero initial states, while those
for finite time horizon problems are natural generalizations of the results of Tadmor
[15] and Limebeer et al. [10]. In 4 we give proofs of the main results.

In this paper, we restrict our attention to finite-dimensional linear time-invariant
plants. It should be noted that even though the plant is linear time-invariant, it
is necessary to consider time-varying controllers since the natural (central) solutions
even for linear time-invariant plants happen to be linear time-varying. This situation
is analogous to the the finite horizon linear-quadratic regulator and Kalman filtering
theory. Recall that for finite horizon linear-quadratic optimal control problems for
linear time-invariant plants, the optimal controller turns out to be linear time-varying.
Similarly, in the Kalman filtering problem, if the initial state covariance does not
match the steady-state covariance, the Kalman filter is also linear time-varying. It is
in this sense in which we regard our results in this paper as the Ho analogue of the
nonstationary LQG control theory results. Results for finite horizon problems can be
trivially extended to linear time-varying plants. Extensions to time-varying plants of
the results for the infinite time horizon case are technically much more difficult but
are possible along the lines of recent work by Tadmor [16] and Ravi, Nagpal, and
Khargonekar [13]. These extensions are left for future research.

2. Worst-case H-type performance measures with nonzero initial con-
ditions.

Consider the finite-dimensional linear time-invariant system E"

dx
Ax + Blw + B2u,

dt
(1) z Clx + Dw + D2u,

y C2x + D21w - D22u.

Here x, w, u, z, and y denote, respectively, the state, exogenous input, control input,
regulated output, and measured output. It is assumed that the initial state x(0) is
possibly nonzero and unknown.

The control problem that we wish to address is that of designing a controller
that internally stabilizes the closed-loop system and reduces z uniformly for all w and
x(0). More specifically, let Kbe a finite-dimensional linear (possibly time-varying)
controller given by the system equations

d
d- F(t)(t) + G(t)y(t),

(2)
u(t) H(t)(t) + J(t)y(t).
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Throughout this paper, we assume that the controllers are linear, finite-dimensional,
and time-varying with continuous and bounded state-space realizations. (A time
function f(t) is called bounded if and only if there exists M > 0 such that for all
t _> 0 [If(t)l[ < M.) Let Ec denote the resulting closed-loop system. The closed-loop
system is called well posed if and only if (I- JD22)-1 is bounded. The closed-loop
system is called internally stable if and only if it is well posed and the unforced closed-
loop system (i.e., w 0,) with states x, is exponentially stable. In finite horizon
problems, a controller is called admissible if and only if it yields a well-posed feedback
system. In infinite horizon problems, a controller is called admissible if and only if
it yields an internally stable feedback system. For a fixed time T > 0, a symmetric
positive-semidefinite matrix S, and a symmetric positive-definite matrix R, define the
worst-case closed-loop performace measure as

where (0) 0, and the supremum is taken over all x(0) Xo e Rn, w e L2[0, T], I[wll+
x’oRxo O. In this definition, T is allowed to be c in which case S 0 and
the supremum on the right-hand side is taken over all w E L2[0, c). Here IlfllT

The performance measure J(Ect, R, S, T) can be regarded as the induced norm
of the linear operator generated by the closed-loop system Ect, which maps the pair
(x(0), w) to (x(T), z). More explictly, consider the linear operator

F" Rn + L2[0, T] + Rn + L2[0, T]" (x(0), w) (x(T), z).

Define the inner product on the domain of F to be

XlRX2 nt- (wl, W2)L2[O,T]

and the inner product on the co-domain as

:= + 1,

where <>L[0,T] is the usual inner product in L2[0, T]. These inner products induce
corresponding (semi)norms in the domain and the range of F. Then the performance
measure J is the induced operator norm of F. A similar interpretation can be given
for the infinite horizon case.

We can now state the control problems considered in this paper. Given a real
number > 0:

(i) Infinite Horizon Problem: Does there exist, and if so find, an internally sta-
bilizing bounded linear time-varying controller such that

J(Ect, R, O, ) < "?

(ii) Finite Horizon Problem: Does there exist, and if so find, a bounded linear
time-varying controller such that

J(Ect, R, S, T) <
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In the remainder of this section, we will present some results that serve in devel-
oping an understanding of the performance measure J. These results also elucidate
the relationship between the cost functional J and the H norm of a system.

Consider the finite-dimensional linear (possibly time-varying) system Ea
dx

(4) d- Ax + Bw, z Cx

and define J(Ea, R, S, T) as above. We summarize some of the simpler properties of
J(Ea, R, S, T) in the following lemma.

LEMMA 1.1. Let Ea be as above.
(a) If R1 >_ R2 then J(Ea, RI, S,T) <_ J(Ea, R2, S,T).
(b) If $1 >_ $2, then J(Ea, R, St, T) >_ J(Ea, R, $2, T).
(c) If T >_ T2, then J(Ea, R, 0, T) >_ J(a, R, 0, T2).
(d) Suppose that Ea is time-invariant and asymptotically stable, then

lim J(Ea, pI, 0, T)= [ITzw[[ := sup{(Tzw(S)): Re(s) _> 0},
p T--o

where Tzw := C(sI A)-B denotes the system transfer function and, moreover,

(6)

Thus, J(Ecl, R, S, T) is a generalization of the more familiar concept of the H
norm of a system accommodating the possibility of nonzero initial conditions. The
weighting matrix R is a measure of the relative importance of the uncertainty in
initial conditions vis-k-vis the uncertainty in the exogenous signals w. A "smaller"
choice of R reflects greater uncertainty in the initial condition. This connection is best
illuminated by observing that as the smallest eigenvalue )min(R) of R approaches oc,
the unit ball in Rn (R) L2 defined by

Bt$L2 := { (Xo, w) e Rn @ L2 xoRxo + II vll }
tends to (0, BL2), where BL. := {w

We now describe how the performance measure J can be computed for a given
system. These results may be viewed as natural generalizations of existing work on
the computation of the H norm of a linear time-invariant system (see, for example,
Anderson [1], Willems [17], and noyd, Salakrishnan, and Kabamba [2]).

THEOREM 1.2. Consider the linear (possibly time-varying) system Ea as in (4)
above. Let R, S be given symmetric matrices such that S is positive semidefinite and
R is positive definite. Then the following are equivalent:

(a) J(Ea, R, S, T) < /.
(b) There exists a symmetric matrix function P(t), t e [0, T] such that

(7) -/(t) A’(t)P(t) + P(t)A(t) + 2P(t)B(t)B’(t)P(t) + C’(t)C(t),P(T) S

and P(O) < "2R.
(c) There exists a symmetric matrix function Q(t) > O, t e [0, T] such that

(8) ((t) A(t)Q(t) + Q(t)A’(t) + Q(t)C’(t)C(t)Q(t) + B(t)B’(t), Q(O) R-
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and 72Q-1(T) > S.
THEOREM 1.3. Let Fa in (4) be a linear time-invariant, asymptotically stable

system. Let R be a given symmetric positive-definite matrix. Then the following are
equivalent:

(a) J(Ea, R, O, oc) < 7.
(b) There exists a symmetric matrix P such that

0 A’P + PA + (1/72)PBB’P + C’C,

(A + (1/72)BB’P) is asymptotically stable, and P < 72R.
(c) There exists a symmetric Q(t) that satisfies the Riccati differential eqution (8)

.for all t >_ 0 and is such that the autonomous system O(t) [A + (1/72)q(t)C’C]q(t)
is exponentially stable. Moreover, limt_ Q(t) exists and equals Q, where Q is
the unique symmetric matrix with the following properties"

(9)
1

AQ + QA’ + -QoC CQ + BB’ O,

and A + (1/72)QC’C is asymptotically stable.
Proofs of Theorems 2.2 and 2.3. Equivalence of (a) and (b). We will first prove

that (a) = (b) in Theorem 2.3. From Lemma 2.1, it follows that g(a,R, O, oc)

_
IIC(sI- A)-IBII. It follows from Anderson [1], Willems [17], and Soyd, Balakrish-
nan, and Kabamba [2] that IIC(sI- A)-IBII < 7, if and only if there exists a
symmteric matrix P such that

0 AP + PA + PBBP + CC,

and (A + (1/72)BB’P) is asymptotically stable. To complete the necessity it remains
to be shown that P < 72R. Suppose that this is not the case. Then there exists a
nonzero x0 such that Xo(P- 72R)x0 >_ 0. Straightforward algebra reveals that for
system (4),

d(x’Px) 72w,w x’C’Cx 7w 1B’Px 7w B’Px
dt 7

Now set w (1/72)B’Px, x(O) xo. Using stability of (A / (1/72)BB’P) and
integrating the above equation from 0 to oc along the trajectory of Ea, we obtain

72xoRxo / ")’211wll2 -Ilzll 2 72xoRxo xoPxo
_

O,

which contradicts J(E, R, 0, c) < 7. The proof of (b) =v (a) of Theorem 2.3 can be
readily completed by reversing the steps in the above argument to establish that the
existence of P with the requisite properties is sufficient for J(Ea, R, O, oc) < 7.

Next we provide a brief sketch of the proof of equivalence of parts (a) and (b)
of Theorem 2.2. Suppose J(Ea, R,S,T) < 7. It follows that the cost in the optimal
control problem

inf
wEL2[O,t]

I x’ }I1 11 j (llCxIl + (T)Sx(T))

subject to the system Ea with x0 0 is nonnegative. The existence of P(t) satisfying
the Riccati differential equation of Theorem 2.2 now follows from standard arguments
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in classical linear-quadratic control theory (see, e.g., Brockett [3], Limebeer et al.
[10]). The rest of the proof is analogous to that of Theorem 2.3.

Equivalence of (a) and (c). We next prove the existence of Q(t) with the desired
properties if J(Ea, R, S, T) < ’ (respectively, g(Ea, R, 0, oo) < "7). Since Hoo analysis
Riccati equations are seldom written in this form, our proof of this part will be in
much greater detail than the one involving P(t) or P. The following arguments also
appear implicitly in [12] and [13].

The following Hamiltonian system plays an important role in establishing the
existence of Q(t)

Let the transition matrix of this system be given by

(11) x(t) (I)21 (t 0) (I)22 (t 0) x(0)

In the following, for any T e [0, T] (for the infinite horizon case T e [0, OO)), we
will use rr to denote the projection operator defined as (rrf)(t) f(t) when t _<
T and (rrf)(t) 0 for t > T. Suboptimality of J implies that for some 0,
j2(Ea, R,S,T) < /2(1-2) (respectively, J2(Ea, R,O, oc) < "2(1-52)). Now for any
T E (0, T] (respectively, T e (0, OO)), this implies that

(2)
1x’oRxo + I1  1[  11 (C )11 >   (x’oRxo +

for all x(0) e Rn and w e L2[0, T] for system (4). From observation (12) we will now
show that [011 (t, 0)R + (I’12 (t, 0)] and [O2x (t, 0)R + O22(t, 0)] are both nonsingular for
all t [0, T] (respectively, t e [0, oo)). First, suppose, contrary to what we want to
prove, that for some T e (0, T] (respectively, - e (0, oo)), [(I,(T, 0)R + O12(T 0)] is
singular. Then there exists x0 0 such that [OI(T, 0)R + (I’2(T, 0)]x0 0. Thus
for system (10) with x(0) x0 and p(0) Rxo, p(’) 0. Choosing w(t) B’p(t)
for t e [0, T], systems (4) and (10) have the same trajectory for x. Differentiating the
product x’(t)p(t) along the trajectory of (10), we obtain

(13) d(x’P)dt w’w -x’C’Cx.

Integrating (13) from 0 to - and noting that p(T) 0, we get

X’onXo + II  -w[I

which is a clear contradiction to (12) since x(0) xo 0. Nonsingularity of
[O2(t, 0)R + 22(t, 0)] is shown similarly. (If [O2(T, 0)R + O2(T, 0)] is singular for
some T, then with an appropriately chosen x(0) 0, X(T) is zero and we arrive at a
similar contradiction.)

Next, setting Q(t)"= [O2(t, O)R+222(t, 0)][11(t, 0)R+ O2(t, 0)] -1, straightfor-
ward differentiation shows that Q(t) satisfies the desired Riccati differential equation.
Note that Q(t) is nonsingular for all t > 0 since [O21 (t, 0)R + 22(t, 0)] is also non-
singular. Since Q(t) is nonsingular for all t > 0, Q(0) > 0, and Q(t) is a continuous
function of t, it now follows that Q(t) > 0 for all t > 0.
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For the following proposition, we will need the Lyapunov differential equation

(14) (t) AC + CA’ + BB’, C(O) R-1.

Since A is a constant stable matrix, C(t) is bounded. Let p >_ supt>0 [[C(t)ll, where
the norm of a matrix is defined as the largest singular value.

Before proceeding with the remainder of the proof, we state a straightforward
result from quadratic optimization theory which will prove very useful in some re-
maining parts of the proof. (The following result can be easily proven by standard
completion of squares.)

PROPOSITION 1.4. Consider the system a given by (4) (in the infinite horizon
case A is also stable), and let R > 0 be a given positive-definite matrix. Then for any- e [0, T] (respectively, T e [0, OC) for the infinite horizon case)

inf II--wll 2 + x’(O)Rx(O)- -ll-.zll 2, x(-) x.
z(o) eP,., ,wez: [O,-r]
()

--1x.Q (T)X.,

(16)(0)ertnf,wez:2 [0,r]

1
(ll-.wll 2 + x’(O)Rx(O) X(T) X) X’C-()X llxll 2

where p is defined as above.
If J(Ea, R, S, T) < 7, then,

inf (x(O)EIn,wEE2[O,T]

1
I1-oll = + x’(O)Rx(O)- II’Tzll 2 x(T)=xT)--2XTSXT >0

for all XT E Rn. Invoking the above proposition, it now follows that ,2Q-I(T) > S.
For part (c) of the infinite horizon case (Theorem 2.3), it still remains to be shown

that Q(t) is bounded, stabilizing, and asymptotically converges to the stabilizing
solution of the corresponding algebraic Riccati equation. We first show that there
exists a positive number u < oc such that Q(t) < uI for all t > 0. Based on
Proposition 2.1, now consider the following series of inequalities:

from (12)

The above bound, which is independent of T and true for all x E Rn, shows that
Q-(T) is bounded below for all T > 0 or that Q(T) is bounded.

Now we show that the time-varying system generated by A + (1/’2)Q(t)C’C
is exponentially stable. The Hamiltonian system associated with the optimization
problem

inf II.wll 2 + x’(O)Rx(O) ll--zll2" x(-) x-
(0)ert,o2 [0,]
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which has a solution for all T > 0 and x E Rn when J(Ea,R, 0, c) < 9’, can be
written as

BB xr

The optimal w then for the above optimization problem is w(t) Bp(t) and it can
be easily verified that x(t) Q(t)p(t) for Mlt e [0, T]. Integrating d(x’p)/dt for
the system (18), we get the optimal cost for the optimization problem and similar
arguments as above yield

(9)

inf IIrwll 2 + x’(O)Rx(O)- -llrzll2 x(") xxrp(T)

_> 52(llrB’pl12 / x’(O)Rx(O)) for system (18) (from (12))

>he 1

--llrrCxll for system (18), since J(Ea, R, O, oc) < /.

Since x(t) Q(t)p(t), for system (18), the dynamics of p can also be written as

(20) iS(t) [-A’-2C’(t)C(t)Q(t)] p(t).

Equations (19) and (20) imply that for all T > 0 and any p(T) e Rn,

>

for system (20). Also note that system (20), with the output CQp is detectable (to
be thought of here as a system moving backward in time) since A is assumed to be
asymptotically stable. Thus the above equation implies that a detectable output for
system (20) is uniformly bounded with respect to terminal time - and the terminM
condition p(). om Brockett [3] it follows that system (20) is exponentially sta-
ble moving backward. Note that the forward-moving system for which we want to
establish exponentiM stability is nothing but the adjoint of system (20).

Next we show that limt Q(t) exists and equals Q, where Q is the solution
of the Mgebric Riccnti equation with the properties described in part (c) of Theorem
2.3. Since the system is linear time-invariant, differentiating (8) we obtain

(t)c’c(t) A + Q(t)C’C (t) + (t) A +Q
Since we have already established exponential stability of A+(1/2)Q(t)C’C, it follows
that (t) approaches 0 exponentially as t goes to . Therefore, limt Q(t) exists.
Let limt Q(t) Q. Then Q satisfies the algebraic aiccati equation given in part
(c) of Theorem 2.3. By using standard results on the stability of linear time-varying
systems that are asymptotically time invariant, it follows that A + (1/2)C’C is
asymptotically stable. Since the stabilizing solution of the algebraic Riccati equation
is unique, we conclude that Q.

It now remains to establish that (c) (a). We first consider Theorem 2.2. It is
easily seen that

d(x’-x) -],(el) _ x’C’Cx B’Q B’Q-
dt
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Integrating the above from 0 to T, we obtain

(22)

1x’(O)Rx(O) + Ilwll [llzll + x’(T)Sx(T)]

x’(T) Q-I(T) -S x(T) + llw- Q- I1 >- 0.

To show that J(Ea, R, S, T) < ’, we still need to show that there exists
such that the right-hand side of (22) is greater than or equal to 52(XoRXo
Towards this goal, consider the mapping

F" Rn @ L2[0, T]- Rn @ L2[0,T] (x(0), w)--. (x(T), r),

where r w- B’Q-lx. On the domain of F, define the inner product"

where (., ")L2[0,T] is the usual inner product in L2[0, T]. On the co-domain of F, define
the inner product"

<(xl, rl), (x2, r2)):= x’ Q-(T) S x2 + <w, W2>L2[O,T].

It can be easily verified that F is an invertible operator. Indeed, let (XT, r) E Rn (

L2[0, T] be given. Then the following system

c (A + BB’Q-)x + Br, x(T) XT,
(23)

x(O) x(O), W r + B’Q-x,

is the inverse of F. We will denote the inverse of F given by the above equations as
F-1. Since the problem is over finite horizon, F- has a bounded norm. From (22)
we thus obtain

1 x’ 1S1 x(T)+llrll 2x’(O)Rx(O) + Ilwllr -[llzll + (T)Sx(T)] x’(T) Q-(T) - T

1>
iir_ ll (x’(OlRx(O) +

It now follows that J(Ea, R, S, T) < /.
Next we show that if part (c) of Theorem 2.3 is satisfied then J(Ea, R, 0, oc) < .

If the system Ea given in (4) is time invariant and stable, and the inner product on
the domain of Ea (Rn .L2[0, oc]) is the same as in the domain of F defined above,
then it is easily seen that E, the adjoint of Ea is given by

" L2 [0, c) -, Rn @ L2 [0, c),

(24)

dxa -A x lim 0,c x (t)
dt

Za Bxa,

o zo(t)
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(Since A is a Hurwitz matrix, it is not difficult to see that given any Wa in L2[0, ),
there is a unique Xa in L2[0, ) that satisfies the state equation in (24).) To show
J(Ea, R,O, ) < ")’ is equivalent to showing that IIEall IIEII < ’. For showing
IIEII < ’, from (24) it follows that we must show

sup
I1 oll

x’(O)R-*x(O) + Ilzall 2

We easily show that for the adjoint system given by (24),

d(xQ(t)x) -9/ww + ZaZa + /Wa- -CQ(t)Xa 9/Wa- -CQ(t)x
dt

Integrating above from 0 to , we obtain

1
’(O)R- -CQx(25) 211Wa]12 JlZall 2 + Xa Xa(O) + IlVll where v := /wa

The adjoint system (24) can be written in terms of v as

dx A + Q(t)C’C Xa v lim x(t) O.
dt t--,

From the stabilizing property of A + (1//2)Q(t)C’C, it follows that the above system
is exponentially stable moving backward in time. Thus the map from v to w is
continuous, and hence is bounded, and because of the boundary conditions, v
0 = w 0. Thus there exists an e > 0, such that Ilvll 2 _> ellwll 2 for all v. This
observation together with (25) shows that IIEII < /or, equivalently, J(Ea, R, O, ) <

To make our exposition more lucid, we will make certain simplifying assumptions
in this paper. These assumptions are the same as in Doyle et al. [5]. We will assume
the following:

(A1) Dll D22 0.
(A2) D2[C1 O12 ]=[0 I].
(A3) D21[B Dl ]=[0 I].
For the infinite horizon cse, we will also assume that
(A4) (A, B1, C1) is stabilizable and detectable.
(A5) (A, B2, C2) is stabilizable and detectable.
Assumption (A1) implies that there is no direct transmission from the exogenous

input to regulated output and from the control input to the measured output. The
latter assumption ensures that any proper controller leads to a well-posed feedback
system. Assumption (A2) is quite common in the LQG literature and is tantamount
to assuming that there is no cross term in the expression for Ilzll 2 and that the penalty
on the control input u is normalized, i.e.,

Assumption (A3) is the dual of assumption (A2) and is analogous to the standard as-
sumption in the Kalman filtering problem that the process noise and the measurement
noise are uncorrelated and that the measurement noise is nonsingular and normalized.
Assumption (A4) is a technical assumption and is a sufficient condition for certain
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systems to not have invariant zeros on the imaginary axis. Assumption (Ah) is neces-
sary and sufficient to guarantee the existence of an internally stabilizing controller for
the system E. Assumption (A5) is not required in the finite horizon problems. The
reader is referred to Glover and Doyle [7], [8], Safonov, Limebeer, and Chiang [14],
and Zhou and Khargonekar [19] on techniques for removing assumptions (A1)-(A4).

2. Main results. In this section, we state the principal contributions of this
paper. Each result presents a necessary and sufficient condition for the solvability of
a problem. These necessary and sufficient conditions are stated in terms of existence
and properties of solutions to certain (algebraic and differential) Riccati equations.
In the event the necessary conditons are met, a state-space formula for a particular
(central) solution to the problem is given.

The first result treats the finite horizon state-feedback/full-information problem.
THEOREM 2.1. Consider the system E as in (1) with y (x’ w’)’. Let R, S

be given symmetric matrices such that S is positive semidefinite and R is positive
definite.

(a) There exists an admissible controller K such that

J(EcI, R,S,T) < 7

if and only if there exists a (unique) symmetric matrix function P(t), t E [0, T] such
that

1
B1B P(t) + CCI, P(T) S(26) -/5(t) A’P(t) + P(t)A + P(t) - B2B2

and P(O) < 72R.
(b) In this case, the control law

(27) u(t) -S’2P(t)x(t

achieves J(Ecl, R, S, T) < 7.
The next result addresses the state-feedback/full-information problem in the in-

finite horizon case.
THEOREM 2.2. Consider the system E as in (1) with y (x’ w’)’. Let R be a

given positive-definite matrix.
(a) There exists an admissible controller K such that

J(Ecl, R, 0, ) < 7

if and only if there exists a unique symmetric matrix P such that

(1 BIB B2B) P nt- C[Cl(i) A’P + PA + P ,- 0,
(28) (ii) A + (1/72)BB B2B) P is asymptotically stable, and

(iii) 0<_P<72R.

(b) In this case, the control law

(29) u(t) -B2Px(t)

achieves J(Ecl, R, 0, cx3) < 7.
In Theorems 2.1 and 2.2, the necessary conditions are established under the as-

sumption that the controller has access to both x and w. Thus, the necessary con-
ditons would still apply even if the controller has access only to the state x. On the
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other hand, if the necessary conditons for the existence of controllers are met, one
control law that achieves specified performance bounds uses only the knowledge of
the state x.

It is interesting to note that as 9’ approaches oc, the solution given above ap-
proaches the standard solution to the finite and infinite horizon linear-quadratic reg-
ulator problem. For example, the Riccati differential equation in Theorem 2.1 ap-
proaches the corresponding Riccati equation of the linear-quadratic regulator problem
with a terminal cost. Also, the necessary condition P(0) < 9’2R is trivially satisfied
as 9’ approaches oc. This is intuitively appealing since as 9’ approaches oc, the perfor-
mance requirement J(Ec, R, S, T) < 9’ becomes trivial, and the solution approaches
the solution to the optimal linear-quadratic regulator problem. Analogous comments
apply to the infinite-horizon case and also to the results to follow. Similar behavior
has been noted previously in Doyle et al. [5] for central solutions to the standard Hoo
control problems.

Another interesting feature of Theorems 2.1 and 2.2 is the decoupling in the
necessary conditions. The matrix R plays no role in the solutions of the (algebraic
and differential) Riccati equations. In fact, if the required solutions exist, they are
unique. Once these solutions have been found, we need to check whether P(0) < 9’2R
(respectively, 0 _< P < 9’2R) hold. It is interesting to note that the control law
does not depend on R. As will be discussed below, the situation is quite different
in output-feedback problems. There the control law depends on R explicitly. An
intuitive explanation of this feature will be given following the statement of Theorem
3.4.

We next consider the output-feedback problem on a finite horizon.
THEOREM 2.3. Consider the system E as in (1). Let R, S be given symmetric

matrices such that S is positive semidefinite and R is positive definite.
(a) There exists an admissible output feedback controller K such that with the

control law u Ky,

J(Ecl, R, S, T) < 9"

if and only if the following three conditions hold:
(i) There exists a symmetric matrix function P(t) such that

1
BP(t) A’P(t)+ P(t)A + P(t) --B1B 2B2

(30)
P(T) S

P(t) + CIC1,

and P(O) < 9"2R.
(ii) There exists a symmetric matrix function Q(t) > 0 for all t e [0, T] such

that

1
C1CI1 Q(t)(31)((t) AQ(t) + Q(t)A’ Q(t) CIC2 + BIB,

with Q(O) R-.
(iii) p(1/9"2p(t)Q(t)) < 1 for all t e [0, T].

(b) If the above conditions are met, then one controller that achieves

J(Ecl, R, S, T) < 9"
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is given by

(32)

d2c(t) A + B1BP 2(t) + I- Q(t)P

Q(t)Ci[y(t)- C22(t)] + B2u(t),
=o,

(In the above theorem p(.) denotes the spectral radius.)
The next result gives a solution for the output-feedback problem in the infinite

horizon case for linear time-invariant systems.
THEOREM 2.4. Consider the system E as in (1). Let R be a given positive-definite

matrix.

(a) There exists an admissible output-feedback controller K such that with the
control law u- Ky,

J(Ecl, R, 0, c) < ,
if and only if the following three conditions hold:

(i) There exists a (unique) symmetric matrix P such that

(33) A’P + PA + P (BIB B2B) P + CC O,

with A + ((1//2)BBI B2B)P being asymptotically stable and "y2R >
P>0.

(ii) There exists a symmetric bounded matrix function Q(t) > 0 for all t >_ 0
such that

1
[C2C2]Q(t)+BB, Q(O) R-((t) AQ(t)+Q(t)A’+[-CIC-Q(t)

(34)
and the unforced linear time-varying system

(35)
1 CC1)] p(t)i5(t) [A-Q(t)(CC.--

is exponentially stable.
(iii) The function (1 p((1//2)Q(t)P))- > 0 for all t >_ 0 and is bounded.

(b) Moreover, if Q(t) with above properties exists for all t >_ O, then limt__. Q(t)
exists and equals Q, where Qo is the unique symmetric matrix with the
following properties:

(36) AQ + QocA’ Q CC2 -CC Q + B1B O,

A Qo [CC2 (1//2)CC] is asymptotically stable, and Q >_ O.
(c) If the conditions above are met, then one controller that achieves J(Ecl, R, O, c) <

/ is given by
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(37)

d&(t) A + B1BP &(t) + I Q(t)P

Q(t)C[y(t)- C2&(t)] + B2u(t),
=o

u(t)

It should be noted that as in Doyle et al. [5], the necessary and sufficient condi-
tions for the existence of controllers in the output-feedback problems are two decou-
pled Riccati equations and a "spectral radius" condition.

From the formulae for the controllers, we note that in contrast to the state-
feedback problems, the initial condition weighting matrix R plays an important role
in the controller formulae in the output-feedback problems. An intuitive explanation
for this phenomenon is as follows. In the state-feedback problem, since the entire
state is available for feedback, there is no uncertainty in the initial state as far as
the controller is concerned. The only issue in the state-feedback case is whether the
desired performance bound is achievable. This is verified by checking the inequalities
P(0) < "2R in the finite-horizon case and 0 < P < ’R in the infinite-horizon
case. On the other hand, in the output-feedback case, the controller does not have
complete knowledge of the initial state. Consequently, the controller gains depend
on the relative weighting between the uncertainty in the initial state vis-a-vis that in
the exogenous input w to satisfy the desired performance bound for all w and x(0).
Also, the controller gains change with time reflecting the relative importance of the
information contained in measurements as compared to the prior information on the
initial state. Finally, we would like to note that in the infinite time horizon case, as
t , the controller approaches the central controller for an associated standardH
problem. This is intuitively appealing since assuming that the controller is internally
stabilizing, as t , the effect of nonzero initial states should disappear and the
controller should be required only to attenuate the effect of exogenous signals w on
z. This is exactly how the controller given in Theorem 2.4 behaves.

For sufficiently large R, the steady-state central controller itself has sufficient ro-
bustness to account for uncertainty due to unknown initial condition and we need not
necessarily require a linear time-varying controller to achieve the desired performance.
This is formally stated in the following result.

COROLLARY 2.5. Let the conditions of Theorem 3.4 be satisfied and R be such that
R- < Q. Then the linear time-invariant controller of the form given in Theorem
3.4(c) with Q replacing Q(t) achieves J(Ecl, R, 0, ) < "),.

3. Proofs. Without loss of generality, we will assume that , 1.

Proof of Theorem 3.2. Suppose that both x, w are available as measurements to
the controller and suppose that there exists a controller such that J(Ecl, R, 0, ) < 1.
Then it follows from Lemma 2.1 that for the system E with x0 0, we have

sup inf <1.
From Doyle et al. [5], it follows that there exists P _> 0 such that P satisfies (28) and
(A + BBP- B2BP) is asymptotically stable. It remains to be shown that P < R.
We will prove this by contradicition.

Suppose that there exists x0 - 0 such that Xo(P- R)xo >_ O. Now in the
BPe(A+(B1B1-B2B2)P)tx0 Using the fact thatsystem E, set x(0) x0 and w(t)
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A / (B1B B2B)P is asymptotically stable, it follows that w belongs to L2[0, c).
For this particular w, we claim that

sup { II (t)ll -IIz(t)lI } -xoPxo.

Indeed, the (unique) optimal input u for the above optimal control problem and the
corresponding state trajectory are

u(t) t(t) -B2Pe(A+(B1B-B2B)P)txo,

2(t) e(A+(BI B-B2B)P)(t-’)xO.

This can be shown, for example, by noting that for any w E L2[0, c), the optimal u
denoted by fi is obtained from the following two-point boundary value problem

Px + x(0) Xo, lim p(t) O,

5(t) Bp(t).

The above claim now follows by directly verifying that p(t) -Pe(A+(Bl-)P)txo.
(Similar optimization plays an important role in Tadmor [15].)

Using this observation and the fact that J(Ect, R, 0, c) < 1, it follows that

0 < 4Ro + I111 -I111 _< 4R0 + up{llll -IIzll} ’o(R- P)xo <_ O,

which is a contradiction.
If there exists a P _> 0 such that P satisfies (28) and (A + BIBP- B2BP) is

asymptotically stable, then using detectability of (A, C), standard Lyapunov tech-
niques and a completion of squares argument together with P < R can be employed
to show that the control law (27) is internally stabilizing and achieves the desired
performance bound.

Proof of Theorem 3.1. Suppose that both x, w are available to the controller and
suppose that there exists a controller such that J(Ect, R, S, T) < 1. Now consider the
system E with x0 0. Then it follows that

sup inf Ilzll + x(T)’Sx(T) < 1.
T

(The supremum and the infimum above are conducted over signals w, u e L2[0, T].)
Using the approach of Limebeer et al. [10] (which involves conjugate point analysis
for a certain two-point boundary value problem associated with the quadratic game),
it can be shown that there exists a P(t) that satisfies (26). The details are omitted
for the sake of brevity.

To complete the necessity it remains to be shown that P(0) < R. Suppose to the
contrary that there exists x0 : 0 such that Xo(R- P(O))xo <_ O. By differentiating
xPx along the trajectories of E, and completing squares we obtain

(38) d(x’Px) [u + B2Px]’[u + BPx] [w BPx]’[w SPx] + w’w z’z.
dt
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With x(0) x0 and w(t) BIP(t)x(t), integrating the expression above from 0 to T
yields

0 < x’(O)Rx(O) + Ilwll -Ilzll x’(T)Sx(T) Xo(R- P)xo -Ilu + BPxlI <_ O,

which is a contradiction.
The proof of sufficiency in Theorem 3.1 follows readily by integrating (38) from

0 to T, and is omitted.
Proofs of Theorems 3.3, 3.4, and Corollary 3.5.
Su]ficiency proofs for Theorems 3.3 and 3.4. Here we show that if the solutions to

the corresponding algebraic and differential Riccati equations of Theorems 3.3 and 3.4
exist and satisfy the required properties, then the controllers given by (32) and (37)
achieve the desired performance bound. We consider the finite horizon and infinite
horizon cases separately.

Finite horizon case. Integrating (38) from 0 to T, it is easily seen that

x’(O)Rx(O) + I[wll -Ilzl[ x’(T)Sx(T)
2(39) x’(O)(R- P(0))x(0)+

We will show that if we use the controller (32) then there exists an e > 0 such that
the right-hand side in the above equation is no less than e(x’(O)Rx(O)+ Ilwll). This
will establish our claim that this controller achieves J(Ecl, R, S, T) < 1.

Let Z(t):= [I-Q(t)p(t)]-lQ(t). From conditions (a)-(i) and (a)-(ii) of Theorem
3.3, we obtain

(40)

with

,(t) [A + BIB’P(t)]Z(t) + Z(t)[A + BB’P(t)]’
+Z(t)[P(t)B2B’2P(t) CC2]Z(t) + BB

z(0) [R- P(0)I-.
Let e "= x-5, r "= w- B’Px, v := u +BPx and Atmp := A +BB’P. Consider

the mapping

Fa" Rn @ L2[0, T] L2[0, T]" (x(0), r) v.

In Rn L2[0, T], (the domain of Fa), we define the following inner product:

((x,r), (x2, r2)) := x(R- P(0))x2 + (rl,r2)L.[O,T],
where (., ")L[0,T] is the usual inner product in L2[0, T]. Fairly straightforward algebra
reveals that if we use the controller (32), the system Fa can be realized as

ZC2C.)e + (B(41) (At,p ZC2D2)r, e(O) x(O),

’ BPe.
It then follows from (40) and Theorem 2.2 that J(Fa, R- P(O),O,T) < 1. This
implies that if we use the controller (32) then there exists an e > 0 such that for all
(x(0), r) e Rn L2[0, T],

(42) x’(O)(R- P)x(O) + Ilrll -I1 11 > P)x(O) + Ilrll ).
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Next observe simply from the definition of r that the map (x(0), w) (x(0), r) is an
invertible finite-dimensional linear system and since we are dealing with finite horizon
problems, this map and its inverse both are bounded. Thus there exists a M > 0 such
that for all (x(0), w) e R (R) L[0, T],

(43) x’(O)(R- P)x(O) + Ilrll
_

M(x’(O)Rx(O) + Ilwll).

Combining the above two observations, we conclude that, using the controller (32),

x’(OD(R-P)x(OD+llrll-Ilull >_ e(x’(OD(R-P)x(O)+llrll) >_ eM(x’(O)Rx(O)+llwll)
(44)
for all (z(0), w) l:t L210, T]. From (39) It follows that that this controller achieves
J(EcI,R,S,T) < 1.

Infinite horizon case. Here we first need to show the internal stability of the
closed-loop system. This is actually quite easy. Note that as t approaches oc, the
controller (37) approaches a linear time-invariant controller. Indeed, from condition
(b) in the Theorem 3.4, it follows that the controller (37) approaches the so-called
central solution in Doyle et al. [5]. It follows from Theorem 3 of Doyle et al. [5]
that the asymptotic limit of the controller (37) internally stabilizes the system E.
Now using standard results on the stability of linear time-varying systems, which are
asymptotically time-invariant, it follows that (37) internally exponentially stabilizes
E.

Showing that the controller (37) achieves J(Ecl,R, 0, oc) < 1 follows the same
lines as the finite horizon case. The only place where the finite horizon case arguments
need further elaboration to be applicable here is in establishing (43). For establishing
(43), it is sufficient to show that the operator from (x(0), r) ---, (x(0), w) is bounded.
Toward that end we first show that the system Fa described by (41) is exponentially
stable. Equation (40) can also be written as

2(t) [Atmp ZCC2]Z(t) Z(t)[Atmp- ZCC2]’
+Z(t)[P(t)B2B2P(t) + CC2]Z(t) + B1B[,

where Atmp A + BIB[P(t). Since (A,B) is stabilizable, it follows that the pair
([Atmp- ZCC2], [ZC B]) is also stabilizable. Existence of a bounded positive
semidefinite Z with this stabilizability observation and an extension of the standard
lemma of Lyapunov (see, Ravi, Nagpal, and Khargonekar [13]) implies that Atmp-
ZC2C2 is exponentially stable.

With the controller (37) applied to the plant E, the closed-loop system equations
can be written as (with e := x-

(45)
( ic ) ( A + (B1B[o- B2B) P BP x) ( e )

B1 )r.+ B ZCD
Since A + (BIB[-B Z2B2) P and Atmp C262 are both exponentially stable, the
above system is exponentially stable. Thus the operator from (x(0), r) (x(0), w) is
bounded.

Proof of Corollary 3.5. The above arguments show that the linear time-invariant
controller obtained by substitutingQ in (37) for Q(t) achieves J(Ec, Q2, O, oc) < 1.
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Since R > QI, from Lemma 2.1 it follows that J(Ect, R, 0, oc) _< J(Ect, QI, 0, oc) <
1.

Necessity of Theorems 3.3 and 3.4. Given a controller for which J(Et, R, S, T) <
", (respectively, J(Et,R, 0, oc) < ",) condition (i) in Theorems 3.3 and 3.4 follows
from the proof of Theorems 3.1 and 3.2.

As before, for any - e (0, T] (for the infinite horizon case T E (0, OC)), let r denote
the projection operator defined as (rf)(t) f(t) when t _< - and (rf)(t) 0 for
t>T.

To show the existence of (31) and (34), we will use the results from Nagpal and
Khargonekar [12]. We begin this with a simple but important observation. Suppose
that y(t) 0 for t e [0, 7]. Then since the controller is linear and causal, u(t) must
equal 0 for t [0, T]. (This property holds for internally stabilizing nonlinear time-
varying causal controllers as well where internal stability is taken to mean finite gain
L2 stability.) A similar observation plays a central role in the work of Nagpal and
Khargonekar [12] and this allows us to make use of some of their results in the present
context.

Let D be such that

D21DI][ D21
D2_C -I.(46)

Such a D2X exists due to assumption (A3). For any T (0, T] (for the infinite horizon
case - (0, oc)), define

(47) W(-)"- {w L2[O,T]’w(t) -DC2x(t)+ Dv(t),t [0, -], v L.[0, -]}.

For any w e W(-), we easily observe that for all t e [0, -], y(t) 0. Therefore,
u(t) O, for all t [0, -]. Consequently, for w E W(-), the equations for (1) in the
interval t [0, -] become

(48)
dx

Ax + BD2’v t e [0, T]
dt
Z Clx,
y=0,

Since we are dealing with existence of suboptimal controllers, if there exists a
controller such that j2(Ect, R, 0, oc) < 1, then there also exists a controller such that
j2(Ect,R, 0, oc) < 1- 52 for some 5 # 0. Now for any T (0, T] (for the infinite
horizon case T (0, OC)), let w W(T). Then existence of a controller that achieves
j2(Ec, R, 0, oc) < 1 52 implies that

(49)
X oRXo -t-ll7r.rVll 2 llTrT(C2x)[I 2 -IlT’.r(Clx)ll 2

>_  2(x’oRxo + II ,vll 2 + II ,(C2x)ll 2)

for all x(0) e R’ and v e L2[0, T) for system (48). From Nagpal and Khargonekar
[12, Tams. 3, 4], the above inequality implies (a)-(ii) for Theorem 3.3 and (a)-(ii) and
(b) for Theorem 3.4.

To obtain conditions (a)-(iii) of Theorems 3.3 and 3.4, we use the "separation"
idea from Khargonekar [9]. This "separation" idea is roughly as follows 1) We
separate the time interval of the original problem into two subintervals; 2) during the



H CONTROL WITH TRANSIENTS 1391

first part, w is chosen so that y 0 (thus during this interval u 0); and 3) in the
second interval, one chooses the "worst" w in an appropriate sense (which will soon
become clear). Such a choice of w together with the inequality implied by the existence
of a controller that achieves J(EcI, R,S,T) < 1 (respectively, J(Ecl,R, 0, oc) < 1
for the infinite horizon case), would lead us to conclude conditions (iii) of the two
theorems.

Fix T e (0, T] (respectively, - e (0, oc)) and x e Rn. Let w e W(-) such that
v(t) D2lBQ-l(t)x(t) for t e [0, T]. With this choice of X(T) and v(t), it is easily
seen by completion of squares that for system (48),

x’Q-()x x(O)’Rx(O)/ II:ll / II(c)ll
(5o) x(O)’Rx(O)/ IIwll -IIzll.

We now consider the finite and the infinite horizon cases separately.
Finite horizon case. Fix - 6 (0, T] and x 6 R’ and let w W(T) be chosen

as in the last paragraph. For t (-,T], let w(t) BP(t)x(t). Now integrating (38)
from - to T, we get

(I r)wll = (I 7rr)zll = x(T)’Sx(T)
(51) -x’rP(z’)x -[1(I- rr)(U + BPx)[I 2.

Combining (50)and (51)we obtain

0 <_ xoRxo + Ilwllr -Ilzllr -x(T)’Sx(T)
{(O)’Rx(O)+ IIwll = -IIzll} / {11(I- )wll
x;[Q-(-) P(-)]x -I1(I- r)(u + B’Px)ll . x(T)’Sx(T)}

As the first inequality is strict for all 0 # x G Rn, (since in this case either w # 0 or

x(0) = 0), condition (iii)of Theorem 3.3 follows.
Infinite horizon case. Fix - (0, oc)and x 6 Rn and let w WB!! be chosen as

in the finite horizon case. For t (-, oc), let w(t) BPe(A+(BIB’- )P)(t-)x(-).
Using the fact that A + (BIBI B2B)P is asymptotically stable, it follows that
(I r)w belongs to L2[0, oc). For this particular w as in the proof of Theorem 3.2,
it can be shown that

sup{ll(I Wr)W(t)ll --I1(I w.)z(t)ll } -x’(’)P(’)x(-).
u

Using this observation and (50), we obtain

Since the left-hand side is positive for all 0 - x e Rn (since that implies w # 0
or x(0) - 0), it follows that for all 7 e [0, oc), Q-(T) > P. Hence p(Q(T)P) < 1
for all T e [0, OC). Now limt_ Q(T) Q. From Theorem 3 of Doyle et al. [5],
p(QP) < 1. Thus, (1- p(Q(r)P)) -1 exists for all T [0, oc), is continuous, and
has a limit as T OC. Therefore it is bounded on [0, oc). Hence condition (iii) of the
theorem follows. This completes the proof.
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4. Conclusions. In this paper we have formulated and solved an H-like control
problem, where, in addition to the exogenous signals in the state and measurement
equations, we must also account for uncertainty in the initial condition. This was
done by defining a suitable worst-case performance measure. It is hoped that these
results may allow us to design control strategies that are robust to both exogenous
signals and nonzero initial states.

It was shown by Mustafa and Glover [11] that the central solutions to H control
problems have the additional property of maximizing the entropy of the closed-loop
transfer matrix. It is clear that the controllers obtained in the present paper are
analogous to the central solutions to theH control problem. The question arises then
as to what is the analogue of entropy maximization property in the present context.
This problem does not seem to have immediate answers since entropy is defined in
terms of the closed-loop transfer function matrix evaluated along the imaginary axis.
This definition has no obvious extension to our context where the controllers are
time-varying. We leave a full investigation of this issue for future research.

Finally, we have formulated our problem in a purely deterministic context. A
stochastic formulation of this problem should be an interesting undertaking.

Acknowledgment. The authors are grateful to R. Ravi for many helpful dis-
cussions regarding the content of this paper.
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H CONTROL OF LINEAR TIME-VARYING SYSTEMS: A
STATE-SPACE APPROACH*
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Abstract. In this paper the standard problem of H control theory for finite-dimensional linear
time-varying continuous-time plants is considered. The problem is: given a real number -/> 0, find (if
one exists) an internally stabilizing controller such that the closed-loop operator norm is less than .
Under rather weak assumptions on the plant model, it is shown that a solution to this problem exists
if and only if a pair of matrix Riccati differential equations admits positive semidefinite stabilizing
solutions. State-space formulae for one solution to the problem are also given.

Key words. H control theory, linear time-varying systems, Riccati differential equations,
optimal control
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1. Introduction. After the introduction of the H control problem by Zames
[24], initial developments in H control theory were based on frequency domain and
operator theoretic methods. The book by Francis [9] contains an excellent account
of the results obtained using this approach. While most of the results were for linear
time-invariant systems, several results on H or uniformly optimal control of lin-
ear time-varying discrete-time systems were obtained using these methods. See, for
example, [6], [7], [8], [10], and the references cited there. Recently, some new and
very interesting results on the H control of slowly varying systems using operator
theoretic methods have also been obtained [23].

A major new development in H control theory during the last three years has
been the introduction of state-space methods. (State-space representations were used
even earlier in computing solutions to H control problems. By state-space methods,
we are referring to the systematic use of state-space ideas, e.g., state-feedback, state-
estimation, separation principle, etc., for deriving and computing solutions.) This
state-space approach has proved to be quite successful in providing simple and intu-
itive solutions to the H control problem. The interested reader is referred to [5],
[13] and the references contained there for these recent developments.

The state-space approach is particularly natural and appealing for the problem
of H control of linear time-varying systems. Tadmor [21], [20] was the first to apply
the state-space approach for linear time-varying systems. Recently, a simple game
theoretic solution to the H control problem for the finite horizon case was given in
[15]. In [21], Tadmor gave a solution to the H control problem for the finite horizon
case, while [20] contained a solution for the infinite horizon case. It should be noted
that the infinite horizon case is significantly more difficult since stability becomes an
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important issue, whereas in the finite horizon case this is completely absent. Tadmor
derived his results under the hypothesis that the input matrix for the exogenous signal
and the output matrix for the controlled variables are nonsingular. The results in [15],
for the finite horizon case, are derived under much less restrictive assumptions.

In the present paper, we give a solution to the infinite horizon case building on the
previous work of [5], [15], [21], and [20]. We obtain necessary and sufficient conditions
for the existence of solutions under the assumption that the plant is stabilizable from
the exogenous inputs and detectable from the controlled outputs. These assumptions
are significantly weaker than those in [20] thus the main contribution of the paper is
the generalization of existing results in [20] by relaxing assumptions to stabilizability
and detectability. While it is trivial to conjecture our main results in view of the
results in [5], the proofs of these results are not so easy to generalize. Indeed, even
in the context of the linear quadratic Gaussian (LQG) problem, such generalizations
involve significant technical difficulties. See (for the discrete-time case) [2] and [3]
in this connection. For the Ho control problem, these generalizations are nontrivial
as well. Indeed, our proof techniques are quite different, and in our opinion simpler,
than those employed in [20]. Thus it is hoped that, in addition to generalizing existing
results, these techniques will provide an alternative approach to proving some of the
existing results even in the linear time-invariant case.

This paper is organized as follows. In 2, we set up the notation and the problem
formulation. Here we present a few preliminary results and some of the machinery
needed for proving the main result. Section 3 contains the statement and a proof of
the main result.

2. Notation and preliminary results. Let T+ (respectively, T_) be the set
of nonnegative (respectively, nonpositive) real numbers, and let + t P,._. Let
(T+) be the space of square integrable functions on 7+ with values in T.m. The
extended space is defined as ’2,(T+) := {f f is a measurable function on 7+,
Ptf E (7+), for all t E P,.+} where (Ptf)() f(T) if " _< t, and 0 if - > t. In the
sequel, the notation for these spaces will be abbreviated to .2 and 2,, respectively,
when the dimensions are unambiguous.

Consider the linear system

:(t) A(t)x(t)+B(t)u(t), x(to) Xo,
(1) EG :=

y(t) C(t)x(t) + D(t)u(t).

Here x(t), u(t), and y(t), when evaluated at time t, belong to 7n, 7m, and Tp,
respectively, and the matrices are all bounded functions of t. With x(0) 0 it can be
shown that Ea generates a causal, linear operator G mapping 2,(7+) to P
given by

y(t) C(t)(G(t, T)B(’)U(T)dT + D(t)u(t),

where OG(t, ’) is the state transition matrix of the homogeneous part of (1). In terms
of EG we have the following definitions.

DEFINITION. The system EG is said to be exponentially (or internally) stable if
there exist cl, c2 > 0 subject to IlOG(t, T)I

_
cle-c(t-), for all t _> -.

As this definition of stability deals with the homogeneous part of EG alone, we will
use the phrase, "A is stable," to mean that EG is exponentially stable. By the same
reasoning, we will also use the notation A interchangeably with EG when referring
to the state transition matrix.
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If Ec is exponentially stable, then the input-output operator G /2(+)
Z;(7+) is a bounded linear operator and its induced norm is defined as Ilall
supllllo(llyll/llull ). Note that an alternate notation for the input-output operator
mapping u to y is Ty.

DEFINITION. The system Ec is said to be stabilizable (respectively, detectable)
if there exists a bounded function K(t) (respectively, L(t)) such that the system
it(t) (A-BK)(t)x(t) (respectively, c(t) (A-LC)(t)x(t)) is exponentially stable.
We also use the notation (A, B) stabilizable (respectively, (A, C) detectable) to denote
this.

It is a fact that if Ea is stabilizable and detectable then it is exponentially stable
if and only if G is a bounded operator (a proof for the discrete-time case is in [1]; the
continuous-time case is also easily shown).

We briefly review the concept of a dual, which was first introduced by Kalman
(see, e.g., [12]) as a means of relating regulation and estimation. We begin by consid-
ering the system Ea defined only over a finite time interval [0, T]. Let t* := -t and
define A(t*) := A(t), B(t*) := B(t), C(t*) := C(t), and D(t*) := D(t). Then

:*(t*) A’(t*)x*(t*) + C’(t*)u*(t*), x*(-T) xo,
(a) .=

y*(t*) B’(t*)x*(t*) + D’(t*)u*(t*)

is called the dual of Ea. It can be shown that if x*(-T) 0 then Ea. generates a
causal, linear, and bounded system G* mapping P2([-T, 0]) to r([-T, 0]). More-
over, G* can be identified with the adjoint of G. We are mainly interested in the case
when T oc, and here we must make the additional assumption that the original
system Ec is exponentially stable. Let u* E (7+) and define

(4) x* (t) := (Da(-, t)C’ (’)u* (T)d’.

By differentiating this we find that x*(t) satisfies

ic* (t) A’ (t)x* (t) + C’ (t)u*(t).

Because Ev is exponentially stable it can be shown, by applying Schwartz’s inequality
to (4), that limt__, x*(t)= 0. If we define the output y*(t) as

(6) y* (t) B’ (t)x* (t) + D’ (t)u* (t),

then it is clear that < u*, y >=< y*, u >, for all u e/2(7+) and for all u* e (7+),
and y Gu. It follows that (5) and (6) together define the adjoint of G. If in (5)
and (6) we further make the change of variable t* -t, we obtain Ea, exactly as
in (3) but with the boundary condition replaced by limt,__,_ x*(t*) 0. Note that
Ea, is defined only on 7_ and is stable in the sense that there exist cl, c2 > 0 subject
to ]l(I)a. (t*, T*)I _< cle-c(t*-r*), and all T* _< t*, for all t* 7_.

We are now ready to formulate the control problem considered in this paper.
Consider the control system shown in Fig. 1. Let the finite-dimensional linear time-
varying (FDLTV) plant G be described by

(7) .=

A(t)x(t)+ BI (t)w(t)+ B2(t)u(t),
C(t)x(t)+ D2(t)u(t),
C2(t)x(t)+ D.(t)w(t),
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G
Z

FIG. 1. Standard feedback configuration.

or in more compact packed matrix notation

Ea := C1 0 D12
C2 D2 0

Note that we have assumed that the direct feedthrough terms D and 022 are zero.
This assumption, especially the first one, greatly reduces the length and complexity of
the formulae to be derived in 3. The general forms can be obtained by constructions
similar to those in [15], [17], and [25].

Let Tz denote the closed-loop operator mapping w to z. Then the standard
problem of H control theory for linear time-varying systems can be stated as follows.
Given the FDLTV system G with a realization Ea, and a real number / > 0, find
(when one exists) an FDLTV controller K that exponentially (internally) stabilizes
the closed-loop system and makes ITzll < ". Any controller that satisfies the above
condition will be called an admissible controller.

Note that we are only seeking a controller that is suboptimal relative to the number. For most cases this is sufficient because we can come as close to the optimal value,
infg ITII, as we want by iterating on

We make the following simplifying assumptions on Ea:
(A1) D’2(t)(C(t D12(t))= (0 I).

(A3) (d, B) is stabilizable.
(A4) (d, C) is detectable.
(Ah) (A, B2) is stabilizable.
(A6) (A, C2) is detectable.

The full rank conditions on D2 and D2 are restrictive but essential for the theory
to work. To remove this assumption we can use a reasoning similar to that in [14],
where it is shown that if these conditions are not satisfied, we can perturb the matrices
slightly so that they are satisfied, ensuring at the same time that the solution to the
new problem is also a solution to the original one. The crucial fact that allows us to
use this argument is that we are only dealing with a suboptimal problem. Dealing
with these assumptions in a more direct manner is more difficult and has been done
in the time-invariant case via the use of methods from singular control theory and
almost invariant subspaces [19], [18]. It is unclear at this time if these methods can be
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P
Z

FIG. 2. Feedback configuration for Lemma 2.2.

extended to linear time-varying systems since very little is known about the singular
cases even for the LQG problem for linear time-varying systems.

Assumptions (A5), (A6) are necessary for the existence of an exponentially sta-
bilizing controller. For LTI systems, assumptions (A3), (A4) can be relaxed further
to requiring that certain rank conditions be satisfied on the imaginary axis [11]. In
the linear time-varying case, however, it is unclear what the corresponding assump-
tions should be since the role of the imaginary axis is very strongly related to time-
invariance. This is also related to whether we consider linear time-varying systems on
the half line or the entire real line for the time-axis. Techniques from operator the-
ory suggest that this is related to the existence of certain inner-outer factorizations.
We will restrict ourselves to assumptions (A3), (A4) in this paper, leaving further
extensions for future work.

Before going on to the main result, we state three preliminary lemmas that we
will need in the proof of Theorem 3.1. The first is a version of the Lyapunov stability
theorem proved for discrete time systems in [2]. The following continuous-time version
is proved in [16].

LEMMA 2.1. Let E be defined as it(t) A(t)x(t) and let C and B be such that
(A,C) and (A,B) are detectable and stabilizable, respectively. Then either of the
following statements is a sufficient condition for the system E to be exponentially
stable.

(1) There exists a bounded nonnegative definite function X(t), t E [0, oc) such
that

J((t) + A’(t)X(t) + X(t)A(t) -C’(t)C(t).

(2) There exists a bounded nonnegative definite function Y(t), t [0, oc) such
that

(t) A(t)Y(t) Y(t)A’(t) B(t)B’(t).

The next result is the time-varying version of Lemma 15 in [5].
LEMMA 2.2. Let P be a system partitioned as follows:

[ Pll P12 1P P21 P22

and let Q be another system connected to P as in Fig. 2. Suppose that P has an
exponentially stable realization and that Q is given by a stabilizable and detectable
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state-space realization. In addition, suppose that the resulting realization for the closed
loop system is also stabilizable and detectable (from w and z, respectively). Let P be
isometric, (i.e., I[WI[2--[IV[[ 2 IlZl[2-{-Ilrll 2, for all v, w E 2), and let pl exist and be
stable. Then the closed-loop system is exponentially stable and I]Tzwll < 1 if and only
if Q is exponentially stable and IIQII < 1, where Tzw is the closed-loop input-output
operator mapping w to z.

Proof. Sufficiency. As IIQII < 1 and IIP2211
_

1 it follows that (I-P22Q)-1 exists
as a stable operator. This, along with the fact that both P and Q are stable, implies
closed-loop stability of the system in Fig. 2. Internal exponential stability then follows
from the hypothesis that the closed-loop system is stabilizable and detectable. The
norm bound is also easy to establish. From the isometric property of P it follows that

(8) Ilzll + I1 11 -I1 11 + Ilvll
As IQII < 1 we have

(9)

for some > 0 and where Twr "= PI PlP22Q is a bounded operator. From (8)
and (9) it clearly follows that IITzll < 1.

Necessity. From Fig. 2 we have

r Pw + Pv
P2w + P22Qr

(10) :=> w Pr- PP22Qr.

Let A/I := {r E /22 subject to Qr /22}. From (10) it is easy to see that whenever
r 4 we have w 2. This means that given any signal r M there exists a
w 2 that generates it as an input to Q. om (8) and the fact that ]]Tw]] < 1, it
follows that whenever r M,

(11) ]]v]] 2 -]r] 2 -]]z] 2 -]w]2 -]]w]] 2

for some > 0. Furthermore, as the closed loop is stable we must have that Try, the
closed-loop operator mapping w to r, is bounded. Along with (11) this implies that

from which it follows that

(12) sup
][Qr]] < 1.
Ilrll

To complete the proof we need to show that Q is stable. If we show this then (12),
together with the definition of A/l, implies that IIQII < 1.

To establish the stability of Q we use a time-varying version of the proof of
Theorem 1 in [22]. Assume Q is unstable. Because Q has finite gain on the set A/t
(see (12)), it follows from Lemma 1 in [22] that A/[ is a closed subspace of/22. If
M 2 then there is at least one nonzero d in AA +/-, the orthogonal complement of
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P22

FIG. 3.

A in .. As the closed loop is stable, it follows that the feedback system in Fig. 3 is
also stable, and so for any d E 2 both e and r are in 2, and, furthermore, we have
e E A/[. Choose d A/[ +/-. Then

=llrll 2=llell 2+lldll 2 (sincee
(13)

On the other hand, because IIP2211 _< 1 and IIQII < 1, it follows that Ilell > Ilrll, which
is a contradiction of (13). This proves our claim.

Finally, we state a consequence of the definition of detectability that we will need
in the following. Consider the system

A(t)x(t) + B(t)u(t) x(O) O,
z(t) C(t)x(t),

and assume that E is detectable.
LEMMA 2.3. Let the system E be as in (14). If E is detectable then there exists

a constant > 0 such that for any T > 0 and a reachable state XT at time t T,

inf (IIPTzll 2 + IIPTull 2" x(O) 0 and x(T) XT)(15)
net:2 ([0,T]

Proof. As the system is detectable, there is a bounded function L(t) subject to
(A- LC)(t) that is exponentially stable. System (14) can be equivalently written as

2(t) (A- LC)(t)x(t) + B(t)u(t) + L(t)z(t), x(0) 0,

z(t) C(t)x(t).

As (A- LC)(t) is exponentially stable, clearly there exists a number p < (inde-
pendent of T) subject to

IIx(T)ll < (llPzll + IIPII).
The conclusion follows immediately by taking lip. D

3. Main result.
THEOREM 3.1. Let Ec satisfy assumptions (A1)-(A6). Then there exists a

controller K that exponentially stabilizes the system Ec and makes ITzwll < / if and
only if
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(1) There is a bounded nonnegative definite solution to the Riccati equation

(6)
A’(t)X (t) + X(t)A(t)
-X(t)(B2(t)B.(t)- -Bx(t)Bl(t))X(t) + C(t)Cx(t)

subject to the system it(t) (A-(B2B-7-2BxBI)X)(t)x(t) is exponentially stable,
and

(2) There is a bounded nonnegative definite solution to the Riccati equation

(17)
Atmp(t)Ytmp(t) + Yt,p(t)Amp(t)

X(t)B2(t)B(t)X(t))Ytmp(t)-Yt,p(t)(C(t)C2(t)-
+B1 (t)Bl (t), Ytmp(O) 0

subject to the system k(t) (Atmp Ytmp(CC2 --XB.B.X))(t)x(t) is expo-
nentially stable, where

(18)

(19)

( )Atmp := A + -BIBxX
If these two conditions are met, then an admissible controller is given by

((t) (A- (B2B -/-eBxB)X Yt,pCCe)(t)q(t)
EK := +Yt,p(t)C(t)y(t),

u(t) -B(t)X (t)q(t).

Note that in (16), as opposed to (17), no boundary condition is specified. This
is similar to the corresponding results for the classical LQG problem in the infinite
horizon case where the control Riccati equation does not have a boundary condition.
It will be seen in the proof that X is obtained as the limit of the solutions of finite
horizon Riccati differential equations as the terminal time approaches infinity.

We have given the necessary and sufficient conditions here in terms of two coupled
Riccati differential equations. Since the coupling is only one way, i.e., the solution
to the first enters the second but not vice versa, this presents no problems. It is
possible to give an alternative set of necessary and sufficient conditions involving two
uncoupled Riccati differential equations and a spectral radius condition. This is quite
standard; see, for example, [15] and [20].

Proof. Note that there is no loss of generality in replacing , by 1--hence in the
proof we will work with this simplifying normalization.

Sufficiency. We will show that K, defined in (19), both stabilizes the system and
makes IITzll < 1. We start by making the change of variables v := u + BXx and
r w BXx. In terms of these variables we have a new system P defined by

(20) p :-- Z

(A- B2BXo)x + Blw -[- B2v,
(61 D12BXoo)x + D12v,

-B’IXX + w
and a.corresponding controller C defined by

(21) Ec "= { V

(At.p YtmpCICe)e + (B1 YtmpCD21)r,
BXe,
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where e x- q.
We will now show that P is stable and norm preserving, i.e., II(z’ r’)’ll

I](w’ v’)’ll, for all (w, v) e/22 2. To establish this, let us rewrite (16) as

2o(t) + (A- B.BX)’(t)Xoo(t) + X(t)(A- B.BX)(t)
-(XB2B2Xo)(t)- (XBIB[Xo)(t)- (C[C1)(t).

As (A, C1)is detectable it follows that ((A- B2BX), (C ]XoBe XoB)’)is
detectable; therefore, by Lemma 2.1, we have that 2(t) (A- B2BX)(t)x(t) is
exponentially stable. To establish the norm condition, we differentiate x’(t)X(t)x(t)
along the trajectory of p to get

d(x’Xox) 5c’(t)Xo(t)x(t) + x’(t)o(t)x(t) + x’(t)Xo(t)2(t)
dt

((A- B2B2Xo)(t)x(t)+ Bl(t)w(t)+ B2(t)v(t))’Xoc(t)x(t)
-x’(t)(A’Xoo + XcA- Xo(B2B2- BIB)X + CC)(t)x(t)
+x’(t)X(t)((A- B2B2Xo)(t)x(t) + B(t)w(t) + B2(t)v(t)).

Expanding this, substituting from (20) and (21), and cancelling a number of terms,
gives

(22) d(x’Xx)
dt

’(t) ’(t) + v’v(t) z’z(t).

By assumption, x(0) 0. Furthermore, we have established that the system
is exponentially stable, which means that for every (w, v) E /22 x 2 we have that
limt_, x(t) O. Consequently, we can integrate (22) between 0 and oc to get

or

Ilwll 2 + Ilvll 2 Ilrll 2 + Ilzll .
Let us now partition P as in Lemma 2.2. As ?(t) (A-(B2B-BIB[)X)(t)x(t)

is exponentially stable, it follows that P2 existsand is stable. Next we establish that
Ec is stable and that IICII < 1. We rewrite (17) as

Ytmp(t) (At,p mpCCz)(t)p(t) mp(t)(Atmp mpCCe) (t)
(23) (mpCC2mp)(t) + (mpXB2BXmp)(t) + (BB[)(t).
By assumption we have that 2(t) (Atmp- tmpC2C2’ + mpZB2BX)(t)x(t)
is exponentially stable, which means ((Atmp mpCC2), (mpXB2)) and, conse-
quently, ((Atmp- mpCC2) tmpC2 mpZB2 B)) is stabilizable It follows
from Lemma 2.1 that Ec is exponentially stable. Next we show that [[C[ < 1. Let
us define the dual Ec. as

*(t*) (Amp -CC2mp)(t*)e*(t*) + (XB2)(t*)r*(t*),
(24)

v*(**) (Bt-D’1C5)(t )

where mp(t*) is the solution to the time-reversed Riccati equation obtained from (17)
3S

-mp(t*) A,mp(t*)p(t*) + mp(t*)Amp(t* + BB(t*)
(25) -mp(t*)(CC2 XB2BX)(t*)(t*), mp(O) O.
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We consider the function e*’Ytmpe*(t*) and calculate its derivative along the tra-
jectory of (24). Substituting for Ytmp(t*) from (25) gives us

(26)
d(e*’Ytmpe*

dr*
-v*’v*(t*)+r*’r*(t*)
-(r* B’XYt,e*)’(r* BXYt,e*)(t*).

As we have established that Ec. is exponentially stable, we have limt.+_ e* (t*) 0.
This coupled with the fact that Yt.p(0) 0 allows us to integrate (26) from -0 to
0 to get

0 IIr*ll 2 -IIv*ll 2 -lit* B’2XYpe*II 2

or

(27) IIv*ll 2 -IIr*ll -lit* BxYp*II2.

Clearly, r* BXYtmpe* i8 the output of the following system with input r*"

[ Amp-CC2Ytmp XB2 ]-BZYtmp I

Note that the inverse of this system is given by

-6262 tmp+XB2Av BXp XB2
BXmp I

which maps r* BXmpe* to r*. As this is a stable system there exist 5 with
0 < 5 < such that ]r*] 2 5]r*-BZpe*]2 or -]]r*-BXpe*]]2

-1/5][r*]] 2. Coupling this with (27) gives

1
(es) v*ll = -*= -at*=,
which means that ]]C*][ < 1 or equivalently that []C] < 1. A small amount of algebra
shows that P and C satisfy all the assumptions of Lemma 2.2 (when C is substituted
for Q). Therefore, as Ec is exponentially stable and ]C][ < 1 it follows that the
closed-loop system is stable and lTzw] < 1.

Necessity. In this part we assume that there exists an admissible controller; i.e., we
have a controller g that stabilizes the closed loop and, in addition, makes l]Tzw[] < 1,
and show that the two Riccati differential equations have stabilizing solutions. For
each case we will show that a nonnegative solution exists, that it is bounded, and,
finally, that it is stabilizing.

Existence and boundedness of X. Let us begin with a finite time horizon
solution to the Riccati equation, which we will then extend to the infinite horizon.
Let T < be the terminal time. As K is a causal admissible controller over g+ it
is also admissible over [0, T] for any T. In other words,

Tzl <

sup lz
w#0

< 1

(eg) a sup lPrzl < 1 VT e +.
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From existing results on the finite horizon Hc control of linear time-varying systems
in [21], [15], we conclude that this condition is sufficient for the existence of a bounded
nonnegative definite solution to the finite horizon Riccati equation,

--[T(t) A’(t)XT(t) + XT(t)A(t) XT(t)(B2B2 B1B)(t)XT(t) + C(t)C(t),
(30) XT(T) O.

The existence of a solution to (30) implies certain properties for the following differ-
ential game. Consider the system

it(t) A(t)x(t) + B(t)w(t) + B.(t)u(t), x(O) xo,
(31)

z(t) C(t)x(t) + D.(t)u(t).

Set T to be the terminal time and define the cost function over [0, T] as JT(w, u):--
IIPTzll 2 --IIPTw]I 2. The two opposing players are the control input u and the ex-
ogenous signal w and we assume that these take values in 2[0, T]. The objective of
the control input u is to minimize the cost while that of the exogenous signal w is to
maximize it. Define Ur(x)(t := -B2(t)XT(t)x(t) and Wr(x)(t B(t)XT(t)x(t).
Then a standard calculation involving completion of squares shows that for any u and
w in 2[0, T]

(32) * ’x(0)o < J((x) ).J( (x)) < J((x) r(x)) o
It is important to note that the strategies u, and w, depend on x and are not open-
loop saddle point strategies.

Now consider two different terminal times T1 and T2 with T _< T2. We will next
show that XT1 (t) <_ XT2(t), for all t E [0, T1]. Consider, first, the game over [0, T].
Suppose w w* (x) Then from (32) we haveT1

(33) x (0)xo < J (*r(),)

for any u E 2[0, T1]. Now let the terminal time be T2 and let WT2 be defined on
[0, T] s

Clearly,

W*
0r (x)(t), t _< T,

TI<t<_T2.

JT: (WT:, U) (llz(t)]l I[WT. (t)[]:)dt + ([Iz(t)ll I[WT (t)ll)dt

JT1 (WP (X), U) "q-

(34)
> Jr((), )

* * XoXT (0)x0.Jr (r (x), (x))

The above chain of inequalities holds for any u 2[0, T2], and, in particular, it holds
for u- u* (x) On the other hand, from (32) it follows thatT

(3) xoX (O)xo d( (x),r (x)) z J(, (x)).
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Combining (34) and (35) we get that xoXT2 (0)x0 >_ xoXT1 (0)x0; and as this is true
for any x0 E Tn it follows that XT2 (0) >_ XTI (0). But there is nothing sacred about
choosing the starting time as t 0. We could have played this game starting at any
time t E [0, T1] and hence it follows that XT (t) >_ XT (t) for all t [0, T1].

Next we show that XT(t) remains a bounded function of time for every T. As
K is admissible it follows, from (29), that (with x0 0) there exist > 0 subject to

IIPTzll 2 --IIPTwll 2 <_ --IIPTwll 2, for all w e 2([0, T]) and all T e R+. Next, let
x0 # 0, let u Ky, and set the initial states of the controller to be zero. As K is
linear the output z of (31) to any input w can be written as

(36) z(t) z (t) + z2(t),

where Z (t) is the homogeneous part of the solution (depending only on x0) and z2(t)
is the forced part (depending only on w). Clearly, we have, for any finite T,

(37) IIPTzll IIPTz II 2 + IIPTz=II 2 + 211PTz II IIPTz II,

However, because K is an admissible controller the resulting closed-loop system is
exponentially stable, which further implies that both z and z2 are in 2(+) for any
xo Tn and w E 2(T+). This means that there are constants, a, e > 0, that are
independent of T subject to IIPTzI[ < allXoll and subjectto [IPTz2112 --IIPTwll 2 <_
--elIPTwll 2. Combining this with (37), we get

Here we have used the fact that (38)is maximized by IIgTwll llx011/. It is
important to note that the right side of (39) does not depend on T. Therefore pick
any terminal time T and set w(t) w(x)(t). Clearly, this w is in 2[0, T]. From (32)
we have that

(40) x’oXr(O)xo < u)

for every u 2[0, T]. In particular, let u Ky; from (39) and (40) it follows that

x’oXT(O)xo <  llxoll
(41) XT(O) <_ I.
As argued before, the game can be played starting at any time t and nothing will
change. Indeed is independent of both starting times and terminal times. Conse-
quently,

(42) XT(t) <_ I V T Tt+ Vt <_ T.

It follows that {XT(’)}, indexed by T, is a nondecreasing sequence of continuous
functions that is bounded above. Hence there exists a unique, bounded functionX(.)
subject to limT--,o XT(t) X(t) for every t 7+. Note, in addition, that for each
T the function XT(.) is the solution to the finite time Riccati equation (30) and is
continuous with respect to initial conditions. It follows (using the same arguments as
in [12]), that Xo(.) satisfies the infinite horizon Riccati equation (16).



1406 P.P. KHARGONEKAR, R. RAVI, AND K. M NAGPAL

Stability of A (BB2 B1BI)X. We will now show that X is stabiliz-
ing; i.e., the system 2 defined as it(t) (A- (B2B B1B)Z)(t)x(t) is exponen-
tially stable. We will show later that there exist ( < such that given any initial
time to and initial condition x(to) xo we have

(43)

Assuming that this is done, the stability of E follows from the following argument.
Note that E can be written as 2(t) (A- B2BX)(t)x(t)+ BB[X(t)x(t) with
initial condition x(to) xo. Let Eaux be an auxiliary system defined as

2 (A B2B2’Xoc)x +u.

AS aux is exponentially stable, the corresponding input-output system, assuming
x to be the output, is input-output stable (see [1]). This implies that there exist < x
subject to

(44) II(Z- P,o):ll _< ll(Z- Po)ll Wo e +.
Using the fact that u BXx and taking into account (43) and (44), we get that
for all initial states x(to) x0,

I1(I- Po)xll CIIxoll,

where the bound is independent of the initial time or state. The exponential stability
of E follows from Theorem 3 of [4, p. 190].

We will now demonstrate the existence of a uniform bound satisfying (43). To
this end, recall the definitions of a and from (38). Set > (a/e)(1 + v/1 + e),
and consider the system E. Because X(t) "= limT-XT(t), it is clear that for
T large enough, the state trajectory of the system T defined as &T(t) (A-
(B2B B1B)XT)(t)xT(t) will approach x in the 2 sense on the interval [to, tl] for
some t < T. At this point we assume, in contradiction to what we want to show,
that there does not exist any bound satisfying (43). Therefore, given any > 0 (in
particular, the one chosen above) there exist Xo, to, T, and an interval [to, tl] with
tl < T such that IIBXTXTII[to,tl] > ]lXoll where the subscript on the norm has the
obvious meaning. As T > t, clearly IIB[XTxrlI[to,T > r/llxol] also.

Now consider, over the interval [t0,T], system (31). In (38) replace u by u*
--B2XTXT and the w by w* :- B[XTXT and denote the resulting output by z*. We
have

(45) IIz*llo,l- I1*11o,1 llxoll -II*llIo,l(ll*llIo,l- 2llxoll).

Using (32) it follows that

(46) x’oXT(tO)xO < llx01I
Bus w hv hosn T to forc IIw*llIo,Tl IIBXTXTIIIo,TI > it fonows that

(47’) xoXr(to)zo <_ o --(1 + v/1 + e)(1 + v/1 + e) 2) I1011 _< 0o

This violates the nonnegativity of XT, however. Hence we have a contradiction,
thereby proving the existence of ( satisfying (4a). It now follows that X is indeed
a stabilizing solution to the first Riccati equation (16).
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Existence of Ytmp. As the admissible controller K is linear and causal, clearly
PTY 0 = PTU 0, for all T E 7+. Let D+/- (t) be a matrix function defined subject
to (D21(t)), is square andD+/-(t)

D+/- (t) D+/- (t) I.

Now set

(49) w(t) := -D21(t)C2(t)x(t) + B(t)X(t)x(t) + D(t)vl(t) Vt e [0, T),

where v 2[0, T] is arbitrary. It can be checked (using assumption (A2)) that with
w chosen as above, y(t) 0, for all t [0, T], and system (7) becomes

(50)
2(t) Atmp(t)x(t) + Bl (t)D (t)v (t),
y(t) 0 Vt e [O,T),

where Atmp is defined in (18). Recall that v u + BXx and r w- BZx
for t e [0, T). These become v BXx and r -D2C2x + Dv, respectively.
Integrating both sides of (22) from 0 to T gives us

IIPTzII 2 --IIPTwll 2 --IIPTvll2- IIPTrll2- x’(T)Xx(T)
(51) IIPTB2Xxll2- IIPTvII2- IIPTC2xll2- x’(T)Zx(T)

because x(0) 0. Consider once again the system over IT, ) and with initial state
x(T). Set w(t)’= B(t)X(t)OA_(B2B+BIB)X(t,T)x(T) for t e IT, ). Since the

system 2(t)= (A-(B2B-BB)X)(t)x(t) is exponentially stable, (I--PT)w e 2.
With this choice of w, the unique input that minimizes the cost J(u,w) II(I-
PT)Zll2- I1(I- PT)Wll 2 for this linear quadratic optimal control problem is given
by u(t) =--B(t)X(t)OA_(B2B+BB:)X(t,T)x(T) for t e [T,). Moreover, the
optimal cost is given by x’(T)X(T)xlT). This can be shown by noting that for any
(I- PT)W 2, the optimal u is obtained from the following two-point boundary
value problem:

t,

x(T) x(T), lim p(t) O,

u(t) Bp(t).

The above claim now follows by noting that p(t) -X(t)OA-(BB+BB)X (t, T)x(T)
solves the above two-point boundary value problem.

Thus for any admissible controller K, with u Ky and with w chosen as above,
we have

(52) II(S- Pr)zll -I1(1- Pr) ll >_ x’(T)X(T)x(T).

By adding together (51) and (52) and by defining w over T+ as, -D21(t)C2(t)x(t) + B(t)X(t)x(t) + D(t)v (t),
B(t)X(t)OA-(BB+B B’)X (t, T)x(T),

t<T,
t>_T,



1408 P.P. KHARGONEKAR, R. RAVI, AND K. M. NAGPAL

we get, for the system in (50),

(53) Ilzll- Ilwll >_ ]IPBXxI[- IIPrvll
(We note that this idea of splitting the input has been used in a similar context in

[13].) But with u Ky we have IITzwll < 1 or Ilzll 2 -Ilwll 2 < 0, for all w - 0. Hence
it follows from (53) that

(54) IIPB’Xzll -IIPvxll- IIPC.zll < 0 whenever Prvl =/: 0

for system (50). We will now show that (54) is a sufficient condition for the existence
of a solution to the second Riccati equation (17), which we reproduce here for ease of
reference as follows:

tmp(t) At,p(t)Yt,p(t) + Yt,p(t)A,p(t) Ytmp(t)(C(t)C.(t)
-X(t)B2(t)B(t)Xc(t))Ytmp(t) + Bl(t)B[(t), Ytmp(O) O.

Define the co-state p as follows’

(55) ib(t) -Amp(t)p(t) + (C;C2 XB2B2X)(t)x(t), p(O) Po.

If we set vl := D+/-B[p then from (50) and (55) we get

i5 -XBBX
x

()
Let the transition matrix of this system be given by

e(t, ) e(t,) ()

We will now show that Oxx(t, 0) is nonsingular for all t R+. Suppose, on the
contrary, that there is a time T and a vector p0 0 subject to p(T) (T, O)po O.
Choosing vx DzB[p as before, two cases arise: (1) PTVX 0 and (2) Prvx O.
The first case is taken care of easily because if Pfv 0 then Px 0, which
implies that (t) -Amp(t)p(t and p(r) 0 (see (6)). This clearly is impossible
in a homogeneous system with a nonzero initial condition; hence we are led to the
required contradiction. On the other hand, if Prvx 0 then we can differentiate the
product z’(t)p(t) along the trajectory of (56) and rearrange the resulting equation to
get

(8) e(’P) ’dt vxvx + CCx- xXBBXz.
Note that x(0) 0 and that p(T) 0; therefore by integrating (58) from 0 to T, we
get

(59) o I[PT;XI[ --IIPT[I --IIPTCI[,
which is a clear contradiction to (54). This proves that (1)11(t, 0) is nonsingular for all

We set Ytmp(t)"= O21(t, 0)O-d(t, 0) and a simple calculation shows us that Ytmp
satisfies the second Riccati equation (17). All that remains to be shown is that Yt,p
has the required properties; i.e., it is nonnegative definite, bounded, and stabilizing.
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Nonnegativity is proved by relating Ytmp to M, the solution to the following filter
Riccati equation"

(60)
fJ(t) Atmp(t)M(t) + M(t)Amp(t M(t)C(t)C2(t)M(t) + Bl(t)B(t), M(O) O.

It can be shown that (Atmp, C2) is detectable. This is sufficient to ensure that the
Riccati equation above has a nonnegative, bounded solution. Clearly, Ytmp(t) >_ M(t),
for all t E 7+ and because M(t) >_ 0 it follows that Ytmp is nonnegative.

Boundedness of Ytmp. Next we show that there is a number p < subject to
Ytmp(t)

_
pI, for all t E 7+. Note that for the entire discussion that follows we have

assumed that w(t) is chosen as in (49), i.e., to make PTY 0. Assume that x(T) is a
reachable state for system (50) at time t T. Then, from Lemma 2.3, we have

(61) inf (IIPTC2xll 2 + ]IPTVlll 2, x(O) O, x(T) x(T)) >_ llx(T)ll 2,

where > 0 is independent of T. Let T be any terminal time subject to Ytmp(T) : O.
Moreover, assume as before that the input to (50) is given by vl D+/-Bp, where p
satisfies the differential equation in (55). It is easy to see that the following hold up
tot=T:

(62) r(t) B (t)p(t) D2 (t)C2(t)x(t),
(63) x(t) Ytmp(t)p(t).

This means that x(T) is reachable at t T using this choice of v if and only if it is
in the range space of Yt,p(T). Calculate the derivative of the quantity x’ (t)p(t) along
the trajectory of (56), and integrate from 0 to T to get

(64) x’(T)p(T) -IIPTrll 2 -IIPTv[I 2.

From Lemma 2.2 it follows that with u Ky, ITII < 1 implies ITII < 1. 2 This
means that there exists e > 0 subject to

(65) IIPTvll -IIPTrll <_ --llPTr[I VlIPTrll # o.

Clearly, (64) and (65) imply that x’(T)p(T) e[[PTr[. Coupling this with (61), we
get

(66) x’ (T)p(T) >_ ex’ (T)x(T).

Setting x(T) :- Ae, where e is the eigenvector corresponding to the maximum eigen-
value of Ytmp(T) and A is a scaling factor, we can make x’(T)p(T) (1/IIYtmp(T)I])x’(T)x(T).
Now by defining 1/(e) we have from the above equation

(67) IIYtmp(t)ll

Stability of Armp Ytmp(Ct2C2 XB2Bt2X). Finally, we prove that Ytmp
is stabilizing. From (56) and (63) with v chosen as before (v D+/-Bp), we have

(68) [9(t) (-A,p + (CC2 XB2B2X)Yt,p)(t)p(t).

See the Appendix.
See the Appendix.
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Let the boundary condition for (68) be p(T) PT. Clearly, given any PT E n,
there exists an initial condition Po in (56) subject to p(T) PT. Now existence of an
admissible controller as in (65) implies

(69) [IPTvI[ 2 --[IPTrll <_ -eIIPTrll 2 <_ --e[IPTvll 2 VlIPTrl[ = O.

Noting that v(t) BXoox(t) BXoYtmpp(t) and r is given by (62), the above
equation becomes

(70) IlPTBXooYtmppII 2 <_ I(IIPTBpII2 + IIPTV2Ytmppll 2 -IIPTB2XooYtmppll2)

for system (68). Now, by setting t* -t, we get a time-reversed system for (68)
defined as follows:

(t*) (A;p (CC2 XB2BX)mp)(t*)p(t*), p(-T) PT,
(71)

v(t*) B(t*)Z(t*)mp(t*)p(t*),

where PT is arbitrary. A repetition of the ideas in the sufficiency part, suitably
dualized, shows that (t*) (Amp CC2mp)(t*)x(t*) is stable on n_. This
means that the system defined in (71) is detectable. Observe that for the reversed
time dual system given by (71), the equivalent of (69) and of (70) are

llvl [I-T,0] IIIIT,0] -11
(7e) < -11[-T,O]

and

(73)

[IBuXYtpPli_T,O]’ <_ _1 ([iB,pll_T,O + [iC2YtmpPl 21[-T,O] liBu’XYpPli_T,O])

respectively. Next consider the quantity p’(t*)Ytmp(t*)p(t*) and calculate its deriva-

tive along the trajectory of (71). Substituting for mp(t*) from (25) and integrating
the resulting expression from -T to 0, we get

(74) IIB,ll-,o] + IIC=,,ll_,o]- IIBX,ll_,o] p,(--T)pT.

Combining equations (67), (73), and (74) gives us

(75) I[-,0]

Noe tha u/e is independen of T. Equation (75) hen 8imply 8tae8 ha he output
of (71) i8 uniforml bounded with respec 0 8aring time8 and initial conditions. A8
he system i8 deecable, hi8 ranslae8 0 uniform bound on the 8ae of he system
itself. In other words, using the fct tha (Am -CC2) i8 exponeniMly sble
and ha system (71) can be equivalently written a8

(*) (A -(CCh)p(*)+ xBX)h)(*)v(*),
(t*) B(t*)x(*)(*)v(*),

we can easily derive bound , independen of T 8ubjec to

(76) Ilpll,0] llpll.
p(-T) PT,
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By appropriately dualizing the arguments found in the proof of Theorem 3 of [4,
p. 190], we can conclude from (76) that

D(t*) (Amp (C;C2 XB2B’2X)Ytmp)(t*)p(t*)

is stable on 7_ (the interested reader may also see [16]). Now we are done, as it
follows that the dual of this system, defined, as usual, as

[9*(t) (At,p t,p(C2C2 XB2B2X))(t)p*(t)

is also exponentially stable, rl

Appendix. In this Appendix we establish two important facts that we have used
in the latter half of the necessity part of the proof but have not yet proved. Recall
that in the first half of the necessity part we proved that the existence of an admissible
controller implies that there is a bounded stabilizing solution Xo to the first Riccati
equation. Given such an Xc we show, first, that the closed-loop operator Tvr is stable
and IITvrll < 1, and second, that (Atmp, 62) is detectable. To begin with, note that

W

P

atmp

u

FIG. 4. An equivalent representation.

Fig. 1 can be redrawn as Fig. 4, where P is as defined in (20) and Gtmp is defined as
follows:

(77) v(t)
Atmp(t)Xtmp(t)+ Bl(t)r(t)+ B2(t)u(t),
B(t)X(t)Xtmp(t) + u(t),
C2(t)xt,p(t)+ D21 (t)r(t).

Because K stabilizes the closed loop it can be shown that the modified system in
Fig. 4 is also exponentially stable. The main idea is as follows. Let us denote by
Tw the closed-loop combination of Gtmp and K. Then, given any admissible linear
controller K with a stabilizable and detectable realization, it is routine to verify that
the realization for Tw is also stabilizable and detectable. Similarly, the feedback
connection of P and T is verified to be stabilizable from w and detectable from z.
Because Tz is input-output stable and the corresponding realization is stabilizable
and detectable, it follows that Tz is (internally) exponentially stable as well.

Next, a direct calculation shows that P21 is stably invertible. Now it is clear that
P and T satisfy all the assumptions of Lemma 2.2 (with Tr replacing Q). It follows
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that, as the closed loop is exponentially stable and ITzwll < 1, the system Tvr is
stable and, .furthermore, that ITvrll < 1. This establishes the first part.

For the second part note that because Tvr is internally exponentially stable, it
follows that the system Gtmp is exponentially stabilized by K. It immediately follows
that the realization given in (77) is stabilizable from u and detectable from y. In
particular, (Atmp, C2) is detectable.
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VELOCITY METHOD AND LAGRANGIAN FORMULATION
FOR THE COMPUTATION OF THE SHAPE HESSIAN*

MICHEL C. DELFOUR AND JEAN-PAUL ZOLtSIO*

Abstract. The object of this paper is to study the shape Hessian of a shape functional by
the velocity (speed) method. It contains a review and an extension of the velocity method and its
connections with methods using first- or second-order perturbations of the identity. The key point
is that all these methods yield the same shape gradient but different and unequal shape Hessian
since each method depends on a choice of "connection." However, for autonomous velocity fields
the velocity method yields a canonical bilinear Hessian. Expressions obtained by other methods
can be recovered by adding to that canonical term the shape gradient acting on the acceleration of
the velocity field associated with the choice of perturbation of the identity. The second part of the
paper is an application of the Lagrangian method with function space embedding to compute the
shape gradient and Hessian of a simple cost function associated with the nonhomogeneous Dirichlet
problem.

Key words, shape optimization, velocity method, Hessian, second-order derivatives

AMS(MOS) subject classifications. 49A22

1. Introduction. The object of this paper is to study the shape Hessian by the
velocity (speed) method (cf. C(a [1]-[3] and Zolsio [1], [2]) and to apply the Lagrangian
method with function space embedding to compute the shape gradient and Hessian of
a simple cost function associated with the nonhomogeneous Dirichlet problem. To
do this we introduce a general method that applies to differentiable semiconvex cost
functionals with applications to more general problems than the simple illustrative
example we have chosen to consider. We emphasize the use of the function space
embedding method (cf. Delfour and Zolsio [1]-[4], [7]) combined with the implicit use
of Lagrange multipliers. This paper complements our previous work, where we have
used a variational formulation and function space parametrization for the Neumann
problem (cf. Zoldsio and Delfour [8]).

In shape sensitivity analysis the size of the computations can quickly become quite
large. Therefore, it is extremely important to know and understand the fundamental
structure of the shape gradient and the shape hessian to simplify the computations
and obtain mathematically meaningful expressions. For this reason we systematically
revise and update the velocity (speed) method and then present new results for the
second-order shape derivative. In the process we show how to associate with methods
of perturbation of the identity (first and second order) an appropriate nonautonomous
family of velocity fields. For the shape gradient, the different methods yield expres-
sions that may look different but are all equal. However, this is no longer true for the
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shape Hessian. In fact, we will show in 2.4 that different perturbations of the iden-
tity can yield different final expressions that are not equal. The potentially confusing
consequence of this fact is that we can introduce an infinity of definitions based on per-
turbations of the identity. However, we will show that they always contain a canonical
bilinear term plus the shape gradient of the functional acting in the direction of an
acceleration field, which is characteristic of the chosen perturbation. The canonical
bilinear term exactly coincides with the second-order shape derivative obtained by the
velocity (speed) method for autonomous velocity fields. Each expression arising from
a perturbation of the identity can be strictly recovered by adding to the canonical
term the shape gradient acting in the direction of an appropriate acceleration field.
Therefore, we propose to refer to this canonical term as the shape Hessian.

The above considerations clarify the fundamental concepts and reduce their com-
plexity, but they do not eliminate all the associated computations. We need methods
that provide both quick formal computations and appropriate mathematical justi-
fications. We use Lagrangian methods combined with the use of theorems on the
derivative of a MinMax with respect to a parameter. Such methods are well known
and extensively used in mechanical sciences, mathematical programming, and opti-
mal control theory. Their application to shape sensitivity analysis is not completely
straightforward since it leads to the time-dependence of the underlying function spaces
appearing in the MinMax formulation. This phenomenon seems to be specific to that
class of problems. Two techniques are available to get around this difficulty: the func-
tion space parametrization and the function space embedding methods. The first one
has been used in Delfour and Zolsio [8], [9], the second one will be used here.

It is fair to say that the use of shape Hessians for discretized finite element models
and finitely parametrized shapes have been used in many places in the engineering and
mechanics literature. Some numerical expertise is available (el., for instance, Bern [1],
Bern, Chenot, Demay, and Zolsio [1]) and it is suspected that the really performing
algorithms are not available in the open literature since they are marketable industrial
products.

A few papers have dealt with the second variation of a shape cost function for
linear partial differential equations models. To our knowledge, the first one by Fujii [1]
used a second-order perturbation of the identity along the normal to the boundary for
second-order linear elliptic problems. An extremely interesting paper by Arumugan
and Pironneau [1], [2] used the shape second variation to solve the "ribblet problem."
Finally, Simon [1] presented a computation of the second variation using a first-order
perturbation of the identity. The first general approach to the computation of shape
Hessians can be found in Delfour and Zolsio [8], [9]. It uses the velocity (speed)
method and includes a simple illustrative example for the Neumann problem.

In conclusion, we would like to insist that the velocity method, and methods using
first- and second-order perturbations of the identity lead to three different second-order
shape derivatives that are not equal. The velocity method with autonomous velocity
fields provides the canonical bilinear shape Hessian and all the other derivatives can
be recovered by special choices of nonautonomous velocity fields.

2. Shape derivative: definitions and properties. In this section we recall
and extend the definitions of a shape gradient and a shape Hessian based on the
velocity method (cf. Zolsio [1], [2], Delfour and Zolsio [8], [9]) and discuss their
relationship to various methods based on perturbations of the identity operator. The
proof of each theorem is given in the Appendix.
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2.1. Velocity (speed) method and perturbations of the identity opera-
tor. Let V [0, -] RN RN be a given velocity field for some fixed T > 0. The map
V can be viewed as a family {V(t)} of nonautonomous velocity fields on RN defined
by

(1) x - V(t)(x) de__f V(t,x) N N.

Assume that
e , v(.,) e c0([0,];),

(v) c > 0, Vx, e , IIV(., ) v(.,x)llco(io,l;) < cl 1,
where V(.,x) denotes the function t V(t,x). Associate with V the solution x(t;X)
of the ordinary differential equation

dx
(2) d--(t) V(t,x(t)), t e [0,7], x(0) X e Y

and introduce the family of homeomorphisms

(3) X Tt(Y)(X) de__f X(t, X)" N
__
RN

and the maps

(4) (t,X) Tv(t,X) dej Tt(Y)(X) [O, T] X N N,

() (t,x) T(t,x) ej T_(V)(x), [0, ] n - n.
By definition To(X) X and To I. Moreover, Tt is an evolution operator that
verifies the usual semigroup property.

Note 2.1. In the sequel we will drop the V in Ty(t,X) and Tt(V) whenever no
confusion is possible.

THEOREM 2.1. (i) Under assumptions (V) on the map V, the maps T defined by
(3) and (4) have the following properties:

(T1)

(T2)

(T3)

vx e n, T(., X) e C([0, ]; n),
? > 0, VX, y e a, liT(., Y)- T(., x)llc(i0,,l;) < lY

Vt e [0, -], X Tt(X) T(t,X) N __, N is bijective,

Vx e , T-(.,x) e C0([0,];n)
c > 0, Vx, y e y, IlT-(.,y) T-(’,x)llco([o,];) cly-

(ii) /f there exists a real number T > 0 and a map T: [0, ] g Y verifying
assumptions (T1), (T2), and (T3), then the map

OT
(t, T N g(6) (t,x) V(t,x)= (x))’[0, v]

verifies assumptions (V), where T is the inverse of X Tt(X).
This first theorem is an equivMence result. It says that we can either start from

a family of velocity fields {Y(t)} on g or a family of transformations {Tt} of N
provided that the map V, V(t, x) Y(t)(x), verifies (V) or the map T, T(t, X) Tt(X)
verifies assumptions (T1), (W2), and (W3).
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When we start from V, we obtain the velocity method. Given an initial domain
ft, the family of homeomorphisms Tt(V) defines family of transformed domains

(7) T(V)() {T(V)(X) X e }.
In examples where we start from T, it is usually possible to verify hypotheses (T1),(T2),
and (T3) and construct the corresponding velocity field V defined in (6). For instance,
perturbations of the identity to the first- or second-order fall in that category:

t2
(8) T(t, X) X + tU(X) + A(X) (A 0 for the first order), t _> 0, X e N,

where U and A are given transformations of Rg. It turns out that, for Lipschitz
transformations U and A, we can construct a - > 0 for which hypotheses (T1), (T2),
and (T3) are verified.

THEOREM 2.2. Let U and A be two uniform Lipschitz transformations of RY:
>0, VX, YeN, [U(Y)-U(X)I_<elY-XI, IA(Y)-A(X)I_<elY-XI.

(i) T (8).

(9) (t,x) V(t,x) U(T[-I(x))+ tA(T-(x)): [0, -] RN RN,
on [0, -] verifies assumptions (V).

Remark 2.1. This theorem only says that for Lipschitzian fields U and A there
exists a - > 0, possibly very small, such that (Tt(X) for all t [0, 7-]} is solution
of the differential equation (2) for V given by (9). This is all we need to define a
shape derivative and this is the general approach followed in the various papers using
perturbations of the identity operator. So we do not need to restrict our hypotheses to
autonomous linear and nilpotent U’s and A’s. Higher-order perturbations of the iden-
tity operator can be considered, and Theorem 2.2 will still apply for some sufficiently
small 7- > 0. However, they are not necessary for first- and second-order derivatives.

Remark 2.2. Observe that from (8) and (9)

(10) V(0) U, (0)(x) def OV (t,x)lt= A- [DU]U,

where DU is the Jacobian matrix of U. The transformation (0) of N is an acceler-
ation field at t 0, which will always be present even when A 0.

2.2. Shape gradient. In general a, shape functional will be a map

(11) ft J(f/): Jt C p(RN)

defined on a subset A of the set p(RN) of all subsets of RN. Under the action of a
velocity V verifying assumptions (V), the domain is transformed into a new domain
(V) T(V)().

DEFINITION 2.1. Given a velocity field V verifying assumptions (V), J is said to
have an Eulerian semiderivative at Ft in the direction V if the following limit exists
and is finite:

(12) lim[J(gtt(Y))- g()]/t.
t\o

Whenever it exists, it is denoted by dJ(ft; V).
Remark 2.3. This is the original terminology introduced by C6a [1],[2] and Zol6sio

[1] in 1979. It is now widely recognized and used in all papers based on the velocity
(speed) method.
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This definition is quite general and covers situations where dY(; V) is a function
of the whole family of velocity fields {V(t) t E [0, -]}. However, in most applications
dJ(; V) will only depend on V(0), the velocity field at t 0. This is a very important
property since dJ(; V) can then be obtained by using the autonomous vector field
W,

w(t,x) v(o, x) Vx Vt > O,

instead of the nonautonomous field V. It is customary to use the notation dJ(; V(0))
for the Eulerian semiderivative computed for the autonomous field W and we make
the identification W- V(0).

It turns out that the very important property dJ(; V) dJ(; V(0)) can be
obtained under a simple continuity hypothesis on the map V dJ(; V). This, of
course, requires the introduction of a special topology on the space of velocity fields V.
To be more precise, we introduce some notation. For any integers k 0 and m 0,
and.any compact subset K of Y

where k(K,g) is the space of all k-times continuously differentiable maps from
RN to RN with compact support in K and

(14) - {V" [0, v] x NN NN. V verifies assumption (V)}.

When k we drop the superscript and simply write (K,NN) instead of
(K, NN). With the above definitions, we introduce the following new space:

m,k de, }Yg FK compact in N
K

where lim denotes the inductive limit endowed with its natural inductive limit topol-

ogy. This is not a chet space. For autonomous fields, the above constructions
reduce to

(16) ")k "Dk(N, N) [") Lip(N, N),

where Lip (N, N) denotes the space of transformations of N that are uniformly
Lipschitzian. Again, we will use the notation /(N,N) for )c(N,g). In all
cases., assumptions (V) will be verified.

THEOREM 2.3. Let t be a domain in N and m :> 0 and k >_ 0 be integers.

Assume that for all V in Y m,k, dJ(; V) exists and that the map

--,m,k
(17) V dJ(; V) )2

is continuous. Then

(18)
.-m,k

VV e Y dJ(; V) dJ(t; V(O)).

In the above analysis we have chosen to follow the classical framework of the
theory of distributions (cf. Schwartz [1]) and perturb the domain gt by velocity fields
V with compact support. This means that we simultaneously deal with bounded and
unbounded domains ’s. Theorem 2.3 is a generalization of the earlier result of Zolsio
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DEFINITION 2.2. Let gt be a domain in [N

(i) The shape functional J is said to be shape differentiable at if the
Eulerian semiderivative dJ(; V) exists for all V in T(RN, RN) and the
map

(19) V dJ(t; V)" T(N, Y)

is linear and continuous.
(ii) The map (19) defines a vector distribution G(t), which will be called

the shape gradient of J at Ft.
(iii) If there exists a finite k >_ 0 such that G() is continuous for the

T)k(N, N)-topology, we say that G(gt) is of finite order qk.

The next theorem gives additional properties of shape differentiable functionals.
THEOREM 2.4 (Generalized Hadamard’s structure theorem). Let be an open

domain in N with boundary F and assume that J is shape differentiable.
(i) The support of G(t) is contained in F. Moreover, when the support of

 o npa t
(ii) If G(t) is of finite order k >_ 0 and is an open domain in N

with boundary F in C+, then there exists a scalar distribution g()
in :Dk(F) such that

(20) dg(; V) -< g(), "rV n >(r),

where /rV is the trace of V on F, n is the unit outward normal to on
F, and V n denotes the scalar product of V and n in RY.

The name of the theorem comes from the famous prized paper by Hadamard [1],
written in 1907, where he used velocity fields along the normal to the boundary F of
a C domain to compute the derivative of the first eigenvalue of the plate. Theorem
2.4 was proved by Zolsio [1] in 1979. A new proof using Nagumo’s [1] theorem is
given in the Appendix.

Remark 2.4. When F is compact, Tk(F) coincides with C(F).

2.3. Shape Hessian. We first study the second-order Eulerian semiderivative
d2g(Ft; V; W) of a functional J(gt) for two nonautonomous vector fields Y and W.
A first theorem shows that under some natural continuity hypotheses, d2J(gt; V; W)
is the sum of two terms: a "canonical term d2J(t; Y(0); W(0))" plus the first-order

Eulerian semiderivative dJ(; (0)) at in the direction (0) of the time-partial
derivative OtV(t,x) at t 0 of the velocity field V(t).

As for first-order Eulerian semiderivatives, this first theorem reduces the study
of second-order Eulerian semiderivatives to the autonomous case. So in 2.3.2 we will
specialize to autonomous fields V and W in k(Y,g) and give the equivalent of
Hadamard’s structure theorem for the canonical term.

2.3.1. Nonautonomous case. The basic framework introduced in 2.1 and
2.2 has reduced the computation of the Eulerian semiderivative of J(gt) to the com-
putation of the derivative

(21) j’(0) dJ(; V(0))

of the function

(22) j(t)- J(gtt(V)).
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For t >_ O, we naturally obtain

(23) j’(t) dJ(at(V); V(t)).
This suggests the following definition.

DEFINITION 2.3. Let V and W belong to and assume that for all t E [0,-],
dJ(tt(W); V(t)) exists at t(W) Tt(W)() in the direction V(t). The functional
J is said to have a second-order Eulerian semiderivative at in the directions (V, W)
if the following limit exists:

(24) lim [dJ(2t(W); V(t)) dJ(f; V(O))]/t.
t\o

Whenever it exists, it is denoted by d2J(ft; V; W).
In this definition, the domain El is transformed into the domain fit(W) under the

action of the velocity field W. The vector function V appears in the expressions of
dJ(2t(W); V(t)) and dJ(2; Y(0)), but does not contribute to the deformation of f.

Remark 2.5. This last definition is compatible with the second-order expansion
of j(t) with respect to t around t 0:

(25)

where

(26)
Remark 2.6.

t2
j,,j(t) - j(O) + tj,(O) + - (0),

j"(O) =d2j(a;V;V).

It is easy to construct simple examples with autonomous fields V
and W showing that d2g(gt; V; W) d2J(ft; W; V) (el. Delfour and Zolsio [8]).

The next theorem is the analogue of Theorem 2.3 and provides the canonical
structure of the second-order Eulerian semiderivative.

THEOREM 2.5. Let t be a domain in RN and rn >_ 0 and >_ 0 be integers.
Assume that

(i) VV E Fro+l,, VW E 12-,, dJ(ft; V; W) exists;

(ii) VW e ]2m,t, Vt e [0, ’], J has a shape gradient at fit(W) of order ;
(iii) VU , the map

rn,i
(27) W d2 J(ft; U; W)" Y 1

is continuous. Then for all V in Fm+l,t and all Win 12m,t

(28) d2g(ft; V; W) d2J(ft; Y(0); W(0)) + dJ(ft; l(0)),
where

(29) l(0)(x) lim[V(t, x) V(O, x)l/t.
t\0

2.3.2. Autonomous case.
DEFINITION 2.4. Let be a domain in RN.
(i) The functional J(t) is said to be shape differentiable at gt if

(30) VV, VW in Z)(NN, Ng), d.j(fl; V; W)
exist and the map

(31) (V, W) d2g(gt; V; W): 79(NN, NN) x Z)(NN, RN) __, N
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is bilinear and continuous. We denote by h the bilinear and continuous map (31).
(ii) Denote by H(gt) the continuous linear map on the tensor product 7:)(N, N)(R)

/)(N, N), associated with h:

(32) d2J(; V; W) (H(t), Y (R) W) h(V, W),
where V (R) W is the tensor product of V and W defined as

(33) (Y (R) W)ij(x,y) (x)Wj(y), 1 <_ i, j <_ N,
and Y(x) (respectively, Wj(y)) is the ith (respectively jth) component of the vector
V(respectively W) (cf. Schwartz’s [2] kernel theorem and Gelfand and Vilenkin [1]).
H(gt) will be called the shape Hessian of J at t.

(iii) When there exists a finite integer 1 _> 0 such that H(gt) is continuous on
)(RN, RN) (R) )(RN, RN), we say that H(gt) is of finite order l.

THEOREM 2.6. Let be an open domain in N with boundary F and assume
that J is twice shape differentiable at .

(i) H() (that is, h) has support in F x F. Moreover, when the support of H(gt)
is compact the order of H() is finite.

(ii) /f H(Ft) is of finite order l, l >_ O, and t is an open domain with boundary
F in Ct+l, then there exists a continuous linear map h() on the tensor product
7)(F, RN) (R)/)t(F) such that

(34) d2J(); V; W) (h(gt), (’rV) (R) ((’rW) n)),
where /rY is the trace of Y on F; (/rY)(R)((rW).n) is defined as the tensor product

(35) ((rY)(R)(’rW).n))(x,y) (r1/4)(x)((’rW).n)(y), x,y e F, 1 <_ <_ N;
(x) is the ith component of V(x); and

e r.
Remark 2.7. Finally, under the assumptions of Theorems 2.5 and 2.6,

(37) d2J(; V; W) (h(gt), (’rY(0)) (R) ((’rW(0)) n)) + (g(gt), (/rY(0)) n>
for all V in ;m+l,t and W in V’,t.

2.4. Comparison with methods of perturbation of the identity. At this
juncture it is instructive to compare first- and second-order Eulerian semiderivatives
obtained by the velocity (speed) method with those obtained by first- and second-
order perturbations of the identity, that is, when the transformations Tt are specified
a priori by

t2
(38) Tt(X) X + tV(X) + -A(X), X e RN,

where U and A are transformations of g verifying the hypotheses of Theorem 2.2.
The transformation Tt in (38) is a second-order perturbation when A 0 and a
first-order perturbation when A 0.

According to Theorem 2.2, first- and second-order Eulerian semiderivatives asso-
ciated with (38) can be equivalently obtained by applying the velocity (speed) method
to the nonautonomous velocity fields VUA given by (9). So when J verifies the hy-
potheses of Theorem 2.4,

(39) dJ(2; VUA) dJ(; VuA(O)) dJ(; U),
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where we have used the first part of Remark 2.2, which says that

(40) VUA (0) U and VUA (0) A [DU]U.
Similarly, if VWB is another velocity field corresponding to

t2
(41) Tt(X) X + tW(X) + B(X), X E Y,

where W and B verify the condition of Theorem 2.2, then when J verifies the assump-
tions of Theorem 2.6,

(42) d2J(; VUA; Yws) d2J(; VuA(O); VwB(O)) + dg(; VuA(O))
and

(43) d2J(; VUA; VwB) d2J(fl; U; W) + dJ(; A [DU]U).
Expressions (39) and (43) are to be compared with the following expressions obtained
by the velocity (speed) method for the two autonomous vector fields U and W:

(44) dJ(f;U) and d2J(;U;W).
For the shape gradient the two expressions coincide; for the shape hessian we recognize
the bilinear term in (43) and (44) but the two expressions differ by the term

(45) dJ(gl; A [DU]U).
Even for a first-order perturbation (A 0), we have a quadratic term in U.

This situation is analogous to the classical problem of defining second-order
derivatives on a manifold. The term (45) would correspond to the connection while
the bilinear term d2J(; V; W) would be the candidate for the canonical second-order
shape derivative. In this context, we will refer to the corresponding distribution H()
as the canonical shape Hessian. All other second-order shape derivatives are obtained
from H() by adding the gradient term g() acting as the appropriate acceleration
field (connection).

Remark 2.8. The method of perturbation of the identity can be made more
canonical by using the following family of transformations:

2
T(X) X + tU(X) + -(A + [DU]U),(46)

which yields

(47) dJ(;U)
for the gradient and

(48) d2J(2; U; W) / dJ(; A)
for the Hessian, where for a first-order perturbation (A 0), the second term disap-
pears.

Remark 2.9. Denote by At+l the set of all open domains /in g with a boundary
F that is Ct+l, / _> 0. Assume that there exists a domain * in At+ that minimizes a
given domain functional J() over all in At+. Then if J is twice shape differentiable
for all in At+, * verifies the following necessary conditions:

(49) dJ(*; V) 0 VV e :/)(N, g),

(5o) d2J(*; W; W) _> 0 VW )(N, N).
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Obviously, necessary conditions are not, in general, sufficient conditions. This fact
is well known in optimization problems over vector spaces. For shapes the situation
is even more delicate since a space of domains is not a vector space, and traditional
concepts such as convexity are more difficult to formalize and use. We also know that,
always in general, optimal domains are not necessarily smooth. Microstructures or
domains with fractal boundaries naturally occur as in the optimization of the thickness
of a plate (cf. Cheng and Olhoff [1]). This type of phenomenon is similar to the one
encountered in chattering control.

3. A saddle point formulation of the Dirichlet problem. Let be a
bounded open domain in Y with a sufficiently smooth boundary F. Let f and g
be two fixed functions in H1/2+e(RN) and H2+e(N), respectively, for some arbitrary
small e > 0. Consider the solution y in H2(gt) to the nonhomogeneous Dirichlet
boundary value problem:

(1) -Ay=f ingt, y=g onF.

Our objective is to transform this problem into finding the saddle point of a vol-
ume Lagrangian functional. This technique can be applied to other boundary value
problems with Dirichlet conditions.

Note that y is also the solution of the weak equation

(2) + + 0

2 F

for all in H2() and # in H1/2(F), since the corresponding continuous convex-
concave functional

F

has a unique saddle point (, , ft), which is completely characterized by the equations

(4)

(5) /-g=O inr,

where the last equation yields

(7) A=0 in gt, =0 on F, and ft= 00-- onF.

The proof of this can be found in Ekeland and Temam [1, Prop. 1.6]. Of course, this
implies that the saddle point is unique and given by

(s) ($, 0, 0).

The purpose of the above computation was to characterize the multiplier ft

(9) ft= nn onF,
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to rewrite the previous functional as a function of two variables instead of three:

(10) L(, ) (A -F f) dx / ( g)nn dF,
2 F

for (, ) in H2() x H2(). It is also advantageous for shape problems to get rid of
boundary integrals whenever it is possible. So noting that

(11) (- 9) dr div[( 9)V] d,
p

we finally use the functional

() (,) =/{( + I) + ( )e +( ) }a

on H(a)xH(a). It is readily seen that it has a unique saddle point (, ) in H(a)x
H(), which is completely characterized by the following saddle point equations:

(13) A/f=O in, =g on F, A--0 in, =0 onF.

4. Shape gradient for the Dirichlet problem.

4.1. Formulation and formal computations. Consider the cost function

1/(1) J(a) ly(2) ydl 2 dx

associated with the solution y y() of the Dirichlet problem (3.1) and the given
function Yd in H1/2+e(RN) for some arbitrary fixed e > 0.

As in 3, we reformulate this problem as the saddle point of a functional by
introducing the Lagrangian

(2) G(, ,)= fl yd, 2 dx - f((A + f) / ( g)A + V( g) . V} dx

on g2() g2(). It is readily seen that G(,., .) has a unique saddle point (, ),
which is completely characterized by the following saddle point equations:

(3) A+f=0 in, =g onr,

(4) V E H2().

The last equation is equivalent to

F
or

() + ( ) 0 i a, 0 o r,
by using the theorem on the surjectivity of the trace. In the folllowing, we will use
the notation (y,p) for the saddle point (, ). As a result, we have

(7) g() Min Max G(, , 0).
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We will now use the above Lagrangian formulation combined with the velocity
method (cf. Ca [1]-[3]; Zolsio [1], [2], Delfour and Zolsio [1]-[4], [7]-[9]) to compute
the shape gradient of J(t). Recall that the domain gt is perturbed by a velocity vector
field V that induces a family of homeomorphisms (cf. 2.1)

(S) T, RN RY, Tt(X) x(t),
which transforms the domain fl into the new domains

(9) gtt Tt(gt), t e [0, T].
The Shape semiderivative is defined as (cf. 2.2)

(10) dJ(; V) lim[J(gtt) J(t)]/t
t\0

whenever the limit exists. For t in [0, -]
(11) J(gtt) Min Max G(t,,)

and the technical difficulty arises from the time dependence of the underlying function
spaces. There are two methods to get around the time dependence in the underlying
function spaces (cf. Delfour and Zol4sio [1], [2])"

the function space parametrization and
the function space embedding.

In the first case, we parametrize the functions in g2(gt) by elements of g2(gt)
through the transformation

(12) o Tt-1 g2() g2(gtt),

where "o" denotes the composition of the two maps and we introduce the parametrized
Lagrangian,

(13) ((t, , ) G(T,(t), o T[-, o T-)
on H2 (Ft) g2 (Ft). In the function space embedding method, we introduce a large
enough fixed domain, D which contains all the transformations {tt 0 _< t <_ -} of t.

In this paper, we will use the function space embedding method with D N

(14) g(Ftt) Min Max G(Ftt, , ).
eeH() VeH(n)

Capital letters will be used for the functions on NN and lowercase letters for the
functions on or gtt. As could be expected, the price to pay for the use of this
method is that the set of saddle points

(15) S(t) X(t) Y(t) C H2(N) H2(N)
is not a singleton anymore since

(16) x(t) { e H2(Y) 1, yt},

(17) Y(t) { e H2(RN)" la Pt},
where (yt,pt) is the unique solution in H2(gtt) x H2(t) to the previous saddle point
equations on gtt

(18) Ayt+f=O in gtt, yt=g onFt,

(19) Apt + (yt Yd) 0 in gtt, Pt 0 on Ft.
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We are now ready to apply the theorem of Correa and Seeger [1], which says that
under appropriate hypotheses (to be checked in the next section)

(20) dJ(; V) Min Max OtG(ft, (, 2).
x(0) Y(0)

Since we have already characterized X(0) and Y(0), we only need to compute the
partial derivative of
(,)

O(ft, O, ) - Yd + + f) + (O )A+V(O-g).V dx.

If we assume that ft is sufficiently smooth, then

(22) f, Yd

and we can choose to consider our saddle points S(t) in H5/2+([N) x H5/2+(RN)
rather than H2([N) x H2(N). If and belong to H5/2+e([N), then

(23)
o(, ,)
/1{( ) +( +) + ( )+ v( ) v}v dry.

Pt

This expression is an integral over the boundary F, which will not depend on
and outside of Ft. As a result the Min and the Max can be dropped in expression
(20), which reduces to
(24)

/{idJ(f; V) -(y yd) 2 q- (Ay + f)p + (y g)Ap + v(y g) vp V n dP.

F

But
0p

(25) p=0 and y-g=0 = vp=nn n, v(y-g)=n(y-g)n on F

and finally

/{i(26) dJ(f; V) -(g
F

Ye)= + -n (y -g)-n V n dr.

4.2. Verification of the hypotheses. As we have seen, the computation of
the shape gradient is both quick and easy. We now turn to the step-by-step verification
of the hypotheses of the underlying theorem. Many of the constructions given below
are "canonical" and can be repeated for different problems in different contexts.

THEOREM 4.1 (Correa and Seeger [1]). Let r > 0, the sets X and Y, and the
functional L [0, r]x X x Y - be given. Denote by

(27) s(t) x(t) x (t) c x x

the set of saddle points of the functional L(t,. .) on X Y. Assume that

(H1) Vte[0, r], S(t)

and that
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OL(,, ) o, [0, -].
Moreover, assume that there exist topologies Tx on X and Ty on Y such that for all
sequences tn -* 0 as n - cx, 0 <_ tn <_ T, there exist (xo, Yo) E S(O) and a subsequence
of {tn}, still denoted {tn}, such that

(H3) Vn, 2(xn, yn) E S(tn) and (xn, yn) (xo, Yo) in Tx x Ty as n oc,

(H4) Vy in Y(0)2 liminf OtL(t, xn, y) >_ OtL(O, xo, y)
t\o

(resp. Vx X(O), limsup OtL(t,x, yn) <_ OtL(O,x, yo)).
\o

n....-oG

Then the function
g(t) Min Max L(t,x, y)

xEX yEY

on [0, -] has a semiderivative at t 0 given by

dg(O) lim[g(t) g(O)]/t
t\o

Inf Sup OtL(O, x, y) Sup Inf
xX(O) yY(O) yeY(O) xeX(O)

Let Yd and f HI(RN) and g H5/2(N) so that

X Y H3(RN).(28)
The saddle points S(t) X(t) Y(t) are given by

(0) X(t) { e X I },

OtL(O, x, y).

of yt and pt, respectively. Hence,

(30) Y(t) { e Y" Iat pt}.

The sets X(t) and Y(t) are not empty since it is always possible to construct a con-
tinuous linear extension

(31) IIm Hm(t) - Hm(RN)
for each m >_ 1. For instance, with m 1 and a boundary F, which is W,, see
Agmon, Douglis, and iirenberg [1], [2] and, for m > 1, see Babid [1] (f. also ieSas
[1]). Using this Hm, we then define the following extension:

(ae) . U(n) U(a),

(33) H() [Hm( o T)] o TF.
In the following, m is fixed and equal to 3, so we will drop the superscript m and

define the extensions

(34) Hy, P Hp
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(35) Yt X(t) and P, Y(t) = S(t) .
So condition (H1) is verified. Condition (H2) follows from the hypotheses on f, Yd,
and g. To check conditions (H3) and (H4), we need two general theorems that can be
used in various contexts and problems.

THEOREM 4.2. For V E l(g, N) and L2(N),

(36) lim q o Tt and lim q o T-1 q inn2(Y).
t\o \o

Proof. (i) The space /(N) of infinitely continuously differentiable functions
with compact support in N is dense in L2(N). So given e > 0, there exists in
T(IN)such that

[[q- q)[[ < e2/max {Jr-1" 0 < t _< T}.
Hence,

(3)

But

So the last two terms in (37) are less than 2. It remains to evaluate the first term
for a fixed function with compact support K in Y. Recall that, since 0 on
the boundary OK of K, Tt(K) g for all t in [0, T] (use Nagumo’s [1] theorem twice
as in the proof of Theorem 2.4(i)). Moreover, by compactness of K, is uniformly
continuous on Y and

> 0, Vx, y e g, I- yl < I(y)- O(x)l < elm(K) /2.

Tt is also uniformly continuous on K and

> 0, Vt, O t < , Vx K, ITx-x1<5.
By construction

and

Finally,

supp (qe o T,) T, (supp Be) C K

and q,oT,=0 outside of K.

dx =/I(T,x) (x)l dx e2<
N K

and this implies that

w > 0, 3 > 0, vt, 0 t 5 n, IIO o Tt -OliL(a) 5 3.

(ii) For the second part of (36) we make a change of variable and use the result
of part (i)

N

This completes the proof of Theorem 4.2.
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COROLLARY. Under the assumptions of Theorem 4.2 for m >_ 1, V in )m(N, N),
and E Hm(RN),

(38) lim(I) oT-(I) and lim(I) oTt-l-(I) in Hm(RN).
t\0 t\0

Remark 4.1. In fact, for m _> 1 and V l)m(RN, RN) the transformation

(39) S(t)O d2 o Tt, Vff2 6 Hm(g), Vt, 0 <_ t <_ T,

defines a strongly continuous semigroup of class Co on Hm(N) with infinitesimal
generator

A( V(. V, :D(A) { H’(N) V@. V H’(ON)}.
THEOREM 4.3. Under the assumptions of Theorem 4.2,

(40) yt yO in Hm strong (respectively, weak)
implies that

Yt - Yo in Hm(RN) strong (respectively, weak).
Proof. The strong case is obvious. We prove the weak case for m 0. By

definition,
Yt (IIy) o Tt-

and for all (I) in L2(N), we consider

J Yt dx J (Hy) o T- dx fHy o T J dx.

RN RN N

We have shown in Theorem 4.2 that

(I) o T (I) in L2(RN) strong

In addition, J 1 and by linearity and continuity of H

Hy IIy in L2(N) -weak.

Hence,

This proves the weak convergence.
To verify condition (H3), we transform (y,p) on 2 to (y,p) (y o T,p o T)

on Ft. The pair (y,p) is the transported pair of solutions from gt to t. It is the
unique solution in g () x g (Ft) of the system

(41) -div[A(t)y]-J foT in , y---goT on F,

(42) -div[A(t)vp] J(y-ydoT) in gt, p =0 on F,

where

(43) A(t) Jt(DTt)-*(DTt)-, Jt IdetDTtl,
DTt is the Jacobian matrix of Tt and (DTt)-* is the transposed form of (DTt)-.

For sufficiently smooth domains gt and vector fields V, the pair {yt, pt } is bounded
in H() H(t) as t goes to zero. Since HI() is a Hilbert space, we can extract
weakly convergent subsequences to some (,) in H(gt) H(). However, by lin-
earity of the equation with respect to (yt,pt) and continuity of the coefficients with
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respect to t, the limit point (,/) will coincide with (y0,p0), since the system has a
unique solution at t 0. Then we go back to the equation for yt and y and show that
the convergence is strong in Hl(t). Finally, by using the regularity of the data and
the classical regularity theorems we show that (yt,pt) ._ (y,p) in H3(t) H3(t).

For the verification of condition (H4), we go back to expression (3.23), which can
be rewritten as a volume integral

&G(, , )
/ {[1(44) div (g2 yd) 2 + (A + f) + ( g)Aq2 + V( g) V V dx

for (, ) Ha(N) x Ha(N). Now introduce the map

(,)+F(,)= [( yd)? + (A + f) + ( g)A + V( g) .
H3(RN) H3(RN) - (HI(N))N.

It is bilinear and continuous. Finally, the map

(t,F)/FontdF /Fdx /(divF) oTt Jt--ldx

[0,,] x gz(eN)
is continuous. Then

(46) (t, , ,) 0,G(,, , ,I,) fF(, ,) n, dr,

is continuous and condition (H4) is verified. This completes the verification of the
four conditions of Theorem 4.1.

5. Shape Hessian for the Dirichlet problem.

5.1. Formulation and formal computations. We proceed as in 3 and 4
and provide the mathematical justification in 5.2. For the second derivative, we need
two autonomous vector fields V and W on N and the expression of the first derivative
dJ(2t(W); Y), where t(W) is the perturbationof the domain gt by the vector field
W:

(1) dJ(glt(W); V) / div{[-(g-yd)2+(yt g). , }dx,
(w)

where (yt,pt) are the unique solutions in H3(ft(W)) x H3(ftt(W)) to the equations

(2) Ayt+f=0 int(W), yt=g on Ft(W),

(3) APt+(Yt--Yd)=0 int(W), pt=Oon Pt(W).

Then, we express (1) as a MinMax over a new Lagrangian:

(4) dJ(ft(W); V) Min Max G(ft, , tg, P, E),
xI’ @H3(N P,EH2(N
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where G G(2, (I), , P, Z) is given by

(5) G div -(g- yd) 2 + V(- g), Vff2 Y

+ [A(I) + fiR +

yd]E + AE + E dx.+ [ +

This new Lagrangian is affine in (P, E), but is not necessarily convex in (, ). How-
ever, it is semiconvex in (, ) and we will see that Correa and Seeger [1] will still
apply to our special Lagrangian where the sets X(t) x Y(t),
(6) X(t) C H3(RN) H3(RN),

(7) Y(t) C H2(RN) x H2(RN)
will be given by the usual "saddle point equations":

(8) f[A + f]P + ( g)AP + v( g) VP dx 0 VP,

(9)

(10) / o

(11) f [div{[v , v]V} + AP + AP +v , vP +] dx O V.

It is obvious that (8) and (9) yield

(12) ], yt and ], pt.

Similarly, (10) and (11) have solutions (,) in H2(RN) x H2(RN) such that

(1)
are unique in H2 (t) x H2 (t) and solutions of

0
(14) A 0 in t(W), Ont

(yt g)Y nt on Ft(W),

Opt
V n, on Ft(W).(15) AP 0 in t(W), P[ Ont

It can be shown that and P[ coincide with the "partial derivative" with respect to
t of appropriate extensions of yt and pt from t(W) to Ry.

Finally, the partial derivative of the Lagrangian G with respect to t is given by

(16) OtG =j[div [
9)"

+

ya]2 + A2 + V. v2W. nt drt+ +
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for O, , P, E in H3(N), Yd and f in H2(N), and g in HT/2(N). The immediate
consequence of this computation is that yt, pt, Yt’, Pt’ all belong to H3(). But ’, P
in H3() require that y and p belong to Ha(). This is precisely why we chose
the above smoothness for Yd, f, and g.

Therefore, we must consider our saddle points X(t)xY(t) in (H4(N)xH(N))x
(H3(N) x H3(N)),
(17) X(t) {(,) e H4(N) x H4(N): @1 Y, @1 P},
(18) Y(t) {(P, ) e H3(N) x H3(N): P] P[,] ’}.
Finally, since OG is a functional on , it will only use the restriction to of the
various functions in X(t) x Y(t). Therefore, the Min and the Max can be removed
and

But

(o)
and

+[a + ]y5 +ay5 + v vY5} w r.

Ay + f 0, y g, Ap / y Yd 0, and p 0 on F,

(21)

0
d2J(2; V; W) fr {div { [(g yd)2 + -n (y g) 00---Pn] V}

0 OP{z Op OY(z+-n (y-g) On On On [, WondF,

where we have added the subscript V to P’ and Y’ to emphasize that they both
depend on V. The last step consists in the elimination of P{/, which will introduce

Yv" To do that, we set yla, P{z in (10) with Y Wand t 0

(22)
[div {[v(y g) re]W} + ACYv + CAY +V VY dx 0

+ + + 0

and wla, Y{v in (11) with t O,

f [div{[V(I).Vp]V} + A(I)P + (I)AP{z + V(I). VP + Y] dx=O

(23)

= /vYv o Vp V o n dr + /A vYYwPv + YAP + YYvd o.
F F

This yields the following identity:

(24) fV(y g) . vP W . ndr fVYv . Vp V . ndr + fYwYv dx

F F
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or

As a result

(26)

Y-g) rg. W . n dF
F

V n dF + JYvY( dx

F

where Y is the unique solution of

0
(27) AYe=0 in f, Y= On (y-9)v’n

on F.

5.2. Verification of the hypotheses. In 5.1, we have boldly applied the
conclusion of the theorem of Correa and Seeger to a Lagrangian that contains a cost
functional that is not necessarily convex. This means that the corresponding La-
grangian functional does not necessarily have saddle points. Yet, the conclusions of
the theorem extend to semiconvex cost functionals (5.2.1). The verification of the
hypotheses will essentially be the same as for the gradient in 4.2 (5.2.2).

5.2.1. Semiconvex cost functionals. Consider a Lagrangian functional of
the form

(28) G(, x, V) (, x) + (, x, )
for a family of continuous bilinear forms b(t,x, y) on X x Y and continuous cost
functionals F(t, x) on X. Formally, the saddle point equations are given by

(30) yt e y, dF(t, xt;x) + b(t,x,y) 0 Vx e X.

When G(t,x, y) is convex in x and concave in y, (29)-(30) characterize the saddle
points Z(t) x Y(t) C X x Y of G(t,., .). So, when F(t,x) is not convex in x, (29)-(30)
need not characterize saddle points of G(t,., .).

We say that the functional F(t, x) is semiconvex in x if there exists a family of
continuous convex functionals C(t,x) on Z such that F(t,x)+ C(t,x) is convex in
x. This means that F(t, .)+ C(t, .) and C(t, .) both have directional derivatives and
hence F(t, .) also has a directional derivative: the following limit exists

lim
F(t, x + Ox’) F(t, x)(al) dF(t,x;x)

0\o 0

Denote by X(t) the set of all solutions

(he) x, e x, b(t, x,, v) o
and assume that

(33) Vx e X(t),
that is, F(t,xt) is only a function of t.
function.

VyEY

F(t,xt) J(t);
We use J(t) as the definition of our cost
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Now, assume that F(t, .) is semiconvex and that

(34) Vx e X(t), C(t,xt) Jo(t);

that is C(t,xt) is only a function of t. Again, use Jo(t) as the definition of the cost
function associated with C. Finally, let

(35) Jc(t) F(t, xt) + C(t, xt),

which is also only a function of t. Then it is obvious that

(36) J(t) Jc(t)- Jo(t)

and that (if dJc(O) and dJo(O)exist)

(37) dg(O) dJc(O) dJo(O).

So, we are back to the use of the theorem of Correa and Seeger [1] for both Jc and
Jo. Construct the Lagrangians

(38) c(t, , )=F(t, x) + C(t, x) + (t, x, ),
(39) Co(t, x,

and assume that if all the hypotheses are verified both for Go and Gc,

(40) Jo(t) Min Max Go(t, x, y),
xEX yEY

(41) dJo(O) Min Max OtGo(O, x, y),
xex(o) yeYo(O)

(42) Jc(t)=Min Max Gc(t,x,y),
xX yY

(43) dJc(O)= Min Max OtGc(O, x, y),
xex(o) yeYc (o)

where the saddle point equations for Jo are given by

(44) x

(45) y
and the saddle point equations for Jc(t)

(46) x

ytC e Y, dC(t, xt;x) + dF(t, xt;x) + b(t,x, ytc) 0 Vx.(47)

Assume that

(48) dJo(O) OtC(O,x) + Orb(O, x, y), Vx E X(O), Vy e Yo(0),

and that dC(O, x; x) and dF(O, xO; x) are independent of the point xo chosen in X(0).
By subtracting (45) from (47), construct the new variable yO y yoo, which is a
solution of

(49)

and the set

yO y, dF(O, x; x) + b(0, x, yO) 0, Vx,

Y(O) e yc(o), e yo(0)}.
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NOW,

dJc(O) Min Max OfF(O, x) + OtC(O, x) + Orb(O, x, y)
xEX(O) yEYc (0)

Min Max {OtF(O,x) + Otb(O,x,y) + OtC(O,x) + Otb(O,x,y)}.
xex(o) yeBo(O)

yoeY(O)

However, for all (x,yo) e X(O) Y0(0),
OtC(O, x) + Orb(O, x, y) dJo(O),

and finally,

(50) dJ(O) dJc(O) dJo(O) Min Max [OfF(O, x) + Orb(O, x, y)],
xx(o) yY(O)

where the saddle point (xo, y0) e X(0) Y(0) is the solution of the "formal saddle
point equations" (29)-(30) for t- 0.

In 4.2, the cost functional is semiconvex since there exists a constant C > 0 large
enough so that

(51) dJ(ftt(W); V) + C [llytll 2

is convex nd continuous on Ha(t) x Ha(t). The functional

is clearly convex and continuous on H4(t) x H4(t). This provides a complete
justification for the use of the conclusions of Correa and Seeger.

5.2.2. Verification of the hypotheses. We have chosen to work in H4(N)
H4(RN) H3(RN) H3(N) and introduced appropriate hypotheses on f, Yd, and g
in 5.1. From this point on, the technique is the same as the one used in 4.2 for the
gradient. Therefore, we will not repeat it here.

(1)

6. Appendix. Proofs of the theorems of 2.
Proof of Theorem 2.1. (i) Properties (T1) follow by standard arguments.
Condition (T2). Associate with X in g the function

y(s) Tt-s(X), 0 <_ s <_ t.

Then
dy

(2) d--(s) -Y(t- s,y(s)), O < s < t, y(O) Tt(X).

For each x E RN, the differential equation

dy
() d-() -Y(t- , ()), 0 < < t, (0) x e

has a unique solution in Cl([O,t];Rg). The solutions of (3) define a Lipschitzian
mapping

(4) x St(x) y(t): N
_
N

such that

() > 0, vte [0, ], w, u e , IS,(u)- S,(x)l < lu- xl.
Now in view of (2) and (3)

St(Tt(X)) y(t) Tt-t(X) X := St o Tt I on N.
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To obtain the other identity, consider the function

z() (t ; x),

where y(., x) is the solution of (3) for some arbitrary x in RN. By definition

dz
d--(r) V(r,z(r)), z(O) y(t,x)

and necessarily

x (0; x) z(t) T,((t; x)) T,(,())

= Tt o St I on N == St T-I N --+ y.

Condition (W3). The uniform Lipscaitz continuity in (T3) follows from (5) and
we only need to show that

Vx e aN, T-(.,x) e C0([0, T];RN).
Given t in [0, T], pick an arbitrary sequence {tn}, tn t. Then for each x N there
exists X e N such that

Tt(X) x and Tt(X) Tt(X) x.

But

T- T- (Tt (X))t (x)-T (x)=T (Tt(X))-T (Tt(X))= T (Tt(X))-

By the uniform Lipschitz continuity of T
T- (Tt(X)) (Tt (Z)) < c]Tt(X) Tt (X)]T(x) TV(x)

and the last term converges to zero as tn goes to t.

(ii) The first part of condition (V) is verified since for each x n and t, s in
[0,],

Iv(t, ) v(, x)

OT (t, TV(x)) OT (t,T: (x)) + OT (t,T:(x)) OT (,T:())

OT
(t, T[

OTTV(x)- T:(x) + (x))- (,T:(x)).
So from (T3) and (T1) s Y(s,x) is continuous at s t and hence for all x in
RN, V(.,x) C([0,7];RN). The Lipschitzian property follows directly from the
Lipschitzian properties (Wl) and (T3)" for all x and y in g,

OT OT (t, TV(x))V(t,u) Y(t,) (t, TV(U))-

]TV() TV(x)] ’ x].
This proves that V verifies condition (V).

Proof of Theorem 2.2. (i) By definition of T in (2.8), t
(OT/Ot)(t, X) U(X)+ tA(X) are continuous on [0, [. Moreover, for all X and Y,
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and
OT

(t, Y)-
OT

(t, X) <_ [c + tc] IY- X[.

Thus condition (T1) is verified for any finite T > 0. To check condition (T2) we need
to prove that X H Tt(X) T(t,X) N RN is bijective. For all Y and X,

and

2
Tt(Y) Tt(X) Y X + flU(Y) U(X)] + [A(Y) A(X)]

IT,(Y) T(X)l >_ ]Y X -ctlY xI c:lY xl.
So for min{1, 1/4c} and for all tin [0, T]

IIy-x(6) ITt(Y) Tt(X)l >_ -Hence Tt is injective and, a fortiori, bijective since RN is finite-dimensional.
The last part of the proof is the uniform Lipschitzian property of T-I. In view

of (6) for all x and y

(7) 1 [T_l(y T_I(x) <_ iTt(T_l(y)) Tt(T_l(x))l [y xl.
To complete our argument, we prove the continuity with respect to t for each x. Let
X T-I(x). For any s in [0, T]

Ts-l(x) T[-I(x) T-I(Tt(X)) T-I(Tt(X)) Tfl(Tt(X)) T-I(Ts(X))
and in view of (7)

IT-I(x) T-I(x)] <_ 2lTt(X) T,(X)I.
The continuity of T-l(x) at s t now follows from the continuity of Ts(X) at s t.
Thus condition (T3) is verified.

--m,k

Proof of Theorem 2.3. By definition of the inductive limit topology on ]2 it
is sufficient to prove the continuity for any compact subset K of RN. So given V in
];,k construct the sequence

Vn(t) Y(t/n), O <_ t <_ 7, for integersnkl.

By continuity of V {Vn} converges in zm,g to the autonomous field , (t,x)
Y(0, x) for all t e [0, T]. Hence by continuity of (2.17)

dJ(f; Vn) dJ(fft; Y(0))
and .by uniqueness of the limit we obtain (2.18). El

Proof of Theorem 2.4. (i) For any Y in 7)k(RN,RN) such that Y 0 on F, we
have by Nagumo’s [1] theorem (cf. also Aubin and Cellina [1] for an English version)

Now always by Nagumo’s [1] theorem applied to (3) in the proof of Theorem 2.1

Vte [0, T], T-()
Necessarily, T() and since T is a homeomorphism and 2 is open

Vte [0, T], T(fl) 2 = Vt e [0, T], g(]) g(fft) =V dg(f;Y) O.
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(ii) Since the open domain t has a boundary F that is Ck+l, there exists a unique
outward normal n(x) that belongs to Ck(F, g). Define the subspace

L {Y e k(RN, Rg) (qFY) n 0 on F}
of )k(g,Y). It is closed and linear. Moreover, by using Nagumo’s [1] theorem
twice for all V in Lk, the corresponding transformation Tt has the property

T,(a)
and necessarily

dJ(gt; Y) 0

This induces a continuous linear map

(s)
such that

where

(9)

Vt e [0,

V e ker(G(Ft)).

[G(f)] :Dk(N,N)/L ---,

([C(f)],qL(V)}k/L, dJ(f; V) (C(t),

qL :Dk(g,eN) k(Y,g)/Lk
is the canonical surjection. For a boundary F that is Ck+l, there exists a unique
outward normal n(x) that belongs to C(F, g). As a result, the kernel of the map

(10) y -*

coincides with Lk, where ")’r is the trace operator from N to F. Moreover, the map
(10) is surjective since it is always possible for a Ck+l boundary (k _> 0) to construct a
Ck-extension N on g of the unit normal n on F (cf. Agmon, Douglis, and Nirenberg
[1], [2]). Similarly, for any v in/)k(F), there exists an extension in :Dk(RN) and the
vector V = N belongs to lk(N,N) and coincides with vn on F. As a result, the
map

(11) qL(Y) -* pL(qL(V)) :D(N,N)/L --*

is a well-defined isomorphism. In particular, there exists a scalar distribution g(gt) in
:D(F)’ such that (2.20) is verified. El

Proof of Theorem 2.5. The differential quotient (2.24) can be split into the sum
of two terms

(12) [dJ(ft(W); Y(0)) dJ(; Y(0))]/t + [dJ(gtt(W); Y(t)) dJ(tt(W); Y(0))]/t.
In view of Theorem 2.5 (i) and (iii), for all U in

d2J(f; U; W) d2J(gt; U; W(0))
by the same argument as in the proof of Theorem 2.4 for the gradient. Hence the first
term converges to

d2J(f; Y(0); W) d2J(f; Y(0); W(0)).
--m+l,

For the second term recall that V belongs to 1 and observe that the vector field

v(t) IV(t)- v(o)]/t

belongs to and that 1(0) l(0). Thus by linearity of dJ(f; V) the second term
in (12) can be written as

dJ(Ftt(W); IV(t) Y(O)]/t) dJ(Ft(W); Y(t)).
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--m+2,g -.-,m+ 1,g
For any V in Y V belongs to V Then by assumption (i)

lim [dJ(2t(W); f/(t)) dJ(f; l)(0))]/t d2J(Ft; l); W)
t’,,O

which implies that

lim dJ(Ftt(W); (t)) dJ(Ft; l)(0)) dJ(Ft; l(0)).
t\0

Now by hypothesis (ii), U dJ(Ft; U) is linear and continuous on )t(N, N) and
the map

-+m+2,t
V (0) dJ(fl; l(0))" Y Vt --.

---m+l,/
is linear and continuous (hence uniformly continuous) for the topology Y for all

---,m+2,
V in the dense subspace Y Hence it uniquely and continuously extends to all

---,m+l,
elements of V This completes the proof of the theorem, rn

Proof of Theorem 2.6. (i) It is sufficient to prove that
(a) for all V, W E :D(N, Y) such that W 0 in a neighbourhood ofF, d2J(f; V; W)

0 and
(b) for all V, W E 79(N, N) such that Y 0 in a neighbourhood oft, d2j(2; V; W)

0.
In case (a) the proof is similar to the one in Theorem 2.4 for the gradient, and

we even have the stronger result that for W such that W 0 on F

ft(W) Ft, Vte [0, T] = dJ(ft(W); V) dJ(gt; V) = d2J(f; V; W) 0.

In case (b) V 0 in a neighbourhood N of F and in N\K, the complement of
the compact supports K of V. So U (.N\K) is a neighbourhood of F where V 0.
By construction U C? K and there exists a bounded neighbourhood H of K such
that/ C? F . Since/ is compact and F is closed, the minimum distance d from/
to F is finite and nonzero. Let

where

N(F) {y s Y’dr(y) < d/2},

dr(y) inf{[y- x[’x e F}.
For all X in F

Tt(X) X W(Ts(X)) ds tW(X) + [W(Ts(X)) W(X)] ds

and since W is uniformly Lipschitzian by assumption (V) on W

ITt(X) X < t]W(X)l + ct max ITs(X) X I.IoN

It can easily be shown that for t < 1/c
t

max IT(X) Xl < IW(X)l.
[o,t] 1 ct

Thus
t

sup max ITs(X)- X < sup IW(X)I.
xr [0,t] 1 ct xer
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However, W is continuous with compact support. Therefore,

sup IW(X)I <_ sup
XEF XE supp W

and there exists - > 0 such that

IW(X)l IlWllco(  ; N) <

s d
Vs e [0, T],

1 CS
IlWllc < "By definition and the previous inequalities

d
dr(T,(X))- Yerinf ITs(X)- Yl < IT,(X)- X] <

for all s in [0, T] and all X E F. This implies that

w e [0, r], VX e r, r,(w) T,(W)(r) c N(r).
By construction V 0 in N(F) since the distance from K to F is greater than or
equal to d. Therefore,

gs [0 T] V L(w)
and as in the proof of Theorem 2.4(ii), for all s > 0 dJ(s(W); V) 0 and necessarily
d2J(; V; W) O.

(ii) We have already established in (i) that the bilinear form

(V, W) h(Y, W)" (Y, g) X (g,g)

is zero for all V E (N, g) and W E (Y, Y) such that W 0 on F and also
zero for all W E (Y, N) and V E (g, Y) for which V 0 in a neighbourhood
of F. By density all this is still true in (N,N) and now by the same argument
as in the proof of Theorem 2.4 for all V in ,(g, Y)

[w] h(Y, W)" e )/L6
is well defined, linear, and continuous. For the first component it is necessary to show
that for all W in

D {V e ,(g,g). Oay 0 on F, V]a] },
the bilinear form h(V, W) O. We first prove the result for the subspace

A (fl; Y)(Y; Y).
Then we prove that D. Finally, by density and continuity, the result holds for
the ,(Y, N)_closure A of A.

For any V in A, there exist V1 E (; g) and V2 E (Y;g) such that
V V1 + V2. Moreover,

K1 supp V1 C fl and K2 supp V2 CN
are compact subsets of the open sets and Yfl, respectively. Hence V1 0 (re-
spectively, V2 0) in the open neighbourhood NK1 (respectively, NK2) of F and
necessarily V V1 + V2 0 in the neighbourhood U N(K1 K2) of F. Hence
from part (i) h(V, W) O.

By definition of D,
D C *(; N) D,(N; g).
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Now
A C Dtr and A 7:)($2; 0N) :D(RN\; RN) C Dtr

and
)(’; g) *(; N) and (N;g) (g;N).

This proves that D. To complete the proof, note, that by continuity of V
h(V, W), for all W in ,(g, g) the map

IV] h(Y, W) *(N, Y)/D
is well defined, linear, and continuous. Finally, the map

(IV], [W]) h(Y, W) (t(eN, RN)/n) x (t(Rg, Rg)/D) R

is well defined, bilinear, and continuous.
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NUMERICAL METHODS FOR STOCHASTIC SINGULAR
CONTROL PROBLEMS*

HAROLD J. KUSHNERt AND LUIZ FELIPE MARTINS$

Abstract. The paper develops a powerful class of numerical methods for stochastic singular
control problems. The basic models used are diffusion or reflected diffusions, but the method is of
general applicability. The central idea is that of the Markov chain approximation method, where an
approximation to the control problem is found for which an optimal solution is computable, and which
is an arbitrarily good approximation to the original problem and its optimal value function. The
methods are convenient to program and use (and they have been used with success), and they cover
a wide variety of problems. In fact, for the singular problem, they seem to be the only ones currently
available. Owing to problems in proving tightness of certain processes that occur in the convergence
proofs, the methods of proof used for the nonsingular problems need modifications. Examples of
useful approximations, the algorithms, and the convergence proofs are given. To illustrate the power
of the methods, two classes of problems are dealt with: the first is a class of discounted problems,
and the second is an average-cost-per-unit time problem subject to some constraints, which arises in
the study of multicustomer class queueing networks under conditions of heavy traffic. The method
is applicable to the more standard singular control and ergodic problems with greater ease.

Key words, numerical methods for stochastic control, singular stochastic control, ergodic
stochastic control, Markov chain approximations, weak convergence methods, constrained ergodic
problems, optimal stochastic control
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1. Introduction. Singular stochastic control problems occur in many forms.
They have been the subjects of general studies and have arisen in models of financial
economics, minimum-fuel-type problems [1]-[6], the modelling of controlled queuing,
and production systems under conditions of heavy traffic [7]-[9], among other places.
To date, there are few analytical solutions and (to the authors’ knowledge) there is
no work on the systematic design and convergence proofs for algorithms for numerical
methods for the calculation or approximation of the optimal value function, although
numerical calculations (using Markov chain approximations) have been carried out
in [13]. In this paper, we develop a class of convergent numerical methods for this
computation, which works under quite broad conditions. The methods are extensions
of the so-called Markov chain approximation approach of [10], [11]. They are con-
venient to program and use in applications, and have been used with success by the
authors. At this time, they seem to be the only available methods for these prob-
lems. Reference [11] is an updated version of [10]. Rather than take a very general
approach, the versatility and power of our methods will be illustrated by treating
two different classes of problems. The methods used are the same as would be used
for other singularly controlled problems. The first problem is a reflected singularly
controlled diffusion of the type that arises in the modelling of queues and production
systems under heavy traffic conditions [7]. We start with a two-dimensional version,
just for notational simplicity. This particular problem has a rich enough structure so
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that it can be used to illustrate the numerical method for the general singular control
problem, as will be seen. Of course, as with any numerical method for solving partial
differential equations (PDEs) or related systems, there is a "curse of dimensionality."
The algorithms have been successfully used on numerous two- and three-dimensional
problems. Our problem differs from those in [1]-[6], mainly in the nature of the
boundary. For any numerical method, the state space needs to be bounded, and some
condition (reflecting or otherwise) put on the boundary.

The second type of situation with which we work is an ergodic and constrained
singular control problem, which has also arisen in heavy traffic analysis [9], [13].
Owing to the constraint, it is more complex than the standard ergodic problem, but
the approximation methods and results can be readily adapted to other types of
singular control ergodic problems.

Let D[0, oc) denote the space of functions that are right continuous and have
left-hand limits, and with the Skorokhod topology [14], [15]. We use the arrow to
denote weak convergence. All the weak convergence analysis will be on this space or
its k-fold products Dk[O, oo) for appropriate k.

In 2 we define the first class of singular control problems. Section 3 deals with the
numerical approximation, states the numerical algorithm, and makes a plausability
argument concerning the convergence. The general technique of approximation and
numerical solution introduced there is of general use for singular control problems.
Section 4 concerns a rescaling that is necessary to deal with the tightness problems in
the convergence proof. The actual convergence theorem is proved in 5. To illustrate
the applicability of the method to a wide class of singular control problems, a some-
what harder case is discussed in 6, and the trivial adaptations required of the method
are given. Section 7 formulates the second class of problems, a singular control prob-
lem with an average-cost-per-unit time criterion and with some additional constraints.
We chose this class due to the complications and challenges that it presents. How-
ever, as will be seen, the numerical method works well and is widely applicable. In 8
the numerical approximation is presented together with several simplifications. The
actual algorithm is given in 9. Due to the constraints, a linear programming rather
than a dynamic programming method needs to be used. However, if the constraints
were not present, any of the dynamic programming-based numerical methods that are
usable for ergodic problems for Markov chains can be used. The proof of convergence
is in 10. Some numerical data is also presented.

2. A reflected singularly controlled diffusion.

2.1. Definition of the problem. Let G > 0 and define the two-dimensional
box G [0, G1] [0, G2]. Let P be a degenerate Markov transition matrix, whose
spectral radius is less than unity. For any two-dimensional vector X, we write its
components as (X 1, X2). Models of the type (2.1) (with or without controls) arise as
heavy traffic limits of certain controlled queueing systems [7], [8], [16]:

X(t) X(O) + b(X(s))ds + a(X(s))dW(s)

+ J(t) + (I- P’)Y(t) U(t), X(t) e G for all t >_ O.

X is two-dimensional, W(.) is a standard R2-valued Wiener process, the components
of J(.), Y(.), and U(.) are in D[0, oc), and J(0) Y(0) U(0) 0. The reflec-
tion terms Yi(.) and Ui(.) are nondecreasing and can increase only when Xi(t) 0
(respectively, Xi(t) Gi).
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The term J(.) (jl(.),j2(.)) is a "singular" control and is represented as fol-
lows: There is g(.) (g12(.),g21(.)) right continuous with giJ(0) 0 and giJ(.)
nondecreasing such that

(2.2) j _K2 + c2K2, j2 clgl2 K2,

where 1 k ci > 0. Define the vectors vl (-1, c) and v2 (c2,-1). K(.) is called
the control. Since we are concerned only with the numerical method in this paper,
the reader is referred to the references for the motivation for the model. We mention
only that in [7] the X(t) are the (weak) limits of a scaled queueing system with two
processors. The pij are the probabilities that a completed service at processor is
sent to processor j (i, j 1, 2), and the Kij represent the weak limit of the suitably
scaled number of customers who were intended for processor but who were actually
rerouted to processor j. Without loss of generality, we let pii 0. Familiarity with
[7] is not needed here. As mentioned in the Introduction, the model is canonical
in the sense that it has a rich enough structure so that (as will be seen below) the
methods are applicable to typical singularly controlled systems of any dimension, and
it is chosen for illustrative purposes and to simplify the development only.

It is possible that there will be an impulsive control action at t 0. Then X(.),
J(.) will be discontinuous there and will not be right continuous at that point.

2.2. Admissible controls. We say that a control K(.) is admissible or that
(g(.), W(.)) is an admissible pair if g(.) is nonanticipative with respect to W(.).

In the absence of control, Y(.) and V(.) are continuous [16], [7]. In the presence of
control, they might be discontinuous. For example, and loosely speaking, it is possible
that on some time interval, X(.) will be on the boundary of G and the increments of
J(.) will "point out of G." Of course, X(.) cannot leave G due to the reflection terms
Y(.) and U(.), but such J(.) might cause Y(.) and U(.) to be discontinuous. For the
type of problem that motivated the particular example, if G is chosen appropriately,
then we would expect the control to "push away" from the boundary of G, and if this
did not occur, then an enlargement of G might be called for.

2.3. The cost function. For ai > 0, i > 0, and/ > 0, define the cost function

V(X(O), K, W) E Jo0 e-/k(X(t))dt,

(2.3) + E f0 e-/[adK2(t) / a2dK2(t) / IdU(t) / 2dU2(t)],

V(x) inf V(x, K, W),

where the infimum is over all admissible pairs. Assume the following.

Assumption 2.1. b(.), a(.), and k(.) are continuous on G.

We write the cost as V(X(O),K, W), since it is determined by the joint distri-
bution of X(0), K(.), and W(.). Since we do not require the control to be of the
"feedback" form, we cannot write the cost as a function of K(.) only. In the "physical
problem" leading to (2.1)-(2.3), the Ui(.) in (2.3) "penalizes" customers lost due to
full buffers.
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FG. 1. The numerical grid.

3. A Markov chain approximation. The basic idea behind the numerical
method is to find a discrete parameter Markov chain and associated control problem
that is readily solvable and that approximates system (2.1)-(2.3) under the optimal
control, in a sense to be described. The method is like that of [10], [11], but due to the
presence of the singular control, some modifications of the technique of these references
are required. Let h be an approximation parameter (h is a scalar here, but it could be
vector valued; for example, in Fig. 1, the grid spacing could depend on the direction).
Below, we will define a controlled Markov chain {nh, n < c}, an admissible class
of controls, and an associated control problem that provides an approximation to
(2.1)-(2.3) in the following sense: An appropriate continuous parameter interpolation
of the sequence of controlled chains {nh, n < x)} converges weakly to a process
satisfying (2.1) with an admissible pair (K(.), W(.)), as h -. 0. Let Vh(x) denote the
optimal value function for the control problem for the chain when 0h x. Also, the
continuous parameter interpolation of the optimally controlled chain converges weakly
to the optimally controlled X(.) process and Vh(x)--, V(x), for x- X(0) E G. The
numerical method thus consists in solving the optimal control problem for the chain.
The particular chain that is used is chosen for convenience in solving the associated
optimal control problem. The general approach has been used frequently. For the
more classical stochastic control problems of [10], [11], there are standard and easily
programmable methods for choosing the transition functions for the chain and for
solving the control problem. Some modifications are required for the singular control
problem and these will be discussed next.

To facilitate the development, we use a simple form for the state space, the Gh+
defined below. Other forms will be discussed later, but the guiding ideas remain the
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same.
Define the h-grid Gh on G by Gh {(kh,h)’O < k < G1/h, 0 < < G2/h},

where we assume without loss of generality that the G are integral multiples of h.
Define the "extended h-grid" G- {(kh, lh)"-1 < k < G/h+l, -1 < l < G2/h+l}.
Define OGh Gh CI OG, the grid points on the boundary of G, and the "reflecting
boundary" OG- G-- Gh. See Fig. 1. The extended grid. Gh+ and OG- are
not necessary but are introduced to allow us to deal with the reflection terms in a
computationally efficient way. For states in the set Gh, the transition function for the
Markov chain will be chosen such that the chain "behaves like" a controlled diffusion.
When the state of the chain reaches OG- (i.e., has left G), it will be reflected back to
G in a way that is consistent with the properties of the reflection terms (I- P’)Y- U
in (2.1) (see Case 3 below). If we did not introduce OG-, then the transition function
would be more complex for states on OG. Define 5nh h hn+ n and let Enh denote
the expectation given all the data up to step n.

3.1. A heuristic discussion of the properties of the chain. Loosely speak-
ing, the terms J(.), Y(.), and U(.) act either "instantaneously" or "impulsively." In-
tuitively, at the "instants" when J(.) changes there is no change in the f b dt + f a dW
term. Since the behavior of the chain is supposed to "mimic" that of (2.1), we sup-
pose that, for h x E Gh, we can choose to apply or not to apply a control. If we
do not apply a control, then (loosely speaking) the increment 5nh is to "behave like"
an increment of f b dt + f a dW over a small time interval. We call this a "diffusion
step." If we do apply a control at step n then, for consistency with the behavior of
(2.1) at a "control instant," we will have

(3.1) 5hn --(vlhKhn’2 -4-v25Knh’2) -+-(small error)

for some nonnegative control increments 5Kh,j (only one of which will be nonzero).
For programming simplicity and without loss of generality, we will restrict the 5Knh’j
to certain convenient values. See Case 2 below.

We can now write

(3.2) nI{diffusion step at n} A- nh/{control step at n}
h-f" n/{reflection step at n}"

The chain and the control will be chosen so that only one of the terms in (3.2) is
positive. The transition function will be chosen so that the second term on the right
will be (3.1). The third term on the right will have the form (see Case 3 below)

(3.3) (I- P’)hYnh -5uhn + "small error"

for appropriate 5yh and hUnh, and the first term on the right will be formally similar
to an increment in f b dt + f a dW over a small time interval.

The transition function ph(x, y control) for the chain is sometimes written as
ph(x, y) if no control is used. We now define appropriate transition functions.

3.2. The transition functions.
Case 1. Let hn x Gh and suppose that no control is exerted. Then (following

the method in [10], [11]) the transition function is chosen such that the first two
moments of 5nh are "close" to those of f b dt -4- f a dW over a small time interval. In
particular, define a(x) cr(x)a’(x). Then for some co > 0 and some "interpolation
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FIG. 2. The control directions.

interval" Ath(x) satisfying 0 < coh2 < Ath(x) - O, we suppose that

Ehnbhn b(x)Ath(x) + O(hPAth(x)), p > O,

E,,,,

EhnbMhn (bMhn)’ a(x)Ath(x) + O(hPAth(x)),
h hn+l nl O(h).

The required ph can be readily constructed. Some among the many possibilities are
in [10], [11].

Case 2. The control step. Suppose that x hn E Gh and we decide to exert
control, thus Ath(x) 0. Define 5Knh (bKnh,12, bKnh,2) and 5Jnh vbKhn’2 +
v25Khn’2. The transition probability ph(x, y control) will be chosen to satisfy (3.1).
The "impulsive" control action is determined by a choice of the direction (either vl or
v2) together with the "impulse size" in that direction. For programming simplicity,
we limit the choice of the nonnegative increments 5Knh,ij in the following way. Refer
to Fig. 2 where x (x.,x2). Let xi denote the intersection of the direction vectors
vi with the grid lines. Set xi- x. We restrict the 5K so that the 5J take values
either or 2. Thus 5Knh’ij equals either 0 or h.

We restrict the values of 5Khn,ij since the method is easier to program if the
choices are fewer and "local." Allowing arbitrary values for 5Kh,ij would yield the
same limit results as in 5.

The points x+Vi xi are not usually in the grid Gh, unless the ci equal unity. The
actual transition function is chosen by a randomization so that the mean increment
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h hEnSn is either 1 or 2, according to the choice of control action. In particular, if 2
is the chosen mean increment, then 5Knh (0, h) and we use the transition function

(3.5) Ph(x, yl (O, h) SK) l c2 l ph(x, y2 (O, h) SK),

y (x,x2 h), Y2 (x + h,x2 h).

An analogous choice is used under V. In the next section, we interpolate the {h} into
a continuous parameter process h(.). If at some n there is a control action, then the
interpolation time is zero. In this sense, the original control problem is approximated
by one in which the control acts impulsively.

Remark. The randomization is a perfectly natural numerical procedure. In fact,
it is equivalent to a finite element approximation of V(.), i.e., a piecewise linear
approximation. See the discussion in [11, 6] or the remark in Case 3 below.

By definition,

(3.6) Ehn6hn 6Jhn
Let us define 5h O(h) by

Then

(3.8) E sup
n_N

N-1

NO( O( )E
j=O

In Theorem 5.3, (3.8) will be used to show that the {5]h } are asymptotically negligi-
ble, which implies that only the mean directions contribute to the limit, thus justifying
the randomizations. The 5]h are the "small errors" in (3.1). In analogy to (2.3), if

5Knh’ij : 0 at step n, then the cost realized in this control step is aih aSKhn’j.
Case 3. The reflection step. For programming purposes, it seems simpler to

separate the "diffusion" and "reflection" components of the chain approximation to
(2.1) for x E OG. This is the reason for the introduction of the separate "reflecting
boundary" OG. We now discuss the reflection step for x h e OG. A useful
method is described in [11, end of 9] and in [17] and we apply it to our problem here.
The idea is similar to that of Case 2, namely, choose a mean reflection direction and
state increment consistent with (2.1), and then randomize so that the actual new
state is on the set of grid points OGh. Let x (x, x2) hn OG. Refer to Fig. 3.

3.3. The transition function for the reflection step: the formal defini-
tion. We now fill in the details of the above heuristic discussion and obtain analogues
of the U and Y terms needed for the convergence analysis in 5. There are three cases
to be distinguished, depending on whether the components of nh x (x,x2)
OGh+ are "too large," "too small," or a combination of these two: Case 3(i), all x _> 0,
some x > G (the set of points between (a, b, c) in Fig. 3); Case 3(ii), all x <_ G,
some x < 0 (the set of points between (e,g,j)); Case 3(iii), some x < 0, some
xJ > Gj (the points d and k).

e to ,oint on
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FIG. 3. The reflection directions OG.

Case 3(ii). To be consistent with the properties of the reflection term (I- P’)Y
in (2.1), we first find a vector 5Ynh (hYh’l, 5Yah’2 with nonnegative components,,zh Xand the following properties" n 0; if > 0, the point x + (I- P’)hYnh 5:
is on OGh; if x < 0, then 5:i 0. This procedure yields a "consistent" reflection
direction. However, 5: will not generally be on OGh. Refer to Fig. 3, and consider the
point 2. Let x and x" denote the "neighboring" grid points to 5:, i.e., 5: E [x,x"].
(In higher dimensions, we use a minimal set of points in OGh such that 5: is in its
convex hull.) Define the transition function ph(2, x’) --15:- x"l/h 1- ph(2, x").
Thus, we randomize among x and x" keeping the mean value 5:. For the example in
Fig. 3 where x 2, we have 5Ynh’2 O, since x2 > 0, and also

(,_ (0
h 6Ynh’l, ph(, X") P12.

Case 3(iii). This is a combination of Cases 3(i) and 3(ii), since one component of
x is "too big" and one is "too small." First, 5Ynh is defined, as in Case 3(ii), and then
a 5UUn is defined. To see the simple procedure, let nh x point d in Fig. 3, where
x > G and x2 < 0. Choose 5Ynh’l O, 5Yn’2 >_ 0 such that the second component
of 5: x + (I- P’)hYh is 0. The first component of 5: will be greater than G unless
p21 1. Now, choose 5Uhn ’1 5c -G1, 5Uhn ’2 O. For reference in the dynamic
programming equation (3.13) below, note that 5uh’1 (1-p21)h in this example. If
nh point k in the figure, then 6Unh’l 0 and 6Unh’2 (1- Pl2)h.

The method just described is indeed the "general method" for arbitrary state
spaces. We calculate the intersection on OG of the line from x 60G in the reflection
direction, and then randomize such that the mean point of intersection is preserved.
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3.4. Representation of nh in the reflection step. The following represen-
tation will be needed in 5.

In general, by the randomization used in Case 3, there is f’nh such that for
c Oa,

6h (I P’)eYnh +6h 6U,- 6 o(),ESY O,

and the components of5Y and5 (respectively, 5U) can be nonzero only if, < 0
(> G, respectively). Define

n-1 n-1 n-1 n--1

i=0 i=0 i=0 i=0

We use Kh to denote the control policN By the centering about conditional expecta-
tions, we have

n+m-1 2

E eh O(h’)E (# of reflection steps in [n, n + m))

(3.0) O(h)Elg+ gl N O(h)m.
It will be shown in Theorem 5.3 that EIY is bounded uniNrmly in h over the time
interval of interest. Hence, formula (3.10) implies that the contributions of the{}
terms vanish as h 0. Thus, the "randomization" in the reflection step has no effect
in the limit.

3.5. The control problem for the chain. We say that a control policy Kh is
admissible Nr the chain if it preserves the Markov property

h

De,he At At(() if n is a diffusion step, and set At 0 otherwise. Define

=0 At). With initial condition ( x and control policy Kh the cost
Nnction Nr the chain is defined to be

Vh (x, Kh) E Eno
(a.l)

rrh,1+E E=0-[eK’ + eK’ +- +ZeU’]
This cost function is analogous to (2.3), in the sense that the sums in (3.11) "look
like" integrals, due to the definition of the interpolation intervals. For ( x, define

v() ifv(, K),
Kh

where the infimum is over all admissible policies.

3.5.1. The dynamic programming equation for the chain. The program-
ruing equation for (3.11) is the following. Write ph(x, y l) for the transition proba-
bility if the control is an increment in the direction v. For x Gh,

Vh(x) mine-t() Eph(x,y)Vh(y) + k(x)Ath(x),
(.)

min,[ph(x, Y )Vh(y) + h] }
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For x E OG

(3.13)
Vh(x) ,yph(x,y)Vh(y) + ihI{xl>vl,2>0}

+/lh(1- P21)I{zl>(,z<0} + 2hI{z2>(,x>0}
+ 2h(1 P12)I{z>(=,l<0}.

The reason for the (1 -pj) terms is given in the discussion of Case 3(iii) above.
Particularly efficient methods for solving (3.12), (3.13) will be discussed in a

forthcoming report. However, they can be solved by any of the usual iteration in
policy or value space methods. In (3.12), there is a choice between no control and
control, and a choice of the two alternatives for the control. There is no discount
factor in the "control" term of (3.12), since Atnh 0 at any step at which there is a
control action. A similar consideration holds for the reflection term (3.13).

3.5.2. A note on computation. In computing via the approximation in value
space method, it has been observed that the rate of convergence of the iterates to
Vh(x) is much slower for x OG than for x Gh. While we do not understand
the reasons for this phenomenon, it should be kept in mind in setting the stopping
criterion for the iterations.

3.5.3. Extensions. The method for the higher-dimensional problem (r > 2)
should be clear from the foregoing. The basic technique for dealing with the control
and boundary terms is the same.

3.6. A formal dynamic programming (Bellman) equation for (2.1),
(2.3). We now make some purely formal comments concerning the relationship be-
tween the numerical algorithm and a finite difference approximation to the Bellman
equation for (2.1), (2.3). The comparison will provide a better intuitive feeling for the
control step calculations. Write the formal Bellman equation, ignoring the boundary
terms: Let : be the differential operator of the "diffusion" part of (2.1). Then (see
[2] for a related problem)

(3.14) O= min {,V(x)+ k(x)- V(x), min(V(x)v + a)}.
Note that the form of (3.14) implies a choice of "diffusion" or "control." A formal
derivation of (3.14) can be obtained by writing gij (.) in the form K (t) f u (s)ds,
with 0 _< uj (s) <_ oo, and deriving the Bellman equation for the nonsingular problem.
It will turn out that uj (s) is either zero or infinity.

3.6.1. A finite difference interpretation of (3.12), (3.13). With appropri-
ate choices of ph(x, y) for the diffusion step (particularly those based on the "finite
difference model" in [10], [11]), the "diffusion part" of (3.11) can be rewritten in terms
of a formal finite difference approximation to V(x) + k(x) in (3.14). We now do the
analogue for the control term in (3.14). Let e denote the unit vector in the ith
coordinate direction and note that

l-ci =ph(x,x-eihlbK (h, 0)),
i- c2 ph(x,x--e2h bK (O,h)).

Subtract Vh(x) from both sides of (3.12). Then the inner minimum in (3.12), divided
by h, equals (i # j)

min [ (Vh(x eh) Vh(x)) (1 c) + (Vh(x eh + ejh) Vh(x))
c + al

[ h h J
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.. nn[V (x)- cV (x) / a] mn[Vh(x)’v / ],
which is just the corresponding term in (3.14) with the superscript h dropped.

4. Interpolation and rescaling.

4.1. Preliminary results. The methods that have been used to show Vh(x) -Y(x) for the more classical problems in [10], [11] need modification before they can
be applied to the singular control problem. We first define some standard interpola-
tions. Then we show why we might not have tightness and weak convergence in the
Skorokhod topology and, finally, we define the rescaling that is used to obtain the
desired limit results. The problem will also be put into a form that will be used in the
convergence proofs of 5. Define h(.) by h(t) hn on [tnh thn+l) for all n in which a
diffusion step is used. Since thn+l thn if n is a control or reflection step, this defines
h(t) for all t. Define the process

(4.1) Kh’J(t)- E Khn’J"
h <t

Define Bh(.), Mh(.), yh(.), uh(.), ?h(.), and jh(.) by (4.1), but using (respectively)
the sequences {b(nh)Athn}, {Mnn}, {Ynh}, {unh}, {nh}, and {nh}. Define Jh(t)

Now write
n--1

i /{diffusion step at i}
i=0

n-1 n-1

+ E /h/{cntrl step at i} " E hi /{reflection step at i}"
i=0 i=0

Using representations (3.4), (3.7), (3.9), and the definitions of the above interpola-
tions, the above formula yields (for h(0) x)

(4.2)

where

ch(t) x + Bh(t) + Mh(t) + Jh(t) + (I- P’)yh(t)
uh(t) + ?h(t) + h(t) + ’]:t<_t O(hPAth),

Bh(t) B(h(s))ds + O(h).

Also,{ ,-1
i=0 5Mh} is a martingale and

t+s

Eth[Mh(t + s) Mh(t)][Mh(t + s) Mh(t)] Eth a(h(s))ds + O(hP),

where Eth denotes the expectation given the data up to interpolated time t.
Approximating e-t by e-t on [thn, tnh+), for an admissible policy Kh, we have

the representation for the cost
(4.3)
Vh(x,Kh) Ef e-Sk(h(s))ds

+ Ef e-8[adgh,2(s) + a2dgh,2(s) + ldVh,(s) + 2dUh,2(s)].
The similarity of (4.2), (4.3) with (2.1), (2.3) suggests that our continuous parameter
interpolations are appropriate.
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4.2. A difficulty with the weak convergence. To prove that Vh(x) V(x),
we would like to use the weak convergence technique of [10] or [11]. By that method,
we first prove tightness of the set of processes in (4.2). We then extract a weakly
convergent subsequence and show that the limit satisfies (2.1) for some admissible
pair (K(.), W(.)), where K(.) limh Kh(.), and that either Vh(x) --, V(x,K,W)
or limhYh(x) >_ Y(x,g,w). This implies that limhYh(x) >_ Y(x). The reverse
inequality -hVh(x) <_ V(x) is then proved by a separate argument.

This method does not work here, since we do not know whether {Kh (.)} is tight.
Owing to the time scaling, it is possible to alternate diffusion and control steps in such
a way that the "limit" has a "jump," and there is no convergence in the Skorokhod
topology.

There are several ways to handle this "singular" problem. The pseudopath topol-
ogy that was used in [18] for a weak convergence study of a singular control problem
could be used. We prefer to use a time change argument of the type used in [7] since it
is more direct. The idea is to rescale time so that tightness is assured, take weak lim-
its, and then use an inverse transformation to obtain the desired result. The method
is quite useful for the study of limits of sequences of singularly controlled processes.
In preparation for this work in the next section, we introduce the following rescaling.

4.3. The rescaled processes. Define Ahn by Ahn Ath if step n is a "diffu-
sion" step, Ah 0 if we reflect on step n, and Ahn h if we control at step n. Set

Ei=0 Ai/h" Define (.) by h(0 0, and h(t) Ei=o Athi thn+l on the
interval [hn,hn+l]. Thus h(.) does not increase at these t at which a control step
occurs.

Define the rescaled and interpolated processes h(.) and /1)/h(.) by h(t) nh on

[nh, hn+) and ff/Ih(t) -=on- 5Mh on [nh, nh+), and define /h(.), h( ), ]yh(),
analogously to//h(.). We can write

(4.4)
h(t) x + h(t) + h(t) + dh(t) + (I- P’)h(t) ]h(t)

h h
+ Y (t)+ J (t)+ (negligible error),

(4.5)
Vh(x,Kh) Ef e-h(8-)k(h(s))dh(s)

+ Ef e-2h(s-)[ad[ih,12(s)
+ ad[’(s) + fld]’(s) + fld’(s)].

Comment. The rescaling "stretches out" the control and state processes, so that
they are smoother and tightness can be proved. In fact, the /h,ij(.) are Lipschitz
continuous with constant unity for all w. In the next section, the weak convergence
analysis is done for the rescaled process. Then, via an inverse time transformation of
the limit process, Vh(x) V(x) is obtained. The time rescaling arguments parallel
those in [7] as .closely as possible, but the notation and many details are different, since
in [7], we worked with a "physical" heavy traffic process with a different structure.

5. The convergence theorem. Theorem 5.3 proves the weak convergence of
the rescaled processes and gives a representation of the limit in terms of a rescaled
form of (2.1). It also shows that by a natural inverse scaling, we recover a process of
the form (2.1). Theorem 5.4 proves that Vh(x) converges to the cost for some process
of the type (2.1). Theorem 5.6 completes the proof that Vh(x) V(x).
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We next quote two results that will be needed in the proof of Theorems 5.3 and
5.5.

THEOREM 5.1 (The reflection mapping). Let P be a degenerate Markov transition
matrix, with spectral radius less than unity. Let z(.) E Dk[O,c) and consider the
equation

(5.1) x(t) z(t) + (I P’)y(t) u(t), xi(t) e [0, Gi] for all t.

There is a unique continuous function (in the topology of uniform convergence on
bounded time intervals) F(.) such that (y(.),u(.)) F(z(.)) has the following prop-
erties: F(.) maps ck[0,)into ck[0,c) and Dk[0,c)into Dk[O,c); the yi(.)
(respectively, ui(.)) are nondecreasing and nonnegative and can increase only when
xi(t) 0 (respectively, xi(t) Gi), and y(O) u(O) O. Also, (5.1) holds.

The proof is in [7, 8] and is an extension of a similar theorem in [16].
THEOREM 5.2. Assume that Assumption 2.1 holds true. Let Vh(x, O) denote the

Vhcost with no control used. Then supx,h (x, 0) < cx. Let {Kh’iJ(n + 1)- Kh,iJ(n),
h, n} be uniformly integrable. Then so is {Uh(n + 1)- Uh(n), h, n}.

The proof is the same as that of [7, Thms. 7, 9]; just replace the (M, B, B)
there by our (Mh, Bh, Gi).

Define the process/:/h(.) by

uh h
[_ih(.)=(h(.),h(.),h(.),h(.),j (.),]yh(.),] (.),h(.),h(.)).

The statement of Theorem 5.3 is a little long, but it seems preferable to have the
results in one place.

THEOREM 5.3. Assume that Assumption 2.1 holds true, and let Kh(.) be admis-
sible control policies. Then {/:/h(.)} is tight and the limit of any weakly convergent
subsequence is continuous with probability one (w.p.1.) Let H(.) denote the limit of
such a subsequence. Then Y(.) and J(.) are identically zero w.p.1 and (z(0) x here)

(t) x + (t) + (t) + (t) + (I- P’)(t)

where ](t) vl/12(t) + v2/21(t), (t) f b((s))d(s), and (.) is a B((s),
s <_ t)-martingale with quadratic variation process f a((s))d(s).

Assume, further, that suPh EIKh(t)I < for each t. Then, (t) w.p.1.
For t < c, define the inverse T(.) by T(t) inf{s: (s) > t}. Then T(t) - c w.p.1
as t -- oc. For any process (.), define the rescaled process (.) by (t) (T(t)).
Then

(t) x + M(t) + B(t) + J(t) + (I- P’)Y(t) U(t),

where J(t) vK2(t) + v2K21(t) and B(t) f b((s))ds. Also, M(.) is a Bt
B(H(s),s

_
t)-martingale with quadratic variation f a((s))ds. Finally, there is a

Bt-Wiener process W(.) such that M(t) f a((s))dW(s) and (g(.) g(0), W(.))
is an admissible pair.

Remark. By the definition of T(.) and the continuity of/:/(.), the components of
H(.) have paths in D[0, ). However, T(.), (.), g(.), U(.), or Y(.) might be dis-
continuous due to an "accumulation" of control actions at some time point. Consider
one case, where (t) 0 on an interval [0, 5), 5 > 0. This can happen if control and
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diffusion steps alternate for the chain, with a reflection step taken where necessary.
For this case, K(0) : 0. Consider another case, where there is an "accumulation"
of control actions "pushing out of G" when nh E OGh. Then Y(.) or U(.) would be
discontinuous. If such "accumulations" occurred at t 0, then there would be an
impulsive change in the state at t 0 of magnitude g(o) + (I- P’)Y(O) U(O).

Proof. Part 1. Tightness. Let T denote a finite stopping time. By the boundedness
of b(.) and the martingale property of {Mnh, n < c}, we have (the O(.) terms do not
depend on T)

EhIBh(T + s) Bh(T)I <_ O(S) + O(h),
EhIMh(T + s) Mh(T)I 2 <_ O(S) + O(h).

By [15, Thm. 2.7b], a sufficient condition for tightness of a sequence of processes
{Ca(’)} with paths in D[0, c) is that for each T <

(5.4) lim lim sup EI(T + s) (T)[ 0,
s--0 n -<T

where the supremum is over all stopping times less than T. Thus {Bh(.), Mh(.)} is
tight. Hence so is {/h(.),//h(.)} due to the "stretching out" of the timescale. By the
definition of the "stretched out" timescale, [h(t + s) [(h(t)l <_ Is[ + O(h). Thus

h
{/(.) } is tight. Consequently, by (3.8), {J (.) } converges weakly to the zero process.

Note that a reflection step can occur only after a diffusion or control step. Then
(3.10) and the fact that Ahn _> coh2 (see (3.4) above) for the control or diffusion step
imply that for s > 0 and any bounded stopping time T

^h ^h
Eh] (T + S) (T)I 2 O(h2)Ehr (number of reflection steps of h(.) in

interpolated interval IT, T + S))
O(h2)Eh (number of diffusion or control steps of h(.)
in interpolated interval IT, T + S))
O(h2)(s/h2 + 1) O(s) + O(h2),

^h
which together with (5.4) yields the tightness of {Y (.)}. All the limits of weakly
convergent subsequences of these processes are continuous w.p.1, since the jumps are
all of order O(h). We also have

^h ^h

Ehl (T + S)- 1 (T)I 2 O(h)Ehrlh(T + s)-

Write (4.4) as

(t) 2(t) + (I- P’)h(t) h(t),

where 2h(.) is defined in the obvious way from (4.4). We have proved that {2h(.)} is
tight and all the limits are continuous processes. By Theorem 5.1, there is a unique
continuous function F(.) (not depending on h) that is continuous and is such that
(h(.), )’h(.)) F(2u(.)) is the unique process for which u(t) e G and where the
components of (]zh(.), _rh(.)) can increase only when h(.) is on the appropriate
part of the boundary. Now by the continuity of F(.), {h(.),h(.)} is tight and
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^h
all weak limits are continuous. This and the above estimate on Y (.) imply that
^h
l) (.) converges weakly to the zero process. (Note that we defined ];-h(.) and Dh(.)
a priori. The representation of Theorem 5.1 tells us that they can also be obtained
as a function of 2h(.). This latter representation is useful to prove the tightness and
continuity properties of .rh(.) and h(.), as in [16], [17], [7].)

Part 2. Weak convergence. Abusinfl terminology, let h index a weakly convergent
subsequence, with limit denoted by H(.). The paths of/:/(.) are continuous w.p.1,

and J(t)- Y(t) =_ O. The limit satisfies (5.2). Since

[h(t) b((s))dh(s) + O(h),

we have the representation (t)= f b((s))d(s).
Recall that {Mh } is a martingale and that

Enh h Mn h[M,+, [M,+,
n+m--1

[a(h)Ath + O(h)Ath].

Let /)th denote the expectation conditioned on /th B([-Ih(s), s <_ t).
bounded/th-stopping time T, we can write

For any

+ 0,

+ +

h a(h(s))dh(s) + O(h).

Let q be an arbitrary integer, let ti _< t < s, _< q, and let h(.) be a bounded and
continuous real-valued function of its arguments. Then (5.6) implies that

Eh([-Ih(ti), <_ q)[lIh(t + s)-/l/h(t)] O,

Eh([h(ti), <_ q)([//h (t + s)- lih(t)][h(t + S)- //h(t)]’

t+s )a(h(s))dh(s) O(h).

By taking limits in (5.7), we see that (5.7) holds with the h superscript dropped.
The arbitrariness of h(.), q, t, t, and s imply that 21/(.) is a/t-martingale with the
quadratic variation given in the theorem statement.

Part 3. The construction of ((.). Since suPhEIgh(t)l < for each t by hy-
pothesis, we have - oc w.p.1 as t c. This is because, loosely speaking,
h(t + Igh(t)l) . t. Thus the inverse function T(s) defined in the theorem statement
exists for each s. Note that for u _> 0, we have {T(s) _< u} {(u) >_ s} E/u. Thus
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T(s) is a/t-stopping time for each s. Consequently, M(.) is a Bt =- B(H(s), s <_ t)-
martingale. The quadratic variation of M(.) is easily calculated to be f a((s))ds.
(This fact follows simply by rescaling the limit of (5.7).) Hence, there is a Bt-Wiener
process W(.) such that M(t)- f cr((s))dW(s). Clearly, (K(.), W(.))is an admissi-
ble pair, since Bt measures {g(s), s _< t} for each t. If a(.) is degenerate at some point,
then we might have to augment the probability space by adding an "independent"
Wiener process. It is also easily shown that B(t) f b((s))ds. Thus representation
(5.3) follows from (5.2).

The next theorem characterizes the limit of the costs Vh(x, Kh) and gives "one
half" of the desired convergence theorem for {Vh(x)}.

THEOREM 5.4. Assume that Assumption 2.1 holds true and use the notation of
Theorem 5.3. If {Kh(n+ 1)--Kh(n), h, n} is uniformly integrable, then for the weakly
convergent subsequence in Theorem 5.3 (indexed by h),

Vh(x, Kh) - V(x, K, W).

If the uniform integrability hypothesis is not satisfied, then

limVh(x, Kh) >_ V(x, K, W) >_ V(x).
h

Proof. By the weak convergence and the continuity of the limit/:/(.),

v"(z) E E
nO -(s- k(h (s))dh (s),

E e-(-)k(h(s))dh(s)-- E e-Z(S)k((s))d(s).

On inversion of the timescale, the right side of (5.8) can be written as
Ef e-Ztk((t))dt. By the uniform integrability of {gh(n + 1) gh(n), h, n} and
Theorem 5.2, {Uh(n / 1)- Uh(n), h, n} is uniformly integrable. The right-hand sum
in (3.11) can be written as

E e-Z2h(8-)[aldh’12(s) + a2d[h’21(s) + dh’(s) + 2dh’2(s)].

By the weak convergence, continuity of the limit process, and uniform integrability,
(5.9) converges to

E e-Z2(s)[ald[(2(s) + a2d2(s) + Id(s) + 2d’2(s)].

On inversion of the timescale, the above expression can be written as

(5.10) E e-Zt[adK2(t) + a2dK2(t) + idU(t) + 2dU2(t)].

The right-hand sides of (5.8) and (5.10) add up to V(x, K, W). In the absence of the
uniform integrability, we use Fatous’ lemma to get li___mhVh(x, Kh)

_
V(x, K, W). [:]
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THEOREM 5.5. Assume that Assumption 2.1 holds true. Then

(.111 imY(x) > Y(x).
h

Proof. Let K0h denote an optimal admissible policy for {nh, n < c)c}. By Theorem
5.2 and the discounted nature of the cost function, we have the following: For any
5 > 0, there is a T > 0 (independent of h) such that for each h there is a b’-optimal
policy Kh(.) for which no control is exercised after T, i.e., for n such that th _> T.
Since SUPh yh(x) < X:) by Theorem 5.2, we have suPh Igh(t)l (x) for each t. Then
the theorem follows from Theorem 5.4 and the fact that for any weakly convergent
subsequence of {/:/h(.)} with limit /2/(.) and with the rescaled process defined by
H(.) /:/(T(.)), we have Y(x,g, W) >_ Y(x), where (g(.), W(.)) is the admissible
pair in H(.).

To complete the proof that yh(x) - Y(x), we need to show that limhYh(x) g

V(x). To do this, we need to exploit the optimality of Vh(x). This is done in the
next theorem.

DEFINITION. The solution to (2.1) is said to be unique in the weak sense if the
probability law of (g(.), W(.)) determines that of (Z(.),g(.), W(.)). We will need
the following assumption.

Assumption 5.1. For each 5 > 0, there is some 5-optimal control for (2.1), (2.3)
for which the solution to (2.1) is unique in the weak sense. The uncontrolled system
(2.1) (i.e., with K(t) 0) has a weak sense unique solution for each initial condition.

THEOREM 5.6. Assume that Assumptions 2.1 and 5.1 hold true. Then Vh(x)
V(x).

Proof. To exploit the fact that Vh(x) is an optimal cost for the chain {nh, n
we choose a particular 5-optimal control for (2.1), (2.3), such that the approximation
can be applied to the chain and the associated cost compared with Vh(x). The
theorem will follow from a comparison of the costs associated with appropriate weakly
convergent subsequences. The chosen 5-optimal control is not a "practical" control,
but it does give the desired inequalities. The proof is an adaptation of a method
used for a "heavy traffic" problem in [7]. The proof of the existence of a 5-optimal
control with the following properties is in [7, 6]. There are analogous proofs for other
singular control problems. Let i > 0. Then under Assumptions 2.1 and 5.1 there is
a 5-optimal admissible (with respect to the Wiener process W(.)) control K(.) for
(2.1), (2.2) with the following properties: (i) There are T < , A > 0, -), > 0, and
p > 0 such that the KJ(.) are constant on the intervals [nA, nA + A), only one of
its components can jump at a time, and the jumps take values in the discrete set
kp, k 1, 2,...; also, g(.) is bounded and is constant on ITs, oc); (ii) the values are
determined by the conditional probability laws (which defines the functions q,k(’))

P{dK (nA) kp K(mA), m < n, W(s), s g nA}
P{dKiJ(nA) kplK(mA),m < n, W(p/),p/g nA}

=- qnk(g(mA),m < n, W(p/),p’ <_ nA),
and the qnki(’) can be supposed to be continuous in the W-variables for each value of
the control variables. Equation (5.12) says essentially that the conditional distribution
of dK(nA), given the "past," equals the conditional distribution given only certain
sampled values of the "past," and that it is a continuous function of these values.

We next adapt this control policy (5.12) to the chain {nh}. To do this with
minimal effort, assume that a-l(x) exists for x E G. The general case is handled by
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an "approximation" procedure. If step n is a "diffusion" step, then define

5Wnh a-l(nh)[5nh Enhinh].
Define whn n- Whi=0 5Wh and (.) by wh(t)= whn on [tnh, thn+). Note that

Enh h 0,

nWm--1

Ehn h h hpw.n+m-Wn] =En Z At/h(1 +O( ))I,
i--n

where I is the identity matrix.
By a proof analogous to the weak convergence part of Theorem 5.3, it is easily

shown that (wh(.)} converges weakly to a standard vector-valued Wiener process
W(.); in fact, this Wiener process can be used in the representation of the M(.) given
at the end of Theorem 5.3.

The /i-optimal control K(.) defined by (5.12) is "impulsive," and we will adapt
it for use on the chain. As preparation for the proof, we first note the following.
Suppose that we wish to apply a control of "impulsive" magnitude 5Kij to the chain
at some interpolated time to. Define nh min{k:tkh _> to}. Then starting at step
nh, apply [hKij/hi successive control steps, each of the randomized type of Case 2 in
3 (with reflection steps intervening if a control step takes the chain out of Gh). As
shown in Theorem 5.3, the effects of the randomization disappear as h --, 0. Let K0h(.)
denote the continuous parameter interpolation (analogous to (4.1)) of the control just
defined. We note further that {K0h(.)} is tight in the Skorohod topology, and the
weak limit is just a step function of jump 5K at time to. When using such controls,
there is no need to rescale time in the convergence proof, as was done in Theorem
5.3. The tightness holds because the values of the times th do not increase during
the sequence of successive control steps just described, since At 0 if k is a control
or reflection step. Hence the interpolation Kh,ij(.) is just a step function with jump
h[hK/h] at time th Analogous arguments can be used if there are a finite numberh"
of such jumps at discrete times

With the observations in the last paragraph, we are ready to define the "adapted"
form of g(.) for use on {nu, n < c}. Let gu (.) denote the interpolated form of the
"adaptation." We will define Kh(.) such that it has the same number of impulsive
changes as does K(.) (at most T/A), each being uniformly bounded. Each of the
impulses is to be realized for the chain via the method used in the example above.
The impulses are to occur as soon after the "interpolated times" kA as possible. Let
5Khn denote the value of the impulse that we would like to apply to the chain at
interpolated time nA. Define nh min{tkh: tkh _> .nA}. Then the 5Khn are chosen by
the conditional probability rule

P{hghn’ pk h(s),s
_

thn, 5Khm, m < n}
< <

The sequence {Kh(.), wh(.)} is tight. By construction, the weak limit has the dis-
tribution of the (g(.), W(.)) of (5.12). Thus we can denote the limit by (g(.), W(.))
without confusion.

By a weak convergence argument analogous to that of Theorem 5.3, but without
the time rescaling, we get {h(.), gh(.), wh(.), yh(.), uh(.)} converges weakly to a
set ((.), g(.), W(.), Y(.), U(.)), solving (2.1).
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By the weak sense uniqueness to the uncontrolled form of (2.1) for each initial
condition, and the impulsive nature of the control, the solution to (2.1) under the "im-
pulsive" 5-optimal control K(.) used here is also unique in the weak sense. Thus (.)
is the unique solution to (2.1) driven by the chosen 5-optimal control. Since {gh(.)}
is bounded, Theorem 5.4 implies that Vh(x, Kh) - V(x, K, W). By the optimality of
yh(x) and the 5-optimality of g(.), Y(x,g,w) <_ Y(x)+5 and yh(x,gh) >_ yh(x).
Thus --ihVh(x) <_ V(x). This together with Theorem 5.5 yields the theorem, n

6. A minimum-fuel-type problem. In the previous sections, only two direc-
tions (vl and v2) were allowed for the control actions (in addition to the possibility of
no control) at each step. This limitation was due only to the structure of the original
class of physical problems. To illustrate other possibilities, in this section we discuss
a problem where the number of possible control directions is infinite. Again, a special
case will be used to make the main point. The chosen case has an interesting addi-
tional feature due to the possibility of a rapidly varying control. Again, the problem
is canonical in that it is representative of a large class.

We consider a form of a problem dealt with by Soner and Shreve [2], where

dX b(X)dt + a(X)dW + dJ,

(6.1)
J(t) v(s)dK(s),

where Iv(s)l 1, and g(.) is a real-valued, right continuous, and nondecreasing
singular control with K(0) 0. Thus the control consists of the direction vectors
v(s) and the integral of the "force." For 3 > 0, the cost is

(6.2) V(X(O), J, W) E e-tk(X(t))dt + E e-tdK(t),

for a bounded and continuous k(.). For ease of development, a two-dimensional case
will be used. It should be clear, however, that the method works in any dimension.

or computational reasons, X(.) must be confined to a bounded set G. For
concreteness, we use the box G [_gl, gl] x [_g2, g2] where gi > 0, and we reflect
orthogonally to the boundary when on the boundary. Thus the computational model
is

(6.3) X(t) X(O) + b(X(s))ds + a(X(s))dW(s) + J(t) + Y(t) U(t),

where Y(.) and U(.) are the reflection terms; the yi(.) (respectively, Ui(.)) can in-
crease only when Xi(t) -g (g, respectively). Again, we use a rectangular grid Gh
in G and define the extended grid G- and boundaries OG and OGh analogously to
the definitions in 3.

For the choice of transition probabilities for the chain, we have the same three
cases as in 3. The diffusion step is handled exactly as was Case 1 (3). When
x hn E OG, we reflect to the closest point on OGh, so the reflection step is simpler
here, and no randomization is needed.

The control step (Case 2 of 3) is somewhat different. Refer to Fig. 4, where
nh x, and the next step is to be a control step. The form of the original model (6.1)
implies that the state increment in the control step can be in any direction and with
any magnitude. For programming simplicity for the Markov chain model, we limit the
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x d

ph

FIG. 4. The control directions.

magnitude of the control increments so that the state transitions are local. To realize
an arbitrary direction, randomizations are used as in 3. In particular, we suppose
for the Markov chain model that the control actions are the vectors connecting x
to points on the boundary of the square in the figure. Each point on the boundary
defines a direction and a magnitude of the control action. This "size" restriction on
the magnitude can be removed. From the theoretical point of view, it is not needed.
Let the 5Jnh in the figure be the actual desired control action. This action takes x to
a point on the boundary of the square. As in 3, is not usually a grid point, and
we define the transition probability by taking 5Jhn to be the conditional mean value
(Enhhnh) of the increment in the state. Analogously to the situation in 3, for this
example the control step transition probabilities are obtained by the randomization

(6.4) ph (X, dljhn) (1 p) 1 ph (x, elJhn ),

where p is defined in the figure. For consistency with (6.2), the cost associated with
this increment Jnh is the "magnitude" Knh _= IJnhl h(1 / p2)1/2. Define the
direction vh by 5jh_ vhhKhn.

Let ph(x, ylhJ) denote the transition probabilities under control action 5J. If no
control is used at a step, we write the transition probability simply as ph(x, y). Then
the dynamic programming equation analogous to (3.12), (3.13) is: For x e OG,

(6.5) Vh(x) Vh(nearest point to x on OGh);

for x E Gh,

Vh(x) min {e-th(x) ’]yph(x, y)Vh(y) + k(x)Ath(x),
minj [yph(x, ylJ)Vh(y + IJI] }.



STOCHASTIC SINGULAR CONTROL 1463

The inner minimum concerns the minimum cost over all possible control actions, given
that we use some control. The outer minimum chooses the better of (no control, the
best control).

6.1. The inner minimum in (6.6). The computation of the inner minimum
in (6.6) is not as formidable as it might seem. There are eight segments to consider,
depending on where 5J points, namely, (a, b),..., (g, k), (k, a). We take the minimum
over each segment separately. Consider segment (d, e). Then the minimum over the
segment is (where p is defined in Fig. 4)

(6.7) min [(1 p)Vh(x + elh) + pVh(x + elh e2h) + h(1 + p2)/2].
O<_p<

If Vh(x + eh e2h) >_ Vh(x + eh + e2h), then segment (d, e) will never be preferred
to segment (c, d). In this way, we reduce the number of segments that need to be
considered to four.

To evaluate the minimum in (6.7), note that if yh(x + elh) <_ yh(x + eh e2h),
then zero is the best value of p. If [yh(x +elh-e2h)- Vh(x +elh)]/h _< -1/x/, then
the best value of p is unity. Otherwise, the best value is obtained by differentiating
and satisfies

-p [Vh(x + eh e2h) Vh(x + elh)]
V/1 +p2 h

The above procedure could be simplified by using only a finite number of possible
values for the 5J. With appropriate choices, the optimal cost functions can be ap-
proximated as well as desired.

6.2. The convergence Vh(x) ---, V(x). Define

n--1 n--1

i--0 i--O

Define h (.), jh (.), Kh (.), and the scaled processes h (.),.. ", analogously to what was
done in 4. Then Theorems 5.3-5.6 continue to hold with the following modifications.
For Theorem 5.3, ]h(.) = (.), /h(.) = /(.), but (.) has the representation 0i(t)
f (s)d[4o(s), for a )(.) and/0(’) satisfying {)(s){-- 1 and/0(t) _</(t) for all t.
Also, for oh x,

(6.8)
(t) + +

+ v(s)dKo(s) + Y(t) U(t).

The fact that/0(t) might be less than/(t) (or, equivalently, Ko(t) <_ K(t)) for some
t is due to the fact that rapid time variations in the directions h(s) (the continuous
parameter interpolation of the {vh} in the "stretched out" timescale) can cause a
"cancellation" or "reduction" in the effects of the control. For example, consider the
case where 5Jhn+ --hJhn, for a consecutive sequence of values of n. Then the effects
of this sequence would not appear in the limits 3(.) or J(.) since these limits are
"averages" of the directions (loosely speaking), but they would appear in/(.) and
g(.).
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The analogue of Theorem 5.4 holds, but with

limyh(x, jh) >_ Y(x, J, W).
h

Theorem 5.5 holds and so does Theorem 5.6. The proof of the analogue of Theorem
5.6 involves first showing that for any 5 > 0 there is a simple form of a 5-optimal
control that has only finitely many impulses, each being bounded and taking a discrete
number of values. Then the argument of Theorem 5.6 can be carried over.

7. A constrained and ergodic singular control problem. Ergodic singular
control problems require some variations of the methods of the previous sections. To
illustrate the general ideas, we will work with a particular but important problem
class of the type developed by Harrison [8], Wein [9], [13], and Harrison and Wein
[12] to model the input control for a queueing network with several customer classes
with priorities and "throughput" constraints. The details of the development and
analysis of the models are in the references and will only be briefly discussed, so that
we can concentrate on the numerics. A numerical study of the model was carried out
in [13] using the Markov chain approximation method, but no convergence proof was
available. Our notation will be different from that in the references. Because of the
constraint and the absence of a cost on the use of singular control, the model has some
additional interest. The technique readily specializes to the more standard "ergodic"
situations.

The basic system model is

(7.1) X(t) X(O) + bt + aW(t) + J(t), X(t) e Rr,

where J(.) is a control that takes the special form

Ji(t) Ki(t)- Kr+l(t),
_

r,

where the Ki(.) are the singular controls, i.e., they are right continuous, nondecreas-
ing, and satisfy gi(o) 0. The K(.) (gl(.), ,gr+l(.)) is said to be admissible
or (K(.), W(.)) is said to be an admissible pair if K(.) is nonanticipative with respect
to W(.). The results can readily be extended to include state-dependent drift and
covariance, but for simplicity we concentrate on the cited problem. The system is
subject to the constraints

(7.3) lim
1

T
EKi(t) <- Ai, 1,...,r + 1, Ai > O,

and the cost is

/(K) lnE k(X(t))dt,

for a continuous k(.). Write A (A,..., Ar+) and define (A) inf ,(K), where the
inf is over all admissible controls such that (7.3) holds and X(.) is stationary. The
A-dependence of #(.) will be needed in 10.

The physical model leading to (7.1)-(7.3) contains r / 1 servers, and Ki(.) is the
heavy traffic limit of the suitably scaled, idle time of server i. The Xi(.) is called a
workload imbalance in [8], [9], [13]. Roughly speaking, the workload of server at
time t is the (suitably scaled) amount of work that exists for server from all the
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customers in the system at time t. The workload imbalance is a weighted difference
of the workload of servers

_
r and r / 1. This formulation is a very clever way

of simplifying the problem when there are many classes of customers with priorities.
The constraint (7.3) guarantees a maximum throughput for the system. Although
the problem has a special structure, "ergodic" forms of the problems in the previous
sections can be dealt with by the same techniques.

7.1. The "numerical" state space. For simplicity in the development, we
work with r 2. The method will obviously work for any r. The procedures and
results of the previous sections will be used where possible. For numerical purposes, we
need to bound the state space and use a setup somewhat similar to that in 3. Define
gi and the "box" G as in 6. The process X(.) will be confined to G for numerical
purposes. Normally in such problems, we need to experiment with the "numerical
boundary" to find one that is a suitable compromise between computational efficiency
and minimal interference with the essential features of the optimal value function and
control. For numerical purposes, we let X(.) reflect instantaneously on OG, with the
reflection directions being orthogonal to the boundary except at the corners, where
they point "diagonally" in.

With this modification (7.1) becomes

(7.4) X(t) X(O) + bt + aW(t) + J(t) + Y(t) U(t).

Y(.) and U(.) are the usual reflection terms. They are nondecreasing, take value
zero at t 0, and Yi(.) (respectively, U(.)) can increase only at points t for which
Xi(t) _gi (respectively, gi). Those properties uniquely characterize Y(.) and U(.)
(Theorem 5.1). For the problem in [9], [13], Y(t) U(t) O, for all t, if G is large
enough, since the optimal g(.) confines the X(.) to a bounded set.

The computational problem for even noncontrolled ergodic problems is still in its
infancy, also. One promising approach to the computation of invariant measures is in

8. The Markov chain approximation. The procedure of 3 will be followed
to construct an approximating chain and control problem. Again, the numerical
procedure consists in solving the optimal control problem for the Markov chain model.
The convergence proofs in 10 show that the optimal value functions for the chain
converge to 5/(/3).

For the approximation parameter h, let the gi be integral multiples of h. Let
Gh and G denote the h-grid and extended h-grid, respectively, on G, as in 3. We
also use the other notation of 3, where applicable. The types of state transitions are
divided into the same three cases as in 3. The reflection case (Case 3) (for e OG)
is trivial here, since we simply reflect back to the nearest point on OGh. The diffusion
step is also as for Case 1, and any transition function ph(x, y) can be used provided
that (3.1) holds. Indeed, due to the lack of state dependence here, it is easier to
construct transition functions with the required properties. Also Ath(x) Ath, not
depending on x. In general (3.4) implies that At h2/Q for some real Q > 0.

8.1. The control step. The transition function for the control step in 3 or
6 was obtained by first choosing the mean direction and then randomizing. Due to
the particular structure of J(.) here, the randomization is not necessary, although it
might be in problems where J(.) has a different structure.

If step n is a control step for the chain, then set 5 5J (hJ’, ., 5J,r),
and write 5.ih,i 5h,i_h,r+ 5K (hK’ h,r+

n --n --n Write ,’" ,--n ). We use r 2
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(O,O,h) (O,h,O) (O,h,h)

FIG. 5. Examples of control directions for the ergodic problem.

until further notice. If n is not a control step, then define diJnh 5Knh 0. Suppose
that h x E Gh, and we elect to exercise control. Then, as in 3, the transition
function ph(x, ylcontrol) must be "locally" consistent with (7.4). We let the values
of the 5Kh,i be either 0 or h. We could allow the increments to take values in any
bounded interval [0, k0] or in the set of points [h, 0,..., 0, 0 < ] and still get
the same convergence results. It is usually simpler, however, for the programming to
work with "local transitions." For our case r 2, there are seven possibilities for the
control actions (we eliminate the cases 5K (0, 0, 0) and (h, h, h), since they keep us
at the same state). Write x (x1, x2). Then the possible control actions are (refer to
Fig. 5) ig (0, 0, h), yielding un+ (x -h, x2-h); ig (0, h, 0), yielding nh+l
(xl,x2 + h); 5g (h, 0, 0), yielding h+ (x + h, x2); 5g (O,h,h), yielding

nh+ (X h, x2); 5g (h, 0, h), yielding + (xl,x2 h); and 5g (h, h, 0),
yielding hn+ (X / h,x2 + h). The transition function for the case of general r
should be obvious.

8.2. The control problem for the Markov chain. In [11, 11] a convergence
theory for the discretization of ergodic control problems is given. Owing to both
the constraint (7.3) and the "tightness problems" stemming from the nature of the
singular control problem as discussed in 4, that development cannot be used directly
here. We will develop the appropriate adaptation of the technique of 3-6. Set
Athn 0 if step n is either a control or reflection step, and set Athn Ath otherwise.
(In [13], Atnh Ath was used for all n. The limit results are the same for both
cases, since it can be shown that the "fraction of the number of steps" spent either
on the boundary or controlling goes to zero as h 0.) Define the interpolation
h(.) as in 4. For the Markov chain model, we will work with feedback policies and
stationary chains. Since the state space is finite, for each feedback policy, there is
some stationary chain. {h, n < c} will refer to such a stationary chain. If the
stationary chain under the chosen feedback policy is not unique, then pick any one.
The choice will be irrelevant. Let {bKhn} denote the sequence of control actions for
the chain. We use Kh to denote the control policy. Define the interpolation Kh(.)
(intervals {Atnh})from {bKhn} analogously to (4.1).

Let Nh(T) min{n: t > T}. A literal translation of the continuous parameter
problem into the stationary chain yields the cost

(8.1) lim
T T

’Nh(T)-1 h hE=0 k()At
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and the constraint

x’Nh(T)-1 [ .(h,i
(8.2) lim

E z.,,=0 v__, < A.
T T

It is implied by the proof of Theorem 10.1 and the comments below (9.1) that
if (8.2) holds, then the fraction of steps that are either control or reflection steps is
O(h). By using this, (8.1) and (8.2) can be approximated by (with errors of the order
O(h) in (8.4))

N-1

(8.3) lim
1 ,h

N -E E k(hn)---- (Kh)’
n-"O

N-1

(8.4) lim
1 ,’ _<

n--0

For the same reasons, the left sides of (8.1) and (8.2) equal (modulo O(h)), respec-
tively,

T
Ek(h(s))ds, limT EKh’i(T)"

Define h(A) --infgh(Kh), subject to (8.3) and the stationarity of {nh, n < c}.
Due to the constraint (8.2), a dynamic programming formulation such as (3.12)

and (3.13) cannot be used, and the optimization problem must be phrased in terms
of a linear programming (LP) formulation [20], [21].

9. The LP formulation. A control policy for {h, n < } is said to be pure
Markov if for each state a unique control action is assigned. A control policy is said to
be randomized Markov if for each state a distribution (depending only on the present
state) of control actions is assigned. Due to the constraint, there might not be an
optimal control in the class of pure Markov policies, but one always exists in the class
of randomized Markov policies.

The LP formulation uses stationary chains {h, n < c} and randomized Markov
policies. Let ph(x, y 15K) denote the transition function, given a control action 5K.
We use 5K 0 (0, 0, 0) to denote that no control is used. We use 71-h to denote
the stationary probabilities for the chain, i.e., rh(x) p{h x}, 7h(x, hg)
P{hn x, 5Khn 5K}, rh(hK O) P{hK 0}, rh(Gh) -] rh(x), etc.
The control to be used at any state is determined by the conditional distribution
P{hKhn 5g hn x} rt(x, 5g)/Trh(x).

Thus rh(x) -,K rh(x, 5K) and rh(hK) E rh(x, hK) The fact that the
probabilities sum to unity yields the constraints

(9.1) rh(x) E ph(y’x 15K)rh(y’hK)’ E rh(x) 1, rh(x, hK) >_ O.
y,hK x

Following the development in [13], and using the fact that Athn 0 if nh e OG
or if n is a control step, the constraint (8.2) can be written as

EhK hrh(hK O) <_
EAthn (h2/Q)Trh(Gh, 5g O)
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or

(9.2) rh(hK h) <_ -h(Gh, 5K O) O(h).

Note that (9.2) implies the probability that any step n is a control step is O(h).
Using this and the fact that a reflection step must be followed by either a control or
a diffusion step yields than the mean value of the total variation of the Uh(.) and
Yh(.) terms on the interpolated time interval [0,T] is (modulo O(h) times the value
of (9.3))

(9.3) 7rh(OG-) h(T/Ath) O(1/h)rh(OG).
The proof of Theorem 10.1 below implies that the mean variation of the reflection
terms for a stationary process satisfying the constraints is bounded uniformly in h on
any fixed interpolated time interval. Thus by (9.3), rh(OG) O(h). Using this and
(9.2) yields that rh(Gh,hg O) 1- O(h), and (modulo O(h2)) we can rewrite
(9.2)

(9.4) rh(hgi h) Aih/Q, r + 1.

An analogous argument applied to (8.1) yields the cost function

(9.5)
k(x)rh(x, 5g O)

r(Gh 5g O) k(x)rh(x) h(gh)’
XGh

where the equalities are all modulo O(h). Define h infg h(Kh), where the
infimum is over the randomized Markov policies satisfying (9.4).

9.1. The LP problem. For the numerical procedure, the LP formulation of the
Markov chain control problem is the minimization of the right-hand side of (9.5) sub-
ject to the constraints (9.1) and (9.4). The "activity" variables of the LP formulation
are the rU(x, 5K). The number of constraints totals h (number of points in the
state space G plus 1) plus (r + 1), the first set of (9.1) yielding the first group and
the second group coming from the r + 1 constraints (9.4). h is the maximum number
of nonzero variables in any basic solution to the LP. Thus there are at most (r + 2)
states x that rh(x, 5K) might be positive for more than one value of 5K. Thus, there
are at most (r + 2) states at which the control is actually "randomized," for any h.
The effects of these states disappears as h 0.

Since the state space G is finite, for each h and each randomized or pure Markov
control policy, there is at least one stationary chain for each transition function. The
LP solution gives a least cost stationary chain, whether or not the least cost chain is
unique.

10. The convergence theorem.

10.1. Preliminary calculations. The following facts and definitions will be
useful in Theorem 10.2. Let h(.) denote the optimal steady-state probabilities, via
the LP (9.1), (9.4), (9.5). Let {, 5K, n < } denote the associated stationary
chain and control policy. Let h denote the associated ergodic cost. We have that
5 equals 5Y or 5U if n is a reflection step and 5 5K if n is a control step.
If n is a "diffusion" step, then (see (3.4))

bath +/ + O(hAth),
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where

Ehnhnhn an’Ath + O(hPAth), Ehnhn O.

Thus

h+l ho + bnAth +
n

n+ + Yn+ U+ + (negligible terms).
i=0

The negligible terms are

n-1

E O(hPAt))- bAth(number of reflection or control steps in [0, hi).
i=0

The continuous parameter interpolation is (see 4 for the definitions)

(10.1) (h(t) (h(o) + bt + Mh(t) + Jh(t) + yh(t) uh(t) + (negligible terms).
Let 0 < t < < tq, where Iti+-til > Ath for small h. Then due to the stationarity
of {(nh, n < } and the independence of Ath of x, the distribution of {(h(t0 + ti),
Kh(to+t)--Kh(to), <_ q} does not depend on to for small h. Also, by the stationarity
and the constraint (9.4),

(10.2) E[Kh’i(to + t) Kh’i(to)] <_ ,it + O(h) for all t,to.

The problem of proving tightness for {Kh(.)} is the same here as that in 4, and
we cannot necessarily find a weakly convergent subsequence of {(h(.), gh(.),...} in
the Skorokhod topology. However, a variant of the rescaling method used in Theorem
5.3 will work. Define the processes Ch(.), h(.), /h(.),.. ", as in 4 and Theorem 5.3.

The "tightness" situation is better here than in the problem of 2-6, since the
probability that any n is a control step is O(h). It will be seen that this implies
that (.) and ((.) are continuous w.p.1 at each t. In the convergence proof we will
need to show that (h(t) converges to ((t) in distribution for each t. A basic tool is
formally stated in the following "continuous mapping" lemma, whose proof is easy
and is omitted. Let R denote the real line.

LEMMA 10.1. Let ’(.) be a nonnegative, nondecreasing function with (0)
O, which is right continuous and let (t) - c as t . Define T(.) by T(t)
inf{s: (s) > t}. Then T(.) e D[0, ). Define the map : D[0, ) R by ((.))
T(to). Suppose that T(.) is continuous at to. Then (.) is continuous at -(.).

10.2. The convergence theorem: Part 1.
THEOREM 10.2. The sequence {h(.),... ,h(.)} is tight. Abusing notation, let

h index a weakly convergent subsequence with limit denoted by ((.), (.),... ,(.)).
Define T(.), (.), g(.),.., as in Theorem 5.3. Then there is a standard vector-valued
Wiener process W(. such that

(10.3) ((t) ((0) + bt + aW(t) + J(t) + Y(t) U(t),
where Ji K- K+ and K(.) is nonanticipative with respect to W(.). The Y(.)
and V(.) are the appropriate reflection terms. The distribution of (((to + .), K(to +
)- K(to)) does not depend on to. Also,

/h @(Kh)
_
(K) E k((s))ds/T, for each T > O,

(10.4)

EKi(t) <_ ,it, for all t.
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Proof. The tightness of {h(.),...,h(.)} is proved as in Theorem 5.3, as is
representation (10.3) and the nonanticipativness of K(.). For any t, s _> 0, (10.2)
implies that

(10.5) E]g(t + s) KS(t)] _< -E]gh’(t + s) gh’(t)l <_ s.
The bound on {Kh,i(.)} in (10.2) implies that (t)
denote the set 7" {t" P{T(.) is discontinuous at t} > 0}. We claim that T is empty.
The proof is as follows: Let T(0-) 0. Given to _> 0, suppose that there are 5i > 0
such that

P{T(t+o T(t) >_ 51} >_ 50.
This can only happen if for any 52 > 0,

li---P{Igh(to + 52) gh(to 52)1 _> 51/2} >_ 50/2.
h

But due to the arbitrariness of 52, this latter inequality is impossible by (10.5). This
implies that the probability is zero that T(.) will jump more than 51 at to, which
proves the claim, since 51 is arbitrary. Thus T(.) is continuous w.p.1 at each t >_ 0,
and so is g(.). Now by representation (10.3) and Theorem 5.1, Y(.), U(.), and (.)
are also continuous w.p.1 at each t _> 0.

Now define the inverse function Th(t) inf{s" h(s) > t}. We can write

(10.6) h(t) h(Th(t)), gh(t) (h(Th(t)).
Let q be an integer and let 0 g tl <.’. < tq. Since T(.) is continuous w.p.1 at each
t, we have that {Th(ti), <_ q} converges weakly to {T(ti), g q}. Now Lemma
10.1, the definitions of Th(.) and T(.), the weak convergence of {h(.),... ,h(.)} to
((.),... ,(.)), the w.p.1 continuity of (.) and/(.) at each t, and (10.6) yield (in
the sense of weak convergence)

(10.7) h(ti) - (T(ti)) (ti), <_ q,

g(ti+) g(t) --. [i(T(ti+)) [’:(T(t)) g(t+) g(t), _< q.

By (10.7) and the fact that the distribution of (h(to + .), Kh(to + .) Kh(to))
does not depend on to (in the sense used above (10.2)), we have that (.) is stationary
and the distribution of ((t0 + .), g(to + .)- g(to)) does not depend on to. By the
stationarity properties, the cost can be represented as follows:

t/h E k(h(s))ds + O(h)

Th(t)
E k(h(s))dh(s) + O(h)

E k((s))d(s) E k((s))ds

tEk((O)) t/(g),

and the theorem is proved.
Theorem 5.2 implies that

limh(A) >_ (A).
h
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10.3. The convergence theorem, completed. For the problem of 2, it was
not hard to find a convenient -optimal comparison control so that the "reverse in-
equality," limhVh(x) <_ V(x) could be obtained in Theorem 5.6. It is more difficult
to choose a "comparison control" for the ergodic problem. We need to find a "nice"
-optimal control for the ergodic problem for (7.4) with constraint (7.3), which can be
adapted to {nh, n < } so that a result such as in Theorem 5.6 can be proved. Little
is known concerning optimal or -optimal controls for singular control problems for
either the ergodic or nonergodic case. To proceed, we need to make an assumption
on the existence of a -optimal control of a particular form.

Numerical experience and the literature concerning problems where an optimal
control has been characterized (for ergodic or not ergodic problems) [2], [9], suggest
that Assumption 10.2, below, is quite reasonable. Assumption 10.1 is needed, since
the constraint (9.4) is not necessarily satisfied when the control of Assumption 10.2 is
applied to the chain, and it is necessary to perturb the constraint slightly. Assumption
10.1 also does not seem to be restrictive, although we have not been able to prove
that it holds in general. A typical control boundary from [13] is .shown in Fig. 6.

FIG. 6. A numerical solution: Piecewise linear approximation to the boundary.

Assumption 10.1. (.) is continuous at A if all A > 0.
For 0 > 0 and A A0 > 0, define A- 0 (,kl -0,’", ,kr+l -0).
Assumption 10.2. For any small 0 > 0 and constraint vector A- 0, there is

a -optimal control K(.) (define J (.) (K(.)’- K(.), 1, 2}) satisfying the

following conditions. There is a set ( that is the closure of an open set in G and
is such that the boundary 0( is composed of a finite number of segments 0(,...,
each being continuously differentiable. The segments are nontangent at the corners
where they meet. J(.) reflects to the "interior" of G, and the directions of reflection
on 0(, are constant on each 0(. The reflection directions {} are taken from the
set of seven directions defined in 7. The reflectings are not in opposite directions on
adjacent boundary segments. There is a weak sense unique stationary process X(.)
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satisfying

(10.8) X(t) X(O) + bt + aW(t) + J(t)

and

(10.9) P{Xe(t) is an e-neighborhood of any "corner" of 06} & 0.

Remark. By "reflectin to the interior," we mean that the angles between i and
the outward normals to cOGi are strictly greater than r/2.

Remark. The condition seems broad as it stands, since the boundary segments
can be made aritrarily small. But we note that the condition can be weakened to
allow continuous (rather than constant) reflection directions on each segment, subject
to the "interior pointing" and "corner" conditions in Assumption 10.2.

THEOREM 10.3. Assume that Assumptions 10.1 and 10.2 hold true. Then

Proof. We need only prove that

(10.10) l-h(A)
_
(A).

Let 5 > 0. By Assumption 10.1, choose small 50 > 0 such that

(10.11) _< +

Following the general approach in Theorem 5.6, we "adapt" Jh(.) to {nu, n <oc} as
follows. The state space is just ( n Gh. For any step n where distance (nh, 0()> h,
use the diffusion step transition probabilities. Otherwise, the step will be a control
step with the increment 5hn =_ 5Jhn being in the reflection direction of the nearest
boundary segment. If two boundary segments are equally close, use any one of the
two directions. By (10.9), the choice will not matter in the limit. As in 8, we can
write 5Jhn 5Kin 5K3n for some 1, 2, where one or more of the components of
{hKi, <_ 3} are positive. Analogously to the notation in 8, let K(.) denote the
"adapted" control policy and accordingly define J(.).

For each h, there is at least one stationary process under the given control policy.
Let {nh, n < c} be such a stationary process and define h (.), h (.), h (.),..., in the
usual way. Suppose for the moment that (it will be shown to hold below)

(10.12) sup lZ’llh[t)l2"’’’ < , for each t < .
h

Then we have

(10.13) P{control used at step n} O(h).

(See (9.2) for a related calculation.) Using (10.13) and a proof similar to that of
Theorem 10.2, it can be shown that vh(K)) --, v(Ke) and that the limit process (.)
satisfies (10.8) with control Ke(.), and that the distributions of ((t0 + "), Ke(to +.)-
Ke(to)) do not depend on to.

As in Theorem 10.2, (10.13) implies that the set T (defined in Theorem 10.2) is
empty. Thus, K(t) --, K5(t) in distribution for each t >_ 0. Hence, (10.12) implies
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FIG. 7. A boundary sector.

that EKe(t) EKe(t). Since EKe(t) <_ (A- 50)t, we have EKe(t) <_ At for small
h. Since ’h(A) is the optimal ergodic value for the stationary chain under constraint
value , we have that h(A)

_
/h(Kt) for small h. Since, by Assumption 10.2, K(.)

is -optimal under constraint vector A- 0, we have -y(K) _< (A- 0)/ . The
above facts imply that for small h, h(A) _< ")’h(gt) - /(g) <_ (A 50) + 5. Now
(10.10) follows from this, (10.11), and the arbitrariness of 5 and 50. Thus only (10.12)
remains to be proved.

To prove (10.12), we adapt the proof of [7, Thin. 7]. Recall that Ynh Unh 0
here, and write h(t) in the form

{h(t) {h(o) + Dh(t) + J(t),
where (10.14) defines Dh(t). Let $1 denote the intersection of a closed disc with (
such that at most half of two adjacent segments of 0( are included. For ease of
description, refer to Fig. 7, where a "typical" $1 is defined. Let Nh (S) denote the h
neighborhood of a set S. For small 51 > 0, define the stopping times {Tnh} recursively
by

T
h min{t: h(t) e Nh(O $1)} A 1,

T2hm min{t > T2m_l"distance(h(t),S1) >_ 5} A 1,
h min{t > h(t) Nh(O $1)} A 1.T2m-- T2m

Define Nh -min{m" ’2hm 1}.
By (10.14), we can write

(10.15) J(1) [h(%)_ h(%_)]_ [Dh(Tm)_ Dh(%_)]
m=l m=l

By (10.15) and the properties of Dh(.), we see that there are c > 0 such that

E]gh(1)] 2 c + c2E]Nh] 2.
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So we need only bound EINhl 2. Refer again to Fig. 7. There is 52 > 0 such that
(for small h) for h(t) to go from the exterior of N51 ($1)N ( at some time t to
Nh(SI 0) at some time t + s, we need IDh(t + s) Dh(t)l

_
52. Recall that oh(.)

is the interpolation of a sum of terms that are either proportional to Ath or else are
martingale differences whose variances are O(Ath). Thus given 53 > 0, there is 54 > 0
such that for all finite stopping times T and small h,

(10.16) P{ sup Dh(s) Dh(T)I >_ 621 data up to time T} _< 1 63.
"rH-54>s>7"

Inequality (10.16) implies that (for m _> 1)

(10.17) P{’2hm+l- Th2m _> 4 data up to time Th2m} >_ 3.

But (10.17) implies that all moments of Nh are bounded uniformly in h. Thus
suPhEIJh(1)[ 2 < . Inequality (10.12) follows from that by the stationarity and
the fact that the i on adjacent boundary segments do not point in opposite direc-
tions. []
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A FRAMEWORK FOR TWO-DIMENSIONAL HYPERSTABILITY
THEORY BASED PROVABLY CONVERGENT ADAPTIVE TWO-

DIMENSIONAL IIR FILTERING*

SANKAR BASUt

Abstract. A set of results for two-dimensional quarter plane causal systems reminiscent of one-
dimensional hyperstability theory have been reported. The key to this development is a little known
result of Landau [Math. Ann., 62 (1906), p. 272], which asserts that a positive polynomial in two
variables can be expressed as the sum of squares of polynomials in one variable whose coefficients are
real rational functions of the other variable. The tools used are largely based on notions of passivity
and the results obtained can be interpreted as a two-dimensional quarter plane causal generalization
of the fact that if the total flow of energy into a dissipative system is upper bounded then both
input and output asymptotically die out to zero. An adaptive two-dimensional recursive filtering
scheme potentially useful in propagating wave type two-dimensional problems is considered next. It
is then shown via our two-dimensional hyperstability results that the adaptive scheme converges in
an appropriate sense.

Key words, two-dimensional system, passive scattering systems, adaptive filtering, circuit
synthesis

AMS(MOS) subject classifications. 93C55, 93D15, 49E20

1. Introduction. The purpose of this paper is two-fold. The first is to develop
two-dimensional (2-D) counterparts of some central aspects of the well-known hyper-
stability theory [1], [4], and the second is to show its applications in 2-D adaptive
signal processing schemes mostly paralleling the one-dimensional developments re-
ported in [28], [32], [36]. While our developments are largely motivated by potential
applications in adaptive filtering, in view of the important role of hyperstability the-
ory in various areas of system theory such as in control system systhesis [1], stochastic
realization [2], digital filter stability [3], etc., we believe that 2-D extension of such
a theory is of independent interest. In relating these apparantly disparate notions,
the one-dimensional Kalman-Popov-Yakubovitch (KPY) lemma (otherwise known
as the positive real lemma [5]), which provides a characterization of the property of
dissipativeness of arbitrary (minimal) realization of systems, proves to be pivotal.
While the KPY lemma can be derived via techniques akin to those known in linear
quadratic optimal control theory [6], it can alternatively be viewed [5] as a conse-
quence of synthesizability of positive (real) transfer functions or spectral factorability
of parahermitian positive definite transfer matrices [2], or as a combination of both.
Note that in the case of scalar transfer functions this last result is a reformulation of
the fact that positive polynomials can be expressed as the sum of squares of two real
polynomials. It is, however, well known [15] that this latter fact does not extend to
2-D dimensions in general. Our starting point in this work is a little known theorem
of Landau [7] as a follow up of earlier work on the theory of curves by Hilbert [8] that
positive polynomials in two variables can, in fact, be expressed as a sum of squares of
polynomials in one variable whose coefficients are real rational functions of the other
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variable. When interpreted as a spectral factorability type result, it allows us to
embed an arbitrary positive or bounded (real) vector valued transfer function into
a lossless positive or bounded (real) matrix. This is reminiscent of unitary dilation
of contractive operators [14] and is well known in 1-D (infinite-dimensional) system
theory. This key observation, along with synthesizability of lossless 2-D transfer func-
tion matrices [24]-[26], then demonstrate the synthesizability of arbitrary positive
or bounded (real) transfer functionsma fact that has remained unavailable in the
literature thus far. Since a passive synthesis automatically provides a dissipative re-
alization, it in turn leads the way to a weak form of the 2-D KPY lemma and to our
2-D hyperstability results.

We wish to make a further observation on the 2-D aspect of our problem. It is
well known that the local states such as those in 2-D Roesser’s state space model
[15] or in any other 2-D state model do not contain the full information regarding
the complete history of the system. On the other hand, the global states are known
to be infinite-dimensional. Although the details of our 2-D theory differ considerably
from the theory of infinite-dimensional systems (which, in fact, are at least partially
motivated by the study of partial differential/difference equations) analogous results,
namely, those on linear quadratic optimal control [11], the KPY lemma [12], [13],
including lossless embedding, i.e., unitary dilation of contractive operators [14], exist
in this context. At a broad conceptual level these can, therefore, be taken to be
supportive of the line of development reported in the present paper.

We now turn to applications in adaptive filtering. While recent literature has
witnessed a profusion of activity in 1-D adaptive filtering both in the deterministic
and stochastic context, in spite of its potential practical applicability, very little has
been reported for higher dimensional problems. We refer to the books [34]-[38] and
the recent review [33] for a survey of 1-D adaptive signal processing, whereas works
of more control theoretic flavor are available, e.g., in [39], [41], [42]. Among these, the
only deterministic recursive filtering scheme for which convergence of the adaptation
algorithm can be theoretically demonstrated is known as the HARF (hyperstable
adaptive recursive filter) and was first reported in [28]. Subsequently, the theory has
been elaborated and further variations and simplifications are reported in [29]-[32],
[36]. In this paper we show that the 2-D hyperstability theory developed in the first
part of the paper can be crucially exploited in extending HARF, including its proof of
convergence, to 2-D. Since we consider quarter plane causal filters, 2-D problems of the
propagating wave type (specifically, those admitting hyperbolic differential/difference
equation formulation), i.e., those arising in beamforming and/or target tracking, are
expected to be particularly suitable problem areas where this theoretical study can
find use. It may be mentioned that the need for adaptive filtering in image processing
type 2-D problems has also been recently recognized (see, e.g., [44]-[46]) and the
potential relevance of our work in this area, at least at a conceptual level, cannot be
excluded by any means.

In 2 notation and terminologies are introduced first. In 3 a specific type of
weak convergence of 2-D quarter plane signals relevant to our ensuing discussions on
2-D adaptive filtering is discussed. In 4 the hyperstability results are developed,
while 5 introduces its applications to 2-D HARF type algorithms. In 6 discussions
are presented and conclusions are drawn. An appendix is included to elaborate on
Landau’s theorem and its relevance to 2-D lossless embedding on which this entire

The result also follows from combined use of Corollary 1.10 and the Cassel-Phister Theorem
1.3 in [9].
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work is based.

2. Notation and terminology. Two-dimensional discrete signals are denoted
by symbols such as u(m, n) or y(m, n) etc., where (m, n) are points in 2-D lattice space.
All signals, unless otherwise specified or obvious from the context, are of quarter plane
support. In the 2-D lattice space the following set of points will be of interest: the
triangular set TN {(m, n); 0 _< m+n <_ N}; the line set Cg {(m, n); m+n N}
and the trapezoidal set Rnog {(m, n); no <_ m + n <_ N} TN \ Tno-1.

Z-transforms of 2-D signals, e.g., u(m, n), y(m, n) etc., will be denoted by U(zl, z2),
Y(zl, Z2) etc., where z, z2 are the transform variables. Similarly, pl, p2 will be used
to denote the (Laplace) transform variables for continuous signals, which we will also
feature in the present work. The (closed) unit bidisc of the complex biplane will be
denoted by () D, i.e., {(z,z2); Izl <_ 1, i= 1,2} or D {(z,z2); Izl < 1, i=
1,2} and its distinguished boundary Izl- Iz21- 1 will be denoted by T. Also, the
notation "Re" will denote the real part of a complex number. A real polynomial is
one which has real valued coefficients, and a real rational function is the ratio of two
real polynomials. The superscript denotes complex conjugation. If g g(zl,z2) is
a rational function then its paraconjugate is g. g*(-p,-p) and if a a(z,z2) is

a rational function then its discrete paraconjugate is a*(z-l,z-l). The partial
degree of a two-variable polynomial g in the variable z is denoted by degg.

The notation I1" II denotes a Eucledian norm of a row or a column vector. The
norm Igl of a matrix g denotes the spectral norm IHI- supllxll IIHxll. A rational
matrix (i.e., one with rational function entries) is real rational if its entries are so.
The superscript T denotes Hermitian transpose, whereas superscript t denotes simply
transpose of a matrix; -as a superscript or as a subscript to a rational matrix
denotes the matrix with the corresponding operations performed on its entries and
subsequently transposed (sometimes known as the parahermitian transpose). The
notation @ denotes the direct sum of matrices.

A rational function g g(pl,p2) is said to be positive if Red _> 0, whenever
Rep > 0, 1, 2. Similarly, a a(z,z2) is discrete positive if Red _> 0 in D. Also,
g g(p,p2) is bounded if Ilgl] -< 1, whenever Rep > 0, i-1,2, and a is discrete
bounded if Ilall _< 1 in D. If, in addition, the rational function concerned is a real
rational function then it is included in the terminology by saying g is positive real,
a is discrete positive real etc., as the case may be. Furthermore, a is said to strictly
discrete positive (real) if it is discrete positive (real) and, in its irreducible form,
neither its numerator nor its denominator has any zero in D. Correspondingly, a is
said to strictly discrete bounded (real) if it is discrete bounded (real) and Ilall < 1 in
D.

3. Almost everywhere convergence of 2-D quarter plane double se-
quences. Our applications in adaptive 2-D IIR filtering of hyperstability theory re-
quire consideration of convergence of double sequences x(m, n) in the quarter plane.
We need to make precise a notion of convergence which does not demand that x(m, n)’s
individually become small far away from the origin of the 2-D lattice space, but at
"most" points they do in an areawise sense. We proceed as follows.

Let (CN) be the number of points on CN such that the 2-D signal x(m,n)
satisfies Ix(m, n)l > . Then x(m, n) is said to be almost everywhere convergent to
zero if for any no and arbitrary we have
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(1)
x-no+N

lim z-,k=no v(Ck) < C < c,
g--o ln(N + no + 1)! In n!

where C is a constant independent of N.
The intuitive content of this definition is as follows. Consider the trapezoidal set

Rnog in the 2-D lattice space, which, in fact, is of width (N + 1) with parallel sides
of the trapezoid being the lines C, and CN. Note that the total number of points in

RnoN is

1
(N + 1)(N + 2no + 2)IR ogl

Before proceeding further we need to recall Stirling’s formula [47] which estimates
n! for large n as follows:

1 1
lnn! (n 1)lnn n + lnn+ In 27r.

The essential point for us is that as n , In n! grows as (n- 1)in n which is
faster than n but slower than n2.

Thus as N - c, the ratio

RnoN{Number of points in Rnog where Ix(m, n)l > .}

N

.(C)RnoN
C< {ln(N + no + 1)!- lnno!}RnoN
ln(N + no + 1) in no!C
-(N + 1)(N + 2n0 + 2)2

where the first inequality follows from (1), the last equality follows from (2), and the
last limit follows from the fact that, due to Stirling’s formula, the numerator grows
with N as (N + no + 1){ln(N + no + 1) 1}, whereas the denominator grows as N2.

Thus, almost everywhere convergence to zero of x(m, n) implies that the relative
number of points in RnoN, where Ix(re, n)] > with arbitrary, is small in the
asymptotic limit N - c.

Now let us define

TN

We then have the following result.
THEOREM 3.1. If (4) holds for all integers N > 0, where a, are constants

independent of N
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(4) SN < N a +
then x(m, n) is almost everywhere convergent to zero.

Proof. Fix e > 0 arbitrarily. Suppose for contradiction that x(m, n) is not almost
everywhere convergent to zero. Then for some fixed no it is possible to find an integer
N, arbitrarily large, such that

no+N

E lye(Ck) > C{ln(N + no + 1)!- In no!}
k--no

for every fixed constant C. However, we also have from (3) and the definition of
lye (Ck) that

(6)
no+N

>
k-’no

Combining (5) and (6) we have that for some fixed no there exists arbitrarily
large N such that the following inequality set holds true:

Sno+N Sno- > eC{ln(N + no + 1)!- lnno!},

(8) Sno+N > Sno-1 q- eC ln(N + no + 1)! eClnno!.
The second term in (8), by Stirling’s formula, grows with N as (N+no+ 1){ln(N+

no + 1)- 1}, which is faster than the linear growth condition imposed on SN by (4).
Thus, (8) contradicts (4). Since > 0 is arbitrarily small we have completed the proof
of our result.

We next explore some useful properties of almost everywhere convergent se-
quences.

PROPOSITION 3.2. Let x(m, n) and y(m, n) be both double sequences with quarter
plane support each convergent to zero in the almost everywhere sense. Then z(m, n)
x(m, n)+ y(m, n) has the same property.

Proof. Let lye(Ck) and #e(Ck) be the number of points on Ck where Ix(m, n)l >
and ly(m, n)l > , respectively. Then if A2e(Ck) denote the number of points on Ck,
where Iz(m, n)l > 2 then we have

<

Thus, we have

x-n+N )2e(Ck)
lim

z--,=no
Ncx In(N + no + 1) In no

K-no+N
< lim

z.,k-no lye (Ck)
g--*cx ln(N + no + 1)! lnno!

_< C + C < c,

K-.no +N
+ lim z-,=,o #e(Ck)

Y---,cx In(N + no + 1) in no
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where Cx and Cy are constants in (1) corresponding to almost everywhere conver-
gence of x(m, n) and y(m, n), respectively. Since e is arbitrary the almost everywhere
convergence of z(m, n) is demonstrated.

We will say that a double sequence is asymptotically bounded almost everywhere
if for any finite no, (1) holds for some number e. Clearly, a double sequence is
asymptotically bounded almost everywhere if it converges to zero almost everywhere
as N - oc.

We then have the following proposition.
PROPOSITION 3.3. If x(m, n) and y(m, n) are two double sequences with quarter

plane support such that x(m, n) is almost everywhere convergent to zero and y(m, n)
is asymptotically bounded almost everywhere, then z(m, n) x(m, n)y(m, n) is almost
everywhere convergent to zero.

Proof. Let pe(Ck) be the number of points on Ck where Ix(m, n)l > e and
denote the number of points Ck where ly(m, n)l > a. Then we have

K-n -bN Ck < Cx < (3o(9) lim z_.,k=no
Y-cx) ln(N + no + 1)! In n0!

K-no+N
(10) lim z-,k=no #(Ck) < Cy < c,

Yo ln(N + no / 1) In no

where (9) holds for arbitrary e and (10) holds only for a fixed
Now, let Ae(Ck) be the number of points on Ck where [z(m,n)[

A(Ck) <_ (Ck) / #(Ck) and due to (9) and (10) we have
Then

,K.no +N
(11) lim z-,k=n0 Ck < Cx + Cy <g--,c In(N + no + 1) In no

Since e is arbitrary and a is fixed, the last equality proves that z(m, n) is convergent
to zero almost everywhere.

The following proposition follows almost immediately from the definition of almost
everywhere boundedness.

PROPOSITION 3.4. Let x(m, n) and y(m, n) be two double sequences with quarter
plane support.

1. If Ix(m, n)[ < g < oc, g =constant and y(m,n) is asymptotically bounded
almost everywhere then z(m, n) x(m, n)/ y(m, n) is also asymptotically
bounded almost everywhere.

2. If x(m,n) and y(m,n) are both asymptotically bounded almost everywhere
then so is z(m, n) x(m, n)y(m, n).

4. 2-D hyperstability type results. In this section we develop the main re-
sults on 2-D extensions of hyperstability theory. Although many other variations of
the results could be presented and further generalizations of them are possible, our
main goal is to arrive at statements of certain facts that would allow us to prove the
convergence of the adaptive algoritm to be discussed in 5.

Before proceeding further it is important to emphasize an important distinction
between 1-D and 2-D systems. Among the many possible ways in which the "succes-
sive" states of a 2-D quarter plane system can be updated from "previous" states, we
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focus on the one in which all states on CN are simultaneously computed from those
on CN-1. For computation of CN from CN-I, boundary values of the state variables,
namely those at (0, N) and at (N, 0), need to be specified. Note that these do not
influence the evolution of the system until states on CN have been computed. Thus,
unlike in l-D, new boundary values of states can keep adding information to the sys-
tem not previously used and can thus influence the output as computation progresses.
Consequently, notions related to stability, e.g., boundedness, etc., of output and/or
state may, in general, require qualifications as to the specified boundary values of the
states. However, in most of what follows we validly assume, unless otherwise specified,
that the boundary values of states are zero and thus, the evolution of the system is
completely governed by its zero state response, i.e., by its transfer function only.

The main results of this section are the 2-D hyperstability theorems stated in
Theorems 4.1 and 4.2.

THEOREM 4.1 (Bounded version). Let H H(z,z2) be the scalar transfer
function of a 2-D quarter plane causal system. Let H be strictly discrete bounded
(real) (i.e., IHI < 1 in D), u(m,n) be an input, y(m,n) be the corresponding output
from the system while the boundary conditions are assumed zero. Also, let

TN

Then we have the following:
(i) If SN <_ KN + K2, where K and K2 are constants independent of N then

for some with g 112K1 and g I/12K2 we have

(13) EE In(m, n)12 <- KN + K; EE lY(m’ n)12 -< KN + K.
TN TN

Consequently, both y(m, n) and u(m, n) converge to zero almost everywhere.
(ii)/f SN

_
g < c for every nonnegative integer N then we have that y(m, n)

0 and u(m, n) 0 as (m + n) c in the usual sense.
Before undertaking a detailed proof of Theorem 4.1 we will make several com-

ments on its intuitive contents and on our strategy for its proof. First, note that
a realization of a (strictly) discrete bounded transfer function can be viewed as a
(strictly) dissipative system, whereas the expression for SN clearly indicates that it
stands for the total flow of energy into the system minus the total flow of energy
out of the system over the triangular region TN. Thus the boundedness condition
SN

_
K < implies that the net flow of energy into the system from outside is at

most K. Now, since the system is strictly dissipative, if there is no energy input from
the boundary values of the state variables (i.e., if they are assumed to be zero), in
order for the energy conservation law to hold, the energy stored in the state variables
must die out to zero; consequently, the output must also die out to zero. This last
arguement, in fact, requires minimality of the realization so that self-sustaining oscil-
latory modes, which are neither uncontrollable from the input nor unobservable from
the output, are excluded. However, the conclusion of the theorem remains true even
if the realization-is nonminimal. This latter point is vital in our proof of Theorem
4.1 because of the fact that in 2-D, minimal realization, its characterization, and its
properties are not yet clearly understood [19].
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Second, if SN <_ K1N + K2, i.e., if the net flow of energy into the system is not
bounded but can only grow at most linearly with (the propagation of the "computa-
tional wavefront") N, the asymptotic decay of the output cannot be argued as above,
and in fact, is not even true. However, we do have convergence of y(m, n) to zero in
the almost everywhere sense as discussed in 3. Here we may only roughly mention
that since the "area" of the triangle TN increases as N2 with N, a linear rate of inflow
of energy cannot keep up with the increase in area so that it is, in an average sense,
thinly distributed over the 2-D lattice space for large N.

Third, although we have assumed that the boundary values of the states, i.e.,
those at points (m, 0) and (0, n) for nonnegative m and n are zero, it is not exactly
necessary for the validity of Theorem 4.1 (the same holds for Theorem 4.2 to follow).
It should be plausible for the above discussions and would be more transparent in the
proof that both conclusions (i) and (ii) of Theorem 4.1 remain valid if we assume that
the boundary values of the states are square summable, i.e., only a finite amount of
energy is fed into the system from boundary values of states, while (i) only remains
valid if we allow this energy to grow at most linearly with N.

A proof of the above theorem will be given essentially via circuit theoretic argu-
ments. In particular, we draw from existing results on structurally passive synthesis
of 2-D lossless trnasfer functions [24]-[26] and a little known 2-D spectral factorizabil-
ity type result by Landau [7]. Landua’s result allows us to embed an arbitrary 2-D
bounded (real) or positive (real) transfer function into a 2-D lossless scattering or im-
mittance matrix. The embedding, in physical terms, can be viewed as the operation
of resistor extraction [5], thus leaving a lossless multiport to be synthesized via pro-
cedures estabilished in [24]-[26]. This then yields a structurally passive synthesis of
arbitrary 2-D bounded (real) transfer functions. Note that in l-D, a minimal passive
synthesis along with the state space isomorphism result [2] directly yields the positive
real (KPY) lemma, or the bounded real lemma, which in turn can be crucially ex-
ploited to provide proofs of the 1-D hyperstability theorems as elaborated in [2] and
[4]. Although in our 2-D context we do not necessarily have a minimal passive syn-
thesis via the procedure outlined above, and a state space isomorphism result is not
known, a weak 2-D version of the hyperstability theorem useful in the present context
of adaptive 2-D signal processing, namely that stated in Theorems 4.1 and 4.2, can
indeed be proved. Theorem 4.1 and its counterpart in [28] are weak in the sense that
we only require the input u(m, n) and the output y(m, n), but not necessarily the
states in a realization of H to be asymptotically zero, while the original formulation
of the hyperstability theorem in [1], [2], and [4] requires, in addition, that the state
variables in a minimal realization of H necessarily converge to zero.

To proceed we first establish the following result.
LEMMA 4.2. Let H H(zl,z2) be a rational matrix of size (1 l), which, in

addition, is discrete bounded. Then there exist integers p, q and matrices A, B, C,
and D of appropriate sizes such that

(14)

along with

H(z, z2) A + B(zIp zIq D)-C

(15) I- T*T >_ O,

where
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(16) T- C D

Furthermore, if H is real rational then T is real.
Remark 4.1. Note that Lemma 4.2 essentially states that a passive 2-D Roesser’s

state space realization for the transfer function H(zl,z2) can be obtained. If B, C,
D are partitioned as

Dll D12(17) D D21 D22 ;B=[ B1 B2 ];C= C2

where D, D12 are of respective sizes (p x p); B, B2 has, respectively, p and q
columns; C, C2 has, respectively, p and q rows, then H(zl,z2) can be viewed as
the transfer function between the input vector u(m, n) and the output y(m, n) in the
Roesser’s state space model:

xv(m, n + 1) D2 D22 xv(m, n) + C2 u(m, n),

(19) y(m,n)- [B1 B2 xv(m, n) + Au(m, n).

A realization satisfying (15) to (19) will henceforth be called a "passive realiza-
tion" of a discrete bounded H.

Remark 4.2. The matrix inequality in (15) is equivalent to the existence of two
further matrices L and W such that

(20) 1-T’T- W* L W ],

where L is of size (r l) and W is of size (r (p/q)) for some r < p/q+ 1. Equations
(15) and (16) together can be viewed as a weak form of a 2-D bounded real lemma for
the transfer function H. It is weak in that it applies only to the specific realization
obtained in Lemma 4.2. The lack of a 2-D state space isomorphism result prevents
further generalization to arbitrary "minimal" realizations in 2-D. Note further that
(15) and (16) combined together can be written in a more familiar form:

(21) Ip A*A C*C L*L,

(22) A*B C*D L’W,

(23) Iq B*B- D*D W*W.

COrtOLLirtY 4.3. Let H H(z,z2) be a (real) rational matrix of size (1 l),
which, in addition, is discrete bounded. Let A, B, C, D as in (16) be a passive
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realization of H. Let L and W be defined as in (20) or, equivalently, in (21)-(23).
Then we have

(24) i (Zl, z2)H(zl, z2) D(zl, z2)P(zl, z2),

where P(zl, z2) is the transfer function of the Roesser’s state space model given by

(25) xv(m, n / 1) D21 D2. xv(m, n) / C.

(26) r/(m,n)=[ Wl W2 I xh(m’n) 1xv(m, n) + Lu(m, n)

with W W1 W2 ]. In other words, P(zl,z2) is given by

(27) P(zl, z2) L / W[zlIp @ zlIq D]-IC.

Proof. The proof is routine algebraic manipulation for which we adopt the com-
pact notation I ZIp @ z2Iq. By substituting for H from (14) and expanding the
product, then from (21),(22),(23) by making the replacements Ip-A*A C*C/L*L,
A*B -(C*D + L’W), B*B Iq D*D W*W and subsequently rearranging
terms we can write

(28) 1 -/(z, z2)H(z, z2) =/5(z, z2)P(zl, z2) + C* (t + t2 + t3)C,

where

tl I- (I- D*)-I((-II- D)-1,

t2 D(-II- D)-1 + (I- D*)-D*,

and

ta (I- D*)-ID*D(-II- D)-.
Since we obviously have

tl (I- D*)-1((I- D*)(-1I- D) I}(-I- D)-1

(I- D*)-I{D*D D*-1 D}(-1I- D)-1

and

t2 (I- D*)-{D*(-II- D) + ((I- D*)D}((-II- D)-1

(I- D*)-I(D*-1 + D( 2D*D}((-II- D)-1

it follows after further expansion that tl + t2 / t3 0, thus proving the corollary.
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Proof of Lemma 4.2. It follows from the 2-D discrete embedding Theorem (cf.
Theorem A.4) that there exists a 2-D discrete lossless bounded (real) matrix G(zl, z2)
of size (s + ) (s + l) such that the top left (1 l) block of G is H(zl, z2). We thus
have the situation depicted in Fig. 1, in which

(29) Y’(zl,z2) G(zl,z2) U’(zl,z2)

H Gl 1(30) C C(zl, z2) G21 G22

where G22 is of size (t + s 1) s and capital letters are used to denote transform
domain variables corresponding to small english letters.

u(m,n)

I-terminals

I-ports

y(m,n)

y,(m,n)

(I-1) terminals

lossless bounded

(I.s)-port

G(z ,z

y,(m,n)

s-ports

u’(m,n)-O

H(z,,z,)

-G

FIG. 1

Now, it is known that [24]-[26] it is possible to obtain a passive (in fact, mini-
mal) synthesis for any 2-D discrete lossless bounded matrix, and thus of G(zl, z2) in
particular. More specifically, one way of viewing the synthesis procedure is to extract
p of zl-type delays and q of z2 delays in such a way that we are left with a constant
lossless bounded multiport with as many as (p + q + s + l) ports. Let the transfer
function of the constant lossless bounded (p + q + s + l)-port be given by (cf. Fig. 2)
IP as

(3)

and partition T as

I Ixh(m + 1, n) IP xh(m + 1, n)
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(32) T= C D T23
T3 T32 T33

where A is (11), D is (p+q) square, T33 is (l+s-1) s. Since T is lossless
bounded we have *- I, which in view of (32) yields (33) in which T is as in (16)

(33) I- T*T > O.

x,(m*l.n) 1 p-ports h(m.n)

u(m.n)

I-terminals

I-ports

y(m.n)

, (m,n)

(I-1) terminals

H(Z,.Z.)
.(m.n)

constant

Iossless bounded

(p+q/s*l)-port

,,(m.n)

s-ports

u’(m.n)-O

q-ports H x.(m.n/l)

FIG. 2

Clearly, since in Fig. 2 Xh (m, n) and xv(m, n) are outputs of Zl and z2 type delays,
respectively, they are valid state variables. Furthermore, by setting u (m, n) 0 it can
be verified from (32) that T obtained as above then indeed corresponds to Roesser’s
state space model (18) and (19). It then is well known that the transfer function H
between u(m, n) and y(m, n) is indeed given by the formula (14), thus completing the
proof of the present lemma.

We will need the following notions for the developments to follow.
Remark 4.3. Let H H(Zl, z2) be a (real)rational matrix of size (1 x l), holomor-

phic in D. If a supr)lH(zl,z2)l then clearly a is a well-defined finite real number.
We then consider Ha Ha(Zl,Z2) a-lH(zl,z2). Obviously, then IIHall < 1 in
D. Thus, Ha is a discrete bounded (real) matrix for which there exists a passive
realization as in Remark 4.1. This, in fact, also gives us a realization of H, if the
A-matrix and the C-matrix in (18) and (19) are replaced by aA and aC, respectively.
Such a realization of a transfer function H, holomorphic in D, will also be referred to
as a "passive realization."

We can then state the following result.
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LEMMA 4.4. Let H H(zl,z2) be a rational discrete bounded (real) transfer
function of a passive realization having l-inputs and 1-output operating under zero
boundary conditions. Let u(m, n) be the input vector and y(m, n) be the corresponding
output, whereas let r(m, n) be given by

(34)

where

(m, n) We(m, n) + Lu(m, n),

(., ) x(., ) ]z.(-, )

is the state vector in the passive realization of H. We then have the following:
(i) If for all nonnegative integer N

(35) Z Ilu(m’ n)l12 g KIN + K2
TN

then for all nonnegative integer N

(36) ZZ lY(m’ n)12 -< KN + K2,
TN

where K1 and K2 are constants independent of N.
(ii) If we have that for all nonegative integer N

(37) SN :[llu(m, n)ll -ly(m, n)l 2]
_
KIN + K2

TN

then necessarily for all nonnegative integer N we have

(38) II(m, nDll 2 KN + K2.
TN

Proof. Consider a passive realization of H as in (18),(19). If in this realization
we denote by (m, n) the vector

(39) $(m n)= [ xu(m + 1, n)
[ xv(m,n+l)

then we have from (18)

(40)
[De(m, n) + Cu(m, n)]*[D(m, n) + Cu(m, n)]
lie(m, n)ll II(m, n)ll + Ilu(m, n)ll 2 ly(m, n)l :

where the last step follows via the use of (22),(23),(19), and (26). Next, by summing
(40) over the set of all (m, n) in TN we have
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TN TN TN

(1) + [llu(-, n)ll -I(’,
TN

Recalling the definition of (m, n) and (m, n) in terms of xh(m, n), Xv(m, n)
and then cancelling the identical terms in the left- and right-hand sides of (41) and
then finally by adding the terms xv(O,N) and xh(N, O) to both sides, we can write

(42) +

Note that the above is a manifestation of energy conservation law. The first
term in the left-hand side is a measure of energy stored in the realization at the
Nth stage of computation, the first two terms in the right-hand side are measures of
energy coming from boundary conditions, whereas the second and the third terms,
respectively, represent the total dissipation out of and the net ilow of energy into the
system over the entire region TN of the 2-D lattice space.

Since the boundary conditions are assumed zero, i.e., xh(m, O) xv(O, n) 0 for
all m, n we have the following obvious inequality set:

(43)

and

T TN

(44) EE
TN TN

Conclusion (i) of the present lemma then follows from (43), whereas conclusion
(ii) follows from (37) and (44).

Remark 4.4. If, instead of xh(m, O) xv(O, n) 0 as in the above theorem, we
have

(45) Ilxh(m,O)ll Ch < ; IIx(O, n)ll C < ,
m--0 n----0

then it is clear from (42) that inequalities (43) and (44) still remain valid with an
additional finite term (Ch+Cv) in their right-hand sides. The conclusion of Lemma 4.4
thus still holds under this less restrictive situation. The physical implication of this
is that if the total energy fed by the boundary values to the system is finite then the
hyperstability theorem remains true.
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For a complete proof of Theorem 4.1 we will need the following sequence of results
of somewhat technical nature.

LEMMA 4.5. Let H H(zl,z2) be a rational matrix of size ( 1) which is
holomorphic as well as nonzero in ). Then there exists a rational matrix G G(zl, z2)
of size (1 t) such that GH 1 and each entry of G is holomorphic in D, i.e., H
has a "stable" left inverse G. Furthermore, if H is real rational then so is G.

Proof. We can write H ICe,I/d, where , for 1 to I and d are polynomials.
Clearly, then d 0 and the ’s are not simultaneously zero in D.

Next, let ((,w); 1 to m (we assume m < ; otherwise, due to Bezout’s the-
Sorem in algebraic geometry, the must have a common factor, after the extraction

of which the essential problem can once again be reduced to the case m < oc) be the
common zeros of the set of polynomials 1; 1 to t. Let us order these zeros such
that I1 > 1 for 1 to and Iwl > 1 for / 1 to m and then consider the real
polynomial

I/ m

i=i i=u+l

Clearly, 7r is zero whenever the ’s simultaneously vanish. Thus, by invoking
Hilbert’s Nullstellensatz [10, p. 5] it follows that there exists a nonnegative integer #
such that r belongs to the ideal generated by x; 1 to . That is, there exist
polynomials ; 1 to t such that Y=x1 r. Since r is clearly nonzero in
D the desired result immediately follows by defining G [G] with G /r, for

1 to t. Furthermore, if H is real rational then it also follows from Nullstellensatz
that ’s are real polynomials and then Gl’s are real rational functions.

LEMMA 4.6. /f G G(z,z2) is the (real) rational transfer function of a one-
input l-output system and G is holomorphic in D then there exists a constant a such
that G -G is discrete bounded (real), and thus, G admits a passive realization.

1GProof. Since G is holomorphic in D, a supD IGI < oc. Define then G
which obviously satisfies supD IGI 1. In particular, suPTIG11 _< 1 i.e., (I-
IG) _> 0 on T. This, along with holomorphy of G in/) imply (cf. Theorem 28 in
[23]) that G is a discrete bounded (real) matrix. Thus, in view of Remark 4.1, G
admits a passive realization, which, due to G aG and Remark 4.3, implies that G
also admits a passive realization.

COROLLARY 4.7. If H is a (real) rational matrix of size (1 t) such that it is
holomorphic as well as nonzero in D then there is a (real) rational left inverse G of
H that admits a passive realization.

Proof. Choose G to be the left inverse of H as prescribed in Lemma 4.5. Since
such a G is neccesarily holomorphic in D, due to Lemma 4.6, it admits a passive
realization.

LEMMA 4.8. Let G G(z,z2) be a (1 l) (real) rational matrix which is
holomorphic in D, u(m, n) be the input vector, y(m, n) be the corresponding output
from a passive realization of G(z, z2) operating under zero boundary conditions. Then
a linear bound on the input energy

(46) y IIu(m, n)[I _< KIN + K2 for all N
TN

implies the following linear bound on the output energy:
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(47) EE [y(m, n)l 2 _< (K1N + K:)ll for all N,
TN

where supDIG(zl, z2)l < c and K and K2 are constants independent of N.
Proof. Note that in view of Remark 4.3 under the conditions stated Go(z, z2)

G(z,z2) is a discrete bounded (real) transfer function and a passive realization
of Go is obtained by replacing the A-matrix and the C-matrix in that for G by
A’ aA and C aC, respectively. Equivalently, the two realizations can be viewed
as identical with the input for Go being replaced by uo(m, n) cu(m, n). We thus
have from (46) that

(48) Ilu(m, n)II 2
_
(KIN + K2)ll2

TN

Since G is discrete bounded (real) it follows by invoking Lemma 4.4(ii) that the
output y(m, n) from G due to the input u(m, n), which is the same as the output
from Go due to the input uo(m, n) satisfies the inequality (47).

LEMMA 4.9. Let H- H(z,z2) be a (ix l) rational discrete bounded (real) matrix
holomorphic as well as nonzero in D. If the output vector y(m, n) from a one-input
I-output system with transfer function H operating under zero boundary conditions
corresponding to an input u(m, n) is linearly bounded as

(49) E IlY(m, n)ll 2 _< K1N + K2,
TN

then the input u(m, n) must also be linearly bounded as

(50) EE lu(m, n)12 < KiN + K,
TN

where K I/lK, K I/lK. and K, K2, are constants independent of N.
Proof. Consider a left inverse G of H such that G admits a passive realization.

Such a G exists due to Corollary 4.7. Since G is left inverse of H, u(m,n) can
be viewed as the output from this passive realization of G, when driven with input
y(m, n) under zero boundary conditions. In fact, as in the proof of Lemma 4.8 we have
G G, where/ supD IGI < , G is discrete bounded (real), and realization
of G is obtained by multiplying the A-matrix and the C-matrix in that of G by/.
Thus, from Lemma 4.4(i) it follows that the output u(m, n) obeys the linear bound
(50) with g IDI2gl, g ID]2g2.

We now turn to the proof of Theorem 4.1.
Proof of Theorem 4.1. Consider a passive realization of H(zl,z2) as in (18) and

(19) with associated (m, n) as in (26), where L and W are defined via (20) or (21)-
(23). We then have from part (ii) of Lemma 4.4 that if SN KIN + K2 then

(51) EE IIr/(m, n)ll2 g KN + K2.
Tv
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Next, note that .(m, n) can be viewed, as in Corollary 4.3, as the output from
a Roesser’s state space model described by (25) and (26), which has the transfer
function P(zz,z2) as in (27). Since H(zz,z2)js assumed to be strictly bounded, i.e.,
IUl < 1 in/), we conclude from (24) that PP 0 in D. In particular, P : 0 in
D. Also, since H is strictly bounded (real), P along with H is holomorphic in D.
Thus, by likening P with H, and r/(m, n) with y(m, n) it follows, in view of (51), from
Lemma 4.9 that the input u(m, n) to P(z,z2) is linearly bounded as

(52) ZZ lu(m’ n)12 <- K’N + K,
TN

where K/K K/K2 -I12 is a constant as in Lemma 4.9.
Furthermore, since u(m, n) is the input and y(m, n) is the output from the real-

ization (18) and (19) (operating under zero initial conditions), whose transfer func-
tion H H(z,z2) is strictly discrete bounded (real) it follows by again applying
Lemma 4.4 (i) that

(53) ZZ lY(m’ n)12 -< KN + K.
TN

Part (ii) of Theorem 4.1 corresponds to assuming K 0, K2 K. Thus, in
this case it follows from (53) that y(m, n) --+ 0 as (m / n) c in the usual sense.
Furthermore, if Kz - 0 then the result of part (i) follows by invoking Theorem 3.1 on
almost everywhere convergence along with (53).

Alternative strategy ofproof of Theorem 4.1. Consider H(z, Z2) Etch=0 hr(z, z2),
where hr is a homogeneous polynomial of degree r. If H is strictly bounded real ra-
tional then s() H()z, Az2) is a bounded function of A for fixed z, z2 in the closed
unit bidisc.

If Y(zz, z2) m,n y(m, n)z’z r=o yr(z, z2) is the output corresponding

r=o ur(z z2), where Yr and ur areto the input U(z,z2) -,m,n u(m,n)z’z o

homogeneous polynomials of degree r, then clearly Yo+,Y+"" (ho.+,hz +...)(u0+
Au +...). By equating coefficients of similar powers of A we obtain N AN" 2N,
where N [u0, u,... UN]t, /N is defined analogously, and AN is the lower triangular
Toeplitz matrix with its first column equal to [h0, h,.., hN]. Thus, for any N,

(54) II NII 2 -II NII 2  *N(IN+x Z *NZ N) N (1  N)II NII 2 > 0,

where the norm I1" II is computed for zx z2 exp(jw); w =real, and #N is the largest
eigenvalue of AVAN. The last inequality in (54) is a consequence of boundedness of
s(A) [16], from which it also follows that there exists an a such that #g < a2 < oc
for all real w. Thus,

(55) II NII < II NII --1I gNII 
1 c2

But since

(56)
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it follows that boundedness of SN &S in (12) by K1N + K2 implies the first equation
(13) with K Ki/(1- a2) for 1,2, whereas the second equation (13) follows
from (54).

For the purpose of application of the 2-D hyperstability theorem to adaptive signal
processing in the next section a version different from that in Theorem 4.1 proves to
be more appropriate.

THEOREM 4.10 (Positive version). Let F F(zl, z2) be the scalar rational trans-
fer function of a 2-D quarter plane causal system. Let F be strictly discrete positive
(real) (i.e., PeR > 0 in D), p(m,n) be an input, q(m. n) be the corresponding output
from the system while the boundary conditions are assumed to be zero. Also let

(57) EN Re {EEP* (m, n)q(m, n) lTN

Then we have the following:
(i) If EN

_
K 1N+ K2, where K1 and K2 are constants independent ofN then

EE Ip(m, n)12 -< KN + K,
TN

EE [q(m, n)[ <_ KN + K,
TN

where K [IK, Ki []eK., and are finite constants independent ofN. Conse-
quently, p(m, n) and q(m, n) converge to zero almost everywhere in the sense decribed
earlier.

(ii)/fEN <_ g < c for every nonnegative integer N then we have that p(m, n) -0 and q(m, n) 0 as (m + n) c in the usual sense.

Proof. Consider signals u(m, n) p(m, n) + q(m, n) and y(m, n) P(m, n)
q(m, n), which can be viewed, respectively, as the input and the corresponding out-
put from a system with transfer function H (1 F)/(1 + F) operating under
zero initial conditions. Since F is strictly discrete postive (real), it follows that
H is strictly discrete bounded (real). Furthermore, since 4{p*(m, n)q(m, n)}
lu(m, n)l 2 -ly(m, n)l 2 we have if EN <_ KIN + K2 then

-y[(m, n)l 2 _< 4(KN + K).

It then follows from Theorem 4.1(i) that both u[(m, n)l 2 and y[(m, n)[ 2 satisfy (13)
for some constants g, g, [] independent of N such that g [/[2, g. -[[2K2"

EE lu(m’ n)[2 -< KN + K,
TN

EE lY(m’ n)[2 <- KN + K.
TN

Thus, since [p(m, n)[ 2 + [q(m, n)l 2 1/2([u(m, n)[ 2 [y(m, rt)l 2) it follows that

EE IP(m’ n)12 - KIN + K,
TN
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EE [q(m, n)l 2 < KN + K.
TN

The rest of the arguement then follows as in the proof of Theorem 4.1.

5. A 2-D hyperstability based adaptive filtering scheme. In this section
we demonstrate an application of 2-D hyperstability type results to problems of adap-
tive 2-D signal processing. The framework for this study is a direct 2-D generalization
of that known as the HARF (hyperstable adaptive recursive filtering) algorithm in
1-D signal processing literature (see [28]-[32], [38]), which in turn is a modification of
certain system identication techniques documented in [40].

The signal to tracked is assumed to be generated by a quarter plane causal linear
shift invariant (LSI) ARMA process whose transfer function is assumed holomorphic
in D and is thus stable in a strict sense [23]. Consequently,

(59)
M1 N1 M2 N2

y(m, n)= EEatc.y(m- k, n- g.) + EEbku(m- k, n- )
k=o =o k=o =o

The estimated signal (m, n) is obtained as

where S(m- k, n- 1), as described via (61), is the output from an auxiliary quarter
plane shift varying recursive process driven by the same input u(., .) as in (59),(60)"

(61)

f(m,n)

Finally, the coefficients 5,kt(m,n) and kt(m,n) are adapted according to the
following adaptation rules:

(62) (..n)tk(m + 1. n + 1) tk(m. n) + #kfl(m k. n ) t---i n)

(63)

where

k(m + 1 n + 1) k.(m, n) + pktu(m k n- )(m, n)
t(,,,)’
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L1 L2

+ e/- eli
k--O t.-O

and

(65)
M1 N1 M2 N

t(m, n)=1 / Z #ktf2(m k, n- ) / ZZ Pku2(m k, n-
k=O t.=O k=O

where #kt >_ 0, Pk

_
0, are some constants and with ckt’s to be specified appropriately

so that the algorithm converges, i.e., y(m, n) fl(m, n) in some sense.
In fact, the adaptation scheme (60)-(65) can be more transparently viewed by

considering the difference signal

(66) e(m, n) y(m, n) f(m, n),

which drives the moving average process with transfer function:

L1 L2

CkZlz2; COO 1
k-O :0

to yield the averaged output v(m, n). The estimation error signal (y(m, n)- f/(m, n))
is then added to it to yield v(m, n) + (y(m, n) fl(m, n)), which in turn drives the
adaptation algorithm. The scheme can be represented via signal flow diagram as in
Fig. 3.

It is not necessary for the sizes of the masks {hkt(’, ")} and {k(’, ")} to be the same
as those for {akt} and {bk}. The only restriction is that the supports of the masks
{hk(’, ")} and {kt(’, ")}, respectively contain those of {akt} and {bkt}. However, to
keep notational complications down we have assumed the masks to have same support.

We next demonstrate that (59)-(65) combined with adequate boundary conditions
in fact determine a valid quarter plane causal recursive scheme. For this, we first
assume that all of the boundary values needed for computation, namely f(m,n),
where m and/or n is negative and (zk(m, 0), k(O,n) for m _> 0, n _> 0 are all
zero. We further assume that Ski(m, n), kt(m, n) are known for (m, n) e CN -and
(m,n) E CN+I. Also, we assume that f(m,n)’s are known in RP,N-1, where P
2max(M1, N) and the input u(m, n)’s are known in RQ,N, where Q 2max(M2, N2).

We then first use (60) to compute (m, n) on CN. Next we compute 5,kt(m, n),
[kt(m, n) on CN+2 by using (62)-(65). Finally, f(m, n) on CN can be computed using
(61). We then obviously have f(m, n) in Rp,N, while u(m, n) in RQ,N+ is obtained
from the input data. The recursive scheme described above can then be repeated for
larger values of N.

Our next task is to show the convergence of the estimated signal (m, n) to the
desired signal y(m, n). For this, let us define
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FzG. 3

(68)

(69)

We obviously have (see Fig. 3) that

(70) (m, ) EE(.- ,- e).
k=0 =0

Furthermore, via some algebraic manipulations we can write

(71) (., ) a( , ) + (, ).
k=0 =0
k+0

Consequently, the transfer function between v(m, n) and w(m, n) is given by

(72) T E=o E=oz
1 ’-k=O E=O akzklz2

The entire feedback system of (62)-(65) can then be combined into the closed-loop
configuration in Fig. 4., where the upper block is a linear shift invariant 2-D system
with transfer function T T(Zl,Z2).
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w(m,n) v(m,n)

T(z z=)

Non-linear

ime varying

FIG. 4

Note that the denominator polynomial in T is the denominator of the transfer
function of the unknown process given in (59), and is assumed to be devoid of zeros in
D, or in the terminology of [23] is a strictly Schur, thus, in particular, an immittance
Schur polynomial. As shown in Theorem 27 of [23], given (real) ak’s it is then possible
to find ck’s in (72) such that T is a discrete positive (real) function. It then follows
that one can also find ck’s such that T is strictly discrete positive (real) (for example,
if H is a (real) rational discrete positive, holomorphic in/ then 1 +H is (real) rational
strictly discrete positive (real) and has the same denominator as in H).

Remark 5.1. We further wish to remark that the above considerations demand
that the aki.’s be known, which in reality are not. However, some knowledge of the
values of the parameters ak’s, namely, a range of allowable values may be available. It
has recently been shown [21] that via an extension of Kharitonov-theory for robustness
of stability (see [43] for 1-D results) that in such a case it is possible to specify
admissible intervals for the ck’s so that T in (72) remains strictly positive (real).

Before a complete proof of convergence of the adaptation algorithm can be given
it would be necessary to focus on a 2-D state space realization of T(zl, z2). The entire
purpose of this discussion in the present context is to demonstrate that there is a
realization of T for which it is reasonable to assume that the boundary conditions are
zero.

For this, define the following variables for the state-variables of the Roesser’s state
space model:

(73) (m, n) def y(m, n) f(m, n)
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(74) ev(m. n) d=_ef
g(m,n- 1)
e(... :)

e(m,n- N1)

(75) eh(m. n) d___ef

where

em--l,n
em--2,n

m-l,N1

def(76) e..u
e(. u’- N)

The feedback matrix jt in the Roesser state space model is then defined as the
matrix from which the Ni-the row and the first column has been deleted and

(77) , d_ef

where

Ao Ai AM1
Ao Ai AMI
0 - 0

66 ;

(78) Ai d_ef
aio all aiNi
0 0 0

0 0 0

(n2 + 1); for 1 to M1

and Ao is the. top companion matrix whose first row is ao0 a01 alN ].
The input matrix is B [1 0... 0]T and the output matrix C is the matrix from

which the first entry has been deleted and where

(79) O d_ef CoT (? C
with

(80) 0 d_ef [cio Cil’’’CiN] for 0 to

We then have equations (81) and (82) for a 2-D Roesser state space model in
standard form.
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(81) eh(m / 1, n) A
eh (m, n) / Bw(m, n)

(82) v(m, n) C

realizing the transfer function T T(Zl, z2). The details of algebraic manipulations
verifying this fact is routine and runs parallel to the 1-D case [29]. The essential point
for us is that since it is reasonable to assume that y(k, O) y(0, t) 0 for k < 0,
< 0, by imposing

(83) f(k,O) f(0,) 0 for k < 0, < 0

it can be seen in view of (73) to (76) that ev(O, n) O, eh(m, 0) 0 for all nonnegative
values of rn and n.

We are now ready to derive the promised convergence result.
THEOREM 5.1. Assume the following regarding the above recursive scheme:
1. T in (72) is strictly discrete positive (real).
2. Boundary conditions in the auxiliary process f(m,n) are set to zero as in (83).
3. The input signal is bounded, i.e., In(m, n)l < g < for all m, n; g =constant.
4. Each of the estimated parameter values ke(m, n), ke(m, n) are zero along

the boundary, i.e., if m 0 and/or n O.
Then the estimated signal )(m, n) converges to the desired signal y(m, n) in the

sense that ()(m, n)- y(m, n)) converges to zero in the almost everywhere sense.

Proof. We first define the parameter estimation errors:

(84) a(m, n) a a(m, n)

(85) ke(m, n) bke [ke(m, n).

Also, routine algebraic manipulation with (62)-(66) and (70) yields

(86) (m, n) v(m, n)t(m, n).

Further manipulations as elaborated in [28] in the I-D case can be performed
with (86) to produce the following expression for w(m, n)v(m, n)"

(87)
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where

(88)

Since #kt > 0, Pk >_ 0 by choice of these parameters, we have from (87) that for
all (m, n)"

(89) 2w(m, n)v(m, n) < s(m, n) s(m + I, n + 1).

Considering (89) for each (m, n) E TN, adding the resulting set of inequalities,
and finally cancelling the common terms with opposite sign we then obtain (90)

N N

(0 (..)(...) <_ {(0.0) + (. 0) + (0. )} (.. ).
TN m=l n=l DN

where DN Ck+ U Ck+2 and Ck CN \ {(N, 0)} U {(0, N)}.
Since as is obvious from (88) the last term in (90) can be dropped without affecting

the inequality. Inequality (91) is then obtained by substituting for s(m, n) from (88)
in the resulting inequality"

1 M N N N

< -[EE{E (o,) + E (m, o) + ,(o, o)}
2
k=0=0 n=l m=l
+#o
M2 N2 N N

(91) + {y] ,(o, ) + ,(., o) + ,(o, o)}].
k=0=0 n=l m=l

Also, since the parameter estimates along the boundary (m, 0) and (0, n) are set
to zero, we have k(0, n) tk(m, O) ak, {k(O, n) {k,.(m, O) bk. Thus, (91)
above yields

(92)

where

EEw(m, n)v(m, n) <_ K1N + K2,
TN

(93)
M1 N1 M2 N2

K 2K2 E Ea’ + EE
k=0 =0 k=0 =0
k+#o

Next, observe that w(m, n) and v(m, n) are, respectively, the input and output
from the transfer function T, which is strictly discrete positive (real). Furthermore,



TWO-DIMENSIONAL HYPERSTABILITY BASED ADAPTIVE FILTERING 1501

since the system realizing T can be assumed to be operating under zero boundary
conditions the total response due to the system (including the transient response) is
equal to its zero state response and is solely determined by the transfer function T.
Thus, the realization given by (81) and (82) can be replaced by a passive realization
of T operating under zero boundary conditions without altering w(m, n) and v(m, n).
Theorem 4.10 thus applies to the present situation, which in turn yields that

(94) ZZ Iv(m’ n)12 <- KN + K
TN

for some constants K and K..
L1 L2Next, observe that the moving average transfer function "=o ’4.=oCkt.zkzt2 is

nonzero in D, has e(m, n) at its input and v(m, n) satisfying (94) as its output when
implemented with zero boundary conditions. Thus by invoking Lemma 4.9 it follows
that

(95) EZ le(m’ n)12 <- KN + K.’
TN

where K and K are some constants independent of N. We, therefore, have from
Theorem 3.1 that e(m, n) y(m, n)-f(m, n) converges to zero almost everywhere. In
particular, e(m, n) is asymptotically bounded almost everywhere. But since y(m, n) is
the output from a quarter plane causal strictly discrete positive real, thus bounded in-
put bounded output stable [15] transfer function with bounded input Is(m, n)l < K,
y(m, n) must be bounded for all m, n _> 0. Consequently, it follows from Proposi-
tion 3.4(i) that f(m, n) y(m, n)- e(m, n) must be asymptotically bounded almost
everywhere.

Next, recall that (86) can, by using (65), be explicitly written as

(96)

Invoking almost everywhere asymptotic boundedness property of f(m,n), the
boundedness Is(m, n)l < K, and Proposition 3.4 it follows that the term inside the
brackets in (96) is asymptotically bounded almost everywhere. Since v(m, n) con-
verges to zero almost everywhere, by Proposition 3.3 so does (m, n). Finally, by
recalling from (64) that

(97)
L1 L2

(m, n) Z ckt{y(m k, n i) f(m k, n
k--O =0
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and using the facts that both (m, n) and {y(m, n)-f(m, n)} converges to zero almost
everywhere along with Proposition 3.2 we conclude that (m, n) -y(m, n) converges
to zero almost everywhere, thus completing the proof of Theorem 5.1.

We also have the following more restrictive result.
THEOREM 5.2. Assuming (1) through (3) in Theorem 5.1 to hold and that the

parameter estimates are such that for each k, t

N N

(98) E 5t(m, 0)< oc; E 5t(0, n)< c
m--0 n--0

and

N N

(99) E (m, 0)< x); E (0, n)< c
m----0 n0

hold true in the recursive scheme described via (59)-(65), we have that (m, n) con-
verges to y(m, n) in the usual sense as (m + n) ---, oc.

Proof. It follows from (91),(98), and (99) that under the conditions stated

(100) EE w(m, n)v(m, n) <
TN

for every N, i.e., (92) is satisfied with K1 0 and some K2, not necessarily given by
(94). Following a similar chain of arguments we then conclude:

TN

as a counterpart of (95). Thus, we have e(m, n) 0 as (m +n) c. The rest of the
proof follows by mimicking arguments in the proof of Theorem 5.1, but now using
convergence and boundedness in the usual sense.

Satisfaction of conditions (98) and (99), in view of (84) and (85), require that the
chosen boundary values of the parameter estimates along the boundary (m, 0) and
(0, n) are asypmtotically (i.e., as m c, n ) the correct (unbiased) estimates.
Although there is no way to guarantee this, some intelligent choice of these may,
in practice, yield better results than the most conservative strategy of setting them
to zero as in Theorem 5.1. A suggestion is to set 5k(m, 0) 5k(m- 1, 1) and
5kt(0, n) 5kt(1, n--1), the latter quantities having been computed via the parameter
update scheme (62) to (65). Similarly for the kt(m, n)’s when m and/or n is zero.
However, such a scheme, although reasonable from an intuitive viewpoint, defies our
convergence analysis presented above.

6. Discussions and Conclusions. A continuous domain analogue of the 2-D
hyperstability theory can be developed and the results applied to a continuous version
of the adaptive filtering problem. Note that a continuous version of hyperstable
adaptive identifier exists in 1-D literature [40].

A straightforward n-D (n > 2) extension of the theory developed here does not
seem to be possible because of the following two reasons. First, a higher dimensional
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analogue of Landau’s theorem does not exist, and second, perhaps more serious, is the
infeasibility of synthesis of lossless n-D (n > 2) paraunitary matrices holomorphic in
D [26]. Although a passive realizability theory based approach to higher dimensional
problems is not possible due to the above reasons, since the essential contents of
Theorems 4.1 and 4.10 do not state anything regarding the realization of H(Zl, z2)
or F(zl, z2), but only have to do with its input-output properties, namely, strict
positivity or boundedness, an approach using exclusively transform domain methods
may be fruitful.

A matricial generalization of the hyperstability Theorems 4.1 and 4.10 for multi-
input-multi-output 2-D systems may be conjectured, but a proof would require a
matrix version of Landau’s theorem, or equivalently, an appropriate 2-D generalization
of Youla’s spectral factorability result [27] in our context.

The vital importance of the spectral factorability [27] result mentioned above in
diverse areas of 1-D system theory is well known. Since Landau’s theorem can, in
some sense, be viewed as a 2-D scalar analogue of this result, we believe that many
other ramifications of it would be possible in the context of 2-D systems. In the
present paper we have demonstrated its use in 2-D hyperstability theory and in 2-D
adaptive filtering only.

In all of the 2-D recursions considered in the present paper, the set of points CN of
the 2-D lattice space for a fixed N, has been viewed as a "computational wavefront,"
i.e., all points on CN can be simultaneously computed from CN-1, CN-2, ", etc.
While this is attractive and may have some advantages in parallel implementation,
the role of CN as a computational wavefront can be replaced by L-shaped sets" LN
{(m, g); rn 0 to N} U {(N, n); n 0 to N} in the 2-D lattice space. In fact, all
results of 3 and 4 can be modified accordingly. It should then be possible to derive
an appropriate version of the HARF algorithm for this recursive scheme. Apart from
other possibilities of recursion, the 2-D HARF can be simplified as in 1-D [30], [31]
and it is likely that its properties can be studied via 2-D Lyapunov theory [20].

A. Some results on 2-D passive synthesis. THEOREM A.1 (E. LANDAU
[7]). Let f(xl,x2) be a polynomial in xl, x2 with real coefficients, which is such that
f(xl,x2) >_ 0 for all real xl, x2. Then f(xl,x2) can be written as

1 Y(Xl,X2)f(xl,x2) d(xl) =1

where d(xl), Ni(xl,x2); 1 to are polynomials with real coefficients and the
integer is at most equal to 4.

LEMMA A.2. Let S N/g be a bounded (real) matrix of size (1 x n) in two
variables pl, p2 i.e., SS, g 1 in Re pl > 0, Re p2 > 0, where N is a polynomial
row vector and g is the least common denominator of S. Then (gg, NN,) can be
decomposed as:

(102)
1

m

gg, NN, -, .= Pi, Pi

where each Pi is a polynomial in two variables Pl and p2, and d is a one variable
polynomial in p (or P2) devoid of zeros in the open right half plane and m <_ 2.
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Proof. Since S is a bounded (real) function we have that (gg,- NN,) >_ 0 for all
pl jwl and P2 jw2. Furthermore, for p jw and P2 jw2 (gg, NN,) can
be viewed as a polynomial in w and w2, with real coefficients. Thus, by Landau’s
theorem we can write for p jwl and P2 jw2 that

(103) gg, -NN,

where D and each Pi are polynomials with real coefficients and _< 4.
Assume without loss of generality that =even, and let m /2. By using the

identity p2 + Q2 (p + jQ)(p jQ) in (103) we can then write

v m

(104) P(w, w.) M(w,w.)M(w,w2)
i--1 i--1

where Mi’s in (104) are polynomials in w, w2 with coefficients complex conjugates of
those in M*’s.

Note further that since (gg, NN,) >_ 0 for all pl jw, P2 jw2 and real
w2 it follows from (103) that D(w) >_ 0 for all w. Thus, by a standard result, D(w)
can be written as D(wl) MD(w)M9(w), where MD(W)is a polynomial with
coefficients complex conjugates of those in M(wl). To summarize, the polynomial
identity

m

MD(w)M9(w)(gg, NN,) E Mi(wl,w2)M(w,w2)
i-1

holds for all real valued w, w2.
Now consider the polynomials Pi Pi(p,p2), of which the coefficients are such

that Pi (jwi jw2 Mi (wl w2 ). Then Pi, (jw jw2 M(wi w2 ). Thus, we have
Pi(Pl,P2)Pi,(Pl,P2) Mi(wl,w2)M(Wl,W2) for Pl jw, P2 jw2, where wl,w2

are arbitrary real. Via the same argument we can then write: d(p)d,(pl)
MD(w)M(w), where d(p) is a real polynomial in p and d,(p) is its para-
conjugate. Thus, from (105) we can write that

m

(106) dd,(gg, NN,) E PiPi*
i--1

holds for p jwl and p2 jw2, with w, w2 arbitrary real, where the criptic notation
d -d(pl), Pi Pi(p,p2) have been used. Since (106) is a polynomial equation we
can conclude from an analytic continuation argument that (106), in fact, holds for all
p and P2.

Finally, we can write dd, dd, via a regrouping of the factors of dd, such
that the polynomial d d(pl) does not have any zero in open right half plane. The
validity of (102) is thus established from (106). The form (102) with d d(p2) is
obtained in exactly similar manner by choosing D to be a polynomial in w2 in the
Landau decomposition.
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THEOREM A.3 (Continuous embedding). 2 Let N/g be a 2-D (real) rational
matrix of size (1 x n), where N N(pl, P2) is a polynomial row vector of size (1 x n)
and g g(pl,p2) the least common denominator polynomial of N/g. If N/g is,
in addition, a bounded (real) matrix then there exists a 2-D lossless bounded (real)
rational (m m) matrix (m > n) (i.e., H is holomorphic in Re p > 0, Pep2 > 0
with HH, Ira) such that H can be partitioned as

H H2 ] N
(107) H= H21 H22 whereHl=--.

g

Remark A.1. An analogous result, if N/g is an (n x 1) vector, can be proven in a
similar manner, but we do not require this in the context of this paper. However, if
N/g is an (mx n) matrix (m, n > 1) then a similar result can be conjectured, but is
presently not available.

Proof of Theorem A.3. Define an (n x n) polynomial matrix S1 such that the first
row of S is N/g and the rest of the elements are zero. Also, since N/g is discrete
bounded (real) it follows from Lemma A.2 that there exists a polynomial row vector
V V(pl,p2), say, of size (1 m) such that

( 0s)
NN, VV,
gg, (gd)(gd),

where d is a polynomial in pl only, devoid of zeros in the open right half plane. Next,
define a rational matrix $12 of size n x (m / n 1) as

V
(109) $12= god

and two further matrices $2 and Se2 as

o]

a
(I + $11,)-(I +

(111) --; $22 I- $12,(I + Sll,)-1S12,S
O,

where a is a polynomial to be specified later in course of the proof, and I’s are identity
matrices of appropriate sizes. It can then be routinely verified that the square matrix
Sofsize (m+2n-1) asin

(112) S

satisfies SS, I.

Subsequent to the preparation of the paper, this result has been derived from Landau’s theorem
for matrix (not necessarily vector) valued N/g in [17] and its consequences in psive synthesis is
discussed in [18].
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We next claim that by proper choice of a it is possible to make S holomorphic in
Re pl > 0, Re p2 > 0. For this, first note that $1 and S2 are clearly holomorphic
in Repl > 0, Re P2 > 0, and choose a to be product of those irreducible factors in
the least common denominator of S2,(I / $1,)-1 having a zero in Re p > 0, Re
p2 > 0. Since Sll is a discrete bounded matrix, (I- $1)(I + Cll)-i is a positive
matrix. Thus, it follows from the identity

(113) (I +
1
{I + (*- S**)(* + S**) -*}

that (I + Sll) -1 is a positive matrix. Consequently [22], (I + Sll)-1 and thus,
(I + S)-1S2 is holomorphic in Re pl > 0, Rep2 > 0, which in turn imply that
the least common denominator of S2,(I + $1,)- does not have a zero in Rep < 0,
Rep2 < 0. Since the chosen a is a factor of this last mentioned denominator, a does not
have any zero in Repl < 0, Rep2 < 0 either. Thus, the factor a/a, is holomorphic in
Rep > 0, Rep2 > 0, which additionally cancels all factors having zeros in Rep > 0,
Rep2 > 0 in the denominators of S, S2. We have thus constructed a lossless
bounded (real) S of which S1 and, thus, Hli N/g is a submatrix at its top left
corner. Finally, H as in (107) is obtained by appropriately repartitioning S.

Remark A.2. Note that the above result does not imply that gH polynomial
matrix, nor does it imply that the H obtained via the procedure outlined above has
the smallest possible size for a given N/g. Thus, if the discrete lossless bounded H is
synthesized as in [24,25,26] to yield a synthesis of N/g, the minimality of neither the
dynamic elements, i.e., the number of pl and p2 type elements (in fact, this number is
at most deg(dg)+deg2(dg) in the present case) nor the number of "fully absorbing"
ports (in continous domain these correspond to resistors) created in the synthesis
procedure is ensured.

THEOREM A.4 (Discrete embedding). Let B/a be a discrete bounded (real) ra-
tional matrix function in two variable Zl, z2, where B is a polynomial row vector
of size (1 x n) and a is the least common denominator polynomial of the entries of
B/a. Then there exists a discrete lossless bounded (real) rational matrix G 5.e., G is
holomorphic in D and G I) such that G can be partitioned as

G G2 ] B
G2 G22 whereG=--.

a

Proof. Consider the action of the double bilinear transformation

1 Pi(115) zi p;1+ 1, 2

onG B/a, which produces the bounded (real) rational matrix N/g of the variables
pl, p2, in which N is a polynomial vector of size (1 n) and g is the least common
denominator polynomial of the entries of N/g, i.e., we have

g z.- a g
i=1,2.
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Invoking Theorem A.3 we obtain the lossless bounded (real) rational matrix H
as in (107) with Hll N/g. Now consider the action of the inverse transform to yield

(117) G _:_ i=1,2.

We then correspondingly also have

B
=L:_ 1, 2

a

Since it can be trivially shown from the corresponding property of H that G is
a discrete lossless bounded (real) rational matrix, the proof of the present theorem is
complete.
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